我国农村信息消费水平的空间相关性及区域收敛性分析

龙源期刊网 https://www.360docs.net/doc/b110185622.html,

我国农村信息消费水平的空间相关性及区域收敛性分析

作者:刘伟

来源:《商业经济研究》2016年第23期

内容摘要:本文运用空间数据分析法分析了2002-2013年我国各地区农村居民信息消费水平。研究表明,农村居民信息消费水平具有很强的空间集聚现象,空间相关性随时间呈上升的趋势;在考虑空间相关性后,农村居民信息消费水平存在的绝对收敛更明显一些,即农村居民信息消费水平地区间差异会受到空间地理因素的影响。引入居民收入、城市化发展水平后,农村居民信息消费水平也存在着条件收敛,同时收敛趋势比绝对收敛趋势更强,即随着影响农村居民信息消费水平因素的考虑,地区间差异在减小。因此,本文认为提高地区城市发展水平,缩小农村居民收入差距,能够使农村居民信息消费向其自身稳态收敛,政府应制定相关政策,缩小农村居民信息消费水平的区域差距。

关键词:农村居民信息消费空间相关性区域收敛性空间面板数据

相关文献综述

国外学者主要从几个方面对农村居民信息消费进行了研究:一是从信息服务对农业农村信息化的重要性角度,Ballantyne(2014)认为信息服务在解决农民在贫困和食物匮乏方面起到重要的作用。二是研究农民如何获取信息服务,Surabhi Mittal(2014)对印度农民获取信息的途径进行调研,发现农民群体之间的信息交流是最主要的信息服务来源。三是考察农民信息服务消费的影响因素,Peter O.Siyao(2012)、Joseph Welfare Irivwieri(2007)、Frank Tansera (2006)分别研究出农民自身教育程度、性别、环境因素对农民信息消费影响较大。国外研究者在农村居民信息服务消费问题时研究方法多样,数据多来源于调查统计,因此研究结论较为可信,存在的问题是研究对象多数在发展中国家,而对发达国家农村居民信息服务消费问题研究较少。

总结国内现阶段的文献可以看出:多数学者认为农村居民信息消费存在地区差异,也具体分析了农村居民信息消费存在地区差异的原因。但很少有学者从空间角度分析,即忽视了空间地理因素对这一问题的影响,而对于空间效应的考虑,能够更全面地分析农村居民信息消费问题。吴玉鸣、陈志建(2009)从空间角度研究了消费水平的区域差异,认为空间因素会对居民消费水平的区域差距产生影响以及政府制定空间协调政策来缩小这种差距的意义重大。众多学者在研究其他经济问题时通常也会考虑空间效应,如余华义(2011)关于能源强度区域差异的研究表明,能源强度具有空间集聚的特点,且能源强度地区差异在缩小。因此,本文在研究农村居民信息消费的区域差异时,试图将空间地理因素引入,并运用空间数据分析法来研究这一问题。

浅析空间自相关的内容及意义.

浅析空间自相关的内容及意义摘要:本文主要介绍了空间自相关的含义、测度指标及研究空间自相关的意义。首先,明确空间自相关是检验某一要素的属性值是否显著地与其相邻空间点上的属性值相关联的重要指标,揭示空间参考单元与其邻近的空间单元属性特征值之间的相似性或相关性。其次,介绍用来测度空间自相关性的指标,可以分为全局指标和局部指标,常用的指标有:Moran’s I、Geary’s C和Getis-Ord G。最后,进一步阐述了空间自相关的研究意义。关键字:空间自相关;全局指标;局部指标The content and research significance of spatial autocorrelation analysisAbstract: In this paper, the content, the index and the research significance of spatial autocorrelation were analyzed. Firstly, the content of spatial autocorrelation is discussed. Spatial autocorrelation is related to the correlation of the same variables, and also can be used to measure the degree of concentration of the attribute value, in order to reveal the correlation between the space reference unit and its near unit, including global spatial autocorrelation and local spatial autocorrelation. Secondly, it analyzes the index of spatial autocorrelation, the main index included Moran’s I, Geary’s C and Getis-Ord G. Thirdly, this paper discussed the research signification of spatial autocorrelation analysis. Key words: spatial autocorrelation; global index; local index 引言空间

空间统计-空间自相关分析

空间自相关分析 1.1 自相关分析 空间自相关分析是指邻近空间区域单位上某变量的同一属性值之间的相关程度,主要用空间自相关系数进行度量并检验区域单位的这一属性值在空间区域上是否具有高高相邻、低低相邻或者高低间错分布,即有无聚集性。若相邻区域间同一属性值表现出相同或相似的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域也高(低),则称为空间正相关;若相邻区域间同一属性值表现出不同的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域低(高),则称为空间负相关;若相邻区域间同一属性值不表现任何依赖关系,即呈随机分布,则称为空间不相关。 空间自相关分析分为全局空间自相关分析和局部空间自相关分析,全局自相关分析是从整个研究区域内探测变量在空间分布上的聚集性;局域空间自相关分析是从特定局部区域内探测变量在空间分布上的聚集性,并能够得出具体的聚集类型及聚集区域位置,常用的方法有Moran's I 、Gear's C 、Getis 、Morans 散点图等。 1.1.1 全局空间自相关分析 全局空间自相关分析主要用Moran's I 系数来反映属性变量在整个研究区域范围内的空间聚集程度。首先,全局Moran's I 统计法假定研究对象之间不存在任何空间相关性,然后通过Z-score 得分检验来验证假设是否成立。 Moran's I 系数公式如下: 11 2 11 1 ()()I ()()n n ij i j i j n n n ij i i j i n w x x x x w x x =====--= -∑∑∑∑∑(式 错误!文档中没有指定样式的文字。-1) 其中,n 表示研究对象空间的区域数;i x 表示第i 个区域内的属性值,j x 表示第j 个区域内的属性值,x 表示所研究区域的属性值的平均值;ij w 表示空间权重矩阵,一般为对称矩阵。 Moran's I 的Z-score 得分检验为:

