矩阵论课后习题 1.1

矩阵论课后习题 1.1
矩阵论课后习题 1.1

习 题 1.1

1. 解: 除了由一个零向量构成的集合{}θ可以构成线性空间外,没有两个和有限(m )个向量构成的线性空间,因为数乘不封闭(k α有无限多个,k ∈p 数域).

2. 解:⑴是;⑵不是,因为没有负向量;⑶不是,因为存在两向量的和向量处在第二或第四象限,即加法不封闭;⑷是;⑸不是,因为存在二个不平行某向量的和却平行于某向量,即加法不封闭.

3. 解:⑴ 不是,因为 当k ∈Q 或R 时,数乘k α不封闭;⑵ 有 理域上是;实数域上不是,因为当k ∈R 时,数乘k α不封闭.⑶ 是;⑷ 是;⑸ 是;⑹ 不是,因为加法与数乘均不封闭.

4. 解:是,因为全部解即为通解集合,它由基础解系列向量乘以相应常数组成,显然对解的加法与数乘运算满足二个封闭性和八条公理.

5. 解:(1)是线性空间;(2)不是线性空间(加法不封闭;或因无零向量).

6. 解:(1)设A 的实系数多项式()A f 的全体为

(){}

正整数m R a A a

A a I a A f i m m

,

1

∈++=

显然,它满足两个封闭性和八条公理,故是线性空间.

(2)与(3)也都是线性空间.

7. 解:是线性空间.不难验证t sin ,t 2sin ,…,nt sin 是线性无关的,且任一个形如题中的三角多项式都可由它们惟一地线性表示,所以它们是V 中的一个组基.由高等数学中傅里叶(Fourier )系数知

?

=

π

π

20

sin 1

itdt t c i .

8. 解:⑴ 不是,因为公理2)'不成立:设r=1, s=2, α=(3, 4), 则 (r+s) (3, 4)= (9, 4), 而 r (3, 4) ⊕ s (3, 4)=(3,4) ⊕(6, 4)= (9, 8), 所以 (r+s) α≠r α⊕s α.

⑵ 不是,因为公理1)不成立:设α= (1,2) , β= (3,4) ,

则α⊕β=(1,2) ⊕ (3,4) = (1,2), β⊕α= (3,4) ⊕ (1,2) = (3,4) , 所以 α⊕β≠β⊕α.

⑶ 不是,因为公理2)'不成立:设 r=1, s=2, α=(3,4) , 则 (r+s) α=3 (3, 4)= (27, 36) 而

r α⊕s α=1 (3,4)⊕2 (3,4)=(3, 4)⊕(12, 16)= (15, 20),

于是 (r+s) α≠ r α⊕s α.

⑷ 是.

9. 证 若∈βα,V ,则

()()()()()()()β

βααββααββααβαβαβα+++=+++=+++=+++=+=+)

11(111111222

另一方面,

()()()()()

()()()β

αβαβαβαβαβαβαβα+++=+++=+++=++=+111112

因此 ()()βαβαββαα+++=+++, 从而有

()()()()()()ββαβααβββααα-+++++-=-+++++-

于是得 αββα+=+.

10. 解:先求齐次方程组的基础解系

ξ1=(3,3,2,0)T , ξ2=(-3,7,0,4)T ,

即为解空间V 的一组基. 所以, dim V =2.

11. 解:考察齐次式 0)1()()(32221=++-++x k x x k x x k 即 0)()(3321221=++-++k x k k k x k k , 得线性方程组

021=+k k 0321=+-k k k 03=k

由于系数行列式不等于零,那么只有 0321===k k k 时 , 上述齐次式 才对 ?x 成立,所以 x x +2, x x -2, 1+x 线性无关,且任二次多项式

c bx ax ++2都可惟一地用它们来表示(因为相应的非齐次方程组有惟一

解),故为基.

令 33212212)()(372k x k k k x k k x x ++-++=++ 得 3,

1,

3321=-==k k k , 即坐标为 ( 3, -1, 3 ) .

12. 解: ⑴ 因为 (4321,,,ββββ)=(4321,,,αααα)C ,

故 C =(4321,,,αααα)1-(4321,,,ββββ)

= 1

000010000100001 1- 3

101

121163316502- = 3

101

1

21163316502- .

⑵ 显然,向量α在基4321,,,αααα下的坐标为 X =(1ξ,432,,ξξξ)T

, 设α在基4321,,,ββββ下的坐标为 Y =(T

),,,4321ηηηη, 则

Y =C 1- 4

32

1

ξξξξ =

3

101

12116

3316502- 1-4

321

ξξξξ

= 27

26319

1277320031

27

23319

4

271911

1

31

94---

---

- 4

32

1

ξξξξ = B X ⑶ 如果 X = Y , 则有 X= BX ,即得齐次方程组 ( I- B )X=0 , 求 其非零解为

X = k (-1, -1, -1, 1 )T

, k ∈R , 即为所求 .

13. 解: (1) 对n k ,,2,1 =;n k k l ,,1, +=令()n n ij kl a F ?=,其中

1=kl a ,其余的0=ij a ,则{}kl F 为上三角矩阵空间的一组基,维数为

()12

1

+n n . (2)R +中任意非零元素都可作R +的基,dim R +=1. (3)I ,A ,A 2为所述线性空间的一组基,其维数为3.

14. 解: (1)由已知关系式求得

???????+=+=+--=-++=3

2421342

12432112242284ααβααβαααβααααβ

于是,由基(I )到基(II )的过渡矩阵为

????

?

????

???---=0012200112480124C (2)α在基(II )下的坐标为(2,-1,1,1)T ,再由坐标变换公式计算α在基(I )下的坐标为

C (2,-1,1,1)T =(11,23,4,-5)T .

(3)不难计算得det (1·I —C )=0,所以1是C 的特征值.不妨取过渡矩阵C 的对应于特征值1的一个特征向量为η,则有C η=1·η,那么α()4321,,,ββββ=η≠0,再由坐标变换公式知,α在基(I )下的坐标为ξ=C η=η,即存在非零α4V ∈,使得α在基(I )和基(II )下有相同的坐标.

