2010届高三上学期一轮复习数学教学案与抢分训练---数学归纳法

2010届高三上学期一轮复习数学教学案与抢分训练---数学归纳法
2010届高三上学期一轮复习数学教学案与抢分训练---数学归纳法

第3讲 数学归纳法 ★知识梳理★

1.运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础),第二步是归纳递推(或归纳假设),两步缺一不可

2.用数学归纳法可以证明许多与自然数有关的数学命题,其中包括恒等式、不等式、数列通项公式、整除性问题、几何问题等

★重难点突破★

重点:领会两个步骤的作用,运用数学归纳法证明一些简单的数学命题 难点:对不同类型的数学命题,完成从k 到k+1的递推 重难点:了解数学归纳法的原理、正确运用数学归纳法 1.没有运用归纳假设的证明不是数学归纳法 问题1用数学归纳法证明:

2

2

4

313

14

14141?-

=

+

++n

错证:(1)当n=1时,左=右=4

11,等式成立

(2)假设当n=k 时等式成立,

那么当n=k+1时,2

1

1

2

431314

11]

)41(1[41

4

14

14

1?-=-

-=+

++++k k 综合(1)(2),等式对所有正整数都成立

点拨:错误原因在于只有数学归纳法的形式,没有数学归纳法的“实质”即在归纳递推中,没有运用归纳假设 2.归纳起点0n 未必是1

问题2:用数学归纳法证明:凸n 边形的对角线条数为2

32

n n -

点拔:本题的归纳起点30=n

3.“归纳——猜想——证明”是一种重要的思维模式 问题3:在数列}{n a 中,3

3,2111+=

=

+n n n a a a a ,求数列}{n a 的通项公式

点拨:本题有多种求法,“归纳——猜想——证明”是其中之一 解析:,73,632121=

==

a a ,9

3,8323=

=

a a 猜想53+=

n a n

下面用数学归纳法证明:(1)当n=1时,2

15

131=+=

a ,猜想成立

(2)假设当n=k 时猜想成立,则5

)1(335

353

33

31++=+++?

=

+=

+k k k a a a k k k

当n=k+1时猜想也成立

综合(1)(2),对*∈N n 猜想都成立

★热点考点题型探析★

考点1 数学归纳法

题型:对数学归纳法的两个步骤的认识

[例1 ] 已知n 是正偶数,用数学归纳法证明时,若已假设n=k (2≥k 且为偶数)时命题为真,,则还需证明( )

A.n=k+1时命题成立

B. n=k+2时命题成立

C. n=2k+2时命题成立

D. n=2(k+2)时命题成立

[解析] 因n 是正偶数,故只需证等式对所有偶数都成立,因k 的下一个偶数是k+2,故选B 【名师指引】用数学归纳法证明时,要注意观察几个方面:(1)n 的范围以及递推的起点(2)观察首末两项的次数(或其它),确定n=k 时命题的形式)(k f (3)从)1(+k f 和)(k f 的差异,寻找由k 到k+1递推中,左边要加(乘)上的式子 【新题导练】

1.用数学归纳法证明),1(1112

2

*

+∈≠--=++++N n a a

a

a a a n n

,在验证n=1时,左边计

算所得的式子是( )

A. 1

B.a +1

C.21a a ++

D. 421a a a +++

[解析] n=1时,左边的最高次数为1,即最后一项为a ,左边是a +1,故选B 2.用数学归纳法证明不等式

24

1312

11

1>++

+++

+n

n n n 的过程中,由k 推导到k+1时,

不等式左边增加的式子是 [解析]求)()1(k f k f -+即可 当 n=k 时,左边k

k k k ++

+++

+=

12

11

1 , n=k+1时,左边)

1()1(1

3

12

1++++

+++

+=

k k k k ,

故左边增加的式子是

1

12

211

21+-++

+k k k ,即

)

22)(12(1

++k k

考点2 数学归纳法的应用

题型1:用数学归纳法证明数学命题(恒等式、不等式、整除性问题等) [例2 ]用数学归纳法证明不等式2

)1(2

1)1(3221+<

++

+?+

?n n n

[解析](1)当n=1时,左=2,右=2,不等式成立 (2)假设当n=k 时等式成立,即2

)1(2

1)1(3221+<++

+?+?k k k

则)2)(1()1(2

1)2)(1()1(32212

+++

+<

+++

++

+?+?k k k k k k k

02

)

2()1()2)(1(2

)

