CDX2和COX_2与Wnt信号转导途径的关系_方三高

CDX2和COX_2与Wnt信号转导途径的关系_方三高
CDX2和COX_2与Wnt信号转导途径的关系_方三高

信号转导

信号转导 061M5007H 学期:2015-2016学年秋| 课程属性:| 任课教师:谢旗等 教学目的、要求 本课程为细胞生物学专业研究生的专业基础课,同时也可作为相关专业研究生的选修课。细胞信号转导是细胞生物学学科进展最快的研究领域之一,信号转导的概念已经开始深入到生命科学的各个领域。本课程内容涵盖动植物受体、G蛋白、环核苷酸第二信使、质膜磷脂代谢产物胞内信使、酶活性受体、蛋白质可逆磷酸化、泛素蛋白化及其对基因表达的调控、信号转导途径的多样性、网络化和专一性等方面的研究现状和进展。 预修课程 生物化学、分子生物学 教材 生命科学学院 主要内容 第一章绪论(3学时,教师:谢旗)细胞信号转导的研究对象和研究意义,细胞信号的主要种类,细胞化学信号分子与信号传递途径的特征。真核生物的蛋白激酶,蛋白磷酸酶,蛋白质可逆磷酸化对信号转导的调节方式,蛋白质可逆磷酸化与基因表达调控,蛋白质可逆磷酸化在细胞信号中的意义。蛋白质稳定性与信号转导。第二章植物免疫的表观遗传调控(3学时,教师:郭惠珊)表观遗传调控包含RNA干扰、DNA修饰、组蛋白翻译后修饰和染色质重塑等各种过程互相交叠,共同调控基因组表观修饰的动态平衡;除了影响生长和发育,表观遗传调控的另一重要功能是抗病免疫作用。本讲将着重介绍植物表观遗传途径及其抗病免疫信号的调控作用。第三章MicroRNA介导的信号(3学时,教师:郭惠珊)microRNA 广泛存在于生物体内,是生物体保守机制RNA沉默过程产生并具有序列特异性调控功能的一类非编码小分子RNA。本课程主要讲授植物microRNA的产生、加工、特性及其调控作用的基本生物学过程;以及植物miRNAs和其他小分子RNA参与植物生长素信号途径和其他植物生理性状的调控作用。第四章钙离子通道及信号转导(3学时,教师:陈宇航)钙离子是生命活动的必需元素,基本分布和内稳,代谢平衡和疾病;钙离子发挥重要生物学功能,简述历史发现,作为第二信使的化学基础,功能调控的基本模式,以钙结合蛋白为例子展开介绍钙离子发挥功能调控的分子结构基础等;介绍钙离子信号转导系统的组成,

(完整版)细胞信号转导研究方法

细胞信号转导途径研究方法 一、蛋白质表达水平和细胞内定位研究 1、信号蛋白分子表达水平及分子量检测: Western blot analysis. 蛋白质印迹法是将蛋白质混合样品经SDS-PAGE后,分离为不同条带,其中含有能与特异性抗体(或McAb)相应的待检测的蛋白质(抗原蛋白),将PAGE胶上的蛋白条带转移到NC膜上此过程称为blotting,以利于随后的检测能够的进行,随后,将NC膜与抗血清一起孵育,使第一抗体与待检的抗原决定簇结合(特异大蛋白条带),再与酶标的第二抗体反应,即检测样品的待测抗原并可对其定量。 基本流程: 检测示意图:

2、免疫荧光技术 Immunofluorescence (IF) 免疫荧光技术是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光素制成荧光标记物,再用这种荧光抗体(或抗原)作为分子探针检查细胞或组织内的相应抗原(或抗体)。在细胞或组织中形成的抗原抗体复合物上含有荧光素,利用荧光显微镜观察标本,荧光素受激发光的照射而发出明亮的荧光(黄绿色或桔红色),可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质、定位,以及利用定量技术测定含量。 采用流式细胞免疫荧光技术(FCM)可从单细胞水平检测不同细胞亚群中的蛋白质分子,用两种不同的荧光素分别标记抗不同蛋白质分子的抗体,可在同一细胞内同时检测两种不同的分子(Double IF),也可用多参数流式细胞术对胞内多种分子进行检测。 二、蛋白质与蛋白质相互作用的研究技术 1、免疫共沉淀(Co- Immunoprecipitation, Co-IP)

Co-IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“protein A”能特异性地结合到免疫球蛋白的FC片段的现象而开发出来的方法。目前多用精制的protein A预先结合固化在agarose的beads 上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原抗体达到沉淀抗原的目的。 当细胞在非变性条件下被裂解时,完整细胞内存在的许多蛋白质-蛋白质间的相互作用被保留了下来。如果用蛋白质X的抗体免疫沉淀X,那么与X在体内结合的蛋白质Y也能沉淀下来。进一步进行Western Blot 和质谱分析。这种方法常用于测定两种目标蛋白质是否在体内结合,也可用于确定一种特定蛋白质的新的作用搭档。缺点:可能检测不到低亲和力和瞬间的蛋白质-蛋白质相互作用。 2、GST pull-down assay GST pull-down assay是将谷胱甘肽巯基转移酶(GST)融合蛋白(标记蛋白或者饵蛋白,GST, His6, Flag, biotin …)作为探针,与溶液中的特异性搭档蛋白(test protein或者prey被扑获蛋白)结合,然后根据谷胱甘肽琼脂糖球珠能够沉淀GST融合蛋白的能力来确定相互作用的蛋白。一般在发现抗体干扰蛋白质-蛋白质之间的相互作用时,可以启用GST沉降技术。该方法只是用于确定体外的相互作用。

