国际工程测量的UTM投影变形及抵偿分析

国际工程测量的UTM投影变形及抵偿分析
国际工程测量的UTM投影变形及抵偿分析

投影幕布尺寸表+投影机到幕布距离的计算公式

投影幕布尺寸表卷帘屏幕(4:3) 对角线(英寸)尺寸(m)100" 约2.0 * 1.5 120" 约2.4 * 1.8 150" 约3.0 * 2.4 180" 约3.6 * 2.6 200" 约4.2 * 3.2 卷帘屏幕(16:9) 对角线(英寸)尺寸(m)92" 2.03 * 1.44 106" 约2.34 * 1.32 133" 约2.94 * 1.65 159" 3.55 * 1.98 161" 3.55 * 2.03 背投硬幕(丹麦DNP) 规格(对角线)尺寸(m)67" 1.04 * 1.37 72" 1.10 * 1.46 84" 1.28 * 1.70 100" 1.52 * 2.03 120" 1.83 * 2.44 卷帘/支架(方幕)

规格(英寸)尺寸(m)50*50 1.27 * 1.27 60*60 1.52 * 1.52 70*70 1.78 * 1.78 84*84 2.13 * 2.13 96*96 2.44 * 2.44 108*108 2.74 * 2.74 120*120 3.05 * 3.05 144*144 3.66 * 3.66 150" 2.28 * 3.04 快装活动幕(4:3) 对角线(英寸)尺寸(m)100" 2.032 * 1.524 120" 2.438 * 1.830 150" 3.040 * 2.280 180" 3.660 * 2.740 200" 4.267 * 3.200 250" 3.675 * 4.876 300" 6.090 * 4.570

以下为幕布内实际画面内尺寸(宽屏) 单位:毫米: 投影机到幕布距离的计算公式 最小投射距离(米) = 最小焦距(米)x 画面尺寸(英寸)÷液晶片尺寸(英寸) 最大投射距离(米) = 最大焦距(米)x 画面尺寸(英寸)÷液晶片尺寸(英寸) 已知投射距离得到画面尺寸 最大投射画面(米) = 投射距离(米)x 液晶片尺寸(英寸)÷最小焦距(米) 最小投射画面(米) = 投射距离(米)x 液晶片尺寸(英寸)÷最大焦距(米) 例如: 1、Toshiba TLP-S71的焦距是26.5mm~31.5mm, 液晶片尺寸是0.7英寸LCD板,需要85英寸的画面。 最小投射距离(米)=0.0265米x 85英寸÷0.7英寸= 3.217米 最大投射距离(米)=0.0315米x 85英寸÷0.7英寸= 3.825米 2、已知:EPSON EMP-6000的焦距是24.0 - 38.2 mm, 液晶片尺寸是0.8英寸LCD 板,投射距离为4米, 求:最大的投射画面和最小的投射画面。

(建筑工程管理)工程测量投影面与投影带选择

(建筑工程管理)工程测量投影面与投影带选择

§7.5工程测量投影面和投影带选择 7.5.1概述 对于工程测量,其中包括城市测量,既有测绘大比例尺图的任务,又有满足各种工程建设和市政建设施工放样工作的要求。如何根据这些目的和要求合适地选择投影面和投影带,经济合理地确立工程平面控制网的坐标系,在工程测量是壹个重要的课题。 7.5.2工程测量中选择投影面和投影带的原因 (1)有关投影变形的基本概念 平面控制测量投影面和投影带的选择,主要是解决长度变形问题。这种投影变形主要是由于以下俩种因素引起的: ①实测边长归算到参考椭球面上的变形影响,其值为: 式中:为归算边高出参考椭球面的平均高程,为归算边的长度,为归算边方向参考椭球法截弧的曲率半径。归算边长的相对变形: 值是负值,表明将地面实量长度归算到参考椭球面上,总是缩短的;值和,成正比,随增大而增大。 ②将参考椭球面上的边长归算到高斯投影面上的变形影响,其值为: 式中:,即为投影归算边长,为归算边俩端点横坐标平均值,为参考椭球面平均曲率半径。投影边长的相对投影变形为 值总是正值,表明将椭球面上长度投影到高斯面上,总是增大的;值随着平方成正比而增大,离中央子午线愈远,其变形愈大。 (2)工程测量平面控制网的精度要求 工程测量控制网不但应作为测绘大比例尺图的控制基础,仍应作为城市建设和各种工程建设施工放样测设数据的依据。为了便于施工放样工作的顺利进行,要求由控制点坐标直接反算的边长和实地量得的边长,在长度上应该相等,这就是说由上述俩项归算投影改正而带