空间局部自相关测度及ArcGIS中的实现

空间局部自相关测度及ArcGIS中的实现 空间自相关是用来测度地利实体的空间分布状况的,具体而言,就是看看它们是有规律的(集聚式或是间隔式),还是随机的(就像在方盘里随意投下一把细针)。 这里说的局部自相关,就是可以用来测度以每个地理单元为中心的一小片区域的聚集或离散效应。理论上解释起来,的确有点枯燥。倘若换一个视角,利用我们学习过的经济地理的知识来关联的看,就比较容易些。若将城、镇、村都看作这样的空间单元,那么这种局部自相关的测度就可以判别出以城市为中心的这片区域内,城市对于农村的经济总量或劳动力是呈离心带动效应还是向心吸引作用,即区域上的发展是均衡式的,还是极化型的。 最常用的局部自相关的测度指数为Local Moran I,它是由全局自相关指数Moran I发展而来的。(关于Moran I的公式与含义,图书馆里有若干本书提到,譬如北大邬伦的那本、黄皮的城市地理信息系统、还有邬建国写的那本景观书:其实质就是在时间序列的自相关系数上,也就是对不同时间的变量数值所做的相关系数上,添加了对空间邻接矩阵的考虑)。所有Local Moran I之和即为Moran I。I的值从1到-1之变化,反映了由空间相邻相似的正相关向空间相邻相异的负相关的过渡。

关于理论,就是收住。主要讲讲实现步骤。A rcGIS9加强了其ArcToolBox的空间统计分析功能,一下子多出了好多的内容。 由ArcGIS Desktop进入,选择toolbox,最后一类菜单功能即为spatial statistics,其中分有诸多子功能。这里要用的Local Moran I,为第二类中的第一项,即mapping cluster里的Cluster and Outlier Analysis (Anselin Local Morans I)。 下面要做的是一些填空,input feature class打开你所需要研究的图层。input field是你所需要研究的属性列。output feature class为输出结果的存储位置,需要注意的是每次运算时需给出一个新文件名,它不可以覆盖已有文件。 再下面就是些重要的运算参数了:第一,空间关系的判别准则,ArcGIS提供了四种方法,即反距离法、反距离平方法、二值法和综合法。反距离就不解释了,所谓二值法就是以某距离为阈值,小于此距离的范围赋予1,认为相邻,否则为0。综合法则兼顾使用了二值判别和反距离判断,在阈值内为1,超过一定阈值后呈反距离衰减。需要注意的是,进行这些距离运算之前,请确保你的数据是有空间参照的,否则ArcGIS会因为没有距离单位和比例尺而拒绝操作。 距离计算:可以使用欧氏距离或曼哈顿距离,欧氏距离不再解释,曼哈顿距离是计算两点之间距离在x、y两方向分别投影的距离之和。它更适合于城镇街区中的距离计算。

空间自相关--Morans'I

重庆各区县乡村人口所占比例的空间自相关分析 选题: 在ArcGIS中分别计算全局Moran’I 指数和局部Moran’I指数,分析重庆各区县乡村人口所占比例的空间关联程度。 实验目的: 根据重庆市各区县之间的邻接关系,采用二进制邻近权重矩阵,选取各区县2008年的重庆各区县的总人口及乡村人口,计算出重庆各区县乡村人口所占的比例,在ArcGIS里面分别计算全局Moran’I 指数和局部Moran’I指数,分析空间关联程度。 实验数据: 1.重庆统计年鉴中2008年重庆市各区县的总人口及乡村人口数量(excel表格) 2.重庆市各区县的矢量图(shp.文件) 软件: ArcGIS10.2 操作过程与结果分析: 第一步:导入Excel数据文件和重庆市各区县的矢量图,并建立关联 1. Catalog——Folder Connections,在对应的文件夹下打开重庆市各区县城镇化率的EXCEL表格及重庆市各区县shp文件

为关联字段,将两个文件关联起来

3.右键单击关联后的重庆区县界shp.文件,导出为Export_Output文件,新文件的属性表如下: 第二步:计算全局Morans I 1.打开ArcToolbox,选择Spatial Statistics Tools——Analying Patterns——Spatial Autocorrelation(Morans I)选择二进制邻接矩阵方法来确定空间权重矩阵(即当区域i和具有公共边或公共点时,两区域的距离矩阵设为1,若不相邻接,其距离矩阵设为0),选择欧式距离作为计算距离的方法,对数据进行标准化处理后计算全局Moran’I指数度量空间自相关

eviews自相关性检验

实验五自相关性 【实验目的】 掌握自相关性的检验与处理方法。 【实验内容】 利用表5-1资料,试建立我国城乡居民储蓄存款模型,并检验模型的自相关性。 【实验步骤】 一、回归模型的筛选 ⒈相关图分析 SCAT X Y 相关图表明,GDP指数与居民储蓄存款二者的曲线相关关系较为明显。现将函数初步设定为线性、双对数、对数、指数、二次多项式等不同形式,进而加以比较分析。 ⒉估计模型,利用LS命令分别建立以下模型 ⑴线性模型:LS Y C X t (-6.706) (13.862) = 2 R=0.9100 F=192.145 S.E=5030.809 ⑵双对数模型:GENR LNY=LOG(Y) GENR LNX=LOG(X) LS LNY C LNX t (-31.604) (64.189) = 2 R=0.9954 F=4120.223 S.E=0.1221 ⑶对数模型:LS Y C LNX

