可控硅整流桥故障对励磁系统的影响

可控硅整流桥故障对励磁系统的影响
可控硅整流桥故障对励磁系统的影响

防止发电机励磁系统事故

防止发电机励磁系统事故 11.1加强励磁系统的设计管理 11.1.1励磁系统应保证良好的工作环境,环境温度不得超过规定要求。励磁调节器与励磁变压器不应置于同一场地内,整流柜冷却通风入口应设置滤网,必要时应采取防尘降温措施。 11.1.2励磁系统中两套励磁调节器的电压回路应相互独立,使用机端不同电压互感器的二次绕组,防止其中一个故障引起发电机误强励。 11.1.3励磁系统的灭磁能力应达到国家标准要求,且灭磁装置应具备独立于调节器的灭磁能力。灭磁开关的弧压应满足误强励灭磁的要求。 11.1.4自并励系统中,励磁变压器不应采取高压熔断器作为保护措施。励磁变压器保护定值应与励磁系统强励能力相配合,防止机组强励时保护误动作。 11.1.5励磁变压器的绕组温度应具有有效的监视手段,并控制其温度在设备允许的范围之内。有条件的可装设铁芯温度在线监视装置。 11.1.6当励磁系统中过励限制、低励限制、定子过压或过流限制的控制失效后,相应的发电机保护应完成解列灭磁。 11.1.7励磁系统电源模块应定期检查,且备有备件,发现异常时应及时予以更换。

11.2加强励磁系统的基建安装及设备改造的管理 11.2.1励磁变压器高压侧封闭母线外壳用于各相别之间的安全接地连接应采用大截面金属板,不应采用导线连接,防止不平衡的强磁场感应电流烧毁连接线。 11.2.2发电机转子一点接地保护装置原则上应安装于励磁系统柜。接入保护柜或机组故障录波器的转子正、负极采用高绝缘的电缆且不能与其他信号共用电缆。 11.2.3励磁系统的二次控制电缆均应采用屏蔽电缆,电缆屏蔽层应可靠接地。 11.2.4励磁系统设备改造后,应重新进行阶跃扰动性试验和各种限制环节、电力系统稳定器功能的试验,确认新的励磁系统工作正常,满足标准的要求。控制程序更新升级前,对旧的控制程序和参数进行备份,升级后进行空载试验及新增功能或改动部分功能的测试,确认程序更新后励磁系统功能正常。做好励磁系统改造或程序更新前后的试验记录并备案。 11.3加强励磁系统的调整试验管理 11.3.1电力系统稳定器的定值设定和调整应由具备资质的科研单位或认可的技术监督单位按照相关行业标准进行。试验前应制定完善的技术方案和安全措施上报相关管理部门备案,试验后电力系统稳定器的传递函数及自动电压调节器(AVR)最终整定参数应书面报告相关调度部门。 11.3.2机组基建投产或励磁系统大修及改造后,应进行发电机空载和负载阶跃扰动性试验,检查励磁系统动态指标是否达到标准要求。试验前应编写包括试验项目、安全措施和危险点分析等内容的试验方案并经批准。

励磁系统常见故障及应对措施

励磁系统常见故障及应对措施 摘要:保持励磁系统良好状态,对于水电站安全生产具有十分重要的作用,因 此本文对励磁系统工作原理、常见故障及其应对措施进行了探讨。 关键词:故障;措施;励磁系统;水轮发电机 励磁系统(excitation system)是向水轮发电机转子绕组提供磁场电流的装置,其主要作用是维持发电机电压在给定水平上、合理分配无功以及提高电力系统运 行稳定性[1]。可见,维护和调试好励磁系统对于保障水电生产的安全运行意义重大。但是我们也知道任何设备在运行中都可能出现故障,如何针对故障快速诊断 和排除是维护人员重要职责和任务,励磁系统自然也不例外,因此本文对水轮发 电机励磁系统常见故障与应对措施进行了探讨。 1 水轮发电机励磁系统工作原理 1.1 关于励磁方式 水轮发电机的励磁方式分他励和自励两大类。他励主要是以励磁机作为励磁 电源的一种励磁方式,自励的励磁电源取自发电机自身。虽然他励方式不受发电 机运行状态影响,励磁可靠性较高,但是结构较为复杂,多出现在旧式励磁系统中,目前基本上采用自励方式。在自励方式中,应用较多的是可控硅静态励磁方式,它没有旋转部分,维护相对简单。可控硅静态励磁方式又分为自并励和自复 励两种形式,两者比较起来自并励方式从技术、维护、可靠性和造价等方面都更 为成熟和适用,因而应用更广泛,故此本文将自并励方式作为讨论的基础。 1.2 自并励系统的原理与构成 如图1所示,自并励系统利用接在发电机端的励磁变压器励磁交流电源,通过晶闸管整 流装置变换为直流励磁电源。再结合图2,水轮发电机励磁系统由励磁调节器、励磁整流装置、起励装置、灭磁装置、励磁变压器以及保护、测量等装置组成。其中励磁系统由励磁调 节器与功率灭磁单元构成,励磁调节器根据所检测到的发电机电压、电流等信号,按照一定 的控制准则自动调节功率灭磁单元的输出;而励磁控制系统则涵盖了励磁系统和同步发电机,通过励磁控制系统可以实现对发电机电压、电力系统无功分配的控制。可见,励磁系统由众 多相互关联的环节所组成,任一环节出现故障都可能影响发电机的运行。 2 水轮发电机励磁系统常见故障与应对措施 2.1 起励失败 起励失败是指励磁系统下达投励指令后,发电机无法建立初始电压的故障现象[2]。由于 水轮发电机励磁系统型号众多,参数设置和信号显示也有所差异,就以EXC9000励磁系统为 例说明,在10s内机端电压仍低于发电机额定电压的10%,调节器显示屏会报“起励失败”信号。造成起励失败的原因非常多,比较常见的有[3-4]:(1)开机检查有疏漏,如功率柜交直 流刀闸、起励开关、灭磁开关、PT高压侧刀闸、同步变压器保险座开关等没有合上。(2) 起励回路有故障,如线路松动或元器件损坏。(3)调节器故障。(4)采用“残压起励”模式,而转子侧剩磁不够。(5)新手操作生疏,按压起励按钮时间太短,不足5s。 解决办法:(1)严格按照程序检查开机状态,复核所有环节,避免疏漏。(2)细心观察,如怀疑起励回路故障,通过观察起励接触器动作、吸合声响判断,无声响可能是回路故障;若是调节器故障,可观察调节器I/O板第9号开关输入指示灯是否常亮,灯不亮依次检 查接线和上位机指令是否发出。(3)设备检修后,检查人机界面起励方式是否合适,通过 调整起励方式或更换通道重新开机。(4)维护检修后的故障,不少是先前操作留下的,耐 心回想一下曾动过什么就能发现一些苗头,如转子与励磁输出的电缆是否接反了。 2.2 励磁不稳定 发电机运行过程中,励磁波动过大,例如励磁系统运行数据增大,但有时又正常,无规 律可循,并且仍可以进行加减磁的调节。可能原因是:(1)移相脉冲控制电压输出不正常。