2()2)(1()1(2

12

2

<+++-

++=+-

+++

+k k k k k k k k

2

]1)1[(2

1)2)(1()1(3221++<++++++?+?∴k k k k k

∴当n=k+1时, 不等式也成立

综合(1)(2),等式对所有正整数都成立

【名师指引】(1)数学归纳法证明命题,格式严谨,必须严格按步骤进行; (2)归纳递推是证明的难点,应看准“目标”进行变形;

(3)由k 推导到k+1时,有时可以“套”用其它证明方法,如:比较法、分析法等,表现出数学归纳法“灵活”的一面 【新题导练】

3. 用数学归纳法证明等式:n

n n n

n 212

11

1211

214131211+

+++

+=

--+

+-+-

[解析] (1)当n=1时,左=21211=-

=右,等式成立

(2)假设当n=k 时等式成立,即k

k k k

k 212

11

1211

2141312

11+

+++

+=

--+

+-+-

)

2

211

21(

212

11

1)2

211

21(

211

214

13

12

11+-

+++

+++

+=

+-

++-

-+

+-

+

-

k k k

k k k k k

k 2

21

121

212

1

++

++

+

++=

k k k

k

∴当n=k+1时,等式也成立

综合(1)(2),等式对所有正整数都成立 4.数列}{n a 中,)

1(2,252

11-=

=

+n n

n a a a a )(*∈N n ,用数学归纳法证明:)(2*

∈>N n a n

[解析](1) 当n=1时, 22

51>=

a ,不等式成立

(2)假设当n=k 时等式成立,即)(2*

∈>N k a k ,

则2)

1(222

1--=

-+k k

k a a a 0)

1(2)

2(2

>--=

k k a a ,21>∴+k a

∴当n=k+1时, 不等式也成立

综合(1)(2),不等式对所有正整数都成立 题型2 用“归纳——猜想——证明”解决数学问题

[例3 ]是否存在常数a 、b 、c ,使等式)

(12

)1()1(32212

222c bn an n n n n +++=+++?+? 对一切正整数n 都成立?证明你的结论

【解题思路】从特殊入手,探求a 、b 、c 的值,考虑到有3个未知数,先取n=1,2,3,列方程组求得,然后用数学归纳法对一切*∈N n ,等式都成立

[解析] 把n=1,2,3代入得方程组???

??=++=++=++7039442424

c b a c b a c b a ,解得??

??

?===10113c b a ,

猜想:等式)10113(12

)1()1(322122

22+++=

+++?+?n n n n n n 对一切*

∈N n 都成立

下面用数学归纳法证明:(1)当n=1时,由上面的探求可知等式成立 (2)假设n=k 时等式成立,即)10113(12

)1()1(32212

2

2

2

+++=

+++?+?k k k k k k 则

2

22

2

2

2

)2)(1()10113(12

)

1()2)(1()1(3221++++++=++++++?+?k k k k k k k k k k 2

)2)(1()2)(53(12

)

1(++++++=k k k k k k )]

2(12)53([12

)

2)(1(+++++=

k k k k k ]10)1(11)1(3[12

)

2)(1(2

++++++=

k k k k

所以当n=k+1时,等式也成立

综合(1)(2),对*

∈N n 等式都成立

【名师指引】这是一个探索性命题,“归纳——猜想——证明”是一个完整的发现问题和解决问题的思维模式 【新题导练】

5. 在数列}{n a 中,n

n n a a a x a -+=

=+11,tan 11,

(1)写出,,21a a 3a ;(2)求数列}{n a 的通项公式 [解析] ,tan 1x a =)4

tan(

2x a +=π

,)2

tan(

2x a +=π

,猜想]4

)

1tan[(x n a n +-=π

下面用数学归纳法证明:(1)当n=1时,由上面的探求可知猜想成立 (2)假设n=k 时猜想成立,即]4)

1tan[(x k a k +-=π

则=+--+-+=

-+=

+]

4

)

1tan[(1]

4

)1tan[(1111x k x k a a a k

k k ππ]4

tan[x k +?π

所以当n=k+1时,猜想也成立

综合(1)(2),对*∈N n 猜想都成立

★抢分频道★

基础巩固训练

1.用数学归纳法证明n n n n n 2)()2)(1(=+++ ))(12(31*∈+????N n n ,从“k 到k+1”左端需乘的代数式是( )

A.2k+1

B.)12(2+k

C.1

12++k k D.