=t (-6.501) (7.200) 2R =0.7318 F =51.8455 S.E =8685.043 ⑷指数模型:LS LNY C X =t (23.716) (14.939) 2R =0.9215 F =223.166 S.E =0.5049 ⑸二次多项式模型:GENR X2=X^2 LS Y C X X2 =t (3.747) (-8.235) (25.886) 2R =0.9976 F =3814.274 S.E =835.979 ⒊选择模型 比较以上模型,可见各模型回归系数的符号及数值较为合理。各解释变量及常数项都通过了t 检验,模型都较为显著。除了对数模型的拟合优度较低外,其余模型都具有高拟合优度,因此可以首先剔除对数模型。 比较各模型的残差分布表。线性模型的残差在较长时期内呈连续递减趋势而后又转为连续递增趋势,指数模型则大体相反,残差先呈连续递增趋势而后又转为连续递减趋势,因此,可以初步判断这两种函数形式设置是不当的。而且,这两个模型的拟合优度也较双对数模型和二次多项式模型低,所以又可舍弃线性模型和指数模型。双对数模型和二次多项式模型都具有很高的拟合优度,因而初步选定回归模型为这两个模型。 二、自相关性检验 ⒈DW 检验; ⑴双对数模型 因为n =21,k =1,取显著性水平α=0.05时,查表得L d =1.22, U d =1.42,而0<0.7062=DW

空间计量经济学分析

空间计量经济学分析 空间依赖、空间异质性 ?传统的统计理论是一种建立在独立观测值假定基础上的理论。然而,在现实世界中,特别是遇到空间数 据问题时,独立观测值在现实生活中并不是普遍存在的(Getis, 1997)。 ?对于具有地理空间属性的数据,一般认为离的近的变量之间比在空间上离的远的变量之间具有更加密切 的关系(Anselin & Getis,1992)。正如著名的Tobler地理学第一定律所说:“任何事物之间均相关,而离的较近事物总比离的较远的事物相关性要高。”(Tobler,1979) ?地区之间的经济地理行为之间一般都存在一定程度的Spatial Interaction,Spatial Effects):Spatial Dependence and Spatial Autocorrelation)。 ?一般而言,分析中涉及的空间单元越小,离的近的单元越有可能在空间上密切关联(Anselin & Getis, 1992)。 ?然而,在现实的经济地理研究中,许多涉及地理空间的数据,由于普遍忽视空间依赖性,其统计与计量 分析的结果值得进一步深入探究(Anselin & Griffin, 1988)。 ?可喜的是,对于这种地理与经济现象中常常表现出的空间效应(特征)问题的识别估计,空间计量经济 学提供了一系列有效的理论和实证分析方法。 ?一般而言,在经济研究中出现不恰当的模型识别和设定所忽略的空间效应主要有两个来源(Anselin, 1988):空间依赖性(Spatial Dependence)和空间异质性(Spatial Heterogeneity)。 空间依赖性 ?空间依赖性(也叫空间自相关性)是空间效应识别的第一个来源,它产生于空间组织观测单元之间缺乏 依赖性的考察(Cliff & Ord, 1973)。 ?Anselin & Rey(1991)区别了真实(Substantial)空间依赖性和干扰(Nuisance)空间依赖性的不同。 ?真实空间依赖性反映现实中存在的空间交互作用(Spatial Interaction Effects), ?比如区域经济要素的流动、创新的扩散、技术溢出等, ?它们是区域间经济或创新差异演变过程中的真实成分,是确确实实存在的空间交互影响, ?如劳动力、资本流动等耦合形成的经济行为在空间上相互影响、相互作用,研发的投入产出行为及政策 在地理空间上的示范作用和激励效应。 ?干扰空间依赖性可能来源于测量问题,比如区域经济发展过程研究中的空间模式与观测单元之间边界的 不匹配,造成了相邻地理空间单元出现了测量误差所导致。 ?测量误差是由于在调查过程中,数据的采集与空间中的单位有关,如数据一般是按照省市县等行政区划 统计的,这种假设的空间单位与研究问题的实际边界可能不一致,这样就很容易产生测量误差。 ?空间依赖不仅意味着空间上的观测值缺乏独立性,而且意味着潜在于这种空间相关中的数据结构,也就 是说空间相关的强度及模式由绝对位置(格局)和相对位置(距离)共同决定。 ?空间相关性表现出的空间效应可以用以下两种模型来表征和刻画:当模型的误差项在空间上相关时,即 为空间误差模型;当变量间的空间依赖性对模型显得非常关键而导致了空间相关时,即为空间滞后模型(Anselin,1988)。 空间异质性 ?空间异质性(空间差异性),是空间计量学模型识别的第二个来源。 ?空间异质性或空间差异性,指地理空间上的区域缺乏均质性,存在发达地区和落后地区、中心(核心) 和外围(边缘)地区等经济地理结构,从而导致经济社会发展和创新行为存在较大的空间上的差异性。 ?空间异质性反映了经济实践中的空间观测单元之间经济行为(如增长或创新)关系的一种普遍存在的不 稳定性。 ?区域创新的企业、大学、研究机构等主体在研发行为上存在不可忽视的个体差异,譬如研发投入的差异 导致产出的技术知识的差异, ?这种创新主体的异质性与技术知识异质性的耦合将导致创新行为在地理空间上具有显著的异质性差异, 进而可能存在创新在地理空间上的相互依赖现象或者创新的局域俱乐部集团。 ?对于空间异质性,只要将空间单元的特性考虑进去,大多可以用经典的计量经济学方法进行估计。 ?但是当空间异质性与空间相关性同时存在时,经典的计量经济学估计方法不再有效,而且在这种情况下,