细胞信号转导

细胞信号转导 李婧 2015212351 一、名词解释 内分泌 接触依赖性通讯 受体 G蛋白 第二信使 二、单项选择题 1、下列不属于信号分子的是 A.K+ B.cAMP C. cGMP D.Ca2+ 2、下列那个不是信号转导系统的主要特性 A.特异性 B.放大效应 C.整合作用 D.传递作用 3、()是细胞表面受体中最大的多样性家族 A.G蛋白偶联受体 B.RTK C.Notch D.细胞因子 4、G蛋白偶联受体中()是分子开关蛋白 A.G α B.Gβ C.GΘ D.Gγ 5、G蛋白偶联的光敏感受体的活化诱发()的关闭 A.cAMP–PKA信号通路 B.Notch信号通路 C.JAK-STAT信号通路 D. cGMP门控阳离子通道 6、()信号对细胞内糖原代谢起关键调控作用 -Ca2+ B.DAG-PKC C. cAMP–PKA D.RTK-Ras A.IP 3 7、()的主要功能是引发贮存在内质网中的Ca2+转移到细胞质基质中,使 胞质中游离Ca2+浓度提高 B.PIP2 C.DAG D.PKC A. IP 3 8、()主要功能是控制细胞生长、分化,而不是调控细胞中间代谢 A.RTK B. PKC C.PKB D.Wnt 9、Hedgehog信号通路控制 A.糖原代谢 B.细胞凋亡 C.细胞分化 D.氨基酸代谢 10、细胞通过配体依赖性的受体介导的()减少细胞表面可利用受体数目。 A. 抑制性蛋白产生 B.内吞作用 C.敏感性下调 D.消化降解 三、多项选择题 1、细胞分泌化学信号可长距离或短距离发挥作用,其作用方式分为 A.内分泌 B.旁分泌 C.通过化学突出传递神经信号 D.外分泌 2、下列()是糖脂 A.霍乱毒素受体 B.百日咳的毒素受体 C.甲状腺受体 D.胰岛素受体 3、下面关于受体酪氨酸激酶的说法正确的是 A.是一种生长因子类受体 B.受体蛋白只有一次跨膜 C.与配体结合后两个受体相互靠近,相互激活 D.具有SH2结构域

第15章--细胞信号转导习题

第十五章细胞信号转导 复习测试 (一)名词解释 1. 受体 2. 激素 3. 信号分子 4. G蛋白 5. 细胞因子 6. 自分泌信号传递 7. 蛋白激酶 8. 钙调蛋白 9. G蛋白偶联型受体 10. 向上调节 11. 细胞信号转导途径 12. 第二信使 (二)选择题 A型题: 1. 关于激素描述错误的是: A. 由内分泌腺/细胞合成并分泌 B. 经血液循环转运 C. 与相应的受体共价结合 D. 作用的强弱与其浓度相关 E. 可在靶细胞膜表面或细胞内发挥作用 2. 下列哪种激素属于多肽及蛋白质类: A. 糖皮质激素 B. 胰岛素 C. 肾上腺素 D. 前列腺素 E. 甲状腺激素 3. 生长因子的特点不包括: A. 是一类信号分子 B. 由特殊分化的内分泌腺所分泌 C. 作用于特定的靶细胞 D. 主要以旁分泌和自分泌方式发挥作用 E. 其化学本质为蛋白质或多肽 4. 根据经典的定义,细胞因子与激素的主要区别是: A. 是一类信号分子 B. 作用于特定的靶细胞 C. 由普通细胞合成并分泌 D. 可调节靶细胞的生长、分化 E. 以内分泌、旁分泌和自分泌方式发挥作用 5. 神经递质、激素、生长因子和细胞因子可通过下列哪一条共同途径传递信号:

A. 形成动作电位 B. 使离子通道开放 C. 与受体结合 D. 通过胞饮进入细胞 E. 自由进出细胞 6. 受体的化学本质是: A. 多糖 B. 长链不饱和脂肪酸 C. 生物碱 D. 蛋白质 E. 类固醇 7. 受体的特异性取决于: A. 活性中心的构象 B. 配体结合域的构象 C. 细胞膜的流动性 D. 信号转导功能域的构象 E. G蛋白的构象 8. 关于受体的作用特点,下列哪项是错误的: A. 特异性较高 B. 是可逆的 C. 其解离常数越大,产生的生物效应越大 D. 是可饱和的 E. 结合后受体可发生变构 9. 下列哪项与受体的性质不符: A. 各类激素有其特异性的受体 B. 各类生长因子有其特异性的受体 C. 神经递质有其特异性的受体 D. 受体的本质是蛋白质 E. 受体只存在于细胞膜上 10. 下列哪种受体是催化型受体: A. 胰岛素受体 B. 甲状腺激素受体 C. 糖皮质激素受体 受体 D. 肾上腺素能受体 E. 活性维生素D 3 11. 酪氨酸蛋白激酶的作用是: A. 使蛋白质结合上酪氨酸 B. 使含有酪氨酸的蛋白质激活 C. 使蛋白质中的酪氨酸激活 D. 使效应蛋白中的酪氨酸残基磷酸化 E. 使蛋白质中的酪氨酸分解 12. 下列哪种激素的受体属于胞内转录因子型: A. 肾上腺素 B. 甲状腺激素 C. 胰岛素 D. 促甲状腺素 E. 胰高血糖素