1

32++k k

[解析] 左端需乘的代数式是1)

22)(12(+++k k k =)12(2+k ,选B

2.用数学归纳法证明:1+

2

1+3

1+)1,(,1

21>∈<-+*

n N n n n

时,在第二步证明从n=k 到

n=k+1成立时,左边增加的项数是( )

A.k 2

B.12-k

C.12-k

D.12+k [解析] 项数为)12()12(1---+k k ,选A

3. 凸n 边形有f(n)条对角线,则凸n+1边形有对角线数f(n+1)为( ) A.f(n)+n+1 B.f(n)+n C.f(n)+n-1 D.f(n)+n-2 [解析] C

4. 如果命题)(n P 对n=k 成立,则它对n=k+1也成立,现已知)(n P 对n=4不成立,则下列结论中正确的是( )

A. )(n P 对*

∈N n 成立 B. )(n P 对n>4且*

∈N n 成立

C. )(n P 对n<4且*

∈N n 成立 D. )(n P 对n ≤4且*

∈N n 不成立 [解析] D 5.

)

1()2()1()(-++++=n f f f n n f ,用数学归纳法证明

“)()1()2()1(n nf n f f f n =-++++ ”时,第一步要证的等式是 [解析] )2(2)1(2f f =+

6.若存在正整数m ,使得)(93)72()(*

∈+-=N n n n f n

能被m 整除,则m = [解析]36. [36)1(=f 636)2(?=f 1036)3(?=f ,猜想:m =36]

综合提高训练

7. 求证:6

)

12)(1(21222++=

+++n n n n

[证明](1)当n=1时,左端=1 ,右端=16

)

12)(11(1=++?,左端=右端,等式成立;

(2)假设

n=k

时,等式成立,即6

)

12)(1(21222++=

+++k k k k ,则

6

]

1)1(2][1)1)[(1()1(6

)

12)(1()1(212

2

2

2

2

+++++=

++++=

+++++k k k k k k k k k .

所以,当n=k+1时,等式仍然成立 由(1)(2)可知,对于*∈?N n 等式依然成立. 8. 证明:)(,)3(1*∈+-N n x n 能被2+x 整除

[解析] (1)当n=1时,)2()3(1+-=+-x x ,能被2+x 整除; (2)假设n=k )(*∈N k 时命题成立,即k x )3(1+-能被2+x 整除 则可设)()2()3(1x f x x k +=+-(其中)(x f 为1-k 次多项式)

当当n=k+1时,)2(])3(1)[3()3)(3(1)3(11+-+-+=++-=+-+x x x x x x k k k

]1)()3)[(2()2()()2)(3(-++=+-++=x f x x x x f x x 能被2+x 整除

所以,当n=k+1时,命题仍然成立 由(1)(2)可知,对于*∈?N n 命题依然成立.

9. 在数列{}n a 中,)(2)2(,2111*

++∈-++==N n a a a n n n n λλλ,其中0>λ,求数列}

{n a 的通项公式

[解析] 2

222122)2(2,2+=-++==λλλλa a ,

3

3

2

3

2

2

3222)2()2(+=-+++=λλλλλa ,4

434334232)2()22(+=-+++=λλλλλa .

由此可猜想出数列{}n a 的通项公式为n n n n a 2)1(+-=λ.

以下用数学归纳法证明:(1)当n=1时,21=a ,等式成立. (2)假设当

n=k

时等式成立,即k

k k k a 2)1(+-=λ.则当

n=k+1时,

[]1

1

1

1

1

12

1)1(22

2)1(2)2(+++++++-+=-+++-=-++=k k k

k k k k k k k k k k a a λ

λλ

λλλλλ

λ.这就是说,当n=k+1时等式也成立。由(1)(2)可知数列{}n a 的通项公式n

n n a 2)1(+-=λ

10. 数列{}n a 满足11=a 且n

n n a n

n a 2

1)11(2

1+

++

=+ )1(≥n .

用数学归纳法证明:2≥n a )2(≥n ;

[证明](1)①当n=2时,222≥=a ,不等式成立.

②假设当n=k )2(≥k 时不等式成立,即2≥k a ()2≥k , 那么22

1))

1(11(1≥+

++

=+k

k k a k k a .

这就是说,当n=k+1时不等式成立.根据①②可知:2≥k a 对所有2≥n 成立.