来的长度变形或者改正数,不得大于施工放样的精度要求。壹般来说,施工放样的方格网和建筑轴线的测量精度为1/5000~1/20000。因此,由投影归算引起的控制网长度变形应小于施工放样允许误差的1/2,即相对误差为1/10000~1/40000,也就是说,每公里的长度改正数不应该大于10~2.5cm。 7.5.3投影变形的处理方法 (1)通过改变从而选择合适的高程参考面,将抵偿分带投影变形,这种方法通常称为抵偿投影面的高斯正形投影; (2)通过改变,从而对中央子午线作适当移动,来抵偿由高程面的边长归算到参考椭球面上的投影变形,这就是通常所说的任意带高斯正形投影; (3)通过既改变(选择高程参考面),又改变(移动中央子午线),来共同抵偿俩项归算改正变形,这就是所谓的具有高程抵偿面的任意带高斯正形投影。 7.5.4工程测量中几种可能采用的直角坐标系 (1)国家带高斯正形投影平面直角坐标系 当测区平均高程在l00m以下,且值不大于40km时,其投影变形值及均小于2.5cm,能够满足大比例尺测图和工程放样的精度要求。,在偏离中央子午线不远和地面平均高程不大的地区,不需考虑投影变形问题,直接采用国家统壹的带高斯正形投影平面直角坐标系作为工程测量的坐标系。 (2)抵偿投影面的带高斯正形投影平面直角坐标系 在这种坐标系中,依然采用国家带高斯投影,但投影的高程面不是参考椭球面而是依据补偿高斯投影长度变形而选择的高程参考面。在这个高程参考面上,长度变形为零。于是,当壹定时,可求得: 则投影面高为:

投影计算公式

投影计算公式往往表达方式不止一种,有时很难分辨谁对谁错,我只把“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影” (1:100万地形图规范中称作正轴等角圆锥投影,GB/T 14512-93)的正反转换公式列出,因为我基本能保证这些公式的正确性。 “海洋地质制图常用地图投影系列小程序已升级,原下载者请注意下载更新版本。 1.约定 本文中所列的转换公式都基于椭球体 a -- 椭球体长半轴 b -- 椭球体短半轴 f -- 扁率 e -- 第一偏心率 e’ -- 第二偏心率 N -- 卯酉圈曲率半径 R -- 子午圈曲率半径 B -- 纬度,L -- 经度,单位弧度(RAD) -- 纵直角坐标, -- 横直角坐标,单位米(M) 2.椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 18314-2001”):

需要说明的是,在“海洋地质制图常用地图投影系列小程序”中,程序界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。 3.墨卡托(Mercator)投影 3.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,

(推荐)投影坐标转换

第二节 平面坐标基准转换 由于海上和陆地上在测量时,使用不同的坐标系和不同参考椭球,而且采用的投影也不同,使得我们获得的数据不统一,必须进行坐标转换。 §3·2·1 欧拉角 设有两个空间直角坐标系,分别为O-XYZ 和O-X 'Y 'Z ',为了便于讨论其相应坐标轴间的变换,设其原点相同如图所示,选择εx 、y ε、z ε为欧拉角,又称旋转参数,经过三次旋转,使两个坐标系重合,既:(图见下页A ) 首先,绕O Z '轴,将O X '轴旋转到OX 0轴,所转的角为z ε; 其次,绕OY 0轴,将O Z '轴旋转到OZ 0轴,所转的角为y ε; 最后,绕OX 轴,将O Z 0轴旋转到OZ 轴,所转的角为εx ; Z Z 0 Z ' X ' O X 0 X Y 0 Y Y ' 图A 因此有 X X ' Y = R 1(εx )R 2(y ε)R 3(z ε) Y '

Z Z ' 式中 R 1(εx )、R 2(y ε)、R 3(z ε)为旋转矩阵,其表达式在ε、y ε、z ε很小时可以最终表示为: X 1 z ε y ε X '

Y = -z ε 1 εx Y ' 公式1 Z y ε - εx 1 Z ' §3·2·2 不同三维空间直角坐标系的变换模型 GPS 测量的WGS —84属地心坐标系,而1980年国家大地坐标系和1954年北京坐标系属参心坐标系,他们所对应得空间直角坐标系是不同的,这里将讨论不同空间直角坐标系的变换模型。 如图B 两个空间直角坐标系分别为O-XYZ 和O '-X 'Y 'Z ',其坐标系原点不同则存在三个平移参数?X 0、?Y 0、?Z 0,他们表示O '- X 'Y 'Z '坐标系原点O '相对于O-XYZ 坐标系原点O 在三个坐标轴上的分量;又当各坐标轴相互不平行时,既存在三个旋转参数εx 、y ε、z ε。 Z O X Y ' O Y X 考虑到两个坐标系的平移和旋转以及尺度参数可得公式如下: X X ' 1 z ε y ε X ' Y =(1+m ) Y ' -z ε 1 εx Y ' Z Z ' y ε - εx 1 Z ' ?X 0 + ?Y 0 公式一

控制测量复习题与问题详解

控制测量复习题 一、名词解释: 1、子午圈 2、卯酉圈 3、椭圆偏心率 4、大地坐标系 5、空间坐标系 6、法截线 7、相对法截线 8、大地线 9、垂线偏差改正 10、标高差改正 11、截面差改正 12、起始方位角的归算 13、勒让德尔定理 14、大地元素 15、地图投影 16、高斯投影 17、平面子午线收敛角 18、方向改化 19、长度比 20、参心坐标系 21、地心坐标系 二、填空题: 1、旋转椭球的形状和大小是由子午椭圆的个基本几何参数来决定的,它们分别是。 2、决定旋转椭球的形状和大小,只需知道个参数中的个参数就够了,但其中至少有一个。 3、传统大地测量利用天文大地测量和重力测量资料推算地球椭球的几何参数,我国1954年北京坐标系应用是椭球,1980年国家大地坐标系应用的是椭球,而全球定位系统(GPS)应用的是椭球。