15. 解:不难看出,由简单基E 11,E 12,E 21,E 22改变为基(I )和基(II )的过渡矩阵分别为

??

???????

???-=22

21

11203111

1202

1C , ?????

?

??????-----=11100111121211112C 则有(B 1,B 2,B 3,B 4)=(E 11,E 12,E 21,E 22)C 2

=(A 1,A 2,A 3,A 4)11-C C 2

故由基(I )改变到基(II )的过渡矩阵为

?????

????

???----==-1111100000111110211C C C .

16. 解:(1)由简单基1,32,,x x x 改变到基(I )和基(II )的过渡矩阵为

?????????

???=11111111111C , ?????

??

?????=1011

01111110

110

1

2C 故由基(I )改变为基(II )的过渡矩阵为

??

???

??

??

???---==-101

111001*********

1C C C (2)设()[]3x p x f ∈在基(I )和基(II )下的坐标分别为

()T 4321,,,ξξξξα=,()T 4321,,,ηηηηβ=,则有βαC =且βα=,即有

()0=-βC I ,该齐次方程组的通解为()T

k 0,1,0,0=β,∈k .于是,在基

(I )和基(II )下有相同坐标的全体多项式为

()()()()()()()2

34321,,,kx

kx k x kg x g x g x g x g x f ++===β .

17. 解:⑴ 设

n

的子集合为L ,对任意∈αL ,有

),...,,(21n a a a =α,

∑==n

i i

a

1

0,

对任意L ∈βα,,),...,,(21n a a a =α , ),...,,(21n b b b =β 有

∑∑∑====+=+++=+n

i n i n

i i i i i

n n b a b a

b a b a 11

1

110)(),,...,(βα

又 ∑∑=====n

i n

i i i

n a k ka

ka ka k 1

1

10),,...,(α, 所以∈+βαL

αk L

因此L 是V 的子空间.

⑵ 对任意∈βα,L ,),...,,(21n a a a =α, ),...,,(21n b b b =β , 有

∑==n

i i

a

1

1,

∑==n

i i

b

1

1

故 2)(),

,...,(1

1

1

11∑∑∑====+=+++=+n

i n

i n

i i i i i

n n b a b a

b a b a βα

于是可知 ?+βα L ,因此L 不是V 的子空间.

18. 解: ),,('3'2'1αααSpan 的基为'

3

'2'1,,ααα的一个最大无关组, '

3

'2'1,,ααα在基321,,ααα下的坐标依次为 (1, -2, 3)T , (2 , 3 , 2)T , (4, 13, 0 )T

该列向量组的一个最大无关组为 (1, -2, 3)T , (2 ,3 ,2)T .因此,'

3'2'1,,ααα的一个最大无关组为 '2'1,αα,即),,('3'2'1αααSpan 的一个基为'2

'1,αα .

19. 解:(1)因为10V n n ∈?,所以V 1非空.设A ,1V B ∈,则有AP=P A ,BP=PB .又因为(A+B )P=AP+BP=P A+PB=P (A+B ),(kA )P=k (AP )=k (P A )=P (kA ) (∈k ),所以1V B A ∈+,1V kA ∈,故V 1是n n R ?的子空间.

(2)取??????=0001A , B ??

?

???=1000,则det A=det B =0,从而1V A ∈,1V B ∈,

但??

?

?

??=+1001B A ,()0det ≠+B A ,所以1V B A ∈+,故V 1不是子空间. 又A A =2,从而2V A ∈,??????=00022A ,()A A 2000422

≠??

????=,所以22V A ∈,故V 2也不是子空间.

20. 证:因为

(2,-1,3,3)=(-1)(1,1,0,0)+3(1,0,1,1), (0,1,-1,-1)=(1,1,0,0)+(-1)(1,0,0,1)

即生成的子空间有相同的基,所以它们生成的子空间相同.

21. 解: (1) 设14321

V x x x x A ∈??

?

?

??=,则由AP=P A 可得齐次方程组 ???

?

???

==-=-+=-0

30033033342

13x x x x x x

求得基础解系为(1,-3,0,0)T ,(1,0,0,1)T ,从而V 1的基为

??????-=00311A ,??

?

???=10012A , dimV 1 =2 .

(2) V 1的矩阵一般形式??

?

???-+=+=212

1

221103k k k k A k A k A ()R k k ∈21,.

22. 证:若V 1的维数为0,则V 1与V 2都是零空间,当然相等; 若V 1的维数是0≠m ,由于21V V ?,故V 1的任一组基m e e e ,,,21 都是

V 2的线性无关组.又因V 2与V 1的维数相同,故这个线性无关组也是V 2的一组基,即V 1与V 2有相同的基,因此V 1=V 2.

23. 解:设()W V a a a a ∈=4321,,,α,则有 0,

043214321=+++=-+-a a a a a a a a

由此相加或相减可得031=+a a ,042=+a a ,从而31a a -=,42a a -=,故得 ()()()1,0,1,00,1,0,1,,,212121-+-=--=a a a a a a α.

但(1,0,-1,0),(0,1,0,-1)线性无关,即为所求的基.

24. 解:(1)设()22?=ij a A ,()V b B ij ∈=?2

2,则02211=+a a ,

02211=+b b ,因为()22?+=+ij ij b a B A ,()()022221111=+++b a b a ,()22?=ij ka kA ,

()()02211=+ka ka ,所以V B A ∈+,V kA ∈,又V ∈?220,所以V 是

2

2?的

子空间.

(2)在V 中取??????-=10011A ,??

????=00102A ,???

???=01003A 它们线性无关.因为02211=+a a 即1122a a -=,于是321212111A a A a A a A ++=,因此,V 的一组基为A 1,A 2,A 3,从而dim V =3.

