遗传学重点

遗传学重点
遗传学重点

1、遗传病的特点:

(1)遗传病的传播方式:一般以“垂直方式”出现,不延伸至无亲缘关系的个体,这在显性遗传方式的病例中特别突出。

(2)遗传病的数量分布:患者在亲祖代和子孙中是以一定数量比例出现的,即患者与正常成员间有一定的数量关系。

(3)遗传病的先天性:往往有先天性特点。所谓先天性是生来就有的特性。

(4)遗传病的家族性:遗传病往往有家族性等特点。所谓家族性是疾病的发生所具有的家族聚集性。(5)遗传病的传染性:一般观点认为,遗传病是没有传染性的。但人类朊蛋白病(human prion diseases)是一种既遗传又具传染性的疾病。朊蛋白(prion protein,PrP)是一种功能尚不完全明确的蛋白质。

2、遗传病、家族性疾病、先天性疾病之间的联系与区别

遗传病是指近亲代的致病基因传给子代。致病基因导致子代出现形态、构造、生理功能以及生化过程异常的疾病。遗传病有一部分是在出生时即表现出异常,如耳聋、多指等,但也有相当一部分遗传病出生时并没有表现异常,随着年龄增长才出现异常表现,如血友病、进行性肌营养不良等,都是在出生后才发病;遗传性疾病并非生后都出现临床症状,也可以晚期发病,而有些疾病则在出生后即有临床症状,但并不是遗传病。

先天性疾病是指胎儿在母体内已形成的疾病,出生时就有。先天性疾病可以是遗传病,也可以不是遗传病。若胎儿在母体内形成疾病时,有遗传因素参与,那么,这种疾病就是遗传病;如果是母体在妊娠期间因外界环境因素影响而使胎儿患病,胎儿患的病属于先天性疾病而不是遗传病,因它不遗传给后代。如母亲在妊娠期被病毒感染,胎儿会患先天性心脏病、先天性白内障等。

家族性疾病遗传病具有家族性,但一些具有家族性的疾病并不都是遗传病,基因的传递是遗传病的发病基础。由于同一家族由数人组成,因其血源同于一前人,就可能共同具有某一致病基因。故其疾病的发生就可能具有家族性。但在同一家族中的不同成员,因其生活在同一个生活环境和条件中,可使这一家族中的不同成员发生相同疾病,也可表现出发病的家族性,但不是遗传病,如夜盲症发病常常是具有家族性,但不是遗传病,而是由于这一家族的饮食条件造成维生素A缺乏而引起的。

3、人类遗传病的分类

(1)单基因病

(2)多基因病

(3)染色体病

(4)体细胞遗传病

(5)线粒体遗传病

4、疾病的发生于遗传因素和环境因素的关系

(1)完全由遗传因素决定发病,如白化病、血友病A等;

(2)基本上由遗传决定,但需要环境中一定诱因的作用。如苯丙酮尿症、蚕豆病等;

(3)遗传因素和环境因素对发病都有作用,在不同的疾病中,其遗传率各不同。如唇腭裂、先天性幽门狭窄遗传率在70%以上。而先天性心脏病遗传率不足40%等;

(4)发病完全取决于环境因素,与遗传基本无关,如烧伤、烫伤等。

5、基因突变的一般特性

突变(mutation)是指遗传物质发生可以遗传的变异。广义的突变可以分为两类:染色体畸变(chromosome aberration),即染色体结构和数目的改变。基因突变(gene mutation),基因内部碱基对组成或排列顺序发生改变。狭义的突变,仅指一般的基因突变。

(1)多向性、重复性——复等位基因(multiple alleles)

(2)随机性——突变率(mutation rate)

(3)稀有性——(人类:10-6 - 10-4/生殖细胞·位点·代)

(4)可逆性——正向突变(forward mutation)、回复突变(reverse mutation)

(5)有害性——并非所有突变都呈现有害性

6、基因突变的形式与分子机制

(1)静态突变

1)点突变:①碱基替换:DNA分子多核苷酸链中原有的某一特定碱基或碱基对被其他碱基或碱基对置换、替代的突变形式;②移码突变:由于基因组DNA多核苷酸链中碱基对的插入或缺失导致部分密码子组合发生改变的突变形式。

2)片段突变:DNA分子中某些小的序列片段的缺失、重复或重排。

(2)动态突变:三核苷酸的重复次数可随着世代交替的传递而呈现逐代递增的累加突变效应,被称为动态突变。其引起的疾病多为神经系统疾病。

7、基因突变对蛋白质的影响

(1)影响功能蛋白质的正常生物合成

(2)引起功能蛋白正常结构的改变

(3)影响蛋白质的正常亚细胞定位

(4)影响功能性辅基基团或辅助因子与蛋白质结合或解离的突变

(5)影响蛋白质分子与其功能性亚基及其他因子之间结构组成关系的突变

注:A常染色体,D显性,R隐性。

9、影响单基因遗传病分析的因素

(1)不完全显性遗传;(2)共显性遗传;(3)延迟显性;(4)不规则显性;(5)表现度;(6)基因多效性;(7)遗传异质性;(8)同一基因可产生显性或隐性突变;(9)遗传早现;(10)遗传印记;(11)从性遗传;(12)限性遗传;(13)X染色体失活;(14)生殖腺嵌合;(15)拟表型

10、分子病(molecular disease)的分类:

分子病是由遗传性基因突变或获得性基因突变使蛋白质的分子结构或合成的量异常直接引起机体功能障碍的一类疾病。包括:血红蛋白病、血浆蛋白病、受体蛋白病、膜转运蛋白病、结构蛋白缺陷病。

11、先天代谢缺陷代表疾病

氨基酸代谢病:PKU 白化病

糖代谢病:半乳糖血症糖原贮积症

嘌呤代谢病:自毁容貌综合征

受体蛋白病:家族性高胆固醇血症

12、多基因遗传病的特点

①患病率较高,1%-10%,被认为是常见病;