同步发电机励磁自动控制系统练习参考答案

一、名词解释 1.励磁系统 答:与同步发电机励磁回路电压建立、调整及在必要时使其电压消失的有关设备和电路。 2.发电机外特性 答:同步发电机的无功电流与端电压的关系特性。 3.励磁方式 答:供给同步发电机励磁电源的方式。 4.无刷励磁系统 答:励磁系统的整流器为旋转工作状态,取消了转子滑环后,无滑动接触元件的励磁系统。 5.励磁调节方式 答:调节同步发电机励磁电流的方式。 6.自并励励磁方式 答:励磁电源直接取自于发电机端电压的励磁方式。 7.励磁调节器的静态工作特性 答:励磁调节器输出的励磁电流(电压)与发电机端电压之间的关系特性。 8.发电机调节特性 答:发电机在不同电压值时,发电机励磁电流IE与无功负荷的关系特性。 9.调差系数 答:表示无功负荷电流从零变至额定值时,发电机端电压的相对变化。 10.正调差特性 答:发电机外特性下倾,当无功电流增大时,发电机的端电压随之降低的外特性。11.负调差特性 答:发电机外特性上翘,当无功电流增大时,发电机的端电压随之升高的外特性。12.无差特性 答:发电机外特性呈水平.当无功电流增大时,发电机的端电压不随之变化的外特性。

13.强励 答:电力系统短路故障母线电压降低时,为提高电力系统的稳定性,迅速将发电机励磁增加到最大值。 二、单项选择题 1.对单独运行的同步发电机,励磁调节的作用是( A ) A.保持机端电压恒定; B.调节发电机发出的无功功率; C.保持机端电压恒定和调节发电机发出的无功功率; D.调节发电机发出的有功电流。 2.对与系统并联运行的同步发电机,励磁调节的作用是( B ) A.保持机端电压恒定; B.调节发电机发出的无功功率; C.调节机端电压和发电机发出的无功功率; D.调节发电机发出的有功电流。 3.当同步发电机与无穷大系统并列运行时,若保持发电机输出的有功 PG = EGUG sinδ为常数,则调节励磁电流时,有( B )等于常数。 X d A.U G sinδ; B.E Gsinδ; C.1 X d ?sinδ; D.sinδ。 4.同步发电机励磁自动调节的作用不包括( C )。 A.电力系统正常运行时,维持发电机或系统的某点电压水平; B.合理分配机组间的无功负荷; C.合理分配机组间的有功负荷; D.提高系统的动态稳定。 5.并列运行的发电机装上自动励磁调节器后,能稳定分配机组间的( A )。A.无功负荷;

电厂励磁系统简介

励磁系统简介 ****厂发电机采用机端自并激静止可控硅有刷励磁系统,由励磁变、双通道励磁调节器、可控硅整流装置、灭磁装置、起励装置和转子过压保护装置等组成。在汽机房0米层分为五个柜布置,由两个可控硅励磁功率柜、一个励磁控制柜、一个灭磁柜和一个进线柜组成。励磁变压器单独布置在汽机房0米层,采用三相干式变压器,励磁系统的起励电源采用交流380V厂用电源和220V直流电源起励。 一|、自动电压励磁调节器(A VR) 励磁调节器是武汉洪山电工科技有限公司于2000年开发研制的新一代HWJT-08DS微机励磁调节器,HWJT-08DS双通道微机励磁调节器采用的是双通道互为热备用方式——双通道并联运行方式。该方式的最大特点是:在正常运行的方式下,双通道同时输出。出现某通道故障,控制系统通过其自身的软、硬件诊断系统(WATCHDOG)及相互通讯,自动地将故障通道退出。该方式的优点在于从根本上避免了主/备方式下的切换及判断所带来的一系列问题,系统的可靠性要高。 1、HWJT-08DS具备如下功能: 1)具备自诊断功能和检验调试各功能用的软件及接口; 2)具有串行口与发电厂计算机监控系统连接,接受控制和调节指令,提供励磁系统状态和量值; 3)具有试验录波、故障录波及事件顺序记录功能。 4)智能化检测与操作功能: ?功率检测:系统设有功率检测功能,该功能主要用于检测系统主要功率器件的温度,实时显示;当温度高于设定值时,自动启动冷却风 扇,并发报警信号; ?过流检测:实时检测并显示功率元件的电流;当出现过流时,自动跳该回路的出口开关,切除故障点,并发报警信号; ?脉冲检测:实时检测调节器的脉冲输出状况,一但出现脉冲丢失情况,发报警信号; ?调节器工作电源监视:正常运行时,调节器同时由厂用交直供电,