4、两个互相垂直的法截弧的曲率半径,在微分几何中统称为主曲率半径,它们是指和。 5、椭球面上任意一点的平均曲率半径R等于该点和 的几何平均值。 6、克莱洛定理(克莱洛方程)表达式为。 7、拉普拉斯方程的表达式为。 8、若球面三角形的各角减去,即可得到一个对应边相等的平面三角形。 9、投影变形一般分为、和变形。 10、地图投影中有、和投影等。 11、高斯投影是投影,保证了投影的的不变性,图形的 性,以及在某点各方向上的的同一性。 12、采用分带投影,既限制了,又保证了在不同投影带中采用相同的简便公式进行由于引起的各项改正数的计算。 13、长度比只与点的有关,而与点的无关。 14、高斯—克吕格投影类中,当m0=1时,称为,当m0=0.9996时,称为。 15、写出工程测量中几种可能采用的直角坐标系名称(写出其中三种): 、、。 16、所谓建立大地坐标系,就是指确定椭球的,以及。 17、参考椭球的定位和定向,就是依据一定的条件,将具有确定参数的椭球与

3度6度带高斯投影详解.

3度6度带高斯投影 选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。海域使用的地图多采用保角投影,因其能保持方位角度的正确。 我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。 地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。 采用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 8314-2001”): 椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky

计算投影变形实例

高速公路导线测量中的投影变形问题 一公司谭晓波 摘要 随着公路建设的不断扩大与发展,公路(特别是高速公路)从平原微丘区向山岭重丘区(乃至高原地区)延伸,测区高程面由数十米增加到数百米乃至数千米;由于高程面的不同所产生的长度变形对工程建设的影响是必须考虑的问题。据有关计算表明,当大地高程面H=700m时,其长度变形为11cm/km,远大于规范允许值,这对于重要工程的测量是一个不可忽略的数值。现以工程实例来探讨山区高速公路在导线测量中的投影变形问题。 1、工程概况 泉(州)三(明)高速公路QA16合同段起讫里程K105+970至K112+406.060,全线长6.43606公里,测区所属地理位置位于山区,平均高程为717m,这就使在导线测量过程中遇到了长度变形问题。如表: 2、长度投影变形及分析 公路工程布设的测量控制网是为了施工的需要,因而要求平面控制点坐标反算的边的长度与实地量测的长度相符。而目前我们遇到了长度变形的问题,即实际测量长度比设计长度大,按《公路勘测规范》对测量控制网的长度变形的规定,测区内投影长度变形值不得大于2.5 cm/km,即投影变形应达到1/40 000的精度。这就要求要对实测长度进行改正,也就是

要先将控制网边长归化到参考椭球面上,然后再将椭球面上的长度投影到高斯平面上,使其影响可以忽略不计。 2.1、投影变形数学模型 长度变形来源于以下两个方面: 2.1.1 实地测量的边长长度换算到椭球面上产生的变形,即1s ?;改正数误差方程式(此式较复杂这里省略)经最小二乘列出误差方程式,按级数展开后取其主项(其它项的影响甚微可以忽略不计): s R H s A m - =?1 (1) 式中 A R -长度所在方向的椭球曲率半径; m H -长度所在高程面对于椭球面的平均高程; s -实地测量的水平距离。 2.1.2 椭球面上的长度投影至高斯平面 02 2 2 2s R y s m + =? (2) 式中 R -测区中点的平均曲率半径; m y -距离的2端点横坐标平均值; 0s -为归算到椭球面上的长度。 在不影响推证严密性的前提下取, A R =R ,s=0s , 综合上两式可得,综合长度变形 s ?为: s R y s R H s m m 2 2 2+ -=? (3) 2.2、长度投影变形分析 由式(1)、式(2)、式(3)可以归纳投影变形的主要特征如下: 1)、地面上实量长度归算至参考椭球面上总是缩短的,且|1s ?|与m H 成正比,地面高程愈高,长度变形愈大。

仿射变换仿射平面与投影变换平面

仿射平面与投影平面 第一章仿射几何学 本章内容的安排在于揭示一种思想方法,从观察到概念形成到不变量系统再到代数系统,这种安排思想也充分反映了历史上射影几何建立过程中综合方法与解析方法各有所长交替作用互相影响的发展历程。本节研究的内容来自于生活、自然与生产建设实践,如正交变换是从研究我们生活空间中物体位置改变的最简单的情形移动、转动和镜面反射开始的,仿射变换则是从太阳光的照射开始的。因此在本章的学习中应注重于培养观察能力。 《数学发现的艺术》中是这样描述“观察”与“归纳”的:“观察是有意知觉的高级形式,它与有意注意结合在一起,与思维相联系。怎样进行观察?需要注意三点:一是有意识、有目标,处处留心,总想‘找岔儿’,从中发现点什么,否则就会熟视无睹,看等于不看;二是要有基础,有必要的相关知识,否则难以看出‘门道儿’,而只能是‘外行看热闹’;三是要有方法,否则就看不到‘点子’上,抓不住要领。在观察中,要特别注意从个别想到一般,从平常中发现异常”;而“归纳是由个别事例向关于这一类事物的一般性的过渡,是一种对经验、以实验观察结果进行去粗取精、去伪存真的综合处理方法。人们用归纳法清理事实,概括经验,处理资料,从而形成概念,发现规律”。 通过本章学习,首先对观察、归纳应该有一个较为深刻的认识,为在以后的学习中能熟练应用观察而打下良好的基础,其次对数学研究的目标之一——对象的结构——有一个初步的了解。 12

