机械密封与润滑

机械密封与润滑
机械密封与润滑

关于化工机械密封的泄漏原因及对策分析

摘要:化工生产领域内存在着易燃、易爆、易挥发、易腐蚀、刷毒、高温等介质,机械密封出现泄漏,不仅会影响整机的运行和连续性生产的正常进行,甚至会导致重大安全事故。本文通过机械密封概述,对机械密封泄露原因加以分析,并提出了针对化工机械密封泄露的处理对策。

关键词:化工机械密封;密封泄露

机械密封在使用中因管道介质中的杂质和结晶物沉积于密封腔内,使动环和动环座、轴套间的间隙易被阻塞,造成动环在轴向的动作不灵活甚至被卡死、弹簧被腐蚀卡涩而弹性不足,不能提供原设计的端面比压,致使密封面不能良好地贴和,液膜平衡被破坏,导致密封出现微漏。随着结晶物和杂质颗粒进入摩擦副端面,密封面逐渐被磨损,再加上动环轴向补偿不灵,造成密封泄漏量增加,最终导致密封彻底失效。

一、机械密封概述

机械密封是靠一对或几对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力(或磁力)作用下保持接合并配以辅助密封而达到的阻漏的轴封装置。即依靠弹性元件对静环和动环端面密封副的预紧和介质压力与弹性元件压力的压紧而达到密封的轴向端面密封装置,故又称端面密封。机械密封是靠动环与静环的接触面在运动中始终贴合。其动环和静环的端产生适当的比压和保持一层极薄的液体膜而达密封的目的。

机械密封的主要部件有静环和动环等端面密封副压紧元件;辅助密封件有O形、x形、U型、楔形、矩形柔性石墨、PTFE包覆橡胶O圈等密封圈;还有弹簧、推环等弹力补偿部件;传动销、传动螺钉等传动件;弹簧座、推环、压盖、紧定螺钉、轴套等紧固件。

机械密封多用于离心泵、离心机、反应釜和压缩机等设备。其密封性能可靠、泄露量小、功耗低、使用寿命长、无需经常维修,且能适应自动化生产和高温、低温、高压、真空、高速及各种强腐蚀性介质、含固体颗粒介质等苛刻工况的密封要求。

二、机械密封泄露原因分析

常见的机械密封泄露原因有动作性损坏、密封面平面度损坏、密封面润滑性破损及多因素叠加作用引起的泄漏等。

(一)动作性损坏泄漏

动环与静环随轴的旋转而频繁重复运动,不仅改变了密封端面,也增加了轴向移动量,特别是热及压力变化的积累,逐渐降低了机械密封的精度。长此以往就引起密封端面、销、轴套、螺栓及弹簧等部件损伤或变形,失去随动性,造成密封泄漏。

1、浆料进入堵塞使弹簧作用受限、滑动部件动作失调、密封面表面磨损,破坏了密封性。既使仅有微量浆料填积,也会严重影响机械密封的动作性。

2、滑动密封面磨损、硬化、老化,使轴及轴套损坏、弹簧座磨损、弯曲等。

3、附着高油油类分解焦化或碳化物颗粒附着溶液中析出馏分的结晶物造成微量泄露粘合。

(二)密封面平面度损坏泄漏

密封面平面度损坏多为不均性滑痕或面部切断痕。

1、泵密封箱端面和搅拌器封头变形、损伤、螺栓紧固力不均匀等会导致静环密封面变形,引发泄漏。

2、滑动件热装时,温度变化与热膨胀差引起的密封面变形。会使密封性因紧同件儒变、松动,结构热应力过高及热变形过大而损坏。导致泄漏。

(三)密封面润滑性破损泄漏

端面密封不仅靠端面液膜的密封功能达到密封目的,还借端面液膜的润滑作用而正常运行。

1、端面液膜破损会导致干摩擦,使密封面变得粗糙和磨损加速,甚至会使碳化硅与超硬质合金等硬质耐磨材料产生裂纹。

2、滑动摩擦面温度急剧上升时,未能及时除去的热积累会导致密封面间的密封液蒸发,润滑膜消失后的干摩擦。加速了密封面的损伤,易引发突然的大量泄漏。因此需严格按规程检查水冷系统等冷却条件。

(四)多因素叠加作用泄漏

高粘度液体和起停返复操作的机械易发生以“碳疤”(密封面上隆起的微细“泡疤”)为起点,里辐射状生长裂纹、剥离、脱落等多种缺陷。而干摩擦、滑动不良、平面度变形和相对侧硬质滑动环变形等多因素叠加作用也会造成泄漏。这些泄露现象多为局部的面压力上升和液膜破坏、热循环及疲劳所致。因此,除良好的冷却外,正确安装、保证机械密封清洁及液膜润滑完好的强化维护检查,能消除隐患,确保安全运行。

三、机械密封泄露的处理对策

(一)动作不良的对策

1、使用耐磨性好,橡胶弹性高的O型环,在受到轻微损伤时仍能保持固有的形状和大小,维持密封。密封用O型环多选用橡胶、聚四氟乙烯等。作为0型环或波纹管用的橡胶,可选用丁腈橡胶、乙丙橡胶、氯丁橡胶、硅橡胶、氟橡胶及聚硫橡胶等:聚四氟乙烯则可作为波纹管、v型环和楔型环,用于腐蚀性介质中:高温或低温条件下,多以青铜及不锈钢作为金属波纹管代替密封环;旋转型机械密封,多采用O型环滑动密封。

2、采用寿命长的静止型机械密封,将静止型机械密封的静环装在轴侧,动环装在机壳侧,即不受机器变形的影响,又具有保持平面度的结构的功能,且弹簧不接触密封液,也改善和提高了动作性,降低了清除浆料、保持密封平面度和机器精度的难度。

3、机械密封受热引起的材料变性、零件变形、负荷能力改变等,会降低密封的工作性能,甚至被烧毁。可视热量大小采用自然冷却、水套冷却、内循环冷却、外冲洗冷却、轴内冷却、外循环冷却等方式,冲洗强化冷却效果,控制密封温度,并防止杂质积累,以保证密封的完好性。

(二)保持滑动面平面度对策

1、在维护检修时仔细检查有无磨损和滑痕,以保持静环安装的表面精度,采用静止型机械密封能有效

地解决磨损和滑痕多难以修复的问题。

2、抑制滑动部件材料应力变化的密封热变形的有效方法是将O环或石墨环的保持方式由滑动式改为插入式;也可用耐高温性与温度适应性材料制造的机械密封部件来保证其应力变化最小。

(三)干滑动的防止对策

对滑动发热的冷却不足所致的滑动面损伤造成的干滑动摩擦,除配置完善的密封液、冷却水流量和温度监控单元外,还需巡回检查二者供给管线,防止堵塞。最好采用耐浆性优良的静止型机械密封,能有效防止干滑动发生。