试论水电厂励磁系统常见故障分析及处理

试论水电厂励磁系统常见故障分析及处理 发表时间:2019-09-10T10:13:00.813Z 来源:《当代电力文化》2019年第09期作者:王天纬 [导读] 从不同角度入手客观分析了水电厂励磁系统及其常见故障,提出了一些行之有效的措施的同时分析实例,在科学处理各类故障问题基础上确保励磁系统运行更具安全性、稳定性以及经济性。 江苏国信溧阳抽水蓄能发电有限公司江苏省常州市 213334 摘要:励磁系统是水电厂必不可少的组成要素,其高效运转直接关系到水电厂综合运营效益,而这必须高度重视故障问题。因此,本文从不同角度入手客观分析了水电厂励磁系统及其常见故障,提出了一些行之有效的措施的同时分析实例,在科学处理各类故障问题基础上确保励磁系统运行更具安全性、稳定性以及经济性。 关键词:水电厂励磁系统常见故障分析处理 励磁系统运行中故障问题的出现会对发电机正常运行产生不同层次的影响,出现失磁、停机等情况,无形中会增加励磁系统运行成本。发电厂要多层次客观剖析励磁系统常见的各类故障,在科学处理基础上强化励磁系统管理,确保各方面功能作用顺利发挥的同时尽可能延长其使用寿命,在保证发电质量的基础上实现综合效益目标。 一、水电厂励磁系统及其常见故障 1、水电厂励磁系统 简单来说,励磁系统主要是向发电机的转子绕组实时传递励磁电流,发电机运行是否安全、可靠和励磁系统的运行有着深层次联系。以溧阳抽水蓄能电站的机组励磁系统为例,由多个设备组成,比如,励磁变压器、磁场开关、过电压保护装置、控制与监视信号系统。励磁电源取自主变低压侧15.75kV离相封闭母线,经励磁变降压为600V,由三组三相全控桥式可控硅整流装置整流后向转子绕组输出电流建立磁场,维持机端电压在给定水平,满足机组各种工况的励磁调节,远方自动控制、先地手动控制是励磁系统运行中的主要控制方式。相应地,下面便是励磁系统的原理结构图。 2、水电厂励磁系统的常见故障 在运行环境、自身质量、人员操作等层面因素持续作用下,水电厂励磁系统运行中极易发生各类故障问题,可以将其分为两大类,即内部故障、外部故障。在联系实际过程中对其进行针对性处理,在故障高效管控基础上提升励磁系统运行的综合效益。 二、水电厂励磁系统的常见故障处理 1、励磁电缆单相接地引发的励磁系统故障 在水电厂运行过程中,励磁电缆单相接地以后,会对励磁系统运行产生不利的影响,极易引发故障问题。在励磁电缆单相接地以后,励磁电缆的正极对地绝缘有明显变化,数值为0,接地电阻也为0,励磁电缆、电缆层支撑铁架二者接触的位置有烧焦的痕迹,励磁系统的运行也受到一定的影响,出现故障问题,进而,导致发电机组出现失磁问题。针对这种情况,水电厂维修人员需要在准确定位励磁系统故障基础上细化分析故障发生的原因、影响因素、严重等级等,在综合把握基础上根据励磁电缆单相接地后严重情况,针对性处理故障问题。 2、集电环正负极短路引起的励磁系统故障 在运行过程中,集电环正负极短路以后励磁系统极易引发故障问题。水电厂维修人员需要全面、深入把握励磁系统运行中呈现的故障报警信息数据,对励磁系统自身动作进行合理化诊断,准确把握对应的过励限制动作、欠励限制动作,看其在励磁系统故障发生以后是否同时出现,这是因为通常情况下二者都不会同时出现,比如,励磁电流不小于发电机运行中额定励磁电流的情况下,过励限制动作才会出现,在发电机正常运行中,过励限制动作、欠励限制动作二者正好处在两个极端。在此过程中,励磁系统故障发生后,转子的磁场不断减弱,发电机的机端电压也会明显降低等,励磁电流持续变大,导致可控硅被击穿等。在此基础上,集电环的正负极短路以后,灯泡头内部的温度不断升高,滑环、集电环、碳刷等零部件都会受到不同程度的影响,励磁系统故障问题复杂化,增加了励磁系统维修的难度系数。在处理过程中,维修人员可以将导电杆上面的绝缘衬套更换掉,彻底清扫干净碳刷、集电环等部件,更换其中的快速熔断器、可控硅,对受油器座运行中渗出的油进行科学化处理,对其中的非线性压敏电阻进行科学化试验。同时,维修人员要再次仔细检查集电环的正负极以及极易引发励磁系统故障的零部件等。此外,在励磁系统日常运行中,维修人员要加强集电环正负极的防控,要根据励磁系统故障发生以及维修记录,按时对相关设备进行规范化检查、清扫,按时对油器座运行中渗出的油进行科学处理且通过年度大检从根本上解决渗油问题,动态控制灯泡头的温度、环境等,在多层面科学把握基础上降低励磁系统故障发生系数。 3、励磁变高压侧熔断器熔断下的励磁系统故障 在水电厂运行过程中,励磁变高压侧熔断器熔断以后,发电机组的无功正负间会出现较大的摆动,包括励磁系统的电流、电压。维修人员先要客观分析励磁系统的报警信息,在应用现代化技术以及检测设备等过程中准确定位故障发生的具体位置,全面、动态评估、分析