②有一定遗传基础,表现出家族聚集;

③系谱不符合单基因遗传规律;

这一类疾病的发生取决于两对以上基因,称多基因遗传病,同时疾病的形成还与环境因素有关,故又称为多因子病(multifactorial disorders)。

多基因遗传病受微效基因控制,受环境影响,易患性超阈值者发病。

1. 由多对微效基因控制。

2. 基因的遗传遵循分离律和自由组合律。

3. 配子间随机结合使大部分个体为中间性状

13、一级亲属患病风险计算

1. Edward公式:qr≈根号qr:患者一级亲属发病率, qg: 群体发病率

应用条件:h2=70~80%,qg=0.1~1%

2. 查表法:

一般遗传度时,可查表求得患者一级亲属的发病风险。

例无脑儿和脊柱裂:qg=0.38%,h2=60%, 求qr。

14、常见多基因病

哮喘、糖尿病、高血压、精神分裂症、先天性心脏病、冠状动脉疾病、Alzheimer’s病

15、影响遗传平衡的因素

1非随机婚配(近亲婚配)

2选择

3突变

4遗传漂变

5基因流

16、线粒体疾病的遗传特点

(1)母系遗传:母亲将mtDNA传递给她的子女,但只有女儿能将其mtDNA传递给下一代。

(2)杂质:在克隆和测序的研究中发现一些个体同时存在两种或两种以上类型的mtDNA,称为杂质。

线粒体杂质可分为序列杂质和长度杂质。杂质可表现在编码区也可表现在非编码区。

(3)阈值效应:阈值是一个相对的概念,易受突变类型、组织、老化程度变化的影响。

(4)不均等的有丝分裂分离:细胞分裂时,突变型和野生型mtDNA发生分离,随机的分配到子细胞中,使子细胞拥有不同比例的突变型mtDNA分子。

17、线粒体基因的突变类型

(1)点突变:点突变发生的位置不同,产生的效应也有所不同。点突变发生在与线粒体内蛋白质翻译有关的tRNA或rRNA基因上,使其结构异常。

(2)大片段重组:mtDNA的大片段重组包括缺失和重复,以缺失较为常见。大片段的缺失可导致线粒体OXPHOS功能下降,产生的A TP减少,从而影响到组织器官的功能。

(3)mtDNA数量减少:mtDNA数量的减少可为常染色体显性或隐性遗传,即提示该病由核基因缺陷所致线粒体功能障碍。

18、mtDNA突变引起的疾病

Leber视神经萎缩、肌阵挛性癫痫和粗糙纤维病、线粒体脑肌病合并乳酸血症及卒中样发作、Kearns-Sayre 综合征、Leigh综合征、帕金森病、其他与线粒体有关的病变(如衰老、肿瘤、糖尿病等)。

19、染色体结构变异四大类型:缺失、重复、易位、倒位

A缺失( deletion 或deficiency):染色体丢失了片段。(顶端缺失中间缺失顶端着丝点染色体)

缺失的遗传效应:

1.缺失对个体的生长和发育不利:

①.缺失纯合体很难存活;

②.缺失杂合体的生活力也很低;

③.含缺失染色体的配子一般败育;

④.缺失染色体主要是通过雌配子传递。

2.含缺失染色体的个体遗传反常(拟显性现象)

拟显性现象:一个显性基因的缺失,致使原来不应显现出来的一个隐性等位基因的效应显现了出来的现象

B重复(duplication):染色体多了与自己相同的某一区段。(顺接重复反接重复着丝点所在区段重复)

重复的遗传效应

1.扰乱基因的固有平衡体系

2.重复引起表现型变异

C易位(Translocation):染色体的一个区段移接在非同源的另一个染色体上。(简单易位嵌入易位相互易位)

易位的遗传效应

1.半不育是易位杂合体的突出特点:相邻式分离交替式分离

2、造成染色体融合而改变染色体数

罗伯逊易位:

又称为着丝粒融合,在两条近端着丝粒的非同源染色体之间,其各自着丝粒断裂,两条长臂进行着丝粒融合形成一条大的亚中着丝粒染色体,短臂或融合或消失,改变了原有连锁关系的一种易位方式。3.易位会降低邻近易位接合点基因之间的重组率

4.易位可以改变原来的基因连锁群基因:连锁遗传——独立遗传

D倒位(inversion):染色体某一区段的正常顺序颠倒了。(臂内倒位臂间倒位)

倒位圈是由一对染色体形成(而缺失杂合体或重复杂合体的环或瘤则是由单个染色体形成)。在倒位圈内外,非姐妹染色单体之间均可发生交换。

倒位的遗传效应

1.倒位杂合体部分不育

2.位置效应

3.降低倒位杂合体上连锁基因的重组率

4.倒位可以形成新种,促进生物进化

20、染色体病

(1)常染色体病:Down综合征、18三体综合征、13三体综合征、5p-综合征、微小缺失综合征、常染色体断裂综合征等。

(2)性染色体病:

1)性染色体数目异常:Klinefelter综合征、XYY综合征、多X综合征、Turner综合征(女性先天性腺发育不完全、45,X综合征);

2)X染色体的结构异常:X短臂缺失(XXp-)、X长臂缺失(XXq-)

3)染色体正常的性发育异常:真两性畸形、假两性畸形、XX男性综合征、XY女性。

(3)染色体异常携带者:易位携带者和倒位携带者。

1)易位携带者:相互易位携带者(同源、非同源)、罗氏易位携带者(同源、非同源);

2)倒位携带者:臂间倒位携带者、臂内倒位携带者。

21、染色体结构畸变的类型

缺失(interstitial deletion,del )

重复(duplication,dup)

倒位(inversion,inv )

易位(translocation,t)

插入(insertion,ins )

等臂染色体(isochromosome,i )

双着丝粒染色体(dicentric chromosome,dic )