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

2014《步步高》高考数学第一轮复习13 数学归纳法

§13.4 数学归纳法 2014高考会这样考 1.考查数学归纳法的原理和证题步骤;2.用数学归纳法证明与等式、不等式或数列有关的命题,考查分析问题、解决问题的能力. 复习备考要这样做 1.理解数学归纳法的归纳递推思想及其在证题中的应用;2.规范书写数学归纳法的证题步骤. 数学归纳法 一般地,证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0 (n 0∈N *)时命题成立; (2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法. [难点正本 疑点清源] 1.数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学问题.证明时步骤(1)和(2)缺一不可,步骤(1)是步骤(2)的基础,步骤(2)是递推的依据. 2.在用数学归纳法证明时,第(1)步验算n =n 0的n 0不一定为1,而是根据题目要求,选择合适的起始值.第(2)步,证明n =k +1时命题也成立的过程,一定要用到归纳假设,否则就不是数学归纳法. 1. 凸k 边形内角和为f (k ),则凸k +1边形的内角和为f (k +1)=f (k )+________. 答案 π 解析 易得f (k +1)=f (k )+π. 2. 用数学归纳法证明:“1+12+13+…+1 2n -1 1)”,由n =k (k >1)不等式成立,推证 n =k +1时,左边应增加的项的项数是________. 答案 2k 解析 n =k 时,左边=1+12+…+1 2k -1, 当n =k +1时,

(完整版)高中数学高考总复习数学归纳法习题及详解

高中数学高考总复习数学归纳法习题及详解 一、选择题 1.已知a n = 1 n +1+n ,数列{a n }的前n 项和为S n ,已计算得S 1=2-1,S 2=3-1, S 3=1,由此可猜想S n =( ) A.n -1 B.n +1-1 C.n +1-2 D.n +2-2 [答案] B 2.已知S k =1k +1+1k +2+1k +3+…+1 2k (k =1,2,3,…),则S k +1等于( ) A .S k +1 2(k +1) B .S k +12k +1-1 k +1 C .S k +12k +1-1 2k +2 D .S k +12k +1+1 2k +2 [答案] C [解析] S k +1= 1(k +1)+1+1(k +1)+2+…+12(k +1)=1k +2+1k +3+…+12k +2=1 k +1 + 1k +2+…+12k +12k +1+12k +2-1k +1=S k +12k +1-1 2k +2 . 3.对于不等式n 2+n ≤n +1(n ∈N *),某人的证明过程如下: 1°当n =1时,12+1≤1+1,不等式成立. 2°假设n =k (k ∈N *)时不等式成立,即k 2+k

[解析]没用归纳假设. 4.将正整数排成下表: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 …… 则在表中数字2010出现在() A.第44行第75列 B.第45行第75列 C.第44行第74列 D.第45行第74列 [答案] D [解析]第n行有2n-1个数字,前n行的数字个数为1+3+5+…+(2n-1)=n2.∵442=1936,452=2025,且1936<2010,2025>2010,∴2010在第45行. 又2025-2010=15,且第45行有2×45-1=89个数字,∴2010在第89-15=74列,选D. 5.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k +1)≥(k+1)2成立”.那么,下列命题总成立的是() A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立 B.若f(5)≥25成立,则当k≤5时,均有f(k)≥k2成立 C.若f(7)<49成立,则当k≥8时,均有f(k)>k2成立 D.若f(4)=25成立,则当k≥4时,均有f(k)≥k2成立 [答案] D [解析]对于A,f(3)≥9,加上题设可推出当k≥3时,均有f(k)≥k2成立,故A错误.对于B,要求逆推到比5小的正整数,与题设不符,故B错误. 对于C,没有奠基部分,即没有f(8)≥82,故C错误. 对于D,f(4)=25≥42,由题设的递推关系,可知结论成立,故选D. 6.一个正方形被分成九个相等的小正方形,将中间的一个正方形挖去,如图(1);再将剩余的每个正方形都分成九个相等的小正方形,并将中间的一个挖去,得图(2);如此继续下去……则第n个图共挖去小正方形()

高考真题突破:数学归纳法

专题十三 推理与证明 第三十九讲 数学归纳法 解答题 1.(2017浙江)已知数列{}n x 满足:11x =,11ln(1)n n n x x x ++=++()n ∈* N . 证明:当n ∈* N 时 (Ⅰ)10n n x x +<<; (Ⅱ)1 122 n n n n x x x x ++-≤ ; (Ⅲ)1211 22 n n n x --≤≤. 2.(2015湖北) 已知数列{}n a 的各项均为正数,1 (1)()n n n b n a n n +=+∈N ,e 为自然对数的 底数. (Ⅰ)求函数()1e x f x x =+-的单调区间,并比较1 (1)n n +与e 的大小; (Ⅱ)计算 11b a ,1212 b b a a ,123123 b b b a a a ,由此推测计算12 12n n b b b a a a 的公式,并给出证明; (Ⅲ)令112()n n n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T , 证明:e n n T S <. 3.(2014江苏)已知函数0sin ()(0) x f x x x =>,设()n f x 为1()n f x -的导数,n *∈N . (Ⅰ)求()() 122222 f f πππ+的值; (2)证明:对任意的n *∈N ,等式()( ) 1444n n nf f -πππ+=成立. 4.(2014安徽)设实数0>c ,整数1>p ,*N n ∈. (Ⅰ)证明:当1->x 且0≠x 时,px x p +>+1)1(; (Ⅱ)数列{}n a 满足p c a 11>,p n n n a p c a p p a -++-= 111, 证明:p n n c a a 1 1>>+. 5.(2014 重庆)设1 11,(*)n a a b n N +==+∈