空间分析复习重点

空间分析的概念空间分析:是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。包括空间数据操作、空间数据分析、空间统计分析、空间建模。 空间数据的类型空间点数据、空间线数据、空间面数据、地统计数据 属性数据的类型名义量、次序量、间隔量、比率量 属性:与空间数据库中一个独立对象(记录)关联的数据项。属性已成为描述一个位置任何可记录特征或性质的术语。 空间统计分析陷阱1)空间自相关:“地理学第一定律”—任何事物都是空间相关的,距离近的空间相关性大。空间自相关破坏了经典统计当中的样本独立性假设。避免空间自相关所用的方法称为空间回归模型。2)可变面元问题MAUP:随面积单元定义的不同而变化的问题,就是可变面元问题。其类型分为:①尺度效应:当空间数据经聚合而改变其单元面积的大小、形状和方向时,分析结果也随之变化的现象。②区划效应:给定尺度下不同的单元组合方式导致分析结果产生变化的现象。3)边界效应:边界效应指分析中由于实体向一个或多个边界近似时出现的误差。生态谬误在同一粒度或聚合水平上,由于聚合方式的不同或划区方案的不同导致的分析结果的变化。(给定尺度下不同的单元组合方式) 空间数据的性质空间数据与一般的属性数据相比具有特殊的性质如空间相关性,空间异质性,以及有尺度变化等引起的MAUP效应等。一阶效应:大尺度的趋势,描述某个参数的总体变化性;二阶效应:局部效应,描述空间上邻近位置上的数值相互趋同的倾向。 空间依赖性:空间上距离相近的地理事物的相似性比距离远的事物的相似性大。 空间异质性:也叫空间非稳定性,意味着功能形式和参数在所研究的区域的不同地方是不一样的,但是在区域的局部,其变化是一致的。 ESDA是在一组数据中寻求重要信息的过程,利用EDA技术,分析人员无须借助于先验理论或假设,直接探索隐藏在数据中的关系、模式和趋势等,获得对问题的理解和相关知识。 常见EDA方法:直方图、茎叶图、箱线图、散点图、平行坐标图 主题地图的数据分类问题等间隔分类;分位数分类:自然分割分类。 空间点模式:根据地理实体或者时间的空间位置研究其分布模式的方法。 茎叶图:单变量、小数据集数据分布的图示方法。 优点是容易制作,让阅览者能很快抓住变量分布形状。缺点是无法指定图形组距,对大型资料不适用。 茎叶图制作方法:①选择适当的数字为茎,通常是起首数字,茎之间的间距相等;②每列标出所有可能叶的数字,叶子按数值大小依次排列;③由第一行数据,在对应的茎之列,顺序记录茎后的一位数字为叶,直到最后一行数据,需排列整齐(叶之间的间隔相等)。 箱线图&五数总结 箱线图也称箱须图需要五个数,称为五数总结:①最小值②下四分位数:Q1③中位数④上四分位数:Q3⑤最大值。分位数差:IQR = Q3 - Q1 3密度估计是一个随机变量概率密度函数的非参数方法。 应用不同带宽生成的100个服从正态分布随机数的核密度估计。 空间点模式:一般来说,点模式分析可以用来描述任何类型的事件数据。因为每一事件都可以抽象化为空间上的一个位置点。 空间模式的三种基本分布:1)随机分布:任何一点在任何一个位置发生的概率相同,某点的存在不影响其它点的分布。又称泊松分布

基于ArcGIS的空间自相关分析模块的开发与应用

万方数据

万方数据

第6期魏晓峰等:基于AtcGIS的空间自相关分析模块的开发与应用 圈1建立权值矩阵对话枢 F毡.1Thedialogofcreilt吨WdghtMatrix 心。基于多边形邻接方式只对面状图层有效,因为点状图层不存在边相邻的概念。. 用户可以在“保存文件”文本框中选择一个指定路径下的文件夹用以保存所创建的权值矩阵文件,该文件将以文本形式保存。 在基于距离的权值矩阵建立中,为分析不同距离间空间自相关程度,可设鬣不同的距离带,用于找出自相关程度最显著的空间距离,界面设计如图2所示。 图2基于距离的空间权值矩阵建立对话框 Fig.2ThedialogofcreatingWeight Matrix based∞distance 界面分为2个部分,上半部分显示了各对象两两问的相关距离统计信息,用以设置距离带时的参考;下半部分主要用于设置距离带以建立相应的权值矩阵。距离带设置有2种方式。选择“系统方案”时需确定划分等级,系统将根据选择的划分数量自动生成相应的距离带。添加到下方的“距离带”列表框中;选择“自定义”按钮,用户可以手工输入距离带。距离单位均为地图单位。 2,1.2全局空间自相关分析 全局空间自相关分析对话框主要有2个参数:参与计算的权值矩阵和分析字段。权值矩阵可以选择由以上2种方式建立的权值矩阵文件。若分析的是基于距离的方式,则可以添加多个权值矩阵进行分析,以方便比较不同空间距离下的自相关程度(如图3所示)。 2.1.3局部空间自相关分析 局部空间自相关分析对话框与全局空间自相关分析 对话框类似,多了一个可选参数。该对话框设计为只能输入一个权值矩阵文件,其中Ⅲ标识字段用于标识各分析对象。若分析图层的每个对象具有NAME属性,则我们可以用其标识每个对象;若不选择此项,系统默认用数字标识(如图4所示)。 围3全局空间自相关分析对话柱 Fig.3Thedlatogdglobalspatial autocorrelaflonaDltlysi¥ 国4局部空间自相关分析对话框 Fig.4The蛳el'localspatial autocorrelaltonm鼬 2.2模块开发 模块采用ArcObjects组件技术在VB环境下进行开发。ArcObjects(简称AO)是Esm公司开发的一套基于COM技术的面向地理数据模型的大型组件库。AO的开发既可以选择应用程序内嵌的VBA,也可以选择支持COM标准的开发工具。 许多AO对象内建立了基本的数据管理和地图显示等GIS功能。由于AO是基于微软的COM技术构建的,所以,我们可以利用它来搭建出更高级的AO组件,从而开发出更加强大、灵活的应用系统。 利用AO组件开发出来的模块可以实现与ArcCI¥的无缝集成。通过ArcGLS提供的Customize对话框,这些应用模块可以像ArcGIS自身模块一样方便地载人和卸载。3应用实例 3.1分析数据 分析数据取自1980年美国俄亥俄州哥伦比亚区内49个区域统计信息,其中包含各子区域的犯罪率信息,犯 罪率为每千人所含犯罪数。 万方数据