细胞信号转导练习题集

细胞信号转导练习题 选择题:正确答案可能不止一个 1. NO直接作用于(B) A.腺苷酸环化酶 B.鸟苷酸环化酶 C.钙离子门控通道D.PKC 2.以下哪一类细胞可释放NO( B) A.心肌细胞 B.血管内皮细胞 C.血管平滑肌细胞 3.硝酸甘油作为治疗心绞痛的药物是因为它( C) A.具有镇痛作用 B.抗乙酰胆碱 C.能在体内转换为NO 4.胞内受体(A B) A.是一类基因调控蛋白 B.可结合到转录增强子上 C.是一类蛋白激酶 D.是一类第二信使 5.受体酪氨酸激酶RPTK( A B C D) A.为单次跨膜蛋白 B.接受配体后发生二聚化 C.能自磷酸化胞内段 D.可激活Ras 6. Sos属于(B) A.接头蛋白(adaptor protein) B.Ras的鸟苷酸交换因子(GEF) C.Ras的GTP酶活化蛋白(GAP)D:胞内受体 7.以下哪些不属于G蛋白(C)

A.Ras B.微管蛋白β亚基 C.视蛋白 D. Rho 8. PKC以非活性形式分布于细胞溶质中,当细胞之中的哪一种离子浓度升高时,PKC转位到质膜内表面(B) A.镁离子 B.钙离子 C.钾离子 D.钠离子 9.Ca2+载体——离子霉素(ionomycin)能够模拟哪一种第二信使的作用(A) A.IP3 B.IP2 C.DAG D.cAMP 10.在磷脂酰肌醇信号通路中,质膜上的磷脂酶C(PLC-β)水解4,5-二磷酸磷脂酰肌醇(PIP2),产生哪两个两个第二信使(A B) A.1,4,5-三磷酸肌醇(IP3) B.DAG C.4,5-二磷酸肌醇(IP2) 11.在磷脂酰肌醇信号通路中,G蛋白的直接效应酶是(B) A.腺苷酸环化酶 B.磷脂酶C-β C.蛋白激酶C D. 鸟苷酸环化酶 12.蛋白激酶A(Protein Kinase A,PKA)由两个催化亚基和两个调节亚基组成,cAMP能够与酶的哪一部分结合?(B) A.催化亚基 B.调节亚基 13.在cAMP信号途径中,环腺苷酸磷酸二酯酶(PDE)的作用是 (C) A.催化ATP生成cAMP B.催化ADP生成cAMP C.降解cAMP生成5’-AMP 14.在cAMP信号途径中,G蛋白的直接效应酶是(B)

植物激素信号转导途径简介

植物生长发育的各个阶段, 包括胚胎发生、种子萌发、营养生长、果实成熟、叶片衰老等都受到多种植物激素信号的控制。人们对植物激素的生物合成途径、生理作用已有大量阐述,在生产上的应用也已取得很大进展,但对其信号转导途径的认识并不是很全面。今天小编和大家聊一聊,9大类植物激素信号转导途径。 1.生长素 与生长素信号转导相关的三类蛋白组分是:生长素受体相关SCF复合体(SKP1, Cullin and F-box complex)、发挥御制功能的生长素蛋白(Aux/IAA)和生长素响应因子(ARF)。早期响应基因有Aux/IAA基因家族、GH1、GH3、GH2/4、SAUR基因家族、ACS、GST。生长素信号转导通路主要有4条: TIR1/AFBAux/IAA/TPL-ARFs途径、T MK1-IAA32/34-ARFs途径、TMK1/ABP1-ROP2/6-PINs或RICs 途径和SKP2AE2FC/DPB途径。 2.细胞分裂素

细胞分裂素信号转导途径是基于双元信号系统(TCS),通过磷酸基团在主要组分之间的连续传递而实现。双元信号系统主要包含3类蛋白成员及4次磷酸化事件: (ⅰ)位于内质网膜或细胞膜的组氨酸受体激酶(histidine kinases, HKs)感知细胞分裂素后发生组氨酸的自磷酸化;(ⅱ)将组氨酸残基的磷酸基团转移至自身接受区的天冬氨酸残基上;(ⅲ)受体天冬氨酸残基上的磷酸基团转移至细胞质的组氨酸磷酸化转移蛋白(His-containing phosphotransfer protein, HPs)的组氨酸残基上;(ⅳ)磷酸化的组氨酸转移蛋白进入细胞核并将磷酸基团转移至A类或B类响应调节因子(response regulators, ARR s)。在拟南芥中已知的细胞分裂素受体有AHK2、AHK3和AHK4 3个,AHP有6个(AHP1?6),A类和B类ARR分別有10个和1 2个,它们是细胞分裂素信号转导通路的主要组成部分。