环状染色体(ring chromosome,r)

遗传学重点

遗传与变异是矛盾对立统一的两个方面:(关系) ①遗传是相对的、保守的,而变异是绝对的、发展的; ②没有变异生物界就失去了进化的源泉,遗传就成了简单的重复; ③没有遗传变异就没法积累,变异就失去了意义,生物就无法进化和发展。 4、遗传学研究:①经典遗传学;②细胞遗传学;③分子遗传学;④数量遗传学和群体遗传学; 5、孟德尔的著名论文:《植物杂交实验》 6、1900年荷兰的迪弗里斯,奥地利的切尔马克,德国的柯伦斯,发现孟德尔的论文,并将此定为遗传学形成和建立的开端。 第一章 3、常见染色体的种类:常染色体;性染色体;多线染色体;异染色体。 多线染色体是细胞内源有丝分裂形成的,染色体在间期进行正常复制,但未发生着丝粒分裂和染色单体分离,导致一条染色体的染色单体数目成倍的增加。 4、染色体组型:指一个个体或一组相关个体特有的染色体组,通常以有丝分裂中期染色体的数目和形态来表示。 5、染色体组型分析:对特定染色体组中染色体的数目、大小、形态等进行综合分析的方法。 6、染色体的形态学参数:相对长度、绝对长度、臂比、着丝粒指数、随体的有无、次缢痕。 7、细胞分裂:间期+分裂期间期的细胞核处于高度活跃的生理生化代谢状态。 8、有丝分裂:间期(G0期、G1期、S期、G2期)前期中期后期末期 10、减数分裂:间期Ⅰ(G1期、S期、G2期)前期Ⅰ(细线、偶、粗、双、终变期) 特点:①发生在性细胞形成过程中;②染色体复制一次,细胞连续分裂两次,形成四个子细胞; ③子细胞中染色体数目减半且功能与母细胞不同 意义:①是有性生殖生物配子形成过程的必要阶段; ②实现了雌雄配子染色体数目减半,保证亲代与子代染色体数目的恒定,为后代正常发育和性状遗传提供了物质基础,同时,保持了物种的遗传稳定性; ③同源染色体随机分向两极,非同源染色体自由组合,导致不同配子中染色体组合方式的多样性,使子代群体中产生遗传的多样性变异; ④同源染色体非姐妹染色单体同片段的交换使配子中遗传差异的多样性更加丰富,导致生物界出现丰富的变异类型; ⑤这对生物的适应及进化是非常有利的,同时也为动植物育种提供了丰富的变异材料。 11、减Ⅰ前期的五个阶段的主要特征: 细线期;偶线期(联会);粗线期(交换);双线期(交叉);终变期(交叉的端化) 12、染色体的微观结构:染色质丝包绕组蛋白构成的八聚体形成核心颗粒,核心颗粒与DNA连接部构成核小体即染色质的基本单位。 第三章 1、性状:生物表现出的形态特征和生理特征的总称。 2、单位性状:指生物某一形态特征或生理特征。 3、相对性状:指同一单位性状的相对差异。如豌豆花色的红花和白花 4、表现型:简称表型,指生物个体表现出来的可观察测量的某一种性状,表型是基因型与环境共同作用的结果。 5、基因型:指代表个体不同遗传组成的基因组合类型,基因型不能用肉眼识别,只能通过基因的遗传方式加以区别。 6、显性性状:当两个具有相对性状的纯合亲本杂交时,子一代出现的一个亲本性状。 7、隐形性状:具有相对性状的两个纯合亲本杂交后在子一代没有得到表现的那个亲本性状。 10适合度测验:O 代表实际观察数 e 代表理论预期数

遗传学重点总结

遗传学 第一章 (一) 名词解释: 1.原核细胞: 没有核膜包围的核细胞,其遗传物质分散于整个细 胞或集中于某一区域形成拟核。如:细菌、蓝藻等。 2.真核细胞:有核膜包围的完整细胞核结构的细胞。多细胞生物 的细胞及真菌类。单细胞动物多属于这类细胞。 3.染色体:在细胞分裂时,能被碱性染料染色的线形结构。在原 核细胞内,是指裸露的环状DNA分子。 4.姊妹染色单体:二价体中一条染色体的两条染色单体,互称为 姊妹染色单体。 5.同源染色体:指形态、结构和功能相似的一对染色体,他们一 条来自父本,一条来自母本。 6.超数染色体:有些生物的细胞中出现的额外染色体。也称为B 染色体。 7.无融合生殖:雌雄配子不发生核融合的一种无性生殖方式。认 为是有性生殖的一种特殊方式或变态。 8.核小体(nucleosome):是染色质丝的基本单位,主要由DNA 分子与组蛋白八聚体以及H1组蛋白共同形成。 9.染色体组型 (karyotype) :指一个物种的一组染色体所具有的 特定的染色体大小、形态特征和数目。 10.联会:在减数分裂过程中,同源染色体建立联系的配对过程。

11.联会复合体:是同源染色体联会过程中形成的非永久性的复合 结构,主要成分是碱性蛋白及酸性蛋白,由中央成分(central element)向两侧伸出横丝,使同源染色体固定在一起。 12.双受精: 1个精核(n)与卵细胞(n)受精结合为合子(2n),将 来发育成胚。另1精核(n)与两个极核(n+n)受精结合为胚乳核 (3n),将来发育成胚乳的过程。 13.胚乳直感:在3n胚乳的性状上由于精核的影响而直接表现父 本的某些性状,这种现象称为胚乳直感或花粉直感。 14.果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现 父本的某些性状,则另称为果实直感。 简述: 2.简述细胞有丝分裂和减数分裂各自的遗传学意义? 答:细胞有丝分裂的遗传学意义:(1)每个染色体准确复制分裂为二,为形成两个子细胞在遗传组成上与母细胞完全一样提供了基础。(2)复制的各对染色体有规则而均匀地分配到两个子细胞中去,使两个细胞与母细胞具有同样质量和数量的染色体。 细胞减丝分裂的遗传学意义:(1)雌雄性细胞染色体数目减半,保证了亲代与子代之间染色体数目的恒定性,并保证了物种相对的稳定性;(2)由于染色体重组、分离、交换,为生物的变异提供了重要的物质基础。 第四章孟德尔遗传 (一) 名词解释:

遗传学期末考试试题及答案

遗传学试题一试卷 一、简答题(共20分) 1、同一物种不同基因型﹝如AA、Aa、aa﹞差异的本质是什么?试从分子水平上解释什么是纯合基因型、杂合基因型、显性基因、隐性基因。 2、牛和羊吃同样的草,但牛产牛奶而羊产羊奶,这是为什么?试从分子水平上加以说明。 3、已知Aa与Bb的重组率为25%,Cc的位置不明。AaCc的测交子代表型呈1:1:1:1的分离。试问怎样做才能判断Aa和Cc这两对基因是独立基因,还是具有最大重组率的连锁基因? 4、在细菌接合过程中,供体染色体DNA进入受体的长度不及全长的1/2,那么怎样才能用中断接合法定位染色体DNA上的全部基因? 三、填空题(共10分) 1、三价体存在于、等非整倍体的减数分裂中。 2、三联体密码中,属于终止密码的是、及。 3、把玉米体细胞的染色体数目记为2n,核DNA含量记为2c,那么玉米减数第一次分裂完成后产生的子细胞的染色体数目为,染色体DNA分子数目 为,核DNA含量为。 4、根据质核雄性不育的花粉败育的发生过程,可把它分成不育 和不育两种类型。 四、论述题(10分) 试说明遗传学三大定律的内容、其细胞学基础和各自的适用范围。 五、推理与计算题(共40分) 1、(8分)香豌豆花的紫颜色受两个显性基因C和P的控制,两个基因中的任何一个呈隐性状态时花的颜色是白色的。下列杂交组合后代花的颜色和分离比例将是怎样的? A、CcPp×CCPp B、CcPP×CCPp C、CcPp×ccpp D、ccPp×CCPp 2、(6分)基因a、b、c、d位于果蝇的同一染色体上,经过一系列杂交后得到以下交换值:

基因 a、c a、d b、d b、c 交换 值 40% 25% 5% 10% 试描绘出这四个基因的连锁遗传图。 3、(10分)两株皆开红花的三体烟草A×B时F1呈现5:1的红花与 白花的分离,反交则呈现4:1的红白分离。试分析A、B两个三体亲 本的基因型,基因的分离方式及配子的受精情况。 4、(8分)草履虫中,品系A是放毒型,品系B和C是敏感型,三者 皆为纯合基因型。品系A和B长时间接合,其子代再自体受精得若干 后代,皆为放毒型。当品系A和C长时间接合,经同样过程得到的后 代一半是放毒型,一半是敏感型。问这三个品系的基因型如何?细胞 质中是否均含有卡巴粒? 5、(8分)已知玉米芽鞘色泽差异是由一对基因决定的,在红芽鞘玉 米自交系隔离区内发现绿芽鞘株率为2.25%,而在绿芽鞘玉米自交系 隔离区内发现红芽鞘株率为13%。试分析哪个自交系种子的混杂程度 高。假定红芽鞘为显性,且两个自交系均为平衡群体。 六、名词解释(每题2分,共10分) 1、假显性 2、染色体组 3隐性上位作用 4、QTL 5、复等位基因 遗传学试题一答案 一、简答题 1、同一物种不同基因型差异的本质是其DNA分子结构上的不同。从分子水平来看,若基因同一位点的DNA分子结构相同,则为纯合基因型;不同,则为杂合基因型。在杂合状态下就可表达的DNA序列为显性基因,而只有在纯合状态下才表达的则为隐性基因。 2、牛、羊虽吃同样的食物,但产奶时由于其表达的基因不同,即其DNA 分子结构上的差异,使其合成的蛋白质等物质存在差异,结果牛产牛奶而羊产羊奶。 3、分析BbCc测交子代结果,看B、C是否连锁。

《医学遗传学》期末重点复习题

2.与苯丙酮尿症不符的临床特征是(1)。 A 患者尿液有大量的苯丙氨酸 B 患者尿液有苯丙酮酸 C 患者尿液和汗液有特殊臭味 D 患者智力发育低下 E 患者的毛发和肤色较浅 3.细胞在含BrdU的培养液中经过一个复制周期,制片后经特殊染色的中期染色体()两条姊妹染色单体均深染 4.DNA分子中脱氧核糖核苷酸之间连接的化学键是()磷酸二酯键 5.HbH病患者的可能基因型是(5)。 A ――/―― B -a/-a C ――/aa D -a/aa E aacs/―― 6.下列不符合常染色体隐性遗传特征的是(4)。 A.致病基因的遗传与性别无关,男女发病机会均等 B.系谱中看不到连续遗传现象,常为散发 C.患者的双亲往往是携带者 D.近亲婚配与随机婚配的发病率均等 E.患者的同胞中,是患者的概率为1/4,正常个体的概率约为3/4 7.人类a珠蛋白基因簇定位于(5)。 A 11p13 B 11p15 C 11q15 D 16q15 E 16p13 8.四倍体的形成可能是由于(3)。