13 §1 正交变换 本单元分两个部分介绍正交变换,其一是解析几何中坐标变换的复习,主要通过讨论刚体运动中的特例——平移、旋转和反射,揭示其中最基本的不变量——距离,进而提炼出正交变换的概念。其二是利用不变量系统建立相应的坐标系,从而引入解析法,用代数方法解决正交变换的结构问题。 一、基本概念 实例 (a) 平移是沿一定的方向推移物体的过程,建立适当的坐标系,就有 平移0X l : ? íì+=¢+=¢00y y y x x x , 即 0X X X +=¢; (b) 旋转是物体绕着固定点转动的过程,建立适当的坐标系,就有 旋转q r : ?íì+=¢-=¢q q q q cos sin sin cos y x y y x x , 即 X X ÷÷? ???è?-=¢q q q q cos sin sin cos ; (c) 反射是关于一条固定直线的对称,建立适当的坐标系,就有 反射x r : ?íì-=¢=¢y y x x , 即 X X ÷÷? ???è?-=¢1001。 这三种变换是平面上物体运动的最基本方式,它们的组合就形成了物体在平面上的丰富多彩的运动方式。这三种变

投影仪计算投影距离

选购投影仪 在选购投影机时,我们首先注意到投影机的亮度、分辨率、对比度、均匀度等重要参数,另外,我们也要弄清楚投影机的焦距和液晶片尺寸等参数,以便在投影距离和画面尺寸上适合我们使用场合,投影距离和画面尺寸是与投影机的焦距和液晶片尺寸紧密相关的,其相互关系如下: 已知画面尺寸得到投射距离: 最小投射距离(米)= 最小焦距(米)×画面尺寸(英寸)÷液晶片尺寸(英寸) 最大投射距离(米)= 最大焦距(米)×画面尺寸(英寸)÷液晶片尺寸(英寸) 已知投射距离得到画面尺寸: 最大投射画面(米)= 投射距离(米)×液晶片尺寸(英寸)÷最小焦距(米) 最小投射画面(米)= 投射距离(米)×液晶片尺寸(英寸)÷最大焦距(米) 例如: Toshiba TLP-S71的焦距是26.5mm~31.5mm, 液晶片尺寸是0.7英寸LCD板,需要85英寸的画面 最小投射距离(米)=0.0265米× 85英寸÷0.7英寸= 3.217米 最大投射距离(米)=0.0315米× 85英寸÷0.7英寸= 3.825米 2、已知:EPSON EMP-6000的焦距是24.0 - 38.2 mm,液晶片尺寸是0.8英寸LCD板,投射距离为4米,求:最大的投射画面和最小的投射画面。 最大投射画面(英寸)=4米× 0.8英寸÷0.024米= 133.3英寸 最小投射画面(英寸)=4米× 0.8英寸÷0.0382米= 83英寸 上面提到投影画面尺寸,我们需要根据投影画面尺寸来选择投影屏幕尺寸,我们现在所说的屏幕尺寸实际为屏幕对角线的长度,单位为英寸。一般我国的尺刻度为米,且量长和款比较方便,所以有必要知道根据屏幕尺寸(英寸)得到屏幕宽度(米)和屏幕高度(米) 长度单位换算公式:1英寸=2.54厘米=0.0254米 普通屏幕的宽度和高度的比为4:3 ,于是由勾股定理得到: 屏幕宽度(米)=屏幕尺寸(英寸)× 0.0254米/英寸× 0.8 =屏幕尺寸÷50 屏幕高度(米)=屏幕尺寸(英寸)× 0.0254米/英寸× 0.6 =屏幕尺寸÷66 得到的单位为米 依此公式: 60英寸的屏幕的宽度为60÷50=1.2(米)高度为60÷66=0.909(米) 150英寸的屏幕的宽度为150÷50=3(米)高度为150÷66=2.27(米) 200英寸的屏幕的宽度为200÷50=4(米)高度为200÷66=3(米) ★ProjectorCentral投影计算器中文版★ 【2008.5.22更新】 英文的Calculator Pro提供了投影机和屏幕相对高度的信息(lens offset)。更准确,更好用!https://www.360docs.net/doc/bf10569696.html,/projection-calculator-pro.cfm HC1500为例: ProjectorCentral中文提供了一个非常好用的工具:投影计算器。 https://www.360docs.net/doc/bf10569696.html,/projection-calculator.cfm?lang=chinese 它可以对于任何数据库内的投影机 1. 给定画面尺寸,计算投影距离的范围(例如,A×200投100寸,相知道投影机是否可以安装在3米远的地方); 2. 给定投影距离,计算画面尺寸(例如,投距为 3.8米,想知道VW60是否可以投120寸)。