第一轮复习放缩法技巧全总结

放缩法在数列不等式中的应用 数列不等式是高考大纲在知识点交汇处命题精神的重要体现,在高考试题中占有重要地位,在近几年的高考试题中,多个省份都有所考查,甚至作为压轴题。而数列不等式的求解常常用到放缩法,笔者在教学过程中发现学生在用放缩法处理此类问题时,普遍感到困难,找不到解题思路。现就放缩法在数列不等式求解过程中常见的几种应用类型总结如下。 1. 直接放缩,消项求解 例1在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. *N n ∈, (Ⅰ)求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512 n n a b a b a b +++<+++L . 分析:(Ⅰ)数学归纳法。 (Ⅱ)本小题的分母可化为不相同的两因式的乘积,可将其放缩为等差型两项之积,通过裂项求和。 (Ⅰ)略解2(1)(1)n n a n n b n =+=+,. (Ⅱ)11115612 a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+. 故112211111111622334(1)n n a b a b a b n n ??+++<++++ ?+++??+?? (111111562216412) n ??=+-<+= ?+??,综上,原不等式成立. 点评: 数列和式不等式中,若数列的通项为分式型,可考虑对其分母进行放缩,构造等差型因式之积。再用裂项的方法求解。 另外,熟悉一些常用的放缩方法, 如:),,2,1(1 1121n k n k n n Λ=+≤+≤,n n n n n n n n n 111)1(11)1(11112--=-≤<+=+- 例2设数列{}n a 满足*,1,1311N c c ca a a n n ∈-+==+其中c 为实数 (Ⅰ)证明:[0,1]n a ∈对任意*n N ∈成立的充分必要条件是[0,1]c ∈; (Ⅱ)设103 c <<,证明:1*1(3),n n a c n N -≥-∈; 分析:(Ⅰ)数学归纳法证明(Ⅱ)结论可变形为1)3(1-≤-n n c a ,即不等式右边为一等比数列通项形式,化归思路为对 n a -1用放缩法构造等比型递推数列, 即)1(3)1)(1(112 111-----≤++-=-n n n n n a c a a a c a

高考数学复习题库 高考数学归纳法

高考数学复习题库高考数学归纳法 一.选择题 1.用数学归纳法证明命题“当n是正奇数时,xn+yn能被x +y整除”,在第二步时,正确的证法是( ). A.假设n=k(k∈N +),证明n=k+1命题成立 B.假设n=k(k是正奇数),证明n=k+1命题成立 C.假设n=2k+1(k∈N+),证明n=k+1命题成立 D.假设n=k(k是正奇数),证明n=k+2命题成立解析 A.B.C中,k+1不一定表示奇数,只有D中k为奇数,k+2为奇数. 答案 D 2.用数学归纳法证明“2n>n2+1 对于n≥n0 的正整数 n 都成立”时,第一步证明中的起始值 n0 应取( ) A.2 B.3 C.5 D.6 解析分别令 n0=2,3,5, 依次验证即可. 答案 C 3.对于不等式

4.利用数学归纳法证明“1+a+a2+…+an+1=(a≠1, n∈N*)”时,在验证n=1成立时,左边应该是( ) A1 B1+a C1+a+a2 D1+a+a2+a3 解析当n=1时,左边 =1+a+a2,故选C. 答案 C 5.用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上( ). A.k2+1 B.(k+1)2 C. D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2 解析∵当n=k时,左侧=1+2+3+…+k2,当n=k+1时,左侧=1+2+3+…+k2+ (k2+1)+…+(k+1)2,∴当n=k+1时,左端应在n=k的基 础上加上 (k2+1)+(k2+2)+(k2+3)+…+(k+1) 2. 答案 D 6.下列代数式(其中k∈N*)能被9整除的是( ) A.6+6·7k B.2+7k-1 C.2(2+7k+1) D.3(2+7k) 解析 (1)当k=1时,显然只有3(2+7k)能被9整除. (2)假设当k=n(n∈N*)时,命题成立,即3(2+7n)能被9整除,那么3(2+7n+1)=21(2+7n)-36. 这就是说,k=n+1时命题也成立. 由 (1) (2)可知,命题对任何k∈N*都成立. 答案 D