25. 解:(1){}3,,,dim 2121=ββααSpan

, {}2,dim 21=ααSpan

, {}2,dim 21=ββSpan 故交的维数为2+2-3=1,交的一组基为(-5,2,3,4)T ,和的维数

为3,{

}121,,βαα为一组基. (2){}4,,,,dim 21321=ββαααSpan ,

{}{}2,dim ,3,,dim 21321==ββαααSpan Span

故交的维数为1,基为1β;和的维数为4,{}2321,,,βααα为一组基.

26. 证:(1)设1,V ∈βα,且∑∑====n

i n

i i i i i x e x 1

1

εα, ∑∑====n

i i i i n

i i y e y 1

1

εβ

则 ()()∑∑==+=+=+n i n

i i i i i i i y x e y x 1

1

εβα

∑∑====n i n

i i i i i kx e kx k 1

1

εα (k 是数)

即βα+与αk 在两组基下的坐标也是相同的,所以1V ∈+βα,1V k ∈α ,故V 1是子空间.

(2)因V 中每个向量在两组基下的坐标相同,所以基向量

()n i e i ,,2,1 =在n e e e ,,21 下的坐标为(0,…,0,1,0,…,0)它也

应为i e 在n εεε,,,21 下的坐标,于是有

1=i e ()n i i i ,,2,1 ==εε.

27. 证:设

(){}R a a a a A V ij ji ij ij ∈===?,221,

(){}R

b b b b B V ij ji ij ij ∈-===?,222

容易验证V 1与V 2都是V 的子空间.对任意V C ∈有 ()()

T T C C C C C -++=2

1

21 且

()()

212

1

,21V C C V C C T T ∈-∈-,所以21V V V +=. 因为()212122V D V D V V d D ij ∈∈?∈=?且

ji ij ji ij d d d d -==?且

()2,1,0==?j i d ij

即0=D ,所以{}021=V V ,则21V V V ⊕=.

28. 证:由齐次线性方程组的理论可推知V 1是n-1维的,且有基=1α(-1,1,0,…,0),=2α(-1,0,1,0,…,0),…,=-1n α(-1,0,…,0,1).又n x x x === 21,即

??????

?=-=-=--0

00

13

221n n x x x x x x 此方程组系数矩阵的秩为n -1,故解空间V 2的维数为1,令x n =1,便得V 2的一组基=β(1,1,…,1);又以121,,,-n ααα ,β为行的n 阶行列式

()0,11

1111100010

010*******

≠-=---+n n

故121,,,-n ααα ,β为n

的一组基,且有

n

21V V ⊕=.

29. 证:设V 是n 维线性空间,n e e e ,,21 为基,则()i e L 都是一维子空间(i =1,2,…,n ),且有()()()()V e e e L e L e L e L n n ==+++,,,2121 .又因n e e e ,,,21 是基,零向量θ表示式惟一,故这个和是直和,即

()()()V e L e L e L n =⊕⊕⊕ 21.

2012矩阵论复习题

2012矩阵论复习题 1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ?=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 k x x k =? 问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由. 2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为 ),(112211y x y x y x y x +++=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 )2 )1(,(2121x k k kx kx x k -+=? 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由. 3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S 的一组基和S dim . 4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间, )}()(,0)0(|)({R P x f f x f S n ∈='= 证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim . 5. 设T 是2R 上的线性变换,对于基向量i 和j 有 j i i T +=)( j i j T -=2)( 1)确定T 在基},{j i 下的矩阵; 2)若j i e -=1 j i e +=32,确定T 在基},{21e e 下的矩阵. 6. 设T 是3R 上的线性变换,对于基},,{k j i 有 k j k j i T -=++)( i k j T =+)( k j i k T 532)(++=

2016矩阵论试题

第 1 页 共 6 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则1||||A =。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为A = 4. 设矩阵??? ? ? ??--=304021101A ,则 5432333A A A A A -++-= . 5.??? ? ? ? ?-=λλλλλ0010 01)(2A 的Smith 标准形为 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

矩阵论习题课答案

习题课答案 一 1). 设A 为n 阶可逆矩阵, λ是A 的特征值,则*A 的特征根之一是(b )。 (a) 1 ||n A λ - (b) 1||A λ- (c) ||A λ (d) ||n A λ 2). 正定二次型1234(,,,)f x x x x 的矩阵为A ,则( c )必成立. ()a A 的所有顺序主子式为非负数 ()b A 的所有特征值为非负数 ()c A 的所有顺序主子式大于零 ()d A 的所有特征值互不相同 3).设矩阵111 11A α αββ?? ?= ? ???与000010002B ?? ? = ? ??? 相似,则,αβ的值分别为( a )。 (a) 0,0 (b) 0,1 (c) 1,0 (d) 1,1 二 填空题 4)若四阶矩阵A 与B 相似,A 的特征值为1111 ,,,2345 ,则1B E --= 24 。 5)设532644445A -?? ?=- ? ?-?? ,则100 A = 10010010010010010010010010010010010010032(21)223312(23)442232(31)2(31)2(13)231?? +---- ? +---?- ? ?--?-? ? 三 计算题 3.求三阶矩阵1 261 725027-?? ? ? ?--? ? 的Jordan 标准型 解 1261725027E A λλλλ+--?? ?-=--- ? ?+??,将其对角化为210001000(1)(1)λλ?? ? ? ?+-??.故A 的若 当标准形为100110001-?? ? - ? ??? .■

研究生矩阵论课后习题答案(全)习题二

习题二 1.化下列矩阵为Smith 标准型: (1)222211λλλλ λλλλλ?? -?? -????+-?? ; (2)2222 00 000 00(1)00000λλλλλλ ?? ?? -? ? ??-?? -?? ; (3)2222 232321234353234421λλλλλλλλλλλλλλ?? +--+-??+--+-????+---?? ; (4)23014360220620101003312200λλλλλλλλλλλλλλ????++??????--????---?? . 解:(1)对矩阵作初等变换 23221311(1)100 10 000000(1)00(1)c c c c c c r λλλλλλλλλ+--?-???????????→-???→? ??? ????-++???? , 则该矩阵为Smith 标准型为 ???? ? ?????+)1(1λλλ; (2)矩阵的各阶行列式因子为 44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=, 从而不变因子为 22 2341234123()()() ()1,()(1),()(1),()(1)()()() D D D d d d d D D D λλλλλλλλλλλλλλλλ== =-==-==-故该矩阵的Smith 标准型为