液压系统常见的故障系统处理

1 常见故障的诊断方法 5。液压设备是由机械、液压、电气等装置组合而成的,故出现的故障也是多种多样的。某一种故障现象可能由许多因素影响后造成的,因此分析液压故障必须能看懂液压系统原理图,对原理图中各个元件的作用有一个大体的了解,然后根据故障现象进行分析、判断,针对许多因素引起的故障原因需逐一分析,抓住主要矛盾,才能较好的解决和排除。液压系统中工作液在元件和管路中的流动情况,外界是很难了解到的,所以给分析、诊断带来了较多的困难,因此要求人们具备较强分析判断故障的能力。在机械、液压、电气诸多复杂的关系中找出故障原因和部位并及时、准确加以排除。 5.1.1 简易故障诊断法 简易故障诊断法是目前采用最普遍的方法,它是靠维修人员凭个人的经验,利用简单仪表根据液压系统出现的故障,客观的采用问、看、听、摸、闻等方法了解系统工作情况,进行分析、诊断、确定产生故障的原因和部位,具体做法如下: 1)询问设备操作者,了解设备运行状况。其中包括:液压系统工作是否正常;液压泵有无异常现象;液压油检测清洁度的时间及结果;滤芯清洗和更换情况;发生故障前是否对液压元件进行了调节;是否更换过密封元件;故障前后液压系统出现过哪些不正常现象;过去该系统出现过什么故障,是如何排除的等,需逐一进行了解。 2)看液压系统工作的实际状况,观察系统压力、速度、油液、泄漏、振动等是否存在问题。

3)听液压系统的声音,如:冲击声;泵的噪声及异常声;判断液压系统工作是否正常。 4)摸温升、振动、爬行及联接处的松紧程度判定运动部件工作状态是否正常。 总之,简易诊断法只是一个简易的定性分析,对快速判断和排除故障,具有较广泛的实用性。 5.1.2 液压系统原理图分析法 根据液压系统原理图分析液压传动系统出现的故障,找出故障产生的部位及原因,并提出排除故障的方法。液压系统图分析法是目前工程技术人员应用最为普遍的方法,它要求人们对液压知识具有一定基础并能看懂液压系统图掌握各图形符号所代表元件的名称、功能、对元件的原理、结构及性能也应有一定的了解,有这样的基础,结合动作循环表对照分析、判断故障就很容易了。所以认真学习液压基础知识掌握液压原理图是故障诊断与排除最有力的助手,也是其它故障分析法的基础。必须认真掌握。 5.1.3 其它分析法 液压系统发生故障时,往往不能立即找出故障发生的部位和根源,为了避免盲目性,人们必须根据液压系统原理进行逻辑分析或采用因果分析等方法逐一排除,最后找出发生故障的部位,这就是用逻辑分析的方法查找出故障。为了便于应用,故障诊断专家设计了逻辑流程图或其它图表对故障进行逻辑判断,为故障诊断提供了方便。

可控硅励磁装置运行规程

KGLF——11F 可控硅励磁装置运行规程 (试行) 编著:赵甬江、马笋 审核:黎明辉 批准:赵甬江 2005-9 张家港浩波热电有限公司

1.概述 2.可控硅励磁装置的工作原理 3.可控硅励磁装置的主要技术指标和铭牌 4.可控硅励磁装置的保护 5.可控硅励磁装置的运行方式与切换 6.可控硅励磁装置投运前的检查 7.可控硅励磁装置投运步骤 8.可控硅励磁装置运行中的检查与维护 9.可控硅励磁装置停用步骤 10.可控硅励磁装置常规故障及处理方法 11.附系统原理图一份

一.概述 同步发电机可控硅装置是一种励磁功率直接取自于发电机定子电压和电流,无须交直流励磁机的直接静止励磁装置。它可与几百至几千瓦的汽轮机、水轮机、柴油发电机配套、在大电网、孤立电网等各种电网条件下均能安全、可靠、持久的运行。即适于发电机、也适于调相机;可作新机组配套,也可作老机组技术改造之用。 二. 可控硅励磁装置的工作原理 KGLF—11F可控硅励磁装置可分为励磁主回路和控制回路两部分。励磁主回路的工作原理如下: 整流变(ZB)将发电机出口端电压10KV降至---V作为发电机的励磁电流。三只可控硅(1Kz、2Kz、3Kz)与三只二极管(1Z、2Z、3Z)组成三相桥式整流,将ZB次级的交流电变成直流电,经电刷引入发电机转子绕组,提供励磁电流。通过控制回路改变可控硅(1Kz、2Kz、3Kz)的导通角,就可以改变整流桥的输出电压(即发电机的励磁电压),从而改变发电机的感应电势(即发电机的空载电压)和接入系统运行时的出口电压。 控制回路分为调差、整流滤波、检测放大、移相触发、自动调节(手动调节)以及空励限制和过励限制几个部分: 调差单元:电压信号取自发电机出口端电压互感器YH。电流信号取自发电机出口端电流互感器1LH,经调差电阻1—10Ra,接入三相桥式整流电路,使整流桥的输出电压不但与发电机端电压成正比,而且与发电机输出的无功功率成正比。起到无功补偿器的作用。改变调差电阻的位置,就可以改变发电机的调差特性(即发电机端电压变化时,发电机无功的变化特性)调差率在10%范围内多可调。 整流单元:由7Db—12Db组成,7R与1C组成L型滤波,除掉杂波干扰。输入信号加到检测桥上与1W整定值相比较,得出差值信号,差值信号再经过放大监测限幅,输出至移相触发单元。 移相触发单元的作用就是根据差值信号的大小来调整可控硅触发脉冲的相差,当发电机电压升高或无功输出减少时,可控硅的触发后移使主励磁主回路的电压下降。反之当发电机电压降低时或无功输出增加时,可控硅触发脉冲前移使主励磁主回路的电压上升。当发电机电压下降到额定值的80%以下时,励磁装置能提供1.6倍励磁电流(倍称强行励磁) 发电机端电压随无功电流增加而增加称负调差。 发电机端电压随无功电流增加而减少称正调差。正调差不符合运行要求,所以正常我们采用负调差。调差率反映了调差的敏感程度。当调差率为0时表明不起作用,调差电阻最大,则调差率最大。 以上为自动方式,电压调节范围为70—115%额定电压。 除了自动方式以外,当调差检测放大发生故障时,可以使用手动方式。即电网信号经整流、整定、直接输入移相触发单元,此时先作手动设定目标值,但不会再自动调节,必须随电压和无功变化而不断调整,才能保证励磁稳定。 手动运行时调节器灵敏度很低,但电压调节范围很大40%—130%额定电压。