此外,加强旋转机械的运行管理,实时检查机械密封的各种压力、密封液流量、温度等变化;检查轴的振动情况及密封的状态;严禁振动及堵转运行,以保证机械的完好性。

参考文献:

[1]倪建东,浅谈机械密封的腐蚀类型与防护措施[J],价值工程2010(1)

[2]毕启玲、蒋风利,泵用机械密封泄露原因分析,化学工程与装备2008(7)

[3]李秀华,如何保证机械密封的使用效果,鄂钢科技2008(4)

[4]孙秀丽,离心泵机械密封泄露原因分析及处理方法们,化学工程师2008(3)

[5]麦翰杰、廖艺、江放,重型丙烯泵机械密封泄露分析解决方案[J],机械2008(1)

机械密封比压选用原则

机械密封比压选用原则 《液气压世界》2008年第3期阅读次数:370 【关键词】机械密封,载荷,承载能力,比载荷,流体膜压,微凸体接,触比压 【摘要】对各种不同密封型式、摩擦状态、密封面形状和流体相态的密封面载荷和承载能力作了具体分析,有利于对密封面比压的深入了解。对一些不切实际的选用原则和密封面比压的概念与数据进行了讨论分析,并给出明确的密封面比压新概念,以及如何验算密封面比压的具体计算方法。介绍了相关算例和数据资料。 为了保证机械密封可靠、长寿命运转,长期以来许多密封工作者千方百计地努力设确选用密封面比压,并以此来反映密封是否能够正常工作。由于设计时所用的计算方法不够完善,所以在使用过程中形成的密封面比压的平均值,可能与设计时确定的计算值相差很大。究其原因是对密封面比压的概念、用法和依据了解有些不全面,或混淆不清,甚至不正确。因此,有必要用摩擦学有关的新观点、新概念、新技术和新知识,对密封面的比压作一系统、完整及全面的研讨,以便得出正确的看法和计算方法,特别是下面关于比压选用原则,可供机械密封的设计、制造、使用和维护人员参考。 1、密封面载荷和承载能力 在机械密封的使用实践中,对机械密封的密封面比压有许多叫法。过去称作密封端面上单位面积所受的力,或作用在密封环带上单位面积上净剩的闭合力。近来有密封面微凸体接触比压(简称密封面比压)、单位接触压力和平均接触压力等叫法。为了便于对密封面比压有所了解,首先来分析密封面载荷和承载能力的轴向平衡。机械密封密封面的轴向载荷和承载能力示意,见图1。

图1 密封面轴向载荷和总承载能力示图 1.1 轴向载荷和总承载能力的平衡 机械密封轴向作用在密封面上的总载荷P g,包括流体压力作用载荷Pf和弹簧预加载荷P sp,即: P g=P f+P sp (1) 承受这一密封面载荷的是总承载能力W,它包括流体膜承载能力W f和微凸体承载能力W c。流体膜承载能力包括流体膜静压承载能力W st和流体膜动压承载能力W dyn,即: W=W f+W c=W st+W dyn+W c (2) 在稳定工况下两者是相互平衡的,即: P g≡W (3) 1.2 载荷和比载荷 通常在密封系统压差p s较低时,虽然由于结构关系流体作用面积A s大于密封面面积A f,但轴向总载荷不大,密封面的流体膜和微凸体的承载能力是足够的。则流体压力作用载荷为: P f=p s A s

机械密封主要参数

机械密封主要参数

端面液膜压力 为了保证端面间有一层稳定的液膜(半液体润滑或边界润滑膜),就必须控制端面承受的载荷W,而W值究竟多大合适,是与液膜承载能力密切相关的。与平面轴承类似,机械密封端面间隙液膜的承载能力,称为端面液膜的压力,它包括了液膜的压力和液膜动压力两部分。 液膜静压力 当密封间隙有微量泄漏时,由于密封环内、外径处的压差促使流体流动,而流体通过缝隙受到密封面的节流作用,压力将逐步降低。假设密封端面间隙内流体流动的单位阻力沿半径方向是不变的,则流体沿半径r的压力降呈线性分布(图7-11)。例如中等粘度的流体(如水),其沿径向的压力就近似于三角形分布,低粘度液体(如液态丙烷等)则呈凹形,高粘度液体(如重油)压力缝补呈凸形。

端面间的液膜静压力是力图使端面开启的力,设沿半径方向r处,宽度为dr的环面积上液膜静压力为pr,设密封流体压力为p,则作用于密封面上的开启力R为

液膜动压力 机械密封环端面即使经过精细的研磨加工,在微观上仍然存在一定的波度,当两个端彼此相对滑动时,由于液膜作用会产生动压效应。有纳威斯托克斯(Novier-Stokes)方程:

如图7-13,设二平面间存在一定的斜楔,随着间隙减小,液压增大,而斜楔的进出口处压差为零,故有—液压最大值,对应该处的液膜厚度为h0,则流量 关于机械密封液体动压效应的形成和分析,有许多不同的观点和力学模型。由于密封面微观状态的影响因素很多,以及实验技术的困难,目前还不能提出能直接用于设计计算的公式。但对于机械密封设计的正确分析,具有一定的理论指导意义。 载荷系数 机械密封的载荷系数是在摩擦副轴向力平衡下,各项轴向力与密封上最大介质压力的比值,它反应了各种轴向力的作用和大小。载荷系数也可以用面积比来表示:介质压力作用在补偿环上使之与非补偿环趋于闭合的有效作用面积A e与密封端面面积A之比为载荷系数K.

机械密封比压选用原则

机械密封比压选用原则 顾永泉 摘要:对各种不同密封型式、摩擦状态、密封面形状和流体相态的密封面载荷和承载能力作了具体分析,有利于对密封面比压的深入了解。对一些不切实际的选用原则和密封面比压的概念与数据进行了讨论分析,并给出明确的密封面比压新概念,以及如何验算密封面比压的具体计算方法。介绍了相关算例和数据资料。 关键词:机械密封;载荷;承载能力;比载荷;流体膜压;微凸体接触比压 分类号:TH 136; TB 42文献标识码:A 文章编号:1000-7466(2000)02-0021-04 Principles for selecting seal face mean contact pressure of mec hanical seals GU Yong-quan (The University of Petroleum,Dongying 257062, China) Abstract:Seal face mean contact pressure of mechanical fac e seals is discussed in detail. Concrete analysis on seal face load and load carrying capacity in v arious types, friction modes,seal face geometry and fluid phase states is given , which are useful for understanding seal face mean ,concepts and contact pressure pr actical principles for selecting p c data are discussed and an alyzed . The clear concepts, concrete and check calculation abo ut it are presented. calculation of p c Key words:mechanical seals;seal face load;load carr y ing capacity; unit load;fluid film pressure;aspiraties mean contact pressure▲