经典信号通路之Wnt信号通路

经典信号通路之Wnt信号通路 1、Wnt信号通路简介 Wnt信号通路是一个复杂的蛋白质作用网络,其功能最常见于胚胎发育和癌症,但也参与成年动物的正常生理过程. 2、Wnt信号通路的发现 Wnt得名于Wg (wingless) 与Int.wingless 基因最早在果蝇中被发现并作用于胚胎发育,以及成年动物的肢体形成INT 基因最早在脊椎动物中发现,位于小鼠乳腺肿瘤病毒(MMTV)整合位点附近。Int-1 基因与wingless 基因具有同源性。 果蝇中wingless 基因突变可导致无翅畸形,而小鼠乳腺肿瘤中MMTV复制并整合入基因组可导致一种或几种Wnt基因合成增加。 3、Wnt信号通路的机制 Wnt信号通路包括许多可调控Wnt信号分子合成的蛋白质,它们与靶细胞上的受体相互作用,而靶细胞的生理反应则来源与细胞和胞外Wnt配体的相互作用。尽管发应的发生及强度因Wnt配体,细胞种类及机体自身而异,信号通路中某些成分,从线虫到人类都具

有很高的同源性。蛋白质的同源性提示多种各异的Wnt配体来源于各种生物的共同祖先。 经典Wnt通路描述当Wnt蛋白于细胞表面Frizzled受体家族结合后的一系列反应,包括Dishevelled受体家族蛋白质的激活及最终细胞核内β-catenin水平的变化。Dishevelled (DSH) 是细胞膜相关Wnt受体复合物的关键成分,它与Wnt结合后被激活,并抑制下游蛋白质复合物,包括axin、GSK-3、与APC蛋白。axin/GSK-3/APC 复合体可促进细胞内信号分子β-catenin的降解。当“β-catenin 降解复合物”被抑制后,胞浆内的β-catenin得以稳定存在,部分β-catenin进入细胞核与TCF/LEF转录因子家族作用并促进特定基因的表达。 4、Wnt介导的细胞反应 经典Wnt信号通路介导的重要细胞反应包括: 癌症发生。Wnts, APC, axin,与TCFs表达水平的变化均与癌症发生相关。 体轴发育。在蟾蜍卵内注射Wnt抑制剂可导致双头畸形。 形态发生。 (此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容, 供参考,感谢您的配合和支持)

第15章--细胞信号转导习题

第十五章细胞信号转导 复习测试(一)名词解释 1. 受体 2. 激素 3. 信号分子 4. G蛋白 5. 细胞因子 6. 自分泌信号传递 7. 蛋白激酶 8. 钙调蛋白 9. G蛋白偶联型受体 10. 向上调节 11. 细胞信号转导途径 12. 第二信使 (二)选择题 A型题: 1. 关于激素描述错误的是: A. 由内分泌腺/细胞合成并分泌 B. 经血液循环转运 C. 与相应的受体共价结合 D. 作用的强弱与其浓度相关 E. 可在靶细胞膜表面或细胞内发挥作用 2. 下列哪种激素属于多肽及蛋白质类: A. 糖皮质激素 B. 胰岛素 C. 肾上腺素 D. 前列腺素 E. 甲状腺激素 3. 生长因子的特点不包括: A. 是一类信号分子 B. 由特殊分化的内分泌腺所分泌 C. 作用于特定的靶细胞 D. 主要以旁分泌和自分泌方式发挥作用

E. 其化学本质为蛋白质或多肽 4. 根据经典的定义,细胞因子与激素的主要区别是: A. 是一类信号分子 B. 作用于特定的靶细胞 C. 由普通细胞合成并分泌 D. 可调节靶细胞的生长、分化 E. 以内分泌、旁分泌和自分泌方式发挥作用 5. 神经递质、激素、生长因子和细胞因子可通过下列哪一条共同途径传递信号: A. 形成动作电位 B. 使离子通道开放 C. 与受体结合 D. 通过胞饮进入细胞 E. 自由进出细胞 6. 受体的化学本质是: A. 多糖 B. 长链不饱和脂肪酸 C. 生物碱 D. 蛋白质 E. 类固醇 7. 受体的特异性取决于: A. 活性中心的构象 B. 配体结合域的构象 C. 细胞膜的流动性 D. 信号转导功能域的构象 E. G蛋白的构象 8. 关于受体的作用特点,下列哪项是错误的: A. 特异性较高 B. 是可逆的 C. 其解离常数越大,产生的生物效应越大 D. 是可饱和的 E. 结合后受体可发生变构 9. 下列哪项与受体的性质不符: A. 各类激素有其特异性的受体 B. 各类生长因子有其特异性的受体 C. 神经递质有其特异性的受体 D. 受体的本质是蛋白质