励磁系统题库

励磁系统题库 填空题:2选择题:5判断题:6问答题:8

填空题: 1、同步发电机励磁系统的基本任务是(维持发电机电压在给定水平)和(稳定 地分配机组间的无功功率)。 2、可控硅元件导通的条件是①(阳极与阴极之间须加正向电压),②(控制极 上加正向触发电压)。 3、发电机正常停机采用(逆变)方式灭磁,事故时采用(跳灭磁开关)方式灭 磁。调节器具有五种励磁限制:(反时限过励磁电流限制/强励限制)、(过无功限制)、(欠励限制)、(功率柜故障限制)、(伏赫限制/过磁通限制)。 4、在三相全控桥中,共阴极组在(正)半周导通;共阳极组在(负)半周导通。 5、PID调节方式就是(比例积分微分)调节方式。 6、在励磁调节器中,控制发电机电压的通道,称为(自动),控制励磁电流的 通道,称为(手动)。 7、励磁调节器发生 PT 断线,则运行中的通道(退出)运行,即切换,同时该 通道由(发电机电压/自动)调节方式转化为(励磁电流/手动)调节方式。 8、励磁调节器发生过励或低励,调节器就由(发电机电压)调节方式转化为 (无功)调节方式。 9、接触器铁芯上的(短路)环,可防止衔铁振动。 10、一般来说,交流发电机的励磁绕组是转子绕组,而直流发电机的励磁绕 组是(定子)绕组。 11、发电机在旋转的转子磁场中发电,把(机械)能转化为(电能),在发电 机并网前(空载),调节发电机的(励磁电流),作用于调节发电机的机端电压,发电机并网后,调节发电机的(励磁电流),作用于调节发电机的无功负荷(无功电流),有功不变,调节主汽门作用于有功功率(有功电流)的变化,与励磁电流的大小无关。 12、应用电磁理论,导体在磁场中(切割磁力线)产生电动势(电压):ξ=BLV (B:磁场强度,L:导体长度,V:切割速度)。简单的讲就是:导体在磁场中做切割(磁力线)运动,就产生感应电动势,当形成(闭合回路时),就会感生出电流。

励磁系统常见故障及其处理方法分析--精选.doc

励磁系统常见故障及其处理方法 1、起励不成功 原因 1:起励按钮 /按键接通时间短,不足以使发电机建立维持整流桥导通的电压。 处理方法:保持起励按钮持续接通原因 2:发电机残压太低,却仍然投入5 秒以上。 “残压起励”,这样即 使按起励按钮超过 5 秒,也不会起励成功。 处理方法:切除“残压起励”功能,直接用辅助电源起励。 原因 3:将功率柜的脉冲投切开关仍置于切除位置。 原因 4:整流桥的交流电源未输入(励磁变高压侧开关或低 压侧开关未合上)。 原因 5:同步变压器的保险丝座开关未复位。 原因 6:机组转速未到额定,而转速继电器提前接通,造成 自动起励回路自动退出。 原因 7:起励电源开关未合,起励电源未送入起励回路。 原因 8:起励接触器未动作或主触头接触不良。 原因 9:起励电源正负极输入接反,导致起励电流无法输入 转子。 原因 10:起励电阻烧毁开路。 原因 11:转子回路开路。 原因 12:转子回路短路。 原因 13:始终存在“逆变或停机令”信号。(近方逆变旋钮开关未复位;远方监控或保护的停机令信号未复位)原因 14:灭磁开关控制回路的分闸切脉冲或分闸逆变信号始终保持。 原因 15:调节器没有开机令信号输入。 原因 16:可控硅整流桥脉冲丢失或可控硅损坏。 原因 17:调节器故障

原因 18:调节器脉冲故障。 原因 19:脉冲电源消失或电路接触不良。 原因 20:灭磁开关触头接触不良。 2、起励过压 原因 1:励磁变压器相序不对。 原因 2: PT 反馈电压回路存在故障。 原因 3:残压起励回路没有正确退出。 原因 4:调节器输出脉冲相位混乱。 3、功率柜故障 原因 1:风压低,风压继电器接点抖动。 处理方法:调整风压继电器行程开关的角度。 原因 2:风温过高,温度高于50 度。 处理方法:对比两个功率柜,检查测温电阻是否正常。 原因 3:电流不平衡, 6 个可控硅之间均流系数<0.85。 处理方法:检查是否有可控硅不导通或霍尔变送器测量误 差。 4、 PT 故障 条件: PT 电压 >10%,任一相电压低于三相平均值的83%。原因 1: PT 高压侧保险丝熔断 处理方法:测量 PT 输入端三相电压,检查电压是否平衡。 原因 2:模拟量总线板故障,其中间电压互感器或接线插头有问题。 处理方法:将输入 A/B 套 DSP 板的接线插头互相调换测试。原因 3:调节器 DSP 板故障,导致PT 电压测试不准确处理方法:更换对应的DSP 板,或将 A/B 套 DSP 板互换。