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++??????=?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

年高考第一轮复习数学数学归纳法

年高考第一轮复习数学 数学归纳法 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

※第十三章极限 ●网络体系总览 ●考点目标定位 1.数学归纳法、极限 要求:(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则,会求某些数列与函数的极限. (4)了解函数连续的意义,理解闭区间上连续函数有最大值和最小值的性质. ●复习方略指南 极限的概念和方法是近代数学的核心内容,微积分学的基本概念、基本方法在现代实践中越来越多的被应用,并在现代数学及相关学科的研究中不断得到进一步的发展.本章的主要内容由两部分组成,一是数学归纳法,二是极限.学习极限时要注意数列极限和函数极限的联系和区别、函数的极限与函数连续性的渐进性. 数学归纳法 ●知识梳理 1.数学归纳法的定义:由归纳法得到的与自然数有关的数学命题常采用下面的

证明方法:(1)先证明当n =n 0(n 0是使命题成立的最小自然数)时命题成立;(2)假设当n =k (k ∈N *, k ≥n 0)时命题成立,再证明当n =k +1时命题也成立,那么就证明这个命题成立,这种证明方法叫数学归纳法. 2.数学归纳法的应用:①证恒等式;②整除性的证明;③探求平面几何中的问题;④探求数列的通项;⑤不等式的证明. 特别提示 (1)用数学归纳法证题时,两步缺一不可; (2)证题时要注意两凑:一凑归纳假设;二凑目标. ●点击双基 1.设f (n )=11+n +21+n +31+n +…+n 21(n ∈N *),那么f (n +1)-f (n )等 于 A.1 21 +n B.2 21 +n C. 121+n +2 21+n D. 1 21 +n -221+n 解析:f (n +1)-f (n )= 21+n +31+n +…+n 21 +1 21 +n +221+n - (11+n +21+n +…+n 21)=121+n +2 21+n -11+n =121+n -221+n . 答案:D 2.(2004年太原模拟题)若把正整数按下图所示的规律排序,则从2002到

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

高三数学课题:数学归纳法(公开课讲解)

课题:数学归纳法 【三维目标】: 一、知识与技能 1.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。 2.抽象思维和概括能力进一步得到提高. 二、过程与方法 通过数学归纳法的学习,体会用不完全归纳法发现规律,用数学归纳法证明是解决问题的一种重要途径,用数学归纳法进行证明时,“归纳奠基”与“归纳递推”两个步骤缺一不可,而关键的第二步,其本质是证明一个递推关系。 三、情感,态度与价值观 体会数学归纳法是用有限步骤解决无限问题的重要方法,提高归纳、猜想、证明能力。 【教学重点与难点】: 重点:是了解数学归纳法的原理及其应用。 难点:是对数学归纳法的原理的了解,关键是弄清数学归纳法的两个步骤及其作用。 【课时安排】:2课时 第一课时 【教学思路】: (一)、创设情景,揭示课题

问题1:P 71中的例1.在数列{a n }中,a 1=1,a n+1= n n a a +1(n ∈N+),先计算a 2,a 3,a 4的值,再推测通项an 的公式. 生:a 2=21,a 3=31,a 4=41.由此得到:a n =n 1(n ∈N +). 问题2:通过计算下面式子,你能猜出()()121531--++-+-n n 的结果吗?证明你的结论? ________97531________ 7531_______531_______ 31=-+-+-=+-+-=-+-=+- 生:上面四个式子的结果分别是:2,-3,4,-5,因此猜想: ()()()n n n n 1121531-=--++-+- (*) 怎样证明它呢? 问题3:我们先从多米诺骨牌游戏说起,这是一种码放骨牌的游戏,码放时保证任意相邻的两块骨牌,若前一块骨牌倒下,则一定导致后一块骨牌也倒下。只要推倒第一块骨牌,由于第一块骨牌倒下,就可导致第二块骨牌倒下;而第二块骨牌倒下,就可以导至第三块骨牌倒下……最后,不论有多少块,都能全部倒下。 (二)、研探新知 原理分析:问题3:可以看出,使所有骨牌都倒下的条件有两个: (1) 第一块骨牌倒下; (2) 任意相邻的两块骨牌,前一块倒下.一定导致后一块倒下。 可以看出,条件(2)事实上给出了一个递推关系:当第k 块倒下时,相邻的第k+1块也倒下。这样只要第1块骨牌倒下,其他所有的骨牌就能够相继倒下。事实上,无论有多少块骨牌,只要保证(1)