A 双雄受精 B 双雌受精 C 核内复制 D 不等交换 E 部分重复9.在蛋白质合成中,mRNA的功能是(3)。 A 串联核糖体 B 激活tRNA C 合成模板 D 识别氨基酸 E 延伸肽链10.在一个群体中,BB为64%,Bb为32%,bb为4%,B基因的频率为(4)。 A B C D E 11.一个个体中含有不同染色体数目的三种细胞系,这种情况称为(3)。 A 多倍体 B 非整倍体 C 嵌合体 D 三倍体 E 三体型 12.某基因表达的多肽中,发现一个氨基酸异常,该基因突变的方式是(5)。 A 移码突变 B 整码突变 C 无义突变 D 同义突变 E 错义突变13.一种多基因遗传病的群体易患性平均值与阈值相距越近(1)。 A 群体易患性平均值越高,群体发病率也越高 B 群体易患性平均值越低,群体发病率也越低 C 群体易患性平均值越高,群体发病率越低 D 群体易患性平均值越低,群体发病率迅速降低 E 群体易患性平均值越低,群体发病率越高 14.染色质和染色体是(4)。

遗传学重点

第一章遗传的细胞学基础 1.同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。 2.减数分裂和有丝分裂的比较 相同点:1、分裂前都进行染色体的复制 2、分裂中都有纺锤丝的出现。 不同点: 项目有丝分裂减数分裂 发生部位体细胞性母细胞 分裂过程一次分裂连续两次分裂 同源染色体联会不发生发生 交换不发生发生 子细胞数2个4个 子细胞染色体数不变减半 3.双受精:1个精核(n)与卵细胞(n)受精结合为合子(2n),将来发育成胚。另1精核(n)与两 个极核(n+n受精结合为胚乳核(3n),将来发育成胚乳的过程。 4.联会:同源染色体相互靠拢配对。 5..交换:非姐妹染色单体间互换片段的现象。 6.高等动物的雌雄配子形成: 第二章:孟德尔遗传规律 一.等位基因:同源染色体上占据相同座位的两个不同形式的基因。 二.等位基因间的互作 1.完全显性:指F1代表现与亲本之一相同,而非双亲的中间型或表现双亲的性状。 2.不完全显性:指F1代表现介于双亲之间但偏向某一方。F2则表现: 父本类型、中间类型(新类型)和母本三种类型,呈1:2:1的比例。 3. 共显性或并显性:指F1代同时表现出双亲的性状其F2代也表现为三种表现型,其比例为1:2:1。人镰刀形贫血病遗传 4.镶嵌显性:指F1个体的不同部位分别表现出双亲的性状,形成镶嵌图式。大豆籽粒颜色

遗传F2表现型为1/4黄色、2/4黑黄镶嵌、1/4黑色 5.致死基因:生物体不能存活的等位基因。 6.复等位基因:一个基因存在三个或三个以上等位形式。 7.基因间的互作 A.致死基因(等位基因上的) ①显性致死:基因的致死作用在杂合子中即可表现的称为...正常显性纯合 ②隐形致死:基因在杂合状态下不影响生物的生活力,但在纯合状态下有致死效应。 B.非等位基因及表型比率 ①互补作用:两对独立遗传的基因共同控制一个性状,两对基因都是显性时是一种表型,分别只有一对基因是显性或完全没有显性时,则表现为另一种性状。(2显*非2显)F2 9:7 F t (测交后代)1:3 ②积加作用:两对独立遗传的基因共同控制一个性状,两对基因都是显性时是一种表型,只有一对显性基因时为一种性状,完全没有显性时,则表现为另一种性状。(2显1显无显)F29:6:1 F t:1:2:1 ③重叠作用:两对独立遗传的基因共同控制一个性状,只要显性基因存在,不论多少对显性基因都是相同表型,完全没有显性时,则表现为另一种性状(有显无显)F215:1 F t3:1 ④显性上位作用:两对独立遗传的基因共同控制一个性状,其中一对显性基因掩盖另一对基因的显性表现,前者对后者有遮盖作用。F212:3:1 F t2:1:1 ⑤隐性上位作用:两对独立遗传的基因共同控制一个性状,其中一对隐性基因掩盖另一对基因的作用。F29:3:4 F t:1:1:2 ⑥抑制作用:两对独立遗传的基因共同控制一个性状,其中一对基因本身对性状表达不起作用,但显性基因能抑制另一对基因的显性作用。F213:3F t3:1. 许多基因影响同一单位性状的现象称为“多因一效 另一方面,一个基因也可以影响许多性状的发育,称为“一因多效( 第三章连锁遗传规律 1.连锁遗传:位于同一染色体的2个或2个以上基因的遗传 2. 性连锁:指性染色体上基因所控制的某些性状总是伴随性别而遗传的现象。∴又称伴性遗传。 3.计算重点 第四章数量性状的遗传 1.多基因假说 a.数量性状的遗传是由多基因系统控制的。单个基因对表型的作用比较小并且效应相等可以累加,呈剂量效应。 b.微效基因与主效基因一样遵从孟德尔遗传法则,具有分离和重组、连锁和交换、突变等性质。 c..各个等位基因间表现为无显性或不完全显性,或表现为增效和减效作用。 d.微效基因往往具有多效性。 e.由于基因的重组和交换,在杂种后代中由微效基因控制的数量性状可以出现超亲遗传现象。 2.遗传力计算 广义狭义 近亲繁殖:血缘或亲缘关系相近的个体间的交配繁殖。 近交系数 第五章结构变异