拓扑空间与度量空间性质异同浅析论文

拓扑空间与度量空间性质异同浅析摘要:拓扑空间是度量空间的延伸,是用抽象化的语言来阐述相关概念,蕴含着丰富的性质。本文将拓扑空间中一些性质与度量空间中的一些性质做了一些比较,特别是对拓扑空间中相关反例进行了研究。 关键词:拓扑空间,度量空间,可分性 拓扑空间和度量空间是数学专业的最基本内容之一,研究他们的基本定义和相关性质是后续研究的重要基础,下面我们将其相关定义和性质进行梳理。 一、相关定义 拓扑空间的定义如下: 定义1. 设x是一非空集合,x的一个子集族称为x的一个拓扑,如果它满足: (1)都包含在中 (2)中任意多个成员的并集仍在中 (3)中有限多个成员的交集仍在中 度量空间的定义如下: 定义2. 集合x上的一个度量是一个映射:,它满足 (1)正定性. , ,, 当 (2)对称性. , (3)三角不等式. , 当集合x上规定了一个度量后,称为度量空间。从相关定义中看出,若将度量空间中的开子集取作球形邻域,则拓扑空间是度量空间的推广。常见的度量空间有下面的一些例子:

例1:欧氏空间赋予距离拓扑后为度量空间。 例2:空间x赋予如下度量:,则x为度量空间。 例3:对实数上的闭区间上连续函数空间,我们可以赋予如下最大模范数诱导的度量,即任意两个连续函数的的距离为这两函数差的最大模,同样对于可导函数,光滑函数都有类似的定义。 例4:在辛几何中,在哈密顿微分同胚群中hofer曾定义了如下度量: 从其诱导的范数称为hofer范数,该范数是研究辛拓扑、辛嵌入的强有力武器。 二、相关性质 度量空间中许多性质都发源于欧氏空间,它们满足、、、分离公理与、可数公理,但有许多性质到拓扑空间就不再保持。例如可分性就不再保持。 命题1:可分度量空间的子空间也是可分的。 证明:不妨假设x是可分的度量空间,a是x的子空间,b为x的可数稠密子集。下面证明为a的可数稠密子集。 首先证明为a的可数子集。因为b为可数子集,可数集的子集仍为可数集,所以为a的可数子集。 其次证明为a的稠密子集,此时需要在子空间拓扑下讨论,即需证明a中任何开集与的交不空,由子空间拓扑定义,a中开集u为x中开集p与a的交,即.又因为b为x的稠密子集,即x的任何开集与b的交非空。所以,从而得证。 但可分拓扑空间的子空间一般是不可分的,例子参见[1]。

空间自相关聚集分析

空間自相關聚集分析1 陳慈仁、林峰田、何燦群 一、概述 在統計上,透過相關分析( )可以檢測兩種現象(統計量)的變化是否存在相關性,例如:稻M的產量,往往與其所處的土壤肥沃程度相關。若其分析之統計量係為不同觀察對象之同一屬性變量,則稱之為「自相關」()。是故,所謂的空間自相關()乃是研究「空間中,某空間單元與其周圍單元間,就某種特徵值,透過統計方法,進行空間自相關性程度的計算,以分析這些空間單元在空間上分佈現象的特性」。 計算空間自相關的方法有許多種,然最為知名也最為常用的有:’、’、、等等。但這些方法各有其功用,同時亦有其適用範疇與限制,當然自有其優缺點。一般來說,方法在功用上可大致分為兩大類:一為全域型(),另一則為區域型()兩種。 全域型的功能在於描述某現象的整體分佈狀況,判斷此現象在空間是否有聚集特性存在,但其並不能確切地指出聚集在哪些地區。且若將全域型不同的空間間隔()的空間自相關統計量依序排列,還可進一步作空間自相關係數圖(),分析該現象在空間上是否有階層性分佈。而依據()提出()方法論說法,區域型之所以能夠推算出聚集地()的範圍,主要有兩種:一是藉由統計顯著性檢定的方法,檢定聚集空間單元相對於整體研究範圍而言,其空間自相關是否夠顯著,若顯著性大,即是該現象空間聚集的地區,如:和()發展的統計方法;另外,則是度量空間單元對整個研究範圍空間自相關的影響程度,影響程度大的往往是區域內的「特例」(),也就表示這些「特例」點往往是空間現象的聚集點,例如:’。 在許多研究案例中,’和是最被經常使用的方法。下文將分別介紹之。二、全域型’法 1改寫自「陳慈仁(20XX) 台北市資訊軟體業與網際網路服務業區位分佈之研究(第三章)」 國立台灣大學建築城鄉研究所碩士論文。

空间自相关统计量(20201209125239)