高考数学一轮复习:36数学归纳法(理科专用)

高考数学一轮复习:36 数学归纳法(理科专用) 姓名:________ 班级:________ 成绩:________ 一、单选题 (共11题;共22分) 1. (2分) (2015高二下·沈丘期中) 用数学归纳法证明“当n 为正奇数时,xn+yn能被x+y整除”,在第二步时,正确的证法是() A . 假设n=k(k∈N*),证明n=k+1命题成立 B . 假设n=k(k为正奇数),证明n=k+1命题成立 C . 假设n=2k+1(k∈N*),证明n=k+1命题成立 D . 假设n=k(k为正奇数),证明n=k+2命题成立 2. (2分)已知 n 为正偶数,用数学归纳法证明时,若已假设 为偶数)时命题为真,则还需要用归纳假设再证() A . n=k+1 时等式成立 B . n=k+2 时等式成立 C . n=2k+2 时等式成立 D . n=2(k+2) 时等式成立 3. (2分) (2017高二下·郑州期中) 利用数学归纳法证明“(n+1)(n+2)…(n+n)=2n×1×3×…×(2n ﹣1),n∈N*”时,从“n=k”变到“n=k+1”时,左边应增乘的因式是() A . 2k+1 B . C . D .

4. (2分) (2017高二下·保定期末) 用数学归纳法证明:1+ + ++ <n(n∈N* ,n≥2)时,第二步证明由“k到k+1”时,左端增加的项数是() A . 2k﹣1 B . 2k C . 2k﹣1 D . 2k+1 5. (2分)(2018高二下·长春月考) 用数学归纳法证明假设 时成立,当时,左端增加的项数是() A . 1项 B . 项 C . 项 D . 项 6. (2分)用数学归纳法证明,则当n=k+1时左端应在n=k的基础上加上() A . (3k+2) B . (3k+4) C . (3k+2)+(3k+3) D . (3k+2)+(3k+3)+(3k+4) 7. (2分)(2018高二下·济宁期中) 用数学归纳法证明 ()时,从向过渡时,等式左边应增添的项是()

天津市2013届高三数学总复习之综合专题:数学归纳法在数列综合题中的应用举例(教师版)

数学归纳法在数列综合题中的应用举例 1、在数列{}n a 和{}n b 中,3,121==a a , 且1,,+n n n a b a 成等差数列,11,,++n n n b a b 成等比数列,*N n ∈。 (1)求出43,a a 和4321,,,b b b b 的值; (2)归纳出数列{}n a 和{}n b 的通项公式,并用数学归纳法证明。 全解103P 2、设正项数列{}n a 的前n 项和为n S ,且???? ??+= n n n a a S 121,*N n ∈,猜想出数列{}n a 的通项公式,并用数学归纳法证明。 全解104P 3、设0a 为常数,且1123---=n n n a a ,*N n ∈。 (1)证明对任意的()[] ()012121351,1a a n n n n n n n ?-+?-+=≥-; (2)假设对任意的1≥n ,有1->n n a a ,求0a 的取值范围。 全解108P 4、设数列{}n a 满足12 1+-=+n n n na a a ,*N n ∈。 (1)当21=a 时,求432,,a a a ,并由此猜想出n a 的一个通项公式;

(2)当31≥a 时,证明对所有的1≥n ,有 ①2+≥n a n ; ②2 1111≤+∑=n i i a 。 全解110P 5、已知{}n a 是由非负整数组成的数列,满足()()22,3,021121++===--+n n n n a a a a a a , 其中*N n ∈且3≥n 。 (1)求3a ; (2)证明22+=-n n a a ,3≥n ; (3)求{}n a 的通项公式及其前n 项和n S 。 全解111P