土木工程测量课后习题问题详解

《土木工程测量》习题答案 一、测量基本知识 [题1-1] 测量学研究的对象和任务是什么? 答:测量学是研究地球的形状与大小,确定地球表面各种物体的形状、大小和空间位置的科学。 测量学的主要任务是测定和测设。 测定——使用测量仪器和工具,通过测量与计算将地物和地貌的位置按一定比例尺、规定的符号缩小绘制成地形图,供科学研究和工程建设规划设计使用。 测设——将在地形图上设计出的建筑物和构筑物的位置在实地标定出来,作为施工的依据。 [题1-2] 熟悉和理解铅垂线、水准面、大地水准面、参考椭球面、法线的概念。 答:铅垂线——地表任意点万有引力与离心力的合力称重力,重力方向为铅垂线方向。 水准面——处处与铅垂线垂直的连续封闭曲面。 大地水准面——通过平均海水面的水准面。 参考椭球面——为了解决投影计算问题,通常选择一个与大地水准面非常接近的、能用数学方程表示的椭球面作为投影的基准面,这个椭球面是由长半轴为a 、短半轴为b 的椭圆NESW 绕其短轴NS 旋转而成的旋转椭球面,旋转椭球又称为参考椭球,其表面称为参考椭球面。 法线——垂直于参考椭球面的直线。 [题1-3] 绝对高程和相对高程的基准面是什么? 答:绝对高程的基准面——大地水准面。 相对高程的基准面——水准面。 [题1-4] “1956 年黄海高程系”使用的平均海水面与“1985 国家高程基准”使用的平均海水面有何关系? 答:在大港一头验潮站,“1985 国家高程基准”使用的平均海水面高出“1956 年黄海高程系”,使用的平均海水面0.029m。 [题1-5] 测量中所使用的高斯平面坐标系与数学上使用的笛卡尔坐标系有何区别? 答:x 与y 轴的位置互换,第Ⅰ象限位置相同,Ⅰ→Ⅱ→Ⅲ→Ⅳ象限顺指针编号,这样可以使在数学上使用的三角函数在高斯平面直角坐标系中照常使用。 [题1-6] 我国领土某点A 的高斯平面坐标为:x A =2497019.17m,Y A =19710154.33m,试说明A 点所处的6°投影带和3°投影带的带号、各自的中央子午线经度。 答:我国领土所处的概略经度围为东经73°27′~东经135°09′,位于统一6°带投影的13~23 号带,位于统一3°带投影的24~45 号带,投影带号不重叠,因此,A 点应位于统一6°带的19 号带。 中央子午线的经度为0 L =6×19-3=111°。 去掉带号与500km 后的A y =210154.33m, A 点位于111°子午线以东约210km。 取地球平均曲率半径R =6371km,则210.154km 对应的经度差约为(180×210.154)÷(6371π)=1.88996°=1°53′,则A 点的概略经度为111°+1.88996°=112.88996°。

投影机距离计算方法

投影机距离计算方法 在选购投影机时,我们首先注意到投影机的亮度、分辨率、对比度、均匀度等重要参数,另外,我们也要弄清楚投影机的焦距和液晶片尺寸等参数,以便在投影距离和画面尺寸上适合我们使用场合,投影距离和画面尺寸是与投影机的焦距和液晶片尺寸紧密相关的,其相互关系如下: 已知画面尺寸得到投射距离: 最小投射距离(米)= 最小焦距(米)x 画面尺寸(英寸)÷液晶片尺寸(英寸) 最大投射距离(米)= 最大焦距(米)x 画面尺寸(英寸)÷液晶片尺寸(英寸) 已知投射距离得到画面尺寸: 最大投射画面(米)= 投射距离(米)x 液晶片尺寸(英寸)÷最小焦距(米) 最小投射画面(米)= 投射距离(米)x 液晶片尺寸(英寸)÷最大焦距(米) 例如: sony投影机VPL-EX130 4700*1.17*1.15=6300元 18.63-22.36 0.63 需要120英寸的画面 最小投射距离(米)=0.01863米x 120英寸÷0.7英寸= 3.194米 最大投射距离(米)=0.02236米x 120英寸÷0.7英寸= 3.833米 EIP-X350的焦距是23.6~28.5, 液晶片尺寸是0.7英寸LCD板,需要85英寸的画面 最小投射距离(米)=0.0236米x 85英寸÷0.7英寸= 2.865米 最大投射距离(米)=0.0285米x 85英寸÷0.7英寸= 3.460米 2、已知:EIKI LC-XT5E的焦距是76~98,液晶片尺寸是1.8英寸LCD板,投射距离为10米,求:最大的投射画面和最小的投射画面。 最大投射画面(英寸)=10米x 1.8英寸÷0.076米= 236.8英寸 最小投射画面(英寸)=10米x 1.8英寸÷0.098米= 183.6英寸 上面提到投影画面尺寸,我们需要根据投影画面尺寸来选择投影屏幕尺寸,我们现在所说的屏幕尺寸实际为屏幕对角线的长度,单位为英寸。一般我国的尺刻度为米,且量长和款比较方便,所以有必要知道根据屏幕尺寸(英寸)得到屏幕宽度(米)和屏幕高度(米) 长度单位换算公式:1英寸=2.54厘米=0.0254米 普通屏幕的宽度和高度的比为4:3 ,于是由勾股定理得到:

关于投影变形的讨论

规范规定:平面控制网的坐标系统,应当满足测区内投影长度变形值不大于2.5cm/km。 如何判断? 如有两个国家统一3度带坐标点,假定坐标A(100000.000,70000.000)、B(100000.000,72000.000),测区平均高程50m,这个坐标系统能直接采用?即A、B两点坐标能直接采用吗? 投影长度变形值,应该根据测区所处的地理位置和平均高程,计算1Km的距离归算及投影变形改正,应该按图片中的公式计算判断吧。 A、B两点坐标是否能直接采用,我认为要看平面控制网控制范围的大小,或测区大小而定,标准就是投影长度变形值是否大于2.5cm/km. 个人观点,欢迎讨论. 城市测量规范》后面有条文说明的,里面说得不同的情况很具体。 投影变形需要用点位在投影椭球上的经纬度和高度计算,平面坐标无法计算投影变形 我在细化一下2楼的公式: 1、高程引起的变形为:(H0-H)/R R=a*sqrt(1-e^2)/W^2 a---椭球长半轴 H0---投影高程 H----点位高程 W=sqrt(1-e^2*(sinB)^2) B----点位纬度 2、高斯投影变形 1+y^2/(2*r^2)+1/(24*r^2)+y^4/(24*r^4) r同前面R y=N*cosB*Δl+N*(cosB)^3 *(1-t^2+η^2)*Δl^3/6+N*(cosB)^5*(t-18t^2+t^4)*Δl^5/120

上式就是高斯投影正算公式 N=a/W t=tgB η^2=e“^2*(cosB)^2Δl=L-L0 L0 中央子午线经度 L 点位经度 投影长度变形值不大于2.5cm/km,即1/40000。 高斯投影使边长增大,高程归化使边长变小,部分可以抵消。如不能抵消部分小于1/40000,则可以直接利用,否则不能。 2楼是比较精确的改化公式,分析问题可用近似。 Ym2/2/R2-Hr/R=±1/40000 R=6371km Ym——边两端的平均横坐标(km) Hr——测区平均高程(km) Ym=±√(12742Hr±2029) Ym符合上式,可以直接采用;不符合,应当另选择中央子午线。 计算结果举例: Hr (m) ±Ym(km) 0 0-45 50 0-52 300 42-76 1000 104-122 1楼 Hr=50m,Ym=71km,不符合条件,不能直接采用,即投影长度变形值大于2.5cm/km。

工程测量投影面与投影带选择

§7.5 工程测量投影面与投影带选择 7.5.1概述 对于工程测量,其中包括城市测量,既有测绘大比例尺图的任务,又有满足各种工程建设和市政建设施工放样工作的要求。如何根据这些目的和要求合适地选择投影面和投影带,经济合理地确立工程平面控制网的坐标系,在工程测量是一个重要的课题。 7.5.2 工程测量中选择投影面和投影带的原因 (1)有关投影变形的基本概念 平面控制测量投影面和投影带的选择,主要是解决长度变形问题。这种投影变形主要是由于以下两种因素引起的: ① 实测边长归算到参考椭球面上的变形影响,其值为1s ?: R sH s m - =?1 式中:m H 为归算边高出参考椭球面的平均高程,s 为归算边的长度,R 为归算边方向 参考椭球法截弧的曲率半径。归算边长的相对变形: R H s s m -=?1 1s ?值是负值,表明将地面实量长度归算到参考椭球面上,总是缩短的;1s ?值与m H , 成正比,随m H 增大而增大。 ② 将参考椭球面上的边长归算到高斯投影面上的变形影响,其值为2s ?: 02 221s R y s m m ??? ? ??=? 式中:10s s s ?+=,即0s 为投影归算边长,m y 为归算边两端点横坐标平均值,m R 为参考椭球面平均曲率半径。投影边长的相对投影变形为 2 0221??? ? ??=?m m R y s s 2s ?值总是正值,表明将椭球面上长度投影到高斯面上,总是增大的;2s ?值随着m y 平 方成正比而增大,离中央子午线愈远,其变形愈大。 (2)工程测量平面控制网的精度要求 工程测量控制网不但应作为测绘大比例尺图的控制基础,还应作为城市建设和各种工程建设施工放样测设数据的依据。为了便于施工放样工作的顺利进行,要求由控制点坐标直接反算的边长与实地量得的边长,在长度上应该相等,这就是说由上述两项归算投影改正而带来的长度变形或者改正数,不得大于施工放样的精度要求。一般来说,施工放样的方格网和建筑轴线的测量精度为1/5 000~1/20 000。因此,由投影归算引起的控制网长度变形应小