遗传学(第二版) 刘庆昌 重点整理2

第九章 ★无性繁殖(Asexual reproduction) 指通过营养体增殖产生后代的繁殖方式,其优点是能保持品种的优良特性、生长快。★有性繁殖(Sexual reproduction) 指通过♀、♂结合产生的繁殖方式,其优点是可以产生大量种子和由此繁殖较多的种苗。大多数动植物都是进行有性生殖的。 ★近交(Inbreeding) 指血缘关系较近的个体间的交配,近亲交配。近交可使原本是杂交繁殖的生物增加纯合性(homozygosity),从而提高遗传稳定性,但往往伴随严重的近交衰退现象(inbreeding depression)。 ★杂交(crossing or hybridization) 指亲缘关系较远,基因型不同的个体间的交配。可以使原本是自交或近交的生物增加杂合性(heterozygosity),产生杂种优势。 一、近交的种类 ★自交(Selfing) 指同一个体产生的雌雄配子彼此融合的交配方式,它是近交的极端形式,一般只出现在植物中(自花授粉植物),又称自花受粉或自体受精(self-fertilization)。 ★回交(Back-crossing) 杂交子代和其任一亲本的杂交,包括亲子交配(parent-offspring mating)。 ★全同胞交配(Full-sib mating) 相同亲本的后代个体间的交配,又叫姊妹交。 ★半同胞交配(Half-sib mating) 仅有一个相同亲本的后代个体间的交配。 ★自花授粉植物(Self-pollinated plant) 天然杂交率低(1-4%):如水稻、小麦、大豆、烟草等; ★常异花授粉植物(Often cross -pollinated plant) 天然杂交率常较高(5-20%):如棉花、高粱等; ★异花授粉植物(Cross-pollinated plant): 天然杂交率高(>20-50%)如玉米、黑麦等,在自然状态下是自由传粉。 ★近交衰退(Inbreeding depression) 近交的一个重要的遗传效应就是近交衰退,表现为近交后代的生活力下降,产量和品质下降,适应能力减弱、或者出现一些畸形性状。 ★回交(Backcross)B: 轮回亲本(recurrent parent) 用来反复回交的亲本。 A: 非轮回亲本(non-recurrent parent) 未被用来回交的亲本。 B: 轮回亲本(recurrent parent) 用来反复回交的亲本。 A: 非轮回亲本(non-recurrent parent)

《遗传学》期末考试题(A卷)-2006无答案

华南农业大学期末考试试卷(A卷) 2006学年第一学期 考试科目:遗传学 考试类型:(闭卷) 考试时间:120分钟学号姓名年级专业 题号一二三总分 得分 评阅人 (注意事项:试题共6面。答案请写在答卷纸上,不要写在试卷上。答卷纸上要写上姓名和班级。要求保持卷面整洁。考试时间为120分钟) 一、选择题(共45题,每题1分,共45分;选择答案可以多个) 1 遗传学(Genetics)是研究的科学: A 生物遗传 B 变异 C 生殖发育 D 新陈代谢 2 Mendel 1866年首次提出: A 分离规律 B 独立分配规律 C 连锁遗传规律 D 获得性状遗传规律 3 DNA分子双螺旋结构模式是于1953年提出的: A Watson(美国)和Crick(英国) B Mendel C Morgan D Johannsen 4植物细胞的组成是: A 细胞壁 B 细胞膜 C 细胞质 D 细胞核 5 原核细胞(prokaryotic cell)含有: A 核物质 B 核膜 C 核糖体 C 诸如线粒体和高尔基体等细胞器 6 以下哪些生物是原核生物? A 细菌 B 蓝藻 C SAS病毒 D 禽流感病毒 7 染色质是: A 细胞处于分裂间期一种形态 B 核内由于碱性染料而染色较深的、纤细的网状物 C 细胞处于分裂时而卷缩形成具一定形态结构的物质 D 细胞内可染色的物质 8 染色体一般含有: A 一个着丝粒 B 2个被着丝粒分开的臂 C 端粒 D 核仁 9 同源染色体(homologous chromosome)是指: A 形态和结构相似的一对染色体 B 来源相同的一对染色体 C 其中之一来自父本, 之二来自母本的一对染色体 D 形态和结构不同的一对染色体

(完整word版)医学遗传学重点归纳

第一章人类基因与基因组 第一节、人类基因组的组成 1、基因是遗传信息的结构和功能单位。 2、基因组是是细胞内一套完整遗传信息的总和,人类基因组包含核基因组和线粒体基因组 单拷贝序列串联重复序列 按DNA序列的拷贝数不同,人类基因组高度重复序列 反向重复序列 重复序列短分散核元件 中度重复序列 长分散核元件 3、多基因家族是指由某一祖先经过重复和所变异产生的一组基因。 4、假基因是基因组中存在的一段与正常基因相似但不能表达的DNA序列。 第二节、人类基因的结构与功能 1、基因的结构包括:(1)蛋白质或功能RNA的基因编码序列。(2)是表达这些结构基因所需要的启动子、增强子等调控区序列。 2、割裂基因:大多数真核细胞的蛋白质编码基因是不连续的编码序列,由非编码序列将编码序列隔开,形成割裂基因。 3、基因主要由外显子、内含子、启动子、增强子、沉默子、终止子、隔离子组成。 4、外显子大多为结构内的编码序列,内含子则是非编码序列。 5、每个内含子5端的两个核苷酸都是GT,3端的两个核苷酸都是AG,这种连接方式称为GT--AG法则。 6、外显子的数目等于内含子数目加1。 7、启动子分为1类启动子(富含GC碱基对,调控rRNA基因的编码)、2类启动子(具有TATA 盒特征结构)、3类启动子(包括A、B、C盒)。 第三节、人类基因组的多态性 1、人类基因组DNA多态性有多种类型,包括单核苷酸多态性、插入\缺失多态性、拷贝数多态性。 第二章、基因突变 突变是指生物体在一定内外环境因素的作用和影响下,遗传物质发生某些变化。基因突变即可发生在生殖细胞,也可发生在体细胞。 第一节、基因突变的类型