(完整word版)机械密封端面比压的确定

机械密封端面比压的确定 润滑油作业部 许松涛 2007年11月2日

机械密封端面比压的确定 摘要:泵是石油化工企业最主要和常见的机械设备,由于工艺条件的要求,以及人们经济意识和环保意识的提高,近年来泵密封的泄漏越来越受到关注。泵的密封是防止介质从泵轴周围的间隙处泄漏,或空气从间隙处侵入泵体。机械密封作为石化企业泵最常见的密封形式,占重要地位,机械密封的端面比压是影响密封性能和使用寿命的最主要因素之一。文章结合实际工作中机械密封的安装及维修情况,对密封的端面比压在计算、校核中的一些问题进行分析,以便于确定压缩量,能对机械密封的使用情况有所改善。 关键词:机械密封端面比压分析

1.机械密封工作原理及常见结构型式 机械密封是靠一对或数对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力(或磁力)作用下保持贴合并配以辅助密封而达到阻漏的轴封装置。 1、静止环(静环) 2、旋转环(动环) 3、弹性元件 4、弹簧座 5、紧定螺钉 6、旋转环辅助密封圈 7、防转销 8、静止环辅助密封圈 9、固定压盖 图1——机械密封结构示意图 常用机械密封结构如图1所示。旋转环和静止环往往还可根据它们是否具有轴向补偿能力而称为补偿环或非补偿环。 机械密封中流体可能泄漏的途径有如图1中的A、B、C、D四个通道。 C、D泄漏通道分别是静止环与压盖、压盖与壳体之间的密封,二者均属静密封。B通道是旋转环与轴之间的密封,当端面摩擦磨损后,它仅仅能追随补偿环沿轴向作微量的移动,实际上仍然是一个相对静密封。因此,这些泄漏通道相对来说比较容易封堵。静密封元件

最常用的有橡胶O形圈或聚四氟乙烯V形圈,而作为补偿环的旋转环或静止环辅助密封,有时采用兼备弹性元件功能的橡胶、聚四氟乙烯或金属波纹管的结构。 A通道则是旋转环与静止环的端面彼此贴合作相对滑动的动密封,它是机械密封装置中的主密封,也是决定机械密封性能和寿命的关键。因此,对密封端面的加工要求很高,同时为了使密封端面间保持必要的润滑液膜,必须严格控制端面上的单位面积压力,压力过大,不易形成稳定的润滑液膜,会加速端面的磨损;压力过小,泄漏量增加。所以,要获得良好的密封性能又有足够寿命,在设计和安装机械密封时,一定要保证端面单位面积压力值即端面比压在最适当的范围。 机械密封的结构型式很多,分类方法也各有差别,通常是根据结构特点进行分类。机械密封的分类主要是根据摩擦副的对数,弹簧与介质接触与否,介质在端面上引起的比压情况,弹簧的个数,弹簧的运转和静止,以及介质的泄漏方向等来加以区别,以便合理的选择机械密封的结构型式,最大限度的发挥其结构特点和工作特性,满足长期稳定、安全、可靠的密封性能。机械密封的结构型式有以下几种: ①单端面与双端面。单端面系在密封结构中仅有一对摩擦副,双端面即在密封结构中有两对摩擦副,且两对摩擦副处于相同封液压力作用下。双端面适用范围比较广,适用于强腐蚀、高温、带悬浮颗粒及纤维的介质、气体介质、易燃易爆介质、易挥发粘度低的介质、高真空、贵重物料及要求介质与空气隔绝切允许内漏的情况;单端面

典型机封工作原理_带图解

机械密封的基本结构工作原理和常见形式 一.基本原件,结构 1.端面密封副(静、动环) 端面密封副的作用是使密封面紧密贴合,防止介质泄漏。 它要求静、动环具有良好的耐磨性,动环可以轴向灵活地移动,自动补偿密封面磨损,使之与静环良好地贴合;静环具有浮动性,起缓冲作用。为此密封面要求有良好的加工质量,保证密封副有良好的贴合性能。 2.弹性元件(弹簧、波纹管、隔膜) 它主要起预紧、补偿和缓冲的作用,要求始终保持足够的弹性来克服辅助密封和传动件的摩擦和动环等的惯性,保证端面密封副良好的贴合和动环的追随性,材料要求耐腐蚀、耐疲劳。 3.辅助密封(& 形圈、. 形圈、/ 形圈、楔形圈和异形圈) 它主要起静环和动环的密封作用,同时也起到浮动和缓冲作用。要求静环的密封元件能保证静环与压盖之间的密封性和静环有一定的浮动性,动环的密封元件能保证动环与轴或轴套之间的密封性和动环的浮动性。材料要求耐热、耐寒并能与介质相容。 4.传动件(传动销、传动环、传动座、传动键、传动突耳或牙嵌式联结器)它起到将轴的转矩传给动环的作用。材料要求耐磨和耐腐蚀。 5.紧固件(紧定螺钉、弹簧座、压盖、组装套、轴套) 它起到静、动环的定位、紧固的作用。要求轴向定位正确,保证一定的弹簧压缩量,使密封副的密封面处于正确的位置并保持良好的贴合。同时要求拆装方便、容易就位、能重复利用。与辅助密封配合处,安装密封圈要有导向倒角和压弹量,应特别注意动环辅助密封件与轴套配合处要求耐磨损和耐腐蚀,有必要时与轴套配合处可采用硬面覆层。 6.防转件(防转销) 它起到防止静环转动和脱出的作用。要求有足够的长度,防止静环在负压下脱出,并要求正确定位,防止静环随动环旋转。材料上要求耐腐蚀,在必要时中间可加四氟乙烯套,以免损坏碳石墨静环。 二.工作原理,基本动作 机械密封是由一对或者数对动环与静环组成的平面摩擦副构成的密封装置。 依靠弹性构件和密封介质的压力在旋转的动环和静环的接触表面,产生适当的压紧力,使这两个端面紧密贴合,密封端面之间维持一层极薄的液体膜而达到密封的目的。这层液膜具有流体动压力与静压力,起润滑和平衡压力的作用。

端面比压计算改(2)

s m v /238.81025360229703=???= -π金属波纹管机械密封端面比压计算如下: 某聚酯公司生产时热媒泵使用工况: 进口压力P 1=5.24bar=0.524MPa 出口压力P 2=11.9bar=1.19MPa 介质温度:320℃,轴的转速n=2970r/min ,流量:253m 3/h 实测该泵的机械密封数据如下: 表1:机械密封数据实测值 符号 名称 实测值/mm d 1 接触端面内径 61 d 2 接触端面外径 69 d 3 波纹管内径 56 d 4 波纹管外径 70 据《流体动密封》查得[1],波纹管机械密封的端面比压计算公式如下: p c =()s p k p λ+- 其中,p c 为端面比压,MPa ; p s 为弹簧比压,MPa ; k 为载荷系数(平衡系数); λ为液膜反压系数; p 为介质压力,MPa 现对上述公式中各项的取值进行分析或计算如下: 1)λ:为密封面间的平均液膜压力与密封介质压力之比,λ值的大小与介质性质、转速、压力以及密封表面状态等有关。当液膜静压力近似地按三角形分布考虑时,则可取λ=0.5。但在高速条件下,液膜动压效应不能忽略,须通过实验确定λ值[1]。 根据本设计初始参数,实测轴外径为53mm ,近似认为轴外径为动环内径,则估算出端面平均线速度:

即v=8.238<30,不属于高速,因此取λ=0.5 2) p: 密封腔处的介质压力[1] 212.0p p p += 即p=0.762 MPa 3)k :对于内流式: k=21222e 2 4d -d d -d 其中,d 2为接触端面外径,d 2=69mm ; d 1为接触端面内径,d 1=61mm 锯齿型金属波纹管有效直径d e 计算公式如下: d e =2231d d +d d 3 +434() 式中,d 4为波纹管外径,d 4=70mm ; d 3为波纹管内径,d 3=56mm 4)弹簧比压Ps 端面平均线速度 v=8.238 m/s 根据密封端面平均线速度的不同,弹簧比压的选择范围也不同,其范围可参考下表[2]。 由有关文献[2]介绍 表2 机械密封弹簧比压选择参考表 机械密封类型 密封端面平均线速度(m/s) 弹簧比压Ps (MPa ) 高速机械密封 >30 0.05--0.2 中速机械密封 10~30 0.15--0.3 低速机械密封 <10 0.15--0.6 本机械密封为低速,p s 为0.15~0.6, 分别取p s =0.15,0.45, 0.6

机械密封设计中的选型

机械密封设计中的选型 机械密封结构型式的选择是设计环节中的重要步骤,必须先进行调查:①工作参数—介质压力、温度、轴径和转速。②介质特性—浓度、粘度、腐蚀性、有无固体颗粒及纤维杂质,是否易汽化或结晶等。③主机工作特点与环境条件—连续或间歇操作;主机安装在室内或露天;周围气氛性质及气温变化等。④主机对密封的允许泄漏量、泄漏方向(内漏或外漏)要求;寿命及可靠性要求。⑤主机对密封结构尺寸的限制。⑥操作及生产工艺的稳定性。 1.根据工作参数p、v、t选型 这里p是指密封腔处的介质压力,根据p值的大小可以初步确定是否选择平衡式的结构以及平衡程度。对于介质粘度高、润滑性好的,p≤0.8MPa,或低粘度、润滑性较差的介质,p≤0.5MPa时,通常选用非平衡式结构。p值超过上述范围时,应考虑选用平衡式结构。当p>15MPa时,一般单端面平衡式结构很难达到密封要求,此时可选用串联式多端面密封.υ是指密封面平均直径的圆周速度,根据υ值的大小确定弹性元件是否随轴旋转,即采用弹簧旋转式或弹簧静止式结构,一般υ<20~30m/s的可采用弹簧旋转式,速度更高的条件下,由于旋转件的不平衡质量易引起强烈振动,最好采用弹簧静止式结构。若p和υ的值都高时,可考虑选用流体动压式结构。t是指密封腔内的介质温度,根据t的大小确定辅助密封圈的材质、密封面的冷却方法及其辅助系统。温度t在0~80℃范围内,辅助密封圈通常选用丁腈橡胶O 形密封圈;-50℃≤t<150℃,根据介质腐蚀性强弱,可选用氟橡胶、硅橡胶或聚四氟乙烯成型填料密封圈:温度<-50或t≥150℃时,橡胶和聚四氟乙烯会产生低温脆裂或高温老化,此时可采用金属波纹管结构。介质浊度高于80℃时,在密封领域中通常就要按高温来考虑,此时必须采取相应的冷却措施。 2.根据介质特性选型 腐蚀性较弱的介质,通常选用内置式机械密封,其端面受力状态和介质泄漏方向都比外置式合理。对于强腐蚀性介质,由于弹簧选材较困难,可选用外置式或聚四氟乙烯波纹管式机械密封,但一般只适用p≤0.2~0.3MPa的范围内。易结晶、易凝固和高粘度的介质,应采用大弹簧旋转式结构。因为小弹簧容易被固体物堵塞,高粘度介质会使小弹簧轴向补偿移动受阻。易燃、易爆、有毒介质,为了保证介质不外漏,应该采用有封液(隔离液)的双端面结构。 按上述工作参数和介质特性选定的结构往往只是一个初步方案,最终确定还必须考虑主机的特征和对密封的某些特殊要求。例如,火箭发动机的密封寿命只需几分钟,但要求短时间内绝对不漏。舰船上的主机有时为了获得更有效的空间,对密封的尺寸和安装位置往往提出十分苛刻的要求,又如潜艇上的排水泵,在潜艇沉浮过程中,压力变化幅度很大等。在这些情况下,就不能按常规选择标准结构,而必须对具体工况作特殊设计,同时采取必要的辅助措施。 机械密封件-1 104型/109型/108型/FBD型材质:

机械密封主要性能参数

第3章机械密封主要性能参数 55、什么是机械密封的端面比压? 作用在密封环上单位面积上净剩的闭合力称为端面比压,以Pa表示,单位为MPa端面比压大小是否合适,对机械密封的性能和使用寿命影响很大。比压过大,会加剧密封端面的磨损,破坏流体膜,降低使用寿命;比压过小会使密封泄漏增加,降低密封性能。 56、机械密封受力情况是怎样? 分析密封受力情况,是分析密封环在工作状态下的受力种类、大小、在此基础上计算机械密封的端面比压。密封的受力情况与密封的设计结构有关。图3-1所示 图3-1受力分析图 动环受的力有弹簧 F t介质力Fp和液膜压力Fm,此外还有密封圈的摩擦阻力R,在这些力中介质力和弹簧力的方向是一致的,

称为闭合力。液膜压力Fm 为推开力,摩擦阻力R 的实际力是很小的可以忽略,这样密封的合力为 F=F t + F p - F m 。 57、弹簧力的测试有几种方法? 弹簧力的测试有一般有两种方法,弹簧力是密封闭合力的主要因素,该力可用计算方法获得但是有一定的误差,实际上是以实测比较准确,在现场测量方法是在弹簧加重物,并记录压缩的高度,同样可测得弹簧力。还有就是利用弹簧测试机测得 ,弹簧测试机有机械指针显示方法和电子数显法两种,目前基本采用这两种方法它测试手段都比较准确。 58、什么是弹簧比压?怎样计算? 弹簧比压就是单位密封面上的弹簧力,单位是MPa ,,计算方法是总的弹簧力除以密封断面的的面积。内装式机械密封一般弹簧比压在0.1~0.2 MPa 。外装式机械密封,介质力小于0.1 MPa 时,弹簧比压取0.3~04 MPa ,介质压力小于0.25时,弹簧比压取0.4~06 MPa 。 59、载荷系数是怎样定义的?意义是什么? 密封介质压力作用在补偿环上(动环)对于非补偿环(静环)的闭合力的有效面积与密封环带面积之比称为载荷系数。例如一个内装式机械密封,令为密封介质的有效作用面积Ae ,A 为密封环带的面积,于是载荷系数从 图3-2可得 A Ae K