空间自相关的测度指标 1全局空间自相关 全局空间自相关是对属性值在整个区域的空间特征的描述。表示全局空间自相关的指标和方法很多,主要有全局Moran' si、全局Geary' sC和全局Getis-OrdG[3,5]都是通过比较邻近空间位置观察值的相似程度来测量全局空间自相关的。 全局Moran' si 全局Moran指数i的计算公式为: 其中,n为样本量,即空间位置的个数。X i、x j是空间位置i和j的观察值,Wj表示空间位置i和j的邻近关系,当i和j为邻近的空间位置时,wij =1 ;反之,Wj =0o全局Moran指数i的取值范围为[-1,1]。 对于Moran指数,可以用标准化统计量Z来检验n个区域是否存在空间自相关关系,Z 的计算 公式为: n I E(l) W j(d)(X j X i) Z -------------- _i j i 'VAR( I) = S Jwi (n~1 ~W i) /(n~2) >f E(I i)和VAR(h)是其理论期望和理论方差。数学期望EI=-1/(n-1) o 当Z值为正且显着时,表明存在正的空间自相关,也就是说相似的观测值(高值或低值)趋于空 间集聚;当Z值为负且显着时,表明存在负的空间自相关,相似的观测值趋于分散分布;当Z值为零时,观测值呈独立随机分布。 全局Geary' sC 全局Geary' sC测量空间自相关的方法与全局Moran' sI相似,其分子的交叉乘积项不同,即测量邻近空间位置观察值近似程度的方法不同,其计算公式为:全局Moran' sI的交叉乘积项比较的是邻近空间位置的观察值与均值偏差的乘积,而全局Geary' sC比较的是邻近空间位置的观察值之差,由于并不关心xi是否大于xj,只 关心xi和xj之间差异的程度,因此对其取平方值。全局Geary' sC的取值范围为[0,2],数学期望恒为1。当全局Geary' sC的观察值<1,并且有统计学意义时,提示存在正空间自相关;当全局Geary' sC的观察值>1时,存在负空间自相关;全局Geary' sC的观察值=1时,无空间自相关。其假设检验的方法同全局Moran' sI。值得注意的是,全局Geary' sC的数学期望不受空间权重、观察值和样本量的影响,恒为1,导致了全局Geary' sC的

空间分布模式与空间相关分析

实习序号和题目空间分布模式与空间相关分析 实习人专业及编号 实习目的: 熟悉和掌握 Spatial Statistics Tools里的基本工具,对所给数据进行空间分析。 实习内容: 1.参考文献《多尺度人口增长的空间统计分析》,练习多距离 L(d) 、全局 Moran’ I 与 G*统计量分析,显著性检验的置信区间定义为90%; 2.对 adabg00 数据进行全局与局部的 moran I 与 G统计量分析; 3. 对 deer 数据进行基于距离的最近邻分析与L(d) 分析; 实习数据: 1.省区 .shp :中国各省分布图 2.各省第 5 次和第 6 次人口普查:各省人口普查数据 deer.shp :鹿场点分布图 3.adabg00.shp: 爱达荷州阿达各街区2000 年人口普查数据 基本原理: 空间分布的模式一般来说,有三种,分别是离散、随机、和聚合。离散的概 念就是指观测的每个数据之间的差异程度,离散程度越大,差异性就越大。聚合与离散正好相反,表示在一定区域内的相关程度,就是聚合程度越大,相关性就越大。随机是纯粹的无模式,既不能从随机数据中获取结论,也发现不了规律和模式。 1.零假设( null hypothesis ):指进行统计检验时预先建立的假设。在空间统计中,零假设指的就是空间位置在一定区域里面呈现完全随机(均匀)分布。在检 验结果之前,先对这些结果假设一个数值区间,这个区间一般是符合某种概率分布的情况,如果真实结果偏离了设定的区间,就表示发生了小概率事件。这样原来 的假设就不成立了。

如果计算结果落在-2 到2 之间,就表示假设是可以接受,但是不在这个范围内, 就说明发生小概率事件了。有两种可能: 1,假设有错误; 2,出现了异常值。 2.z 得分( Z scores )表示标准差的倍数 标准差:总体各单位标准值与其平均数离差平方的算术平均数的平方根” 也就是“标准差能反映一个数据集的离散程度” 。比如z 得分是+2.5 ,得到的结果是标准差的正 2.5 倍,表示数据已经高度聚集。反之,如果是 -2.5, 那么就表示标准差的负 2.5 倍,就是高度离散的数据。 置信度:数据落在期望区间的可能性 在统计学中,一个概率样本的置信区间( Confidence interval )是对这个样本的某 个总体参数的区间估计。置信区间展现的是这个参数的真实值有一定概率落在测量 结果的周围的程度。置信区间给出的是被测量参数的测量值的可信程度。这个概率 被称为置信水平。置信水平是指总体参数值落在样本统计值某一区内的概率;而置 信区间是指在某一置信水平下,样本统计值与总体参数值间误差范围。置信区间越大,置信水平越高。 3.在空间统计分析中,通过相关分析可以检测两种现象(统计量)的变化是否 存在相关性,若所分析的统计量为不同观察对象的同一属性变量,则称之为自相关。而空间自相关反映的是一个区域单元上的某种地理现象或某一属性值与邻近 区域单元上同一现象或属性值的相关程度,是一种检测与量化从多个标定点中取 样值变异的空间依赖性的空间统计方法。当变量在空间上表现出一定的规律性,即 不是随机分布则存在着空间自相关,空间自相关理论认为彼此之间距离越近的事 物越相像。也就是说,空间自相关是针对同一个属性变量而言的。 4.空间自相关方法按功能大致分为两类:全域型自相关和区域型自相关。全域型自相关的功能在于描述某现象的整体分布状况,判断此现象在空间是否有聚集特性 存在,但其并不能确切得指出聚集在哪些地区,若将全域型不同空间间隔的空间自 相关统计量依序排列,可进一步得到空间自相关系数图,用于分析该现象在空间 上是否有阶层性分布。区域型自相关能够推算出聚集地的范围。 5.最近邻分析 是根据每个要素与其最近邻要素之间的平均距离计算其最近邻指数。最近邻指数 是平均观测距离和平均期望距离之比。如果小于1,则要素呈现空间聚集式;如果 大于1,则要素呈现空间离散模式或竞争模式。最近邻分析并没有考虑到属性特征,只是根据空间位置。 6.Moran ’s I法 高的自相关性代表了空间现象聚集性的存在,空间自相关分析的主要功能在于同时 可以处理数据的区位和属性。全域型 Moran ’s I 计算方式是基于统计学相关系数的协方差关系推算出来的。 I 值一定介于 -1 到 1 之间,大于 0 为正相关,且值越大表 示空间分布的相关性越大,即空间上聚集分布的现象越明显,反之, 值越小代表空间分布相关性小,而当值趋于 0 时,代表此时空间分布呈现随机分布 的情形。若 I 值大于 0 ,说明相邻地区拥有相似的数据属性,属性值高或低的地区都有聚集现象;若 I 小于 0 ,说明相邻地区属性差异大,数据空间分布呈现高地间隔分布的状态;若 I 趋近于 0 ,则相邻空间单元间相关低,某空间现象的高值或低值呈无规律的随机分布状态。若 I 值显著大于 I 的期望值(I值为正值且显著),说明两 点存在相似关系,若 I 值显著小于 I 的期望值(I 值为负值且显著),说明两点存在不相似关系。区域空间自相关值累加之和即全域空间自相关 Moran ’s I 值。