2210000(1)0000(1)00 00(1)λλλλλλ?? ??-????-?? -??; (3)对矩阵作初等变换 故该矩阵的Smith 标准型为 ?? ?? ??????+--)1()1(112 λλλ; (4)对矩阵作初等变换 在最后的形式中,可求得行列式因子 3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===, 于是不变因子为 2541234534()() ()()()1,()(1),()(1)()() D D d d d d d D D λλλλλλλλλλλλλ==== =-==-故该矩阵的Smith 标准形为 2 1 0000 010 0000100000(1)00 00 0(1)λλλλ?????????? -?? ??-?? . 2.求下列λ-矩阵的不变因子: (1) 21 0021002λλλ--????--????-??; (2)100 1000 λαββλα λαββ λα+????-+? ???+??-+?? ;

2016矩阵论复习题

矩阵论复习题 1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ?=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 k x x k =? 问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由. 2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为 ),(112211y x y x y x y x +++=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 )2 )1(,(2121x k k kx kx x k -+=? 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由. 3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S 的一组基和S dim . 4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间, )}()(,0)0(|)({R P x f f x f S n ∈='= 证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim . 5. 设33:R R T →是线性变换, ()()321323213212,,2,,x x x x x x x x x x x T -++-+= 求T 的零空间)(T N 和像空间)(T R 的基和维数. 6. 设T 是3R 上的线性变换,对于基},,{k j i 有 k j k j i T -=++)( i k j T =+)( k j i k T 532)(++= 1)确定T 在基},,{k j i 下的矩阵; 2)求T 的像空间的基与维数.

南航矩阵论2013研究生试卷及答案

南京航空航天大学2012级硕士研究生

二、(20分)设三阶矩阵,,. ????? ??--=201034011A ????? ??=300130013B ???? ? ??=3003003a a C (1) 求的行列式因子、不变因子、初等因子及Jordan 标准形; A (2) 利用矩阵的知识,判断矩阵和是否相似,并说明理由. λB C 解答: (1)的行列式因子为;…(3分)A 2121)1)(2()(,1)()(--===λλλλλD D D 不变因子为; …………………(3分)2121)1)(2()(,1)()(--===λλλλλd d d 初等因子为;……………………(2分) 2)1(,2--λλJordan 标准形为. ……………………(2分) 200011001J ?? ?= ? ??? (2) 不相似,理由是2阶行列式因子不同; …………………(5分) 0,a = 相似,理由是各阶行列式因子相同. …………………(5分) 0,a ≠共 6 页 第 4 页

三、(20分)已知线性方程组不相容. ?? ???=+=+++=++1,12,1434321421x x x x x x x x x (1) 求系数矩阵的满秩分解; A (2) 求广义逆矩阵; +A (3) 求该线性方程组的极小最小二乘解. 解答:(1) 矩阵,的满秩分解为 ???? ? ??=110021111011A A . …………………(5分)10110111001101A ??????=?????????? (2) . ……………………(10分)51-451-41-52715033A +?? ? ?= ? ??? (3) 方程组的极小最小二乘解为. …………(5分)2214156x ?? ? ?= ? ??? 共 6 页 第 5 页

研究生矩阵论课后习题答案全习题三

习题三 1.证明下列问题: (1)若矩阵序列{}m A 收敛于A ,则{}T m A 收敛于T A ,{} m A 收敛于A ; (2)若方阵级数∑∞ =0m m m A c 收敛,则∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 证明:(1)设矩阵 ,,2,1,)() ( ==?m a A n n m ij m 则 ,)()(n n m ji T m a A ?=,)()(n n m ij m a A ?=,,2,1 =m 设 ,)(n n ij a A ?= 则 n n ji T a A ?=)(,,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有 ij m ij m a a =∞ →) (lim , 则 ji m ji m a a =∞ →)(lim ,ij m ij m a a =∞ →)(lim ,n j i ,,2,1, =, 故{} T m A 收敛于T A ,{} m A 收敛于A . (2)设方阵级数 ∑∞ =0 m m m A c 的部分和序列为 ,,,,21m S S S , 其中m m m A c A c c S +++= 10.

若 ∑∞ =0 m m m A c 收敛,设其和为S ,即 S A c m m m =∑∞ =0 ,或S S m m =∞ →lim , 则 T T m m S S =∞ →lim . 而级数∑∞ =0 )(m m T m A c 的部分和即为T m S ,故级数∑∞ =0 )(m m T m A c 收敛,且其和为T S , 即 ∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 2.已知方阵序列{}m A 收敛于A ,且{} 1-m A ,1 -A 都存在,证明: (1)A A m m =∞ →lim ;(2){}1 1 lim --∞ →=A A m m . 证明:设矩阵 ,,2,1,)() ( ==?m a A n n m ij m ,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有 ij m ij m a a =∞ →) (lim . (1) 由于对任意的n j j j ,,,21 ,有 ,lim ) (k k kj m kj m a a =∞ → n k ,,2,1 =, 故 ∑-∞ →n n n j j j m nj m j m j j j j m a a a 2121)()(2)(1) ()1(lim τ = ∑-n n n j j j nj j j j j j a a a 21212121) ()1(τ , 而 ∑-= n n n j j j m nj m j m j j j j m a a a A 2121) ()(2)(1)()1(τ,