常用地图投影公式

常用地图投影公式 1.约定 本文中所列的转换公式都基于椭球体 a -- 椭球体长半轴 b -- 椭球体短半轴 f -- 扁率 e -- 第一偏心率 e’-- 第二偏心率 N -- 卯酉圈曲率半径 R -- 子午圈曲率半径 B -- 纬度,L -- 经度,单位弧度(RAD) -- 纵直角坐标, -- 横直角坐标,单位米(M) 2.椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范GB/T 18314-2001”): 椭球体长半轴a(米)短半轴b(米) Krassovsky (北京54采用)6378245 6356863.0188 IAG 75(西安80采用)6378140 6356755.2882

WGS 84 6378137 6356752.3142 需要说明的是,在“海洋地质制图常用地图投影系列小程序”中,程序界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。 3.墨卡托(Mercator)投影 3.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确

PS各种光影的处理手法理论及实例解析

PS各种光影的处理手法理论及实例解析 阴影对于任何图像处理都是非常重要的,因为它与灯光总是形影不离,如果阴影被正确的使用,那么你可以得到非常惊叹的效果。在这个教程中,我会告诉你一些巧妙使用photoshop来创建逼真的阴影与灯光的方法。 第一步当然是理论,以帮助你了解灯光与阴影是如何运作的,在后面的步骤中,我将向你展示如何创建阴影。 1、光源与阴影的角度 在你开始处理图像前,你要确定时否需要阴影。为了让你自己理清思路,你必须先确定主光源。 你可以看到,原始图片的光源在左上角,在合成的图像中,天空的和云彩的左上角也是被照亮的,你应该始终尊重光的方向。你必选确定图像中那些元素会影响你处理灯光与阴影。

下面是一个类似的情况,只不过光源是来自右侧的,而这位艺术家在处理图像时,也是通过光源的引导,在模特身上处理出了高光。

有的时候你可能没有参考点来确定主光源,但你可以通过图像上的阴影来确定主光源,下面就是一个例子。

原始图片没有路标,是我用photoshop加上去的。如果没有参考点让我来确定光源的位置在哪(在这张图中,当然是太阳),我就根据图中男人与女孩的阴影来为我添加的路牌加上阴影。如果参考的阴影是模糊的,你应该运用高斯模糊,你添加的阴影因该尽可能的接近原图中的阴影。 这就是基本理论,简单的说,就是你必须确定光源,以便知道如何创建阴影。 接下来的步骤里,我将从头向你演示如何创建逼真的阴影。我会告诉你一些我个人使用的一些技巧,当然你也可以用自己的方法来实现。 因为有各种不同的阴影,我给他们取了不同的名字,以便我举例子,也方便你听懂。 A)接触阴影 我把这样的阴影叫“接触阴影”,是因为我不知道它应该叫什么(wb:我也是第一次听到这种叫法)。这是非常重要的一种阴影,以为它直接告诉你这个物体时放置在地面上的活非常接近地面。下面的图片就是一个例子,在图中你可以清楚的看到这种阴影的真实样子。

工程测量投影带的问题

§8.10工程测量投影面与投影带的选择 我国有关测量规范中明确规定,国家大地测量控制网依高斯投影方法按06带或0 3带进行分带和计算。对于城市测量,既有测制大比例尺地形图的任务,又有满足各种工程建设和市政建设施工放样工作的要求。1999年《城市测量规范》规定: 一个城市只应建立一个与国家坐标系统相联系的、相对独立和统一的城市坐标系统,并经上级行政主管部门审查批准后方可使用。城市平面控制测量坐标系统的选择应以投影长度变形值不大于 2.5cm/km 为原则,并根据城市地理位置和平均高程而定。可按下列次序选择城市平面控制网的坐标系统: 1当长度变形值不大于2.5cm/km 时,应采用高斯正形投影统一03带的平面直角坐标系统。统一03带的主子午线经度由东经075起,每隔03至东经0135。 2当长度变形值大于2.5cm/km 时,可依次采用: 1)投影于抵偿高程面上的高斯正形投影0 3带的平面直角坐标系统; 2)高斯正形投影任意带的平面直角坐标系统,投影面可采用黄海平均海水面或城市平均高程面。 3面积小于25km 2的城镇,可不经投影采用假定平面直角坐标系统在平面上直接进行计算。 8.10.1工程测量中投影面和投影带选择的基本出发点 1. 有关投影变形的基本概念 平面控制测量投影面和投影带的选择,主要是解决长度变形问题。这种投影变形主要由以下两方面因素引起: 1).实量边长归算到参考椭球体面上的变形影响,其值依(8-100)式有: R H s s m ?-=?1 (8-176) 式中,m H 为归算边高出参考椭球面的平均高程; s 为归算边的长度 ; R 为归算边方向参考椭球法截弧的曲率半径。 归算边的相对变形为: R H s s m -=?1 (8-177) 由公式可以看出:1s ?的值总为负,即地面实量长度归算至参考椭球体面上,总是缩短的;1s ?值与m H 成正比,随m H 增大而增大。 2).将参考椭球面上边长归算到高斯投影面上的变形影响,其值依(8-138)式有:

投影机计算公式

1:直投背投距离=屏幕的底边长度x投影机镜头的倍数 120寸屏幕底边为2489(mm) x 现在普通投影机的镜头倍数2.0=直投背投距离4972(mm) 2:次反射背投距离=屏幕的底边长度x投影机镜头的倍数x 0.6 120寸屏幕底边为2489(mm) x 现在普通投影机的镜头倍数2.0 x 0.6=直投背投距离2983.2(mm) 以上公式只做为参照,实际距离视环境及设备等因素决定 2: 实际屏幕亮度=投影机输出光强x屏幕增益平均亮度(英尺-朗伯):平均亮度(英尺-朗伯) = 实际屏幕总亮度/ 屏幕面积(英尺2) 因为我们通常使用屏幕对角线尺寸(英寸)来表示画面大小,因此: 16:9画面:平均亮度= 337x投影机输出光强x屏幕增益/屏幕对角线的平方(英寸) 4:3画面:平均亮度= 300x投影机输出光强x屏幕增益/屏幕对角线的平方(英寸) 实例:已知:VW11HT的输出光强为1000流明,投射100″ 16:9的画面,屏幕增益为1。求:此时的屏幕亮度? 屏幕亮度:337×1000x1/10000=33.7 (英尺-朗伯) 实例:已知:VW11HT的输出光强为1000流明,屏幕增益为1。求:要达到16 footlamberts以上的亮度,最大的屏幕尺寸是多少? 屏幕对角线的平方 = 337 x 1000 / 16= 21062.5平方英寸最大屏幕尺寸:145英寸实际意义:VW11HT在全遮光的环境下,要达到理想的亮度,最大的画面尺寸是145英寸。如果你想要投得更大,你需要使用高增益的银幕。虽然规格书上讲VW11HT可以最大投影到400英寸,实际上由于亮度太低,400英寸对于观看画面来讲没什么意义。 背投暗房空间如何计算 公式如下: 1:直投背投距离=屏幕的底边长度x投影机镜头的倍数

投影于抵偿高程面上的坐标计算方法及其公式推导

投影于抵偿高程面上的坐标计算方法及其公式推导 摘要:讨论、分析投影于(任意)抵偿高程面上的平面坐标计算方法及其计算公式的推导。供同行们讨论与参考。 关键词:交通工程;公路控制测量;投影于(任意)抵偿高程面上的平面坐标计算方法。 0 前言 国家有关规范规定,在大、中型工程测量中,其控制网必须与国家控制点联测,或采用国家坐标系统,以达到测量资源共享、成果共用的目的。国家坐标系统是采用高斯-克吕格正形投影(简称“高斯投影”),即先由大地面投影到参考椭球面,再由参考椭球面投影到高斯平面;而高程面则是投影到大地水准面上。公路测量常用的处理方法是,采用分带形式,以减小高斯投影产生的长度变形;而高程面的投影,因为测区平均高程面与大地水准面的差值和地球曲率半径相比微不足道,故忽略不计。然而,随着公路建设的不断扩大与发展,公路(特别是高速公路)从平原微丘区向山岭重丘区(乃至高原地区)延伸,测区高程面由数10m 增加到数百米乃至数千米;由于高程面的不同所产生的长度变形对工程建设的影响是我们必须考虑的问题。如,据有关计算表明,当大地高程面H=700m时,其长度变形为11cm/km,远大于规范允许值,这对于重要工程的测量是一个不可忽略的小数。本文通过分析讨论,提出在(任意)选定的抵偿高程面上的平面坐标的计算方法来解决长度变形问题。 1 独立坐标系中投影于抵偿高程面上的坐标换算 在独立坐标系中,原有坐标X、Y投影高程面为H0,测区平均高程面为H,为使实测边长与成图平面上的边长相一致,不致产生过大的长度投影变形,需将测区平均高程面H作为抵偿高程面(简称投影面),从而建立新的地方独立坐标系统。利用原有坐标X、Y换算成新的投影面(抵偿高程面)上的独立坐标Xˊ、Yˊ,一般取测区中心或附近点为投影原点(X0、Y0),换算过程中不考虑椭球面正形投影到高斯平面上长度改化变形因素对坐标换算的影响,公式推导如下。如图1所示: 图1 R-投影区地球平均曲率半径 H0-原坐标投影面高程 H-新坐标投影面(抵偿高程面)高程 X0、Y0-投影原点坐标 X、Y-原坐标 Xˊ、Yˊ-投影于抵偿高程面上的新坐标 因为: (Xˊ- X0) /(R+H)= (X- X0)/(R+H0) Xˊ=X0+(X-X0)(R+H)/(R+H0) 所以:Xˊ=X0+(X-X0) 〔1+(H-H0)/(R+H0) (1) 同理:Yˊ=Y0+(Y-Y0) 〔1+(H-H0)/(R+H0) 〕 以上(1)式即为新老坐标投影换算公式 2 投影于抵偿高程面上的高斯平面坐标换算 将1954年北京坐标换算为投影于地方独立抵偿高程面上的高斯平面坐标,按以下两种

相关文档
最新文档