空间统计分析实验报告

空间统计分析实验报告 一、空间点格局的识别 1、平均最邻近分析 平均最邻近距离指点间最邻近距离均值。该分析方法通过比较计算最邻近点对的平均距离与随机分布模式中最邻近点对的平均距离,来判断其空间格局,分析结果如图1所示。 图1 平均最邻近分析结果图最邻近比率小于1,聚集分布,Z值为-7.007176,P值为0,即这种情况是随机分布的概率为0

计算结果共有5个参数,平均观测距离,预期平均距离,最邻近比率,Z 得分,P值。 P值就是概率值,它表示观测到的空间模式是由某随机过程创建而成的概率,P 值越小,也就是观测到的空间模式是随机空间模式的可能性越小,也就是我们越可以拒绝开始的零假设。最邻近比率值表示要素是否有聚集分布的趋势,对于趋势如何,要根据Z值和P值来判断。 本实验中的最邻近比率小于1 ,聚集分布,Z值为-7.007176,P值为0,即这种情况是随机分布的概率为0,该结果说明省详细居民点的分布是聚集分布的,不存在随机分布。 2、多距离空间聚类分析 基于Ripley's K 函数的多距离空间聚类分析工具是另外一种分析事件点数据的空间模式的方法。该方法不同于此工具集中其他方法(空间自相关和热点分析)的特征是可汇总一定距离围的空间相关性(要素聚类或要素扩散)。 本实验中第一次将距离段数设为10,距离增量设为1,第二次将距离段数设为5,距离增量同样为1,得到如图2和图3所示的结果。 从图中可以看出,小于3千米的距离,观测值大于预测值,居民点聚集,大于3千米,观测值小于预测值,居民点离散。且聚集具有统计意义上的聚集,离散并未具有统计意义上的显著性。 图2 K函数聚类分析结果1

浅谈度量空间

度 量 空 间 摘要:度量空间是一类特殊的拓扑空间,并且它是理解拓扑空间的一个重要过 程. 因此,本文通过度量空间的基本概念,力图给出度量空间的一些重要性质. 并且引入一些度量空间的其它性质. 关键词: 度量空间 导集 闭集 正文:度量空间是现代数学中一种基本的、重要的、最接近于欧几里得空间的 抽象空间.19世纪末叶,德国数学家G .康托尔创立了集合论,为各种抽象空间的建立奠定了基础.20世纪初期,法国数学家M.-R.弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念. 1.度量空间的定义 度量空间是一类特殊的拓扑空间,它对于拓扑空间的理解起着非常重要的作用.因此,研究度量空间的一些性质是必要的.为了证明这些性质,首先介绍以下定义. 定义1.1 设X 是一个集合,若对于X 中任意两个元素y x ,都有唯一确定的实数()y x p ,与之对应,而且这一对应关系满足下列条件: (1)正定性 ()0,≥y x p ,并且()y x p ,0=当且仅当y x =; (2)对称性 ()y x p , =()y x p ,; (3)三角不等式 ()()()z y p y x p z x p ,,,+≤.则称p 是集合X 的一个度量,同时将()p X ,称为度量空间或距离空间. X 中的元素称为点,条件(3)称为三点不等式. 定义1.2 设()p X ,是一个度量空间,∈x X .对于任意给定的实数0>ε,集合(){}ε<∈y x p X y ,,记作()ε,x B ,称为一个以x 为中心,以ε为半径的球形邻域,简称为x 的一个球形邻域.