矩阵理论第一二章 典型例题

《矩阵理论》第一二章 典型例题 一、 判断题 1.A n 为阶实对称矩阵,n R x 对中的列向量, ||x |A x =定义, ||x ||x 则为向量 的范数. ( ) 2.设A n 为阶Hermite 矩阵,12,,,n λλλ 是矩阵A 的特征值,则22 2 1 ||||n m i i A λ==∑ . ( ) 3. 如果m n A C ?∈,且0A ≠,()H AA AA --=, 则2||||A A n - =. ( ) 4. 若设n x R ∈,则212||||||||||||x x x ≤≤. ( ) 5. 设m n A R ?∈的奇异值为12n σσσ≥≥≥ ,则222 1 ||||n i i A σ==∑. ( ) 6. 设n n A C ?∈,且有某种算子范数||||?,使得||||1A <,则11||()||1|||| E A A --> -, 其中E 为n 阶单位矩阵. ( ) 7. 设2H A E uu =-(其中,E 为n 阶单位矩阵,2||||1n u C u ∈=且),则2 ||||m A = ( ) 8. 设n n A C ?∈为正规矩阵,则矩阵的谱半径2()||||r A A =. ( ) 9.设n n C A ?∈可逆,n n C B ?∈,若对算子范数有1 ||||||||1A B -?<,则B A +可逆. ( ) 10. 设A 为m n ?矩阵,P 为m 阶酉矩阵, 则PA 与A 有相同的奇异值. ( ) 11. 设n n A C ?∈,且A 的所有列和都相等,则()r A A ∞ =. ( ) 12. 如果12(,,,) T n n x x x x C =∈,则1||||m in i i n x x ≤≤=是向量范数. ( ) 13. 设,n n A C ?∈则矩阵范数 m A ∞ 与向量的1-范数相容. ( ) 14、设n n A C ?∈是不可逆矩阵,则对任一自相容矩阵范数 有1I A -≥, 其中I 为单位矩 阵. ( )

南航双语矩阵论 matrix theory第三章部分题解

Solution Key to Some Exercises in Chapter 3 #5. Determine the kernel and range of each of the following linear transformations on 2P (a) (())'()p x xp x σ= (b) (())()'()p x p x p x σ=- (c) (())(0)(1)p x p x p σ=+ Solution (a) Let ()p x ax b =+. (())p x ax σ=. (())0p x σ= if and only if 0ax = if and only if 0a =. Thus, ker(){|}b b R σ=∈ The range of σis 2()P σ={|}ax a R ∈ (b) Let ()p x ax b =+. (())p x ax b a σ=+-. (())0p x σ= if and only if 0ax b a +-= if and only if 0a =and 0b =. Thus, ker(){0}σ= The range of σis 2()P σ=2{|,}P ax b a a b R +-∈= (c) Let ()p x ax b =+. (())p x bx a b σ=++. (())0p x σ= if and only if 0bx a b ++= if and only if 0a =and 0b =. Thus, ker(){0}σ= The range of σis 2()P σ=2{|,}P bx a b a b R ++∈= 备注: 映射的核以及映射的像都是集合,应该以集合的记号来表达或者用文字来叙述. #7. Let be the linear mapping that maps 2P into 2R defined by 10()(())(0)p x dx p x p σ?? ?= ??? ? Find a matrix A such that ()x A ασαββ??+= ??? . Solution 1(1)1σ??= ??? 1/2()0x σ?? = ??? 11/211/2()101 0x ασαβαββ????????+=+= ? ? ??????????? Hence, 11/210A ??= ??? #10. Let σ be the transformation on 3P defined by (())'()"()p x xp x p x σ=+ a) Find the matrix A representing σ with respect to 2[1,,]x x b) Find the matrix B representing σ with respect to 2[1,,1]x x + c) Find the matrix S such that 1B S AS -= d) If 2012()(1)p x a a x a x =+++, calculate (())n p x σ. Solution (a) (1)0σ=

东南大学考博矩阵论复习题

2011矩阵论复习题 1.设+ =R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为y x y x ?=⊕对于任意的数R k ∈,定义k 与x 的数乘为 k x x k =?问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由. 2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为 ) ,(112211y x y x y x y x +++=⊕对于任意的数R k ∈,定义k 与x 的数乘为 )2)1(,(2121x k k kx kx x k ?+ =?问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由. 3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3 R 的子空间,并求S 的 一组基和S dim . 4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间,)} ()(,0)0(|)({R P x f f x f S n ∈=′=证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim . 5.设T 是2 R 上的线性变换,对于基向量i 和j 有j i i T +=)(j i j T ?=2)(1)确定T 在基},{j i 下的矩阵; 2)若j i e ?=1j i e +=32,确定T 在基},{21e e 下的矩阵.敬告:本资源来自网络,如有侵权,请发邮件至liwdedy@https://www.360docs.net/doc/b18789013.html, ,收到后立即删除,谢谢!

6.设T 是3 R 上的线性变换,对于基},,{k j i 有k j k j i T ?=++)(i k j T =+)(k j i k T 532)(++=1)确定T 在基},,{k j i 下的矩阵; 2)求T 的零空间和像空间的维数. 7.设线性空间3R 的两个基为(I):321,,x x x ,(II):321,,y y y ,由基(I)到基(II)的过度矩阵为 ???? ????????=101010101C ,3R 上的线性变换T 满足 2 1321)32(y y x x x T +=++12323 (24)T x x x y y ++=+3 1321)43(y y x x x T +=++1)求T 在基(II)下的矩阵; 2)求)(1y T 在基(I)下的坐标. 8.在线性空间)(3R P 中 321)(x x x a x f +++=3221)(x x ax x f +++=3 2321)(x x x x f +++=讨论)(),(),(321x f x f x f 的线性相关性. 9.在22R ×中求由基(I)12101A ??=????20122A ??=????32112A ???=????41312A ??=????到基(II)11210B ??=?????21111B ???=????31211B ???=????41101B ????=???? 的过渡矩阵. 10.已知1(1,2,1,0)α=2(2,1,0,1)α=?1(1,1,1,1)β=?2(1,1,3,7) β=?设1212(,)(,)V L L ααββ=∩,求线性空间V 的维数和基.