机械密封资料

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 机械密封的工作原理 机械密封是靠一对或数对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力(或磁力)作用下保持贴合并配以辅助密封而达到阻漏的轴封装置。 常用机械密封结构 机械密封一般由静止环(静环)1.旋转环(动环)2.弹性元件3.弹簧座4.紧定螺钉5.旋转环辅助密封圈6和静止环辅助密封圈8等元件组成,防转销7固定在压盖9上以防止静止环转动。旋转环和静止环往往还可根据它们是否具有轴向补偿能力而称为补偿环或非补偿还。 机械密封中流体可能泄漏的途径有A、B、C、D四个通道。 C、D泄漏通道分别是静止环与压盖、压盖与壳体之间的密封,二者均属静密封。B通道是旋转环与轴之间的密封,当端面摩擦磨损后,它仅仅能追随补偿环沿轴向作微量的移动,实际上仍然是一个相对静密封。因此,这些泄漏通道相对来说比较容易封堵。静密封元件最常用的有橡胶O形圈或聚四氟乙烯V形圈,而作为补偿环的旋转环或静止环辅助密封,有时采用兼备弹性元件功能的橡胶、聚四氟乙烯或金属波纹管的结构。 A通道则是旋转环与静止环的端面彼此贴合作相对滑动的动密封,它是机械密封装置中的主密封,也是决定机械密封性能和寿命的关键。因此,对密封端面的加工要求很高,同时为了使密封端面间保持必要的润滑液膜,必须严格腔制端面上的单位面积压力,压力过大,不易形成稳定的润滑液膜,会加速端面的磨损;压力过小,泄漏量增加。所以,要获得良好的密封性能又有足够寿命,在设计和安装机械密封时,一定要保证端面单位面积压力值在最适当的范围。 机械密封与软填料密封比较,有如下优点: ①密封可靠在长周期的运行中,密封状态很稳定,泄漏量很小,按粗略统计,其泄漏量一般仅为软填

机械密封的设计制造与研究设计

机械密封的设计制造与研究设计

毕业设计论文 机械密封的设计制造与研究 摘要 在现代的工业装置系统中,流体机械被广泛的使用着。轴封在这些机械行业当中起到至关重要的作用。轴封的泄漏不仅浪费能源和原料,同时污染环境。本文在分析机械密封结构、工作原理的基础上讨论了高速机械密封的特点。并以公司设计生产制造的32JF型高速机械密封为例,总结了机械密封设计的方法、机械密封的结构特性、密封的分类、机械密封系统的设计与介绍以及机械密封的故障分析与检测,主要参数及重要零件结构材料的选择、机械密封的选用等内容的设计与研究。 关键词:1.高速机械密封,2.故障分析与检测,3原理及结构特性,4.密封系统

目录 一、机械密封的介绍 (4) 1、机械密封 的含义及工作原理………………………………………………… (4) 2、机械密封 的分类………………………………………………… (5) 3、机械密封 系 统………………………………………………… ................... . (6) 4、高速机械密封的特 点………………………………………………… (6) 二、高速机械密封的设计 (7) 1、主要零件结构型式的确 定………………………………………………

........ (7) 1.1动环的结构型式 (7) 1.2静环的结构型式 (8) 1.3辅助密封圈的型式 (8) 2、机械密封材料的确定 (9) 2.1密封端面摩擦副材料的选择.................................................................... (9) 2.2辅助密封圈材料的选择 (10) 2.3弹簧及其它零件材料的选择.…………………………………………………….. ..10 3、主要零件结构尺寸的确定..... .............................................................. . (11) 3.1密封端面尺寸的确定 (11) 3.2密封端面直径的确定 (12) 3.3密封圈尺寸的确定 (12) 3.4弹簧的确

机械密封主要零件的结构形式

机械密封主要零件的结构形式 1.动环的结构形式动环常用的结构形式如图2-122所示。图2-122(a)比较简单,省略了推环,适合采用橡胶O形辅助密封圈,缺点是密封圈沟槽直径不易测量,使加工与维修不便;图2-122 (b)对于各种形状的辅助密封圈都能适应,装拆方便,且容易找出因密封圈尺寸不合适而发生泄漏的原因;图2-122 (c)只适合用O形密封圈,对密封圈尺寸精度要求低,容易密封,但密封圈易变形;图2-122 (d)和图2-122 (e)为镶嵌式结构,这种结构是将密封端面做成矩形截面的环状零件(称为动环),镶嵌在金属环座内(称为动环座),从而可节约贵重金属。图2-122 (d)为采用压装和热装的刚性过盈镶嵌结构,加工简便,但由于动环与动环座材料的线膨胀系数不同,高温时易脱落,一般适用于轴径小于100mm、使用压力小于5 MPa、密封端面平均线速度小于20m/s的场合。图2-122 (e)为柔性过盈镶嵌结构,其径向不与动环座接触,而是支承在柔性的辅助密封圈上,并采用柱销连接,从而克服了图2-122 (d)的缺点,但加困难,在标准型机械密封中很少采用。图2-122(f)为喷涂结构,是将硬质合金粉或陶瓷粉等离子喷涂于环座上,该结构特点是省料,但由于涂层往往不致密,使用中存在涂层开裂及剥落现象,因此,粉料配方及喷涂工艺还有待改进。上述各种结构中,图2-122 (d)是国内目前采用最普遍的一种。 2.静环的结构形式静环常用的结构形式如图2-123所示。图2-123 (a)为最常用的形式,O形、v形辅助密封圈均可使用;图2-123 (b)的尾部较长,安装两个O形密封圈,中间环隙可通水冷却;图2-123 (c)也是为了加强冷却;图2-123(d)的静环两端均是工作面,一端失效后可调头使用另一端;图2-123 (e)为O形圈置于静环槽内,从而简化了静环座的加工;图2-123 (f)为采用端盖及垫片固定在密封腔体上,多用于外装式或轻载的简易机械密封上。

水泵机械密封工作原理

水泵机械密封的工作原理 一、什么叫机械密封 机械密封就是一种液体旋转机械的轴封装置,它就是由两个与轴垂直的相对运动的密封端面进行密封的,所以也叫端面密封。在国家有关对机械密封的标准中就是这样定义的:“由至少一对垂直于旋转轴线的端面在液体压力与补偿机构弹力(或磁力)的作用以及辅助密封的配合下保持贴合并相对滑动而构成的防止液体泄漏的装置。”二、机械密封的结构 主要由四部分组成:(具体如附图所示) 1、第一部分就是由动环与静环组成密封端面,有时也称为摩擦 副。 2、第二部分就是由弹性原件为主要零件组成的缓冲补偿机构,其 作用就是使密封端面紧密贴合。 3、第三部分就是辅助密封圈,其中有动环与静环密封圈。 4、第四部分就是使动环随轴旋转的传动机构。 三、机械密封如何实现密封? 如示意图所示:轴通过传动座与推环,带动动环旋转,静环固定不动,依靠介质压力与弹簧力使动静环之间的密封端面紧密贴合,阻止了介质的泄漏。摩擦副表面磨损后,在弹簧的推动下实现补偿。为了防止介质通过动环与轴之间泄漏,装有动环密封圈;而静环密封圈则阻止了介质沿静环与压盖之间的泄漏。 四、机械密封的材料