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

高考数学专题训练 数学归纳法

数学归纳法 注意事项:1.考察内容:数学归纳法 2.题目难度:中等难度 3.题型方面:10道选择,4道填空,4道解答。 4.参考答案:有详细答案 5.资源类型:试题/课后练习/单元测试 一、选择题 1.用数学归纳法证明“)1 2...(312))...(2)(1(-???=+++n n n n n n ”从k 到1+k 左端需增乘 的代数式为 ( ) A .12+k B .)12(2+k C . 112++k k D .1 3 2++k k 2.凸n 边形有()f n 条对角线,则凸1n +边形的对角线的条数(1)f n +为( ) A .()1f n n ++ B .()f n n + C .()1f n n +- D .()2f n n +- 3.已知 11 1 ()()12 31 f n n n n n *= +++ ∈++-N ,则(1)f k +=( ) A .1 ()3(1)1 f k k + ++ B .1 ()32f k k + + C .1111 ()3233341f k k k k k +++- ++++ D .11 ()341 f k k k +- ++ 4.如果命题()p n 对n k =成立,那么它对2n k =+也成立,又若()p n 对2n =成立,则下列 结论正确的是( ) A .()p n 对所有自然数n 成立 B .()p n 对所有正偶数n 成立 C .()p n 对所有正奇数n 成立 D .()p n 对所有大于1的自然数n 成立 5.用数学归纳法证明,“当n 为正奇数时,n n x y +能被x y + 整除”时,第二步归纳假设应写 成( ) A .假设21()n k k * =+∈N 时正确,再推证23n k =+正确

高三上学期一轮复习数学教学案与抢分训练---数学归纳法

第3讲 数学归纳法 ★知识梳理★ 1.运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础),第二步是归纳递推(或归纳假设),两步缺一不可 2.用数学归纳法可以证明许多与自然数有关的数学命题,其中包括恒等式、不等式、数列通项公式、整除性问题、几何问题等 ★重难点突破★ 重点:领会两个步骤的作用,运用数学归纳法证明一些简单的数学命题 难点:对不同类型的数学命题,完成从k 到k+1的递推 重难点:了解数学归纳法的原理、正确运用数学归纳法 1.没有运用归纳假设的证明不是数学归纳法 问题1用数学归纳法证明:22431 31414141?- =+++n 错证:(1)当n=1时,左=右=4 1 1,等式成立 (2)假设当n=k 时等式成立, 那么当n=k+1时,2 112431314 11] )41(1[41414141?-=--=+++++k k 综合(1)(2),等式对所有正整数都成立 点拨:错误原因在于只有数学归纳法的形式,没有数学归纳法的“实质”即在归纳递推中,没有运用归纳假设 2.归纳起点0n 未必是1 问题2:用数学归纳法证明:凸n 边形的对角线条数为2 32n n - 点拔:本题的归纳起点30=n 3.“归纳——猜想——证明”是一种重要的思维模式 问题3:在数列}{n a 中,3 3,2111+== +n n n a a a a ,求数列}{n a 的通项公式 点拨:本题有多种求法,“归纳——猜想——证明”是其中之一 解析:,73,632121=== a a ,9 3,8323==a a 猜想53 +=n a n 下面用数学归纳法证明:(1)当n=1时,2 1 5131=+= a ,猜想成立 (2)假设当n=k 时猜想成立,则5)1(335 3533331++=+++? = +=+k k k a a a k k k

2019-2020学年高三数学 数学归纳法复习学案.doc

2019-2020学年高三数学 数学归纳法复习学案 数学归纳法的原理:A 数学归纳法的简单应用:B 二、知识梳理 (一)数学归纳法 一般地,对于某些与正整数有关的数学命题,我们有数学归纳法公理: 如果(1)当n 取第一个值0n (例如2,10=n 等)时结论正确; (2)假设当)(0*n k N k k n ≥∈=且时结论正确,证明当1+=k n 时结论也正确. 那么,命题对于从0n 开始的所有正整数n 都成立. (二)练一练 1.在应用数学归纳法证明凸n 边形的对角线为12 n (n -3)条时,第一步检验第一个值n 0 等于 . 2.用数学归纳法证明:“1+a +a 2+…+a n +1=1-a n +21-a (a ≠1,n ∈N *)”在验证n =1时,左端计算所得的项为 . 3.用数学归纳法证明:n n +≤++++212 131211 (*N n ∈)的过程,由n =k 到n =k +1时,左边增加了 ,共 项. 4.用数学归纳法证明n n 431314 141412?-=+++ 时,有同学给出这样的证明: 证:(1)1=n ,左边= 41,右边=4143131=?-,等式成立. (2)假设k n =时结论成立,即k k 431314 141412?-=+++ , 那么1+=k n 时,1112431314 11])41(1[41414141+++?-=--=+++k k k . 所以当1+=k n 时,命题也成立. 根据(1)(2),可知对任何* ∈N n 等式都成立. 请问,上述证明方法正确吗?请说明理由. 三、例题讲评 【例1】 用数学归纳法证明:对一切大于1的自然数,不等式

相关文档
最新文档