细胞受体及重要的细胞信号转导途径

细胞受体类型、特点 及重要的细胞信号转导途径 学院:动物科学技术学院 专业:动物遗传育种与繁殖 姓名:李波

学号:2015050509

目录 1、细胞受体类型及特点 (4) 1.1离子通道型受体 (4) 1.2 G蛋白耦联型受体 (4) 1.3 酶耦联型受体 (5) 2、重要的细胞信号转导途径 (5) 2.1细胞内受体介导的信号传递 (5) 2.2 G蛋白偶联受体介导的信号转导 (6) 2.2.1激活离子通道的G蛋白偶联受体所介导的信号通路 (7) 2.2.2激活或抑制腺苷酸环化酶的G蛋白偶联受体 (7) 2.2.3 激活磷脂酶C、以lP3和DAG作为双信使 G蛋白偶联受体介导的信号通 路 (8) 2.2 酶联受体介导的信号转导 (9) 2.2.1 受体酪氨酸激酶及RTK-Ras蛋白信号通路 (10) 2.2.2 P13K-PKB(Akt)信号通路 (10) 2.2.3 TGF-p—Smad信号通 (11) 2.2.4 JAK—STAT信号通路 (12)

1、细胞受体类型及特点 受体(receptor)是一种能够识别和选择性结合某种配体(信号分子)的大分子物质,多为糖蛋白,一般至少包括两个功能区域,与配体结合的区域和产生效应的区域,当受体与配体结合后,构象改变而产生活性,启动一系列过程,最终表现为生物学效应。受体与配体问的作用具有3个主要特征:①特异性;②饱和性;③高度的亲和力。 根据靶细胞上受体存在的部位,可将受体分为细胞内受体(intracellular receptor)和细胞表面受体(cell surface receptor)。细胞内受体介导亲脂性信号分子的信息传递,如胞内的甾体类激素受体。细胞表面受体介导亲水性信号分子的信息传递,膜表面受体主要有三类:①离子通道型受体(ion—channel—linked receptor);②G蛋白耦联型受体(G—protein —linked receptor);③酶耦联的受体(enzyme—linked recep—tor)。第一类存在于可兴奋细胞。后两类存在于大多数细胞,在信号转导的早期表现为激酶级联事件,即为一系列蛋白质的逐级磷酸化,借此使信号逐级传送和放大。 1.1离子通道型受体 离子通道型受体是一类自身为离子通道的受体,即配体门通道(1igand—gated channel),主要存在于神经、肌肉等可兴奋细胞,其信号分子为神经递质。神经递质通过与受体的结合而改变通道蛋白的构象,导致离子通道的开启或关闭,改变质膜的离子通透性,在瞬间将胞外化学信号转换为电信号,继而改变突触后细胞的兴奋性。如:乙酰胆碱受体以三种构象存在,两分子乙酰胆碱的结合可以使之处于通道开放构象,但该受体处于通道开放构象状态的时限仍十分短暂,在几十毫微秒内又回到关闭状态。然后乙酰胆碱与之解离,受体则恢复到初始状态,做好重新接受配体的准备。离子通道型受体分为阳离子通道,如乙酰胆碱、谷氨酸和五羟色胺的受体,和阴离子通道。 1.2 G蛋白耦联型受体 三聚体GTP结合调节蛋白(trimeric GTP—binding regulatory protein)简称G蛋白,位于质膜胞质侧,由a、p、-/三个亚基组成,a和7亚基通过共价结合的脂肪酸链尾结合在膜上,G蛋白在信号转导过程中起着分子开关的作用,当a亚基与GDP结合时处于关闭状态,与GTP结合时处于开启状态,“亚基具有GTP酶活性,能催化所结合的ATP 水解,恢复无活性的三聚体状态,其GTP酶的活性能被RGS(regulator of G protein signaling)增强。RGS也属于GAP(GTPase activating protein)。 G蛋白耦联型受体为7次跨膜蛋白(图10—6),受体胞外结构域识别胞外信号分子并与之结合,胞内结构域与G蛋白耦联。通过与G蛋白耦联,调节相关酶活性,在细胞内

第十一章 细胞的信号转导习题集及参考答案

第十一章细胞的信号转导 一、名词解释 1、细胞通讯 2、受体 3、第一信使 4、第二信使 5、G 蛋白 6、蛋白激酶A 二、填空题 1、细胞膜表面受体主要有三类即、、和。 2、在细胞的信号转导中,第二信使主要有、、、和。 3、硝酸甘油之所以能治疗心绞痛是因为它在体内能转化为,引起血管,从而减轻的负荷和的需氧量。 三、选择题 1、能与胞外信号特异识别和结合,介导胞内信使生成,引起细胞产生效应的是( )。 A、载体蛋白 B、通道蛋白 C、受体 D、配体 2、下列不属于第二信使的是()。 A、cAMP B、cGMP C、DG D、CO 3、下列关于信号分子的描述中,不正确的一项是()。 A、本身不参与催化反应 B、本身不具有酶的活性 C、能够传递信息 D、可作为酶作用的底物 4、生长因子是细胞内的()。 A、结构物质 B、能源物质 C、信息分子 D、酶 5、肾上腺素可诱导一些酶将储藏在肝细胞和肌细胞中的糖原水解,第一个被激活的酶是()。 A、蛋白激酶A B、糖原合成酶 C、糖原磷酸化酶 D、腺苷酸环化酶 6、()不是细胞表面受体。 A、离子通道 B、酶连受体 C、G蛋白偶联受体 D、核受体 7、动物细胞中cAMP的主要生物学功能是活化()。 A、蛋白激酶C B、蛋白激酶A C、蛋白激酶K D、Ca2+激酶 8、在G蛋白中,α亚基的活性状态是()。 A、与GTP结合,与βγ分离 B、与GTP结合,与βγ聚合 C、与GDP结合,与βγ分离 D、与GDP结合,与βγ聚合