医学遗传学整理复习资料

第四章单基因病 单基因病:由某一等位基因突变所引起的疾病 遗传方式:常染色体显性遗传性染色体:X连锁显性遗传从性遗传限性遗传 隐性遗传X连锁隐性遗传 Y连锁遗传 常染色体显性遗传:某种性状或疾病受显性基因控制,这个基因位于常染色体上,其遗传方式为AD 常染色体显性遗传病的系谱特点: ①患者双亲之一有病,多为杂合子 ②男女发病机会均等 ③连续遗传 完全显性:杂合子的表现型与显性纯合子相同 不完全显性(中间型显性、半显性):杂合子的表现型介于显性纯合子与隐性纯合子之间 共显性:杂合子的一对等位基因彼此间无显、隐之分,两者的作用都同时得以表现。 复等位基因(I A、I B 、i ):在群体中,同一同源染色体上同一位点的两个以上的基因。不规则显性:带致病基因的杂合子在不同的条件下,可以表现正常或表现出不同的表现型。 不外显(钝挫型):具显性致病基因但不发病的个体 外显率:一定基因型个体所形成的相应表现型比率 不同表现度:同一基因型的不同个体性状表现程度的差异 表现度:指在不同遗传背景和环境因素的影响下,相同基因型的个体在性状或疾病的表现程度上产生的差异 延迟显性:带显性致病基因的杂合子在个体发育的较晚时期,显性基因的作用才表现出来。-------------------------------------------------------------------------------------------------------------------------------- 常染色体隐性遗传:某种性状或疾病受隐性基因控制,这个基因位于常染色体上,其遗传方式为 AR 常染色体隐性遗传病的系谱特点:①患者的双亲无病,为携带者 ②男女发病机会均等 ③散发 X 连锁显性遗传:某种性状或疾病受X染色体上的显性基因所控制,其遗传方式为XD。XD遗传病系谱特点:①患者双亲之一有病,多为女性患者 ②连续遗传 ③交叉遗传(男性患者的女儿全发病) X 连锁隐性遗传:某种性状或疾病受X染色体上的隐性基因所控制,其遗传方式为XR。 交叉遗传:男性X染色体上的致病基因只能来自母亲,也必定传给女儿 XR遗传病系谱特点:①患者双亲无病②多为男性患者。③交叉遗传 从性遗传:位于常染色体上的一类基因,基因的效应随着个体性别的不同而有差异(即杂合子的表型在不同性别个体中表现不同) 限性遗传:常染色体或性染色体上的一类基因,由于性别限制,只在一种性别中表达。 (即男性表达,女性不表达。或反之。)

园林植物遗传学期末考试复习

植物遗传学第一章、绪论 1. 名词解释 遗传学:研究生物体遗传和变异规律的科学。 遗传:有性繁殖过程中亲代与子代以及子代不同个体之间的相似性。 变异:同种生物亲代与子代间以及不同个体间的差异称为变异。 基因型:指生物体遗传物质的总和,这些物质具有与特殊环境因素发生特殊反应的能力,使生物体具有发育成性状的潜在能力。 表型:生物体的遗传物质在环境条件的作用下发育成具体的性状,称为表现型。 遗传物质:是存在于生物器官中的“泛子/泛生粒”;遗传就是泛子在生物世代间传递和表现 个体发育:生物的性状是从受精卵开始逐渐形成的,这就是个体发育的过程。 细胞分化:在一个生物体的生命周期中,形态逐渐发生变化,这就是细胞分化的过程。 形态建成:指构成一个结构和功能完美协调的个体的过程 阶段发育的基本规律:顺序性、不可逆性、局部性 2. 简述基因型和表现型与环境和个体发育的关系。 3. 简述生物发育遗传变异的途径。 (1)基因的重组和互作:生物体变异的重要来源 (2)基因分子结构或化学组成上的改变(基因突变) (3)染色体结构和数量的变化 (4)细胞质遗传物质的改变 4. 简述观赏植物在遗传学研究中的作用。 1)园林植物种类的多样性; 2)园林植物变异的多样性(多方向、易检测、可保留); 3)园林植物栽培繁殖方式的多样性; 4)保护地栽培; 5)生命周期相对较短。 个体发育 外界环境条件作用 (外因)

第二章遗传的细胞学基础 2.1 细胞 1 组成: ? 1)结构单位——形态构成,细胞的全能性 2)功能单位——新陈代谢,生命最基本的单位 3)繁殖单位——产生变异的基本单位 2 类型 根据构成生物体的基本单位,可以将生物分为 非细胞生物:包括病毒、噬菌体(细菌病毒); 细胞生物:以细胞为基本单位的生物; 根据细胞核和遗传物质的存在方式不同又可以分为:原核生物(无丝分裂,转录,翻译在同一地点) 如:细菌、蓝藻(蓝细菌) 真核生物(有丝分裂,转录,翻译不在同一地点) 如:原生动物、单细胞藻类、真菌、高等植物、动物、人类