2016矩阵论试题A20170109 (1)

第 1 页 共 4 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则______||||1=A 。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为_______=A 4. 设矩阵??? ? ? ??--=304021101A ,则 _______ 3332345=-++-A A A A A . 5.??? ? ? ? ?-=λλλλλ0010 1)(2A 的Smith 标准形为 _________ 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

南航矩阵论期中考试参考答案.doc

1) 一组基为q = .维数为3. 3) 南京航空航天大学双语矩阵论期中考试参考答案(有些答案可能有问题) Q1 1解矩阵A 的特征多项式为 A-2 3 -4 4I-A| =-4 2+6 -8 =A 2(/l-4) -6 7 A-8 所以矩阵A 的特征值为4 =0(二重)和/^=4. 人?2 3 由于(4-2,3)=1,所以D| (人)二1.又 彳 人+6=“2+4人=?(人) 4-2 3 、=7人+4=代(人)故(们3),代3))=1 ?其余的二阶子式(还有7个)都包含因子4, -6 7 所以 D? 3)=1 .最后 det (A (/L))=42(人.4),所以 D 3(A)=/l 2 (2-4). 因此矩阵A 的不变因子为d, (2) = d 2(2) = l, d 3 (2) = r (2-4). 矩阵A 的初等因子为人2, 2-4. 2解矩阵B 与矩阵C 是相似的.矩阵B 和矩阵C 的行列式因子相同且分别为9 3)=1 , D 2(/i)=A 2-/l-2 .根据定理:两矩阵相似的充分必要条件是他们有相同的行列式因子. 所以矩阵B 与矩阵c 相似. Q2 2)设k 是数域p 中任意数,a, 0, /是v 中任意元素.明显满足下而四项. (") = (",a) ; (a+月,/) = (",/) + (”,刃;(ka,/3) = k(a,/3) ; (a,a)>0, 当且仅当Q = 0时(a,a) = ().所以(。,/?)是线性空间V 上的内积. 利 用Gram-Schmidt 正交化方法,可以依次求出 ,p 2 =%-(%'5)与= 层=%-(%,弟与一(%,弓)役=

矩阵论练习题2

1.了解坐标变换和基变换,熟悉过度矩阵的概念,会求过度矩阵以及一个向量在不同基下的坐标。 例1 三维空间的一组基为I :(1,0,0)、(1,1,0)、(1,1,1),另一组基为II :(1,0,1)、(1,2,1)、(3,1,4),求由I 到II 的过度矩阵,并求向量(2,2,3)在这两组基下的坐标。并用过度矩阵检验你计算的正确性。 112113114A -?? ?=-- ? ??? (2,2,3)= 0(1,0,0)-1(1,1,0)+3(1,1,1) (2,2,3)=-1.5(1,0,1)+0.5(1,2,1)+(3,1,4) 例2 在4维线性空间22R ?中,向量组, 123401101111,,,11110110εεεε???????? ====???????? ???????? 与向量组 123410111111,,,00001011μμμμ???????? ====? ??????????????? 为其两组基,求从基 1234,,,εεεε 到基1234,,,μμμμ 的过渡矩阵,并求向 量 1234A ?? =?? ?? 在这两组基下的坐标。 2.熟悉子空间的和与交,会用子空间的基本概念来证明子空间的性质。 例1. 子空间的和与交都是子空间. 设1V 和2V 是数域P 上线性空间V 的任 意两个子空间,试证明 (1){}1212,V V x x V x V =∈∈ (2){}12121122:,V V x x x x x V x V +==+∈∈ 都是线性空间V 的子空间。 例2.向量组12,,,s ααα 和12,,,r βββ 都是线性空间V 中的向量,试证明 12121212(,,,)(,,,)(,,,,,,,)s r s L L L αααβββαααβββ+= 例3.判断矩阵 311201112A -?? ?= ? ?-?? 是否可以对角化? 例4.试将λ-矩阵 22221()1A λλλλλ λλλλλ?? - ? =- ? ?+-?? 化成Smith 标准形。

矩阵论习题

1. 假设A,B 都是实正规矩阵, 证明A,B 可同时正交对角化(即存在正交矩阵Q,使得Q T AQ 和Q T BQ 都是对角矩阵)的充分必要条件是A,B 可交换(即AB=BA). 2. 证明矩阵AB 和BA 的特征值都相同, 而且非零特征值的代数重数也相同. 并利用这个结论证明: (1) tr(AB)=tr(BA), (2) det(I+xy T )=1+y T x, 其中x,y 都是n 维向量. 3. 假设A,B 都是实对称矩阵, 且A 正定, 证明A,B 可同时对角化, 即存在非奇异矩阵C,使得C T AC 和C T BC 都是对角矩阵. 4. 证明若矩阵X 满足AX-XB=0, 且矩阵A,B 没有相同的特征值, 则必有X=0. 5. 设H=A+iB 是一个正定Hermite 矩阵, 其中A,B 是n 阶实矩阵, 证明矩阵A B B A -?? ???? 是对称正定的. 6. 设n 阶矩阵A 满足A 3 =I, 试导出A 的Jordan 标准型可能具有的形状. 7. 证明矩阵F 范数与向量2范数相容, 即2 2 .F Ax A x ≤ 8. 设v 是n 维非零实向量, E 是n 阶实矩阵, 证明1 22 2 2 (()).F T F T T Ev v E E I v vv v v --=+ ‖‖‖‖ 9. 设200011,20 1A π??? ?= ?????? 证明2 20 0044sin 011.00 1A A A ππ ?? ??= -=?????? 10. 设6 222 20,0 2A ?? ? ? =-?????? 计算ln .A 11. 证明对任意n 阶矩阵A, 有2 1,sin(2cos(2))2sin cos . 2cos A A A A A =-= 12. 形如 (,)T k N y k I ye =-的矩阵称为Gauss-Jordan 变换, 其中y 是n 维实向量. (1) 假定 N(y,k)非奇异, 给出计算其逆的公式. (2) n 维实向量x 满足什么条件才能保证存在n 维实向量 y 使得N(y,k)x=e k . 13. 证明222x y x y +=+‖‖‖‖‖‖当且仅当x 与y 线性相关, 且 0.T x y ≥