9、下面关于受体酪氨酸激酶的说法哪一个是错误的 A、是一种生长因子类受体 B、受体蛋白只有一次跨膜 C、与配体结合后两个受体相互靠近,相互激活 D、具有SH2结构域 10、在与配体结合后直接行使酶功能的受体是 A、生长因子受体 B、配体闸门离子通道 C、G蛋白偶联受体 D、细胞核受体 11、硝酸甘油治疗心脏病的原理在于 A、激活腺苷酸环化酶,生成cAMP B、激活细胞膜上的GC,生成cGMP C、分解生成NO,生成cGMP D、激活PLC,生成DAG 12、霍乱杆菌引起急性腹泻是由于 A、G蛋白持续激活 B、G蛋白不能被激活 C、受体封闭 D、蛋白激酶PKC功能异常 13下面由cAMP激活的酶是 A、PTK B、PKA C、PKC D、PKG 14下列物质是第二信使的是 A、G蛋白 B、NO C、GTP D、PKC 15下面关于钙调蛋白(CaM)的说法错误的是 A、是Ca2+信号系统中起重要作用 B、必须与Ca2+结合才能发挥作用 C、能使蛋白磷酸化 D、CaM激酶是它的靶酶之一16间接激活或抑制细胞膜表面结合的酶或离子通道的受体是 A、生长因子受体 B、配体闸门离子通道 C、G蛋白偶联受体 D、细胞核受体 17重症肌无力是由于 A、G蛋白功能下降

生物膜与信号转导途径考试复习题及答案

生物膜与细胞信号转导 名词解释: 1.脂筏:胆固醇分子不可能在脂双层里均匀分布,而是与鞘脂一起集中在膜的 特定区域,胆固醇-鞘脂漂浮在液态磷酸甘油脂“海洋”上的“筏”一样称为脂筏。 2.转运蛋白: 3.P-型ATPase:是阳离子转运蛋白,在转运过程中需要ATP可逆磷酸化的过 程,磷酸化使得转运蛋白的构象发生变化,同时,转运阳离子做跨膜运输4.次级主动运输:第一种溶质(S1)通过初级主动运输产生浓度梯度后,接着, 第一种溶质顺着浓度梯度提供能量,驱动第二种溶质(S2)逆浓度梯度运输 5.G蛋白分子开关:GTP酶(GTPase)是一个分子开关,开关是通过结合和水解 GTP进行控制。 6.激酶锚定蛋白:AKAPs 是支架蛋白,位于脂筏的胞质侧,将信号通路中执 行功能的蛋白聚集在一起,便于反应进行 7.信号蛋白 8.MAP激酶级联反应:酵母中的mating pheromones,果蝇中复眼的光受体的 分化,开花植物中对病源的防御反应。 简答题: 1.溶质分子跨膜运动,有哪几种机制? 2.以细菌KcsA钾离子通道为例,说明电压门控的钾离子通道结构与运输的关系答:细菌KcsA通道是由四个亚基组成,其中两个亚基由两个跨膜的螺旋(M1和M2) 和通道胞外的孔区域(P)组成。每个亚基的M2螺旋线与另一个亚基的M2相互交叉形成一个“螺旋束”,封闭了面向质膜的孔,则K+不能通过;M2 螺旋线可以在具有甘氨酸残基的位点弯曲,将通道门打开。K+运输。 P区域是由一个长约1/3通道宽度的短的螺旋和一个能形成“衬里的”狭窄的选择性过滤器的无螺旋的环,允许K+通过。选择性过滤器的衬里含有高度保守的五肽骨架,产生5个连续排列的氧原子环。每个环由四个氧原子组成,直径是3nm,而失水K+直径是2.7nm。当通道门打开,K+进入通道时,电负性的氧原子替代了与K+结合的水分子,与K+稳定的相互作用使K+运输。尽管选择性过滤器具有4个K+结合位点,但实际上只能同时结合2个K+。 3.乙酰胆碱受体门控通道结构及离子运输机制 结构:乙酰胆碱是由运动神经元释放到肌细胞质膜,与乙酰胆碱受体结合,它可以改变受体的构象,引起离子通道打开。乙酰胆碱受体允许Na+、Ca2+和K+通过。由5个亚基组成:γ,β和δ各1个,2个α亚基,每个α亚基带有1个乙酰胆碱结合位点。每个亚基含有4个跨膜双螺旋,5个亚基围成1个中心孔,孔直径约20 ?,突出在胞质和细胞表面。 机制:2个乙酰胆碱结合到2个α亚基上,引起构象发生变化,使疏水侧链远离通道的中心,打开离子通道,让离子通过。组成5个亚基的M2螺旋所含有的5个Leu 侧链突出在通道,限制了通道的直径。当两个乙酰胆碱受体位点被占据,构想发生变化,随着M2螺旋的轻微扭曲,5个Leu残基旋转,远离通道中心,由较小的极性氨基酸代替,通过道门打开,允许Ca2+,Na+、K+通过。