机械密封主要就是由动环与静环组成,一般制造这二两个环所用的材料硬度不同,一个材料的硬度较低,如石墨或石墨填充剂;一个材料的硬度较高,如钢、堆焊硬质合金、陶瓷等。 五、为何常用碳-石墨来做摩擦副? 因为石墨有较高的导热性;较低的线膨胀系数;良好的耐腐蚀性;极好的自润滑性;抗拉强度较低,抗压强度较高,属于一种脆性材料;其缺点就是气孔率较大,一般在18%--22%,为弥补缺点,实际应用的石墨都就是浸渍过的,以堵塞气孔,提高密封性。 六、机械密封的特点 优点:密封性能好,泄漏量少,使用寿命长,轴与轴套不易损坏,功率消耗小,泵的效率比较高等, 缺点:构造复杂,价格贵,制造、安装时要求比较高。 七、检修离心泵时对机械密封有什么要求? 在安装机械密封时应注意以下几点: 1、轴的径向跳动最大不超过0、03~0.05mm,转子的径向跳动分别 为,叶轮口环不超过0、05~0.10mm,轴套等部位不超过0、04~0.06mm。 2、各部件的相对位置公差: 密封箱与轴的同轴度0.10mm 密封箱与轴的垂直度0.05mm 转子的轴向串量0。30压盖与密封箱配合止口同轴度0.10mm 3、与电机的同心度:电机单独运转时其振幅不超过0.03mm;工作温

机械密封型号表示方法

机械密封型号表示方法 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 机械密封常用型号: HU1型 HU1型机械密封符合ISO3096DIN24960和GB6556标准。辅助密封卷根据工况要求可选用同规格橡胶“O”圈PTFE“V”圈。单弹簧、非平衡型拨叉传动、补偿能力强,安装时与轴旋向无关。 磨擦副材质与辅助密封材质可根据实际工况选用。 适用范围 被密封介质:油水、结晶性强碱、盐、高溶度流体、浆料、有机溶剂及其他弱腐蚀溶液。 密封腔压力:≤1Mpa 密封腔温度:-20℃~220℃ 线速度:≤15m/s HU3型 HU3型机械密封符合DIN24960及GB/T6556-94标准,可替代116U、59U型机封、为非平衡型、单端面结构、任意旋向。各种污水泵、化工泵、热循环泵均适用。弹簧选择有:蝶形弹簧、多弹簧等。

磨擦副材质与辅助密封材质请根据实际工况选用。 适用范围: 被密封介质:油、水、酸、碱、盐等一般腐蚀性介质。 密封腔压力:≤1 .6Mpa 密封腔温度:-50℃~220℃ 线速度:≤20m/s HU5型 HU5型机械密封符合DIN24960标准,背靠背安装亦符合DIN24960标准双端面机械密封,属于部分平衡型、橡胶波纹管,单弹簧、单端面结构,动环靠橡胶波纹管的过盈量驱动,浮动性好,弹簧也起传递扭矩作用。 磨擦副材质与辅助密封材质请根据实际工况选用。 适用范围: 被密封介质:含颗粒的废水、油、污水。 密封腔压力:≤1.6Mpa 密封腔温度:-20℃~140℃ 线速度:≤10m/s HU7型 HU7型机械密封符合DIN24960及GB/T6556-94标准,可替代108U型机封,非平衡、圆锥形弹簧结构,弹簧的旋向与轴旋向有关。 磨擦副材质与辅助密封材质可根据实际工况选用。

机械密封选型与常用型 比较

机械密封选型与常用型号比较 每一种机械密封,只有用于规定的范围内才能有效地发挥作用。选型不当,则会使密封性能显著降低,寿命缩短,甚至失效。 选型的主要参数如下 一、密封腔介质压力P 介质润滑性好,粘度较高时,P≤0.8MPa选用非平衡型。介质润滑性差,粘度低时,P≥0.5Mpa 二、线速度V V≤25m/s选用旋转型。V≥25m/s时选用静止型。 三、PV值 PV值涉及到密封面之间流体膜的稳定性(汽化)和磨擦副的耐磨性。PV极限值举例: 端面组合材料介质非平衡型平衡型 钴铬钨合金/石墨水27 碳化钨/石墨水935.5 碳化硅/石墨水35.5142 碳化硅/碳化钨水726.6 碳化钨/碳化钨水29 四、密封介质温度T 在没有外冷条件下,机械密封的最高温度一般取决于辅助密封材料的安全使用温度.见下表:

安全使用温 材料 备注 度℃ 超过安全使用温度请使用金属波 丁睛橡胶(NBR)-30~100 纹管机械密封 硅橡胶(MVQ)-40~200 乙丙橡胶(EPR)-10~160 氟橡胶(FPM)-30~180 聚四氟乙烯(PTF -100~220 E) 五、介质的特殊性。 1、粘度:低粘度介质易干磨擦宜选用平衡型。高粘度介质,宜采用强制传动结构。 2、腐蚀和化学溶剂:a、强腐蚀宜用外装式的四氟波纹管密封。 b、辅助密封在不同化学介质中的适用表如下: 材料用途 矿物油、汽油、挥发油、碳酸钾、氢氧化钾、水、 丁腈橡胶(NBR) 磷酸等 硅橡胶(MVQ)丁醇、低溶胀性矿物油、弱酸、弱碱、氨水等 丙酮、碱、二氧化硫、重铬酸钾、过氧化氢、氨 乙丙橡胶(EPR) 水等 氟橡胶(FPM)热油、蒸汽、无机酸、丁醇、氯族溶剂等 氯醇橡胶(FCO)氟利昂