矩阵论试题

2017—2018学年第一学期《矩阵论》试卷 (17级专业硕士) 专业 学号 姓名 得分 一.判断题(每小题3分,共15分) 1.线性空间V 上的线性变换A 是可逆的当且仅当零的原像是零, 即ker A =0。( ) 2.实数域上的全体n 阶可逆矩阵按通常的加法与数乘构成一个 线性空间。( ) 3.设A 是n 阶方阵,则k A ),2,1( =k 当∞→k 时收敛的充分 必要条件是A 的谱半径1)(

4. 设1][-n x P 是数域K 上次数不超过1-n 的多项式空间,求导算子D 在基12,,,,1-n x x x 以及基12)! 1(1,,!21, ,1--n x n x x 下的矩阵分别为 , 。 5.设A 是复数域上的正规矩阵,则A 满足: ,并 写出常用的三类正规矩阵 。 三.计算题(每小题12分,共48分) 1.在3R 中,试用镜像变换(Householder 变换)将向量T )2,2,1(-=α 变为与T e )1,0,0(3=同方向的向量,写出变换矩阵。 。

矩阵论华中科技大学课后习题答案

习题一 1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11 {()| 0}n ij n n ii i V A a a ?====∑,对矩阵加法和数乘运算; (2)2{|,}n n T V A A R A A ?=∈=-,对矩阵加法和数乘运算; (3)33V R =;对3R 中向量加法和如下定义的数乘向量:3 ,,0R k R k αα?∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。 解: (1)、(2)为R 上线性空间 (3)不是,由线性空间定义,对0α?≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。 2.求线性空间{|}n n T V A R A A ?=∈=的维数和一组基。 解:一组基 100 010 10 101010000000100............ ......0010010?? ???? ?????? ???? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ?? ? ? ?? ?? ? ? ? ?????? dim W =n ( n +1)/2 3.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ?,证明:U 1=U 2。 证明:因为dim U 1=dim U 2,故设 {}12,,,r ααα为空间U 1的一组基,{}12,,,r βββ为空间U 2的一组基 2U γ?∈,有 ()12 r X γγβββ= 而 ()()12 12r r C αααβββ=,C 为过渡矩阵,且可逆 于是 ()()()112 12121r r r X C X Y U γγγγβββαααααα-===∈ 由此,得 21 U U ?

矩阵论复习题

第二章 内积空间 一、基本要求 1、掌握欧氏空间和酉空间的定义与性质,掌握Hermite 矩阵的定义,理解欧氏(酉)空间中度量的概念. 2、掌握线性无关组的Schmidt 正交化与对角化方法,理解标准正交基的性质. 3、理解Hermite 二次型的定义. 4、掌握在一组基下的度量矩阵的概念,标准正交基下度量矩阵的性质及两组标准正交基下的度量矩阵的关系. 5、了解欧氏子空间的定义. 6、掌握正交矩阵与酉矩阵的定义与性质,理解正交(酉)变换与正交(酉)矩阵的关系. 7、掌握对称矩阵与Hermite 矩阵的定义与性质,理解对称(Hermite)变换与对称(Hermite)矩阵的关系. 8、掌握矩阵可对角化的条件,会求一个正交(酉)矩阵把实对称(Hermite)矩阵化为对角形矩阵,会求一组标准正交基使线性变换在该基下对应的矩阵是对角形矩阵. 二、基本内容 1、内积空间 设数域F 上的线性空间)(F V n ,若)(F V n 中任意两个向量βα,都有一个确定的数与之对应,记为),(βα,且满足下列三个条件 (1) 对称性:),(),(αββα=,其中),(αβ表示对数),(αβ取共轭; (2) 线性性:),(),(),(22112211βαβαβααk k k k +=+; (3) 正定性:0),(≥αα,当且仅当0=α时,0),(=αα, 则称),(βα为向量α与β的内积.当R F =时,称)(R V n 为 欧氏空间;当C F =时,称)(C V n 为酉空间. 注意:在n R 中,),(),(βαβαk k =;在n C 中,),(),(βαβαk k =. 通常的几个内积: (1) n R 中,αββαβαT T n i i i y x ===∑=1),(

南航07-14矩阵论试卷

南京航空航天大学07-14硕士研究生矩阵论试题 2007 ~ 2008学年《矩阵论》 课程考试A 卷 一、(20分)设矩阵 ?? ??? ??-----=111322211 A , (1)求A 的特征多项式和A 的全部特征值; (2)求A 的行列式因子、不变因子和初等因子; (3)求A 的最小多项式,并计算I A A 236 -+; (4)写出A 的Jordan 标准形。 二、(20分)设2 2?R 是实数域R 上全体22?实矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。 (1)求2 2?R 的维数,并写出其一组基; (2)设W 是全体22?实对称矩阵的集合, 证明:W 是2 2?R 的子空间,并写出W 的维数和一组基; (3)在W 中定义内积W B A BA tr B A ∈=,),(),(其中,求出W 的一组标准正交基; (4)给出22?R 上的线性变换T : 22,)(?∈?+=R A A A A T T 写出线性变换T 在(1)中所取基下的矩阵,并求T 的核)(T Ker 和值域)(T R 。 三、(20分) (1)设 ? ??? ??-=121312A ,求1A ,2A ,∞A ,F A ; (2)设n n ij C a A ?∈=)(,令 ij j i a n A ,*max ?=, 证明: *是 n n C ?上的矩阵范数并说明具有相容性; (3)证明:*2*1 A A A n ≤≤。 四、(20分)已知矩阵 ?????? ? ??-=10010001111 1A ,向量 ??? ??? ? ??=2112b , (1)求矩阵A 的QR 分解;

矩阵论考试试题(含答案)