Wnt信号通路

Maturitas78(2014)233–237 Contents lists available at ScienceDirect Maturitas j o u r n a l h o m e p a g e:w w w.e l s e v i e r.c o m/l o c a t e/m a t u r i t a s Review Wnt signaling and osteoporosis Stavros C.Manolagas? Division of Endocrinology and Metabolism,Center for Osteoporosis and Metabolic Bone Diseases,University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System,Little Rock,AR,USA a r t i c l e i n f o Article history: Received8April2014 Accepted11April2014 Keywords: Osteoblasts Osteoclasts Osteocytes RANKL OPG Bone therapies a b s t r a c t Major advances in understanding basic bone biology and the cellular and molecular mechanisms responsible for the development of osteoporosis,over the last20years,have dramatically altered the management of this disease.The purpose of this mini-review is to highlight the seminal role of Wnt signaling in bone homeostasis and disease and the emergence of novel osteoporosis therapies by targeting Wnt signaling with drugs. Published by Elsevier Ireland Ltd Contents 1.Introduction (192) 2.Wnt signaling (193) 3.Wnt/?-catenin signaling in bone health and disease (193) 4.Wnt signaling,osteocytes,and the mechanical adaptation of the skeleton (193) 5.Wnt/?-catenin signaling,the FoxO transcription factors,and the pathogenesis of osteoporosis (194) 6.Targeting Wnt signaling for the development of a novel bone anabolic therapy for osteoporosis (194) 7.Summary (195) 8.Research agenda (195) Contributors (195) Competing interest (195) Provenance and peer review (195) Funding (195) Acknowledgements (195) References (195) 1.Introduction The mammalian skeleton regenerates throughout life by the removal(resorption)of old bone by osteoclasts and its replacement with new bone by osteoblasts,during a process called remodeling [1].Osteocytes–former osteoblasts which are entombed within the mineralized matrix–sense the need for regeneration in a ?Correspondence to:Distinguished Professor of Medicine,Division of Endocrinol-ogy and Metabolism,University of Arkansas for Medical Sciences,4301W.Markham St.,Slot587,Little Rock,AR72205,USA.Tel.:+15016865130;fax:+15016868148. E-mail address:manolagasstavros@https://www.360docs.net/doc/be10025800.html, particular anatomical site and orchestrate the process by directing the homing of osteoclasts and osteoblasts to the site that is in need of remodeling,by producing and secreting key factors that control osteoclast and osteoblast generation[2,3].Under physiologic con-ditions,bone resorption and formation are balanced with the exact same amount of bone added in the site from which it was previously resorbed.With advancing age,the balance between resorption and formation is disturbed and bone mass declines.In addition bone progressively loses mechanical strength to an extent that is greater than the decline of bone mass because of the deterioration of its microarchitecture and the quality of its matrix and mineral(by mechanisms that are not well understood)and an increase in the number of dead or dysfunctional osteocytes as well as increased https://www.360docs.net/doc/be10025800.html,/10.1016/j.maturitas.2014.04.013 0378-5122/Published by Elsevier Ireland Ltd

Wnt信号转导通路及其生物学活性

万方数据

万方数据

万方数据

Wnt信号转导通路及其生物学活性 作者:张妍, 吕威力, ZHANG Yan, LU Wei-li 作者单位:张妍,ZHANG Yan(沈阳医学院2003级临床医学十六班,辽宁,沈阳,110034), 吕威力,LU Wei-li(沈阳医学院基础医学院病理解剖学教研室) 刊名: 沈阳医学院学报 英文刊名:JOURNAL OF SHENYANG MEDICAL COLLEGE 年,卷(期):2007,9(3) 被引用次数:1次 参考文献(15条) 1.肖秀英;孙孟红Wnt信号转导通路与肿瘤的研究进展[期刊论文]-临床与实验病理学杂志 2005(03) 2.Rulifson E J;Wu C-H;Nusse R Pathway specificity by the bifunctional receptor Frizzled is determined by affinity for wingless[外文期刊] 2000(1) 3.Nusse R;Brown A;Papkoff J A new nomenclature for int-1 and related genes:the wnt gene family[外文期刊] 1991 4.Zecher D;Fujita Y;Hulsken T Beta-catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system[外文期刊] 2003(02) 5.Murdoch B;Chadwick K;Martin M Wnt5a augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo 2003 6.Austin TW;Solar GP;Ziegler FC A role of members of the Wnt gene family in hematopoiesis:expansion of multilineage progenitorcells 1997 7.Tulac S;Nayak NR;Kao LC Identification,characterization,and regulation of the canonical Wnt signaling pathway in human endometrium 2003(08) 8.Hussain SZ;Sneddon T;Tan X Wnt impacts growth and differentiation in exvivo liver development[外文期刊] 2004(1) 9.De Boer J;Wang HJ;Van Blitterswijk CA Effects of Wnt signalling on proliferation and differentiation of human mesenchymal stem cells[外文期刊] 2004 10.Kielman MF;Rindapaa M;Gaspar C A pcmodulates embryonic stem-cell differentiation by controlling the dosage of betacatenin signaling[外文期刊] 2002(04) 11.Hari L;Brault V;KleberM Lineage-specific requirements of beta-catenin in neural crest development 2002(05) 12.Saint-Jeannet JP;He X;Varmus HE Regulation of dorsalfate in the neuraxisbyWnt-1 and Wnt-3a[外文期刊] 1997(25) 13.韩姝;师伟Wnt基因对造血干细胞增殖分化调控的研究进展[期刊论文]-中华血液学杂志 2005(06) https://www.360docs.net/doc/be10025800.html,ler JR Wnt signaling transduction 2002 15.马波;易红昆Wnt信号途径生物活性的概述[期刊论文]-国外医学(分子生物学分册) 2001(01) 引证文献(1条) 1.张亚娟β-catenin与心肌再灌注损伤[期刊论文]-广东医学院学报 2010(3)