密封设计手册

一、密封的分类: 1、静密封: (1)根据工作压力:高压静密封、中压静密封、低压静密封 (2)根据工作原理:法兰连接垫片密封、自紧密封、研合面密封、O形环密封、胶圈密封、填料密封、螺纹连接垫片密封、螺纹连接密封、承插连接密封、 密封胶密封 2、动密封: (1)根据密封面间是滑动还是旋转运动:往复密封、旋转密封 (2)根据密封件与其做相对运动的零部件是否接触: A.接触式动密封 a.按密封件的接触位置:圆周(径向)密封、端面(轴向)密封(机械密封) b.按密封原理:填料密封(毛毡密封、软填料密封、硬填料密封、挤压型密封、唇形 密封)、油封密封、涨圈密封 B.非接触式动密封:迷宫密封、动力密封(离心密封、浮环密封、螺旋密封、气压密封、喷射密封、水力密封、磁流密封等) C.无轴封密封(隔膜式、屏蔽式、磁力传动式) 二、机械密封: 机械端面密封是一种旋转传动件密封,是由一对或数对动环与静环组成的平面摩擦副构成的密封装置。主要部件是动环和静环,一个随主轴旋转,一个固定不动构成机械密封的基本元件:端面摩擦副(动环、静环)、弹性元件(弹簧)、辅助密封(O形圈)、传动件(传动销、传动螺钉)、防转件(防转销)、紧固件(弹簧座、压环、压盖、紧钉螺钉、轴套) 静环,又称为非补偿环 动环,又称为补偿环 由补偿环、弹性元件和副密封等构成的组件称为补偿环组件。 机械密封分类: 根据端面接触状态:接触式机械密封、非接触式机械密封、半接触式密封 根据静环安装位置:内装式密封、外装式密封 根据介质泄漏方向:内流型、外流型 根据弹簧元件运动状态:静止式密封、旋转式密封 根据密封流体在密封端面引起的卸载程度:平衡型密封、非平衡型密封

机械密封说明书

釜用机械密封使用说明书 I S O9001认证企业 化工部定点企业 德州市鸿泰环保设备有限公司

1 概述 机械密封(端面密封)——是由至少一对垂直于旋转轴线的端面在流体压力和补偿机构弹力的作用以及辅助密封的配合下,保持贴合并相对滑动而构成的防止流体泄漏的装置。 釜用机械密封,适用于各种钢制釜、搪瓷釜、搪玻璃釜搅拌轴及类似的立式旋转轴密封。 机械密封是一种精密装置,其密封性能和寿命在很大程度上取决于机械密封的安装精度及使用机械密封的搅拌设备操作条件。实践证明,在安装机械密封之前对安装机械密封部位的容器法兰端面,搅拌轴轴径精度应进行检验,并精心安装,是避免密封过早失效延长使用寿命的有效途径。 2 釜用机械密封型式、适用工况 型式及主要工作参数见表1。 表1 型式及主要工作参数

适用工况条件见表2。 表2 适用工况 结构改进型的适用工况条件见表3。 表3 改进型的适用工况

注意:密封要求较高,轴需承受较大的径向力时,应选用带内置轴承的机械密封,但一般不作为轴的支承点。若需要以此作为支承点时,应选用型号后带T的改进型机封。 3 釜用机械密封的安装 安装前的有关要求 对双端面机械密封在安装前应先进行静压试验,试验压力可不一定达到规定要求,主要是以防运输、搬运中损坏内部零件而进行的检查性试验。 安装机械密封部位的搅拌轴(或传动轴)应符合表4的规定。 表4 安装机封部位搅拌轴的精度 mm ≤m ≤m 注:205、206、207型机封,安装机封部位搅拌轴径表面允许粗糙度均为Ra≤m。 当径向跳动公差达不到要求时,应考虑釜内增设中间轴承或底轴承,或选用带内置轴承的机械密封。 凡安装辅助密封部位的搅拌轴轴径端部应按图1所示倒角,其轴径表面不允许有磕碰划伤,以防止密封圈刮伤。

机械密封(流体动密封)设计师必读的书籍与文献

机械密封(流体动密封)设计师必读的书籍 和文献 无论你是一位经验老到的资深密封设计工程师,还是入行不久的初级密封设计人员。牢牢扎实机械密封的基础知识和基本理论是十分重要的。我曾经去过包括伯格曼在内的许多密封设计生产厂家,通过和这些厂家密封设计人员的交流,我发现的一个普遍现象就是,设计人员对机械密封的基础知识和基本理论的理解和掌握十分有限。比如,在很多密封厂家设计部门,能够准确计算密封平衡比和端面比压等参数的设计师只有部门主管一人,其余的设计人员则对这些问题的概念相当模糊。 经验的积累在密封设计中固然重要,但是如果只知其然,而不知其所以然,那么你是很成为一位出色的密封设计工程师甚至于资深专家的。后来的新手要想追赶和超越前者,机械密封的基础知识和基本理论更是实现这一目标的加速器。凭借STUDIO ANTISSA 多年密封研究和设计的经验,我们推荐以下的书籍和文献,如果你是密封的资深设计高手,可以用来慢慢品鉴它们的味道;如果你是初出茅庐的设计人员,这些是你的重要的起点和积奠。我们推荐的书籍和文献由问题引出:

问题1 什么是机械密封?机械密封的分类方法和基本原理是什么? 机械密封属于流体动密封的一种,如果能够从更高的层次上去认识问题,便不至于视线狭隘,见树木不见森林。王玉明院士《流体密封技术》一文,全面的概括了流体动密封的分类和流体动密封的发展演变历程,文中给出的流体动密封分类树形图严谨清晰。 机械密封的分类方法和基本原理有许多书籍都会讲到,但是个人认为,对这一问题的阐述最为条理清晰、思维严谨的是顾永泉先生的《机械密封实用技术》,该书2章1节全面讲述了机械密封的基本结构、作用原理和特点。这是从事密封行业人员的必修课。 问题2 机械密封的主要参数,如弹簧比压、端面比压、膜压系数是怎样得来的? 顾永泉先生把机械密封的主要参数归为几何参数、力学参数和性能参数三种。弹簧比压、端面比压、膜压系数只是密封力学参数的一部分。机械密封的主要参数应从几何、力学和性能三个方面综合掌握,否则也是容易一叶障目的。顾永泉先生于1996年发表的以下三篇文章对我们深入了解机械密封的主要参数是具有很大帮 助的,其中最后一篇还涉及到了具体算例。 机械端面密封的主要参数计算(一)──轴向平衡和几何参数

机械密封端面比压的确定

机械密封端面比压的确 定 This model paper was revised by LINDA on December 15, 2012.