矩阵论试题 一、(10分)设函数矩阵 ()??? ? ??-=t t t t t A sin cos cos sin 求:()?t dt t A 0和(()?2 0t dt t A )'。 解:()?t dt t A 0=()???? ? ??-????t t t t tdt tdt dt t dt t 0 sin cos cos sin =??? ? ??---t t t t cos 1sin sin cos 1 (()?2 t dt t A )'=()??? ? ? ?-=?22 22 2sin cos cos sin 22t t t t t t t A 二、(15分)在3R 中线性变换σ将基 ????? ??-=1111α,????? ??-=1202α,??? ?? ??-=1013α 变为基 ????? ??-=0111β,????? ??-=1102β,??? ? ? ??-=2303β (1)求σ在基321,,ααα下的矩阵表示A ; (2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。 解:(1)不难求得: ()2111ααβασ-== ()32122αααβασ++-== ()321332αααβασ++-==

因此σ在321,,ααα下矩阵表示为 ??? ? ? ??---=110211111A (2)设()??? ?? ??=321321,,k k k αααξ,即 ??? ? ? ??????? ??---=????? ??321111021101 321k k k 解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。 ()ξσ在321,,ααα下坐标可得 ???? ? ??--=????? ??--????? ??---=????? ??1332239410110211111321y y y (3)ξ在基321,,βββ下坐标为 ??? ? ? ??-=????? ??--????? ??--=????? ??---61519410011111101 94101A ()ξσ在基321,,βββ下坐标为 ????? ??--=????? ??--????? ??--=????? ??---94101332230111111011332231A 三、(20分)设??? ? ? ??-=301010200A ,求At e 。 解:容易算得 ()()()()212--=-=λλλλ?A I

矩阵论简明教程课后复习题与答案解析

习 题 一 13. 设A ∈ C n n ?是Hermite 矩阵。证明A 是Hermite 正定矩阵的充分必要条件是,存在Hermite 正定矩阵B ,使得A=B 2。 解:若A 是Hermit 正定矩阵,则由定理1.24可知存在n 阶酉矩阵U , 使得 U H AU =???? ?? ? ? ?n λλλO 2 1, i λ﹥0, I =1, 2, ,Λn . 于是 A =U ?? ??? ?? ??n λλλO 21U H = U ??????? ??n λλλO 2 1U H U ?????? ? ? ?n λλλO 2 1U H 令 B =U ?????? ? ? ?n λλλO 2 1 U H 则 A =B 2. 反之,当 A =B 2且B 是Hermit 正定矩阵时,则因Hermit 正定矩阵的乘积仍为Hermit 正定矩阵,故A 是Hermit 正定的. 14. 设A ∈ C n n ?是Hermite 矩阵,则下列条件等价:(1)A 是Mermit 半正定矩阵。(2)A 的特征值全为非负实数。(3)存在矩阵P ∈ C n n ?,使得A=P H P 解:(1)?(2). 因A 是Hermit 矩阵,则存在酉矩阵U,使得 U H AU =diag(n λλλ,,,21Λ) 令x =Uy , 其中 y =e k . 则 x ≠0. 于是 x H Ax =y H (U H AU )y =k λ≧0 (k =1, 2, ,Λn ). (2)?(3). A =U diag(n λλλ,,,21Λ)U H =U diag(n λλλ,,,21Λ)diag(n λλλ,,,21Λ)U H 令 P =diag(n λλλ,,,21Λ)U H , 则 A =P H P . (3)?(1). 任取x ≠0, 有 x H Ax =x H P H Px =22 Px ≧0. 习 题 二

矩阵论课后习题 1.1

习 题 1.1 1. 解: 除了由一个零向量构成的集合{}θ可以构成线性空间外,没有两个和有限(m )个向量构成的线性空间,因为数乘不封闭(k α有无限多个,k ∈p 数域). 2. 解:⑴是;⑵不是,因为没有负向量;⑶不是,因为存在两向量的和向量处在第二或第四象限,即加法不封闭;⑷是;⑸不是,因为存在二个不平行某向量的和却平行于某向量,即加法不封闭. 3. 解:⑴ 不是,因为 当k ∈Q 或R 时,数乘k α不封闭;⑵ 有 理域上是;实数域上不是,因为当k ∈R 时,数乘k α不封闭.⑶ 是;⑷ 是;⑸ 是;⑹ 不是,因为加法与数乘均不封闭. 4. 解:是,因为全部解即为通解集合,它由基础解系列向量乘以相应常数组成,显然对解的加法与数乘运算满足二个封闭性和八条公理. 5. 解:(1)是线性空间;(2)不是线性空间(加法不封闭;或因无零向量). 6. 解:(1)设A 的实系数多项式()A f 的全体为 (){} 正整数m R a A a A a I a A f i m m , 1 ∈++=

显然,它满足两个封闭性和八条公理,故是线性空间. (2)与(3)也都是线性空间. 7. 解:是线性空间.不难验证t sin ,t 2sin ,…,nt sin 是线性无关的,且任一个形如题中的三角多项式都可由它们惟一地线性表示,所以它们是V 中的一个组基.由高等数学中傅里叶(Fourier )系数知 ? = π π 20 sin 1 itdt t c i . 8. 解:⑴ 不是,因为公理2)'不成立:设r=1, s=2, α=(3, 4), 则 (r+s) (3, 4)= (9, 4), 而 r (3, 4) ⊕ s (3, 4)=(3,4) ⊕(6, 4)= (9, 8), 所以 (r+s) α≠r α⊕s α. ⑵ 不是,因为公理1)不成立:设α= (1,2) , β= (3,4) , 则α⊕β=(1,2) ⊕ (3,4) = (1,2), β⊕α= (3,4) ⊕ (1,2) = (3,4) , 所以 α⊕β≠β⊕α. ⑶ 不是,因为公理2)'不成立:设 r=1, s=2, α=(3,4) , 则 (r+s) α=3 (3, 4)= (27, 36) 而 r α⊕s α=1 (3,4)⊕2 (3,4)=(3, 4)⊕(12, 16)= (15, 20), 于是 (r+s) α≠ r α⊕s α. ⑷ 是. 9. 证 若∈βα,V ,则 ()()()()()()()β βααββααββααβαβαβα+++=+++=+++=+++=+=+) 11(111111222

相关文档
最新文档