液压系统常见故障分析及处理

液压系统常见故障分析及处理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。文中概括介绍了液压系统在日常使用中常见故障分析以及处理方法。 一.工作原理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。 二.液压系统的组成 液压传动系统通常由以下五部分组成。 1.动力装置部分。其作用是将电动机(或其它原动机)提供的机械能转换为液体的压力能。简单地说,就是向系统提供压力油的装置。如各类液压泵。 2.控制调节装置部分。包括压力、流量、方向控制阀,是用以控制和调节液压系统中液流的压力、流量和流动方向,以满足工作部件所需力(或力矩)、速度(或转速)和运动方向(或运动循环)的要求。 3.执行机构部分。其作用是将液体的压力能转化为机械能以带动工作部件运动。包括液压缸和液压马达。 4.自动控制部分。主要是指电气控制装置。 5.辅助装置部分。除上述四大部分以外的油箱、油管、集成块、滤油器、蓄能器、压力表、加热器、冷却器等等。它们对于保证液压系统工作的可靠性和稳定性是不可缺少的,具有重要的作用。 三.液压缸 液压缸是把液压能转换为机械能的执行元件。液压缸常见故障有:液压缸爬行、液压外泄漏、液压缸机械别劲、液压缸进气、液压缸冲击等。 1.液压缸爬行故障分析及处理 (1)缸或管道内存有空气,处理方法:设置排气装置;若无排气装置,可开动液压系统以最大行程往复数次,强迫排除空气;对系统及管道进行密封。 (2)缸某处形成负压,处理方法:找出液压缸形成负压处加以密封;并排气。 (3)密封圈压得太紧,处理方法:调整密封圈,使其不松不紧,保证活塞杆能来回用手拉动。 (4)活塞与活塞杆不同轴,处理方法:两者装在一起,放在V形块上校正,使同度误差在0.04mm以内;换新活塞。 (5)活塞杆不直(有弯曲),处理方法:单个或连同活塞放在V形块上,用压力机控直和用千分表校正调直。

可控硅励磁装置

安徽省舒城县兴川水电站增效扩容工程水轮发电机及其成套设备 技术参数 2017年10月1日

目录 第一章总则................................................................................................ - 3 -第二章电站基本资料................................................................................ - 4 -第三章水轮机............................................................................................ - 5 -第四章水轮发电机.................................................................................... - 9 -第五章进水阀装置.................................................................................. - 13 -第六章机组自动化及自动化元件.......................................................... - 14 -第七章调速器.......................................................................................... - 15 -第八章可控硅励磁装置.......................................................................... - 17 -第九章专用工具及备品备件.................................................................. - 18 -

5发电机自并励励磁自动控制系统设计()

作者:Pan Hon glia ng 仅供个人学习 辽宁工业大学

电力系统自动化课程设计(论文)题目:发电机自并励励磁自动控制系统设计(1)院(系):电气工程学院 专业班级:电气XXX _________ 学号:_xxx _______________ 学生姓名: ___________________ 指导教师: ___________________ 起止时间:2013.12.16 —12.29

课程设计(论文)报告地内容及其文本格式 1、课程设计(论文)报告要求用A4纸排版,单面打印,并装订成册,内容包括: ①封面(包括题目、院系、专业班级、学生学号、学生姓名、指导教师姓名、、起止时间等) ②设计(论文)任务及评语 ③中文摘要(黑体小二,居中,不少于200字) ④目录 ⑤正文(设计计算说明书、研究报告、研究论文等) ⑥参考文献 2、课程设计(论文)正文参考字数:2000字周数. 3、封面格式 4、设计(论文)任务及评语格式 5、目录格式 ①标题“目录”(小二号、黑体、居中) 6、正文格式 ①页边距:上2.5cm,下2.5cm,左3cm,右2.5cm,页眉1.5cm,页脚1.75cm,左侧装订; ②字体:一级标题,小二号字、黑体、居中;二级,黑体小三、居左;三级标题,黑体四号;正文文字小四号字、宋体; ③行距:20磅行距; ④页码:底部居中,五号、黑体; 7、参考文献格式 ①标题:“参考文献”,小二,黑体,居中. ②示例:(五号宋体) 期刊类:[序号]作者1,作者2, ... 作者n.文章名.期刊名(版本).岀版年,卷次(期次):页次. 图书类:[序号]作者1,作者2,……作者n.书名.版本.岀版地:岀版社,岀版年:页次.

同步电动机励磁系统常见故障分析

同步电动机励磁系统常见故障分析 作者:陆业志 本文结合KGLF11型励磁装置,对其在运行中的常见故障进行分析。 1 常见故障分析 (1)开机时调节6W,励磁电流电压无输出。 原因分析:励磁电流电压无输出,肯定是晶闸管无触发脉冲信号,而六组脉冲电路同时无触发脉冲很可能是移相插件接触不良,或者同步电源变压器4T损坏,造成没有移相给定电压加到六组脉冲电路的1V1基极回路上,从而六组脉冲电路无脉冲输出导致晶闸管不导通。 (2)励磁电压高而励磁电流偏低。 原因分析:这是个别触发脉冲消失或是个别晶闸管损坏的缘故。个别触发脉冲消失可能是脉冲插件接触不良。另外图1中三极管1V1、单极晶体管2VU及小晶闸管9VT损坏,或者是电容2C严重漏电或开路。如果主回路中晶闸管1VT~6VT中有某一个开路或是触发极失灵,同样会导致输出励磁电流偏低的现象。 (3)合励磁电路主开关时,励磁电流即有输出。 原因分析:这是由于图1所示脉冲电路中的三极管1V1集电极-发射极之间漏电,即使移相电路还未送来正确的控制电压,也会导致1C充电到2VU导通的程度。2VU即输出触发使小晶闸管9VT导通,2C经9VT放电而发出脉冲令1VT、3VT、6VT之一触发导通,使转子励磁电路中流过直流电流。 (4)同步电动机起动时,励磁不能自行投入。 原因分析:励磁不能自行投入。肯定是自动投励通道电路中断或工作不正常,因此可能是投励插件与插座间接触不良,或是图2所示投励电路中的三极管3V1、单结晶体管4VU工作不正常,电容5C漏电、电位器W′损坏。另外是移相插件同样有接触不良现象,或者是图3所示移相电路的小晶闸管10VT损坏等等。 (5)运行过程中励磁电流电压上下波动。 原因分析:引起励磁电流电压输出不稳的原因很多,主要有1)脉冲插件可能存在接触不良,造成个别触发脉冲时有时无。2)图1所示脉冲电路的电位器4W松动,使三极管1V1电流负反馈发生变化,造成放大器工作点不稳定,从而影响晶闸管主回路输出的稳定性。另外,如果电容2C漏电或单结晶体管2VU及三极管1V1性能不良,也会引起触发脉冲相位移动。3)图3所示移相电路的电位器6W松动或接触不良,将会使移相控制电压Ed间歇性消失,引起励磁电流电压输出大幅度波动。另外,如果稳压管7VS、8VS损坏,都会使Ey随电网电压波动而波动,使Ed输出波动,造成晶闸管主回路直流输出不稳。 (6)励磁装置输出电压调不到零位。