空间自相关

空间自相关 一、发展历程 1.1950年前后,Moran基于生物现象的空间分析将一维空间概念的相关系数推广到二维 空间,从而定义了Moran指数; 2.此后不久,Geary类比于回归分析的Durbin-Watson统计量提出了Geary系数的概念。 于是,空间自相关分析方法雏形形成。在地理学的计量运动期间,空间自相关分析方法被引入地理学领域。 3.此后数十年,经过广大地理学家的努力,特别是Cliff和Ord的有关工作,空间自相关 逐渐发展成为地理空间分析的重要主题之一,另一个突出的主题是Wilson的空间相互作用理论和模型。 4.在Moran指数和Geary系数的基础上,Anselin发展了空间自相关的局部分析方法,Getis 等提出了基于距离统计的空间联系指数。特别是Moran散点图分析方法的创生,代表着空间自相关分析的一个显著进步。 二、基本理论 空间自相关是空间依赖的重要形式,是指研究对象的空间位置之间存在的相关性,也是检验某一要素属性值与其相邻空间要素上的属性值是否相关的重要指标,通常分为全局空间自相关与局部空间自相关两大类。运用空间自相关技术时,首先生成空间权重矩阵,确定各空间单元的权重,再根据各单元的属性信息进行空间自相关分析。 在地理统计学科中应用较多,现已有多种指数可以使用,但最主要的有两种指数,即Moran的I指数和Geary的C指数。在统计上,透过相关分析(correlation analysis)可以检测两种现象(统计量)的变化是否存在相关性,例如:稻米的产量,往往与其所处的土壤肥沃程度相关。如果这个分析统计量是不同观察对象的同一属性变量,就称之为「自相关」(autocorrelation)。因此,所谓的空间自相关(spatial autocorrelation)就是研究「空间中,某空间单元与其周围单元间,就某种特征值,透过统计方法,进行空间自相关性程度的计算,以分析这些空间单元在空间上分布现象的特性」。 基于自相关分析法的基本原理,若某一变量在空间上不属于随机分布,呈现一定的规律性,那么该变量就存在空间自相关。局部自相关可以用来测算区域内地理单元产业集聚与扩散状态、分析区域经济集聚区具体地理分布,符合产业集群在空间聚集方面的条件及功能区域划定的思路。 三、理论模型重构 (一)空间权重矩阵:确定采用邻接规则和距离规则2种; (二)全局空间自相关分析: 全局空间自相关主要探索属性数据值在整个区域的空间分布特征,通过对Global Moran’s I值的全局空间自相关统计量的计算,分析区域总体的空间关联度和空间差异程度,计算公式如下:

空间相关性的统计分析

空间相关性的统计分析 摘要院空间自相关统计量是用于度量地理数据的一个基本性质,空间分析学者 结合日益成熟的电脑科技GIS、空间计量方法、以及大型资料库,目的在精确地 界定空间因素的重要性及影响力,空间权重矩阵用fij 符号来表示空间的对象i,j 的互相关联,fij=0 就是表示空间权重矩阵的对角元素为零。空间权重矩阵有可以 根据文中的几个函数方法来确定。 Abstract: Spatial autocorrelation statistics is a basic property used to measure geographic data. Spatial analysis scholars aim toaccurately define the importance and influence of space factors combined with the increasingly mature computer science and technologyGIS, spatial econometric methods andlarge database. In spatial weight matrix, fij denotes the correlationbetween i,j. fij=0 means thediagonalelements of spatial weight matrix is zero. Spatial weight matrix can be determined according to the following function methods.关键词院空间信息特殊关系;空间依赖性;空间自相 关性;统计方法;空间权重矩阵Key words: spatial information special relationship;spatial dependence;spatial autocorrelation;statistical methods;spatial weight matrix中图分类号院P208 文献标识码院A 文章编号院1006-4311(2014)27- 0243-02 1 空间的引入地理学第一定律,Tobler's First Law 或者Tobler's FirstLaw of Geography,地理事物或属性在空间分布上互为相关,存在集聚(clustering)、随机(random)、规则(Regularity)分布。 空间信息之间存在特殊关系。一个空间单元内的信息与其周围单元信息有相 似性,空间单元之间具有的连通性,属性各阶矩的空间非均匀性或非静态性。空 间分布模式主要有点模式、线模式、面模式和体模式,其中最早被提出和研究的 是点模式(point pattern)。点模式分析的理论最早由Ripley(1977)提出,并不 断得到完善。目前应用领域最广的面模式——空间自相关。基本上,人的行为表 现受到所处环境或周遭环境的影响非常明显,空间分析学者结合日益成熟的电脑 科技GIS、空间计量方法、以及大型资料库,目的在精确地界定空间因素的重要 性及影响力:到底是哪一种空间因素产生影响?影响有多大?如何建立模型?解 释自变数与因变数间的关系。 空间自相关分析的目标应该是在空间某一变量应该与某一空间相关,其相关 的程度应该怎样。空间自相关的系数应该经常来度量某事物在空间中的依靠性。 如果一个因变量的取值跟随所要测量的长度的变小而变得更加相近,所以这一变 量值就显示空间正相关;如果测量值由于程度的变小而更远,这个称为空间负相关;如果测量值与空间不存在依靠性,那么。这一个测量值所表现的是与空间不 相关性或者说是空间随机性。空间自相关的应用一般与取样,测量空间自相关的 测量与之距离的空间函数还有自相关性的测量检查。 2 与空间有关性的基本理论空间自相关定义:空间自相关是指一些变量在同 一个分布区内的观测数据之间潜在的相互依赖性,要是这些因素本身存在自相关,必然削弱它们的作用,为此需剔除自相关影响大的因素。空间统计分析就是为空 间资料的统计分析方法,地理要素空间相互影响,自相关是一种不容忽视的影响 因素。对已知观测数据建立自回归模型,即可对自相关变量进行预测,主要思想 在于空间中邻近的数据通常比相离较远的资料具有较高的相似性。如所研究的地 理对象受许多因素影响,其建立在相邻地理单元存在某种联系的基本假设之上。 空间依赖性定义:就是指当地理空间中某一点的值依赖于和它相邻的另一点

相关文档
最新文档