表皮生长因子两条典型的信号转导途径

表皮生长因子两条典型的信号转导途径 (1)表皮生长因子受体介导的信号转导途径 表皮生长因子与其受体-表皮生长因子受体结合后可引发一系列细胞内变化,最终使细胞发生分化或增殖。表皮生长因子受体是一种受体酪氨酸蛋白激酶,而受体酪氨酸蛋白激酶→Ras→MAPK级联途径是表皮生长因子刺激信号传递到细胞核内的最主要途径。它由以下成员组成:表皮生长因子受体→含有SH2结构域的接头蛋白(如Grb2)→鸟嘌呤核苷酸释放 因子(如SOS)→Ras蛋白→MAPKKK(如Raf1)→MAPKK→MAPK→转录因子等(图21-24)。 表皮生长因子与受体结合后,可以使受体发生二聚体化,从而改变了受体的构象,使其中的蛋白酪氨酸激酶活性增强,受体自身的酪氨酸残基发生磷酸化,磷酸化的受体便形成了与含SH2结构域的蛋白分子Grb2结合的位点,导致Grb2与受体的结合。Grb2中有两个SH3结构域,该部位与一种称为SOS的鸟苷酸交换因子结合,使之活性改变,SOS则进一步活化Ras,激活的Ras作用于MAPK激活系统,导致ERK的激活。最后ERK转移到 细胞核内,导致某些转录因子的活性改变从而改变基因的表达状态及细胞的增殖与分化过程。 (2)γ-干扰素受体介导的信号转导 γ-干扰素是由活化T细胞产生的,它具有促进抗原提呈和特异性免疫识别的作用,并可促进B细胞分泌抗体。γ-干扰素与受体结合以后,也可以导致受体二聚体化,二聚体化的受体可以激活JAK-STAT系统,后者将干扰素刺激信号传入核内。JAK(Janus Kinase)为一种存在于胞浆中的蛋白酪氨酸激酶,它活化后可使干扰素受体磷酸化。STAT(Signal Transducerand Activator of Transcription)可以通过其SH2结构域识别磷酸化的受体并与之结合。然后STAT分子亦发生酪氨酸的磷酸化,酪氨酸磷酸化的STAT进入胞核形成有活性的转录因子,影响基因的表达 表皮生长因子(epidermal growth factor,EGF)受体是研究得比较清楚的酪氨酸激酶受体,存在于特殊的靶细胞的质膜上,调节不同的功能,包括细胞的生长、增殖和分化,并且与肿瘤的发生有关。EGF受体(EGF receptor)结构是一种糖蛋白,由三个部分组成:①细胞外结构域有621个氨基酸残基,富含半胱氨酸,并形成多对二硫键。其上结合有糖基,是EGF结合的位点;②跨膜区由23个氨基酸残基组成;③细胞质结构域,由542个氨基酸残基组成,含有无活性的酪氨酸激酶和几个酪氨酸磷酸化的位点。当EGF同受体细胞外结构域结合位点结合后,受体被激活,导致两个EGF受体单体形成二聚体,激活细胞质部分的酪氨酸激酶,使酪氨酸自我磷酸化。EGF受体上有五个主要的磷酸化的酪氨酸位点,可以同几种不同的蛋白质结合,分别引起细胞内不同的信号应答。在多数情况下,EGF受体被磷酸化的酪氨酸位点同靶蛋白(酶)的SH2结构域相互作用,将靶蛋白(酶)激活,引起细胞应答。如PIP2激酶通过SH2与EGF受体磷酸化的酪氨酸位点相互作用被激活,激活的PIP2激酶使一种膜脂-PIP2磷酸化。另外,磷酸化的酪氨酸位点也可以同具有SH2结构域的磷脂酶Cγ相互作用,并将磷脂酶Cγ激活,激活的磷脂酶Cγ可将质膜中PIP2水解成IP3和DAG,引起与磷脂肌醇-G蛋白偶联系统类似的信号转导。

相关文档
最新文档