液压系统常见故障的成因及其预防与排除

在 在液压传动系统中,都是一些比较精密的零件。人们对机械的液压传动虽然觉得省力方便,但同时又感到它易于损坏。究其原因,主要是不太清楚其工作原理和构造特性,从而也不大了解其预防保养的方法。 液压系统有3个基本的“致病”因素: 污染、过热和进入空气。这3个不利因素有着密切的内在联系,出现其中任何一个问题,就会连带产生另外一个或多个问题。由实践证明,液压系统75%“致病”的原因,均是这三者造成的。 如果液压系统的制造质量没有问题,则造成故障的原因大多是预防保养不当,操作不当的因素一般较少。之所以如此,主要是由于对它的工作条件认识不足。如果懂得一些基本原理,弄明白导致故障的上述3个有害因素,就能长期地保证系统处于良好的工作状况。 1、工作油液因进入污物而变质 进入油液中的污物(如灰、砂、土等)的来源有: (1)系统外部不清洁。不清洁物在加油或检查油量时被带入系统,或通过损坏的油封或密封环而进入系统; (2)内部清洗不彻底。在油箱或部件内仍留有微量的污物残渣; (3)加油容器或用具不洁; (4)制造时因热弯油管而在管内产生锈皮; (5)油液储存不当,在加入系统前就不洁或已变质; (6)已逐渐变质的油会腐蚀零件。被腐蚀金属可能成为游离分子悬浮在油中。

污物会造成零件的磨损与腐蚀,尤其是对于精加工的零件,它们会擦伤胶皮管的内壁、油封环和填料,而这些东西损伤后又会导致更多的污物进入系统中,这样就形成恶性循环的损坏。 2、过热 造成系统过热可能由以下一种或多种原因造成: (1)油中进入空气或水分,当液压泵把油液转变为压力油时,空气和水分就会助长热的增加而引起过热; (2)容器内的油平面过高,油液被强烈搅动,从而引起过热; (3)质量差的油可能变稀,使外来物质悬浮着,或与水有亲合力,这也会引起生热; (4)工作时超过了额定工作能力,因而产生热; (5)回油阀调整不当,或未及时更换已损零件,有时也会产生热。 过热将使油液迅速氧化,氧化又会释放出难溶的树脂、污泥与酸类等,而这些物质聚积油中造成零件的加速磨损和腐蚀,且它们粘附在精加工零件表面上还会使零件失去原有功能。油液因过热变稀还会使传动工作变迟缓。 上述过热的结果,常反映在操纵时传动动作迟缓和回油阀被卡死。 3、进入空气 油液中进入空气的原因有下列几种: (1)加油时不适当地向下倾倒,致使有气泡混入油内而带入管路中; (2)接头松了或油封损坏了,空气被吸入; (3)吸油管路被磨穿、擦破或腐蚀,因而空气进入。 空气进入油中除引起过热外,也会有相当数量空气在压力下被溶于油内。如果被压缩的体积大约有10%是属于被溶的空气,则压力下降时便会形成泡

励磁系统常见故障其处理方法

励磁系统常见故障及其处理方法1、起励不成功 原因1:起励按钮/按键接通时间短,不足以使发电机建立维持整流桥导通的电压。 处理方法:保持起励按钮持续接通5秒以上。 原因2:发电机残压太低,却仍然投入“残压起励”,这样即使按起励按钮超过5秒,也不会起励成功。 处理方法:切除“残压起励”功能,直接用辅助电源起励。原因3:将功率柜的脉冲投切开关仍置于切除位置。 原因4:整流桥的交流电源未输入(励磁变高压侧开关或低压侧开关未合上)。 原因5:同步变压器的保险丝座开关未复位。 原因6:机组转速未到额定,而转速继电器提前接通,造成自动起励回路自动退出。 原因7:起励电源开关未合,起励电源未送入起励回路。 原因8:起励接触器未动作或主触头接触不良。 原因9:起励电源正负极输入接反,导致起励电流无法输入转子。 原因10:起励电阻烧毁开路。 原因11:转子回路开路。 原因12:转子回路短路。 原因13:始终存在“逆变或停机令”信号。(近方逆变旋钮开关未复位;远方监控或保护的停机令信号未复位) 原因14:灭磁开关控制回路的分闸切脉冲或分闸逆变信号始终保持。 原因15:调节器没有开机令信号输入。 原因16:可控硅整流桥脉冲丢失或可控硅损坏。 原因17:调节器故障