机械密封端面比压的确定润滑油作业部 许松涛 2007年11月2日

机械密封端面比压的确定 摘要:泵是石油化工企业最主要和常见的机械设备,由于工艺条件的要求,以及人们经济意识和环保意识的提高,近年来泵密封的泄漏越来越受到关注。泵的密封是防止介质从泵轴周围的间隙处泄漏,或空气从间隙处侵入泵体。机械密封作为石化企业泵最常见的密封形式,占重要地位,机械密封的端面比压是影响密封性能和使用寿命的最主要因素之一。文章结合实际工作中机械密封的安装及维修情况,对密封的端面比压在计算、校核中的一些问题进行分析,以便于确定压缩量,能对机械密封的使用情况有所改善。 关键词:机械密封端面比压分析 1.机械密封工作原理及常见结构型式 机械密封是靠一对或数对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力(或磁力)作用下保持贴合并配以辅助密封而达到阻漏的轴封装置。 1、静止环(静环) 2、旋转环(动环) 3、弹性元件 4、弹簧座 5、紧定螺钉

6、旋转环辅助密封圈 7、防转销 8、静止环辅助密封圈 9、固定压盖 图1——机械密封结构示意图 常用机械密封结构如图1所示。旋转环和静止环往往还可根据它们是否具有轴向补偿能力而称为补偿环或非补偿环。 机械密封中流体可能泄漏的途径有如图1中的A、B、C、D四个通道。 C、D泄漏通道分别是静止环与压盖、压盖与壳体之间的密封,二者均属静密封。B通道是旋转环与轴之间的密封,当端面摩擦磨损后,它仅仅能追随补偿环沿轴向作微量的移动,实际上仍然是一个相对静密封。因此,这些泄漏通道相对来说比较容易封堵。静密封元件最常用的有橡胶O形圈或聚四氟乙烯V形圈,而作为补偿环的旋转环或静止环辅助密封,有时采用兼备弹性元件功能的橡胶、聚四氟乙烯或金属波纹管的结构。 A通道则是旋转环与静止环的端面彼此贴合作相对滑动的动密封,它是机械密封装置中的主密封,也是决定机械密封性能和寿命的关键。因此,对密封端面的加工要求很高,同时为了使密封端面间保持必要的润滑液膜,必须严格控制端面上的单位面积压力,压力过大,不易形成稳定的润滑液膜,会加速端面的磨损;压力过小,泄漏量增加。所以,要获得良好的密封性能又有足够寿命,在设计和安装机械密封时,一定要保证端面单位面积压力值即端面比压在最适当的范围。 机械密封的结构型式很多,分类方法也各有差别,通常是根据结构特点进行分类。机械密封的分类主要是根据摩擦副的对数,弹簧与介质接触与否,介质

机械密封种类介绍总结

机械密封种类介绍总结 1.分类按端面形式分为双端面机械密封,单端面机械密封,集装式 机械密封。如下图 单端面 双端面 集装式 集装式机械密封装置的预安装设计结构安装简单、易于操作,简化了测量、调整等过程,具有安装简便,互换性强的特点。避免了设备检修时因机械密封安装造成的密封元件的损坏,降低了维护费用。 2. 用途 机械密封通俗地说就是用在机械上的密封。如千斤顶里用来封油压的油封,用于防止尘土进入的防尘密封,气动工具(如风镐等)中的用

于封闭气压的气动密封等都属于机械密封。 3. 原理 机械密封是靠一对或数对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力(或磁力)作用下保持贴合并配以辅助密封而达到阻漏的轴封装置。 4. 结构 主要有以下四类部件。a.主要密封件:动环和静环。b.辅助密封件:密封圈。c.压紧件:弹簧、推环。d.传动件:弹箕座及键或固定螺。 由1静止环(静环)2旋转环(动环)3弹性元件4弹簧座5紧定螺钉6旋转环辅助密封圈和8静止环辅助密封圈等元件组成,7防转销固定在9压盖上以防止静止环转动。旋转环和静止环往往还可根据它们是否具有轴向补偿能力而称为补偿环或非补偿还。 泵用机械密封种类繁多,型号各异,但泄漏点主要有五处:

(l)轴套与轴间的密封; (2)动环与轴套间的密封; (3)动、静环间密封; (4)对静环与静环座间的密封; (5)密封端盖与泵体间的密封。 一般来说,轴套外伸的轴间、密封端盖与泵体间的泄漏比较容易发现和解决,但需细致观察,特别是当工作介质为液化气体或高压、有毒有害气体时,相对困难些。其余的泄漏直观上很难辩别和判断,须在长期管理、维修实践的基础上,对泄漏症状进行观察、分析、研判,才能得出正确结论。 一、泄漏原因分析及判断 A.安装静试时泄漏。机械密封安装调试好后,一般要进行静试,观察泄漏量。如泄漏量较小,多为动环或静环密封圈存在问题;泄漏量较大时,则表明动、静环摩擦副间存在问题。在初步观察泄漏量、判断泄漏部位的基础上,再手动盘车观察,若泄漏量无明显变化则静、动环密封圈有问题;如盘车时泄漏量有明显变化则可断定是动、静环摩擦副存在问题;如泄漏介质沿轴向喷射,则动环密封圈存在问题居多,泄漏介质向四周喷射或从水冷却孔中漏出,则多为静环密封圈失效。此外,泄漏通道也可同时存在,但一般有主次区别,只要观察细致,熟悉结构,一定能正确判断。 B.试运转时出现的泄漏。泵用机械密封经过静试后,运转时高速旋转产生的离心力,会抑制介质的泄漏。因此,试运转时机械密封泄

关于机械密封的调研报告

关于机械密封的调研报告 2013年5月29日 胡振广

一、机封简介 (1)定义及简介 机封,全名机械密封,在行业内一般人习惯称为机封。它是一种用来解决旋转轴与机体之间密封的装置。由至少一对垂直于旋转轴线的端面在流体压力和补偿机构弹力(或磁力)的作用及辅助密封的配合下保持贴合并相对滑动而构成防止流体泄漏的装置,常用于泵、压缩机、反应搅拌釜等旋转式流体机械,也用于齿轮箱、阀门、旋转接头、船舶尾轴等密封。因此,机械密封是一种通用的轴封装置。 机封的结构多种多样,常用结构一般包含如下部件,如图: 机封典型结构示意图 1.锁紧装置(锁紧螺钉) 2.锁紧环 3.弹性元件(弹簧) 4.传动机构(传动套) 5.补偿环 6.摩擦副 7辅助密封(O形圈) 8.非补偿环 1.补偿环与非补偿环:补偿环是具有轴向补偿能力的密封环,它可以是旋转环(动环),也可以是非旋转环(静环);非补偿环是不具有轴向补偿能力的密封环,同样可以是旋转环(动环),也可以是非旋转环(静环) 2.摩擦副:在补偿环和非补偿环的顶端镶嵌有一对密封端面,起机封的主要密封作用。一般情况下补偿环用软质材料制造,端面较窄;非补偿环用硬质材料制造,端面较宽。 3.弹性元件与锁紧环:它们构成了加载、补偿和缓冲机构,以保证机械密封在安装后端面贴合;在磨损时及时补偿;在受振动、窜动起缓冲作用。弹性元件可以是弹簧、波纹管、波簧等。锁紧环用于弹性元件的轴向和径向定位,通常还兼备传递转矩或克服转矩的功能。 4.辅助密封圈;起辅助密封作用,分补偿环辅助密封和非补偿环辅助密封。它可以是O形圈、V形圈、楔形圈、矩形圈等,用来密封轴和机封、机封和壳体之间的密封。 5.传动机构:起传递转矩的作用。常用传动方式有传动套、拨叉、柱销、键

相关文档
最新文档