原因18:调节器脉冲故障。 原因19:脉冲电源消失或电路接触不良。 原因20:灭磁开关触头接触不良。 2、起励过压 原因1:励磁变压器相序不对。 原因2:PT反馈电压回路存在故障。 原因3:残压起励回路没有正确退出。 原因4:调节器输出脉冲相位混乱。 3、功率柜故障 原因1:风压低,风压继电器接点抖动。 处理方法:调整风压继电器行程开关的角度。 原因2:风温过高,温度高于50度。 处理方法:对比两个功率柜,检查测温电阻是否正常。 原因3:电流不平衡,6个可控硅之间均流系数<0.85。 处理方法:检查是否有可控硅不导通或霍尔变送器测量误差。 4、PT故障 条件:PT电压>10%,任一相电压低于三相平均值的83%。原因1:PT高压侧保险丝熔断 处理方法:测量PT输入端三相电压,检查电压是否平衡。原因2:模拟量总线板故障,其中间电压互感器或接线插头有问题。 处理方法:将输入A/B套DSP板的接线插头互相调换测试。原因3:调节器DSP板故障,导致PT电压测试不准确处理方法:更换对应的DSP板,或将A/B套DSP板互换。

发电机自并励励磁自动控制系统方案

辽宁工业大学 电力系统自动化课程设计<论文) 题目:发电机自并励励磁自动控制系统设计<4) 院<系):电气项目学院 专业班级:电气085 学号: 学生姓名: 指导教师:<签字) 起止时间:2018.12.26—2018.01.06

课程设计<论文)任务及评语 院<系):电气项目学院教研室:电气项目及其自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 摘要

同步发电机励磁控制系统承担着调节发电机输出电压、保障同步发电机稳定运行的重要责任。优良的励磁控制系统不仅可以保证发电机运行的可靠性和稳定性,为电网提供合格的电能,而且还可有效地改善电力系统静态与暂态稳定性。要实现这个目的,就必须根据负载的大小和性质随时调节发电机的励磁电流。 本文采用自励系统中接线最简单的自并励励磁系统,针对同步发电机论述了自并励励磁自动控制系统的特点及发展现状,分析了自并励励磁自动控制的原理和实现方法,提出了基于AT89C51单片机的同步发电机自并励自动控制系统的设计思路,对于所设计的单片机最小系统经过经济性与技术性的比较后,选用了按键电平复位电路和内部时钟电路,并在此基础上设计了励磁装置的硬件系统和软件系统。最后又对整个系统进行了MATLAB仿真,以用来对比运用算法所得结果与仿真所得结果是否在误差允许范围内。 关键词:自并励励磁自动控制系统;AT89C51单片机;MATLAB仿真 目录 第1章绪论1 1.1励磁控制系统简况1 1.2本文主要内容1 第2章发电机自并励励磁自动控制系统硬件设计3 2.1发电机自并励励磁自动控制系统总体设计方案3 2.2单片机最小系统设计3 2.3发电机自并励励磁自动控制系统模拟量检测电路设计6 2.4直流稳压电源电路设计7 第3章自并励励磁控制系统软件设计10 3.1软件实现功能总述10 3.2流程图设计10 3.3程序清单12 第4章 MATLAB建模仿真分析13 4.1M ATLAB软件简介13 4.2系统仿真模型的设计13 第5章课程设计总结16

可控硅励磁装置运行

一.概述 同步发电机可控硅装置是一种励磁功率直接取自于发电机定子电压和电流,无须交直流励磁机的直接静止励磁装置。它可与几百至几千瓦的汽轮机、水轮机、柴油发电机配套、在大电网、孤立电网等各种电网条件下均能安全、可靠、持久的运行。即适于发电机、也适于调相机;可作新机组配套,也可作老机组技术改造之用。 二. 可控硅励磁装置的工作原理 KGLF—11F可控硅励磁装置可分为励磁主回路和控制回路两部分。励磁主回路的工作原理如下: 整流变(ZB)将发电机出口端电压10KV降至---V作为发电机的励磁电流。三只可控硅(1Kz、2Kz、3Kz)与三只二极管(1Z、2Z、3Z)组成三相桥式整流,将ZB次级的交流电变成直流电,经电刷引入发电机转子绕组,提供励磁电流。通过控制回路改变可控硅(1Kz、2Kz、3Kz)的导通角,就可以改变整流桥的输出电压(即发电机的励磁电压),从而改变发电机的感应电势(即发电机的空载电压)和接入系统运行时的出口电压。 控制回路分为调差、整流滤波、检测放大、移相触发、自动调节(手动调节)以及空励限制和过励限制几个部分: 调差单元:电压信号取自发电机出口端电压互感器YH。电流信号取自发电机出口端电流互感器1LH,经调差电阻1—10Ra,接入三相桥式整流电路,使整流桥的输出电压不但与发电机端电压成正比,而且与发电机输出的无功功率成正比。起到无功补偿器的作用。改变调差电阻的位置,就可以改变发电机的调差特性(即发电机端电压变化时,发电机无功的变化特性)调差率在10%范围内多可调。 整流单元:由7Db—12Db组成,7R与1C组成L型滤波,除掉杂波干扰。输入信号加到检测桥上与1W整定值相比较,得出差值信号,差值信号再经过放大监测限幅,输出至移相触发单元。 移相触发单元的作用就是根据差值信号的大小来调整可控硅触发脉冲的相差,当发电机电压升高或无功输出减少时,可控硅的触发后移使主励磁主回路的电压下降。反之当发电机电压降低时或无功输出增加时,可控硅触发脉冲前移使主励磁主回路的电压上升。当发电机电压下降到额定值的80%以下时,励磁装置能提供1.6倍励磁电流(倍称强行励磁) 发电机端电压随无功电流增加而增加称负调差。 发电机端电压随无功电流增加而减少称正调差。正调差不符合运行要求,所以正常我们采用负调差。调差率反映了调差的敏感程度。当调差率为0时表明不起作用,调差电阻最大,则调差率最大。 以上为自动方式,电压调节范围为70—115%额定电压。 除了自动方式以外,当调差检测放大发生故障时,可以使用手动方式。即电网信号经整流、整定、直接输入移相触发单元,此时先作手动设定目标值,但不会再自动调节,必须随电压和无功变化而不断调整,才能保证励磁稳定。 手动运行时调节器灵敏度很低,但电压调节范围很大40%—130%额定电压。

相关文档
最新文档