遗传学复习考试思考题重点汇总及答案

1、医学遗传学概念 答:是研究人类疾病与遗传关系的一门学科,是人类遗传学的一个组成部分。 2、遗传病的概念与特点 答:概念:人体生殖细胞(精子或卵子)或受精卵细胞,其遗传物质发生异常改变后所导致的疾病叫遗传病。 特点:遗传性,遗传物质的改变发生在生殖细胞或受精卵细胞中,包括染色体畸变和基因突变,终生性,先天性,家族性。 3、等位基因、修饰基因 答:等位基因:是位于同源染色体上的相同位置上,控制相对性状的两个基因。 修饰基因:即次要基因,是指位于主要基因所在的基因环境中,对主要基因的表达起调控作用的基因,分为加强基因和减弱基因。 4、单基因遗传病分哪五种?分类依据? 答:根据致病基因的性质(显性或隐性)和位置(在染色体上的),将单基因遗传病分为5种遗传方式。常染色体显性遗传病,常染色体隐性遗传病,X连锁隐性遗传病,X连锁显性遗传病,Y连锁遗传病。 5、什么是系谱分析?什么是系谱? 答:指系谱绘好后,依据单基因遗传病的系谱特点,对该系谱进行观察、分析和诊断遗传方式,进而预测发病风险,这种分析技术或方法称为系谱分析。 6、为什么AD病多为杂合子? 答:1遗传:患者双亲均为患者的可能性很小,所以生出纯合子的概率就很小2突变:一个位点发生突变的概率很小,两个位点都突变的概率更小 7、AD病分为哪六种?其分类依据?试举例。 答:①完全显性遗传:杂合子(Aa)表现型与患病纯合子(AA)完全一样。例:家族性多发性结肠息肉,短指 ②不完全显性遗传:杂合子(Aa)表现型介与患病纯合子(AA)和正常纯合子(aa)之间。例:先天性软骨发育不全(侏儒) ③共显性遗传:一对等位基因之间,无显性和隐性的区别,在杂合子时,两种基因的作用都表现出来。例:人类ABO血型,MN血型和组织相容性抗原 ④条件显性遗传:杂合子在不同条件下,表型反应不同,可能显性(发病),也可隐性(不发病),这种遗传方式叫显性遗传,这种遗传现象叫不完全外显或外显不全。例:多指(趾) ⑤延迟显性遗传: 基因型为杂合子的个体在出生时并不发病,一定年龄后开始发病。例:遗传性小脑性运动共济失调综合征,遗传性舞蹈病 ⑥从(伴)性显性遗传:位于常染色体上的致病基因,由于性别差异而出现男女分布比例或基因表达程度上的差异。例:遗传性斑秃 8、试述不完全显性遗传和不完全外显的异同。 相同点:1、都属于AD,具有AD的共同特点; 2、患者主要为杂合子; 不同点:1、不完全显性遗传是一种遗产方式;不完全外显是一种遗传现像; 2、不完全显性遗传中杂合子全部都发病,但病情轻于患病纯合子; 不完全外显中杂合子部分发病,只要发病,病情与患病纯合子一样; 9、试述AR病的特点 答:1、患者多为Aa婚配所出生的子女,患者的正常同胞中2/3为携带者; 2、病的发病率虽不高,但携带者却有相当数量;

遗传学期末考试名词解释

性状:生物所具有的形态结构特征和生理生化特性称为性状 单位性状:每一个具体的性状称为单位性状 相对性状:同一单位性状在不同的个体上可能表现不同,存在差异,这种单位性状内具有相对差异的性状称为相对性状 等位基因:杂种体细胞内的成对基因是位于一对同源染色体相等的位置上,并决定一个单位性状的遗传及其相对差异,这样的一对基因称为等位基因 基因型:是指决定生物生长发育和遗传的内在遗传组成,对于某一个生物体而言,其基因型是指它从亲本获得的全部基因的总和 表型:对某一种生物体而言是指它所具有的全部单位性状的总和 显性:包括完全显性,不完全显性,共显性,镶嵌显性,超显性 测交法:一般是把被测验的个体与隐形纯合体杂交,因为常利用隐形纯合体亲本故又称回交上位作用:是指一对显性基因对另一对基因具有显性作用,使其不能表现 上位基因:表现上位作用的基因 隐形上位作用:当两对基因互作时,若其中一对隐性基因对另一对基因具有上位作用,这种互作类型称为隐形上位作用 外显率:在具有特定基因的一个群体中,表现该基因所决定性状的个体所占比率称为外显率表现度:在具有特定基因而又表现其决定性状的个体中,对该性状所显现的程度称为表现性连锁遗传:遗传学中把不同性状常常联系在一起向后代传递的现象称为连锁遗传 相引相:不同显性基因或不同隐形基因相互联系在一起称为相引相 相斥相:显性基因和隐形基因联系在一起称为相斥相 完全连锁:同一染色体上非等位基因不发生分离而被一起传递到下一代的现象 拟等位基因:遗传学中把完全连锁的,控制同一性状的非等位基因称为拟等位基因 重组:产生新基因组合或染色体组合的过程 重组值:重组型配子占总配子数的百分比。又称重组率,重组频率,用Rf表示 双交换:在一段染色体区域发生两次交换的现象称为双交换 双交换配子:由双交换形成的重组型配子称为双交换配子 单交换:只发生一次交换 符合系数:把实际获得的双交换类型的数目或频率与理论上期望得到的双交换类型的数目或频率的比值称为符合系数C 连锁群:位于同一染色体的所有基因构成一个连锁群 无序四分子分析:对无特定排列顺序的四分子的遗传分析 异型核:单倍体菌丝互相混合后发生融合,形成可进行有丝分裂的二倍体,称为异型核 拟有性世代:二倍体有丝分裂时连锁基因间偶尔会发生交换,产生重组型 限制性核酸内切酶:是一种在特定DNA序列上切割DNA分子的酶 原位杂交:是指DNA探针直接与染色体或染色体片段上对应的同源区段杂交结合,杂交结果直接显示出与探针序列同源的区域在染色体或染色体片段上所处的位置 荧光原位杂交:将用不同发光特性的荧光标记的一组探针与单个染色体杂交,同时显示各探针序列在染色体上的相对位置

遗传学重点名词解释

Chapter 1 性状(character): 生物体所表现的明显的能够遗传的特征。 单位性状(unit character):一个基因或一组基因所决定的一个性状,作为一个遗传单位进行传导。 相对性状(contrasting character):遗传学中同一单位性状的相对差异。 真实遗传(true-breeding)自带性状永远与亲代性状相同的遗传方式。 纯系(pure line):能够进行真是遗传的品种。 三个假说:(1)遗传因子成对存在(颗粒遗传因子) (2)显隐性(3)分离 表型(phenotype):个体形状的外在表现。 基因型(genotype):决定个体表型的基因形式。 等位基因(allele):一个基因的不同形式,是由突变形成的。 纯合体(homozygote):基因座上有两个相同的等位基因,就这个基因座而言,这种个体或细胞成为纯合体。 杂合体(heterozygote):基因座上有两个不同的等位基因。 侧交:杂交产生的后代与隐性纯合亲本交配以检测自带个体基因型。 自由组合定律:配子形成后,同一基因的等位基因分离,非等位基因自由组合。 染色体(chromosome)常由脱氧核糖核酸、蛋白质和少量核糖核酸组成的线状或棒状物,是生物主要遗传物质的载体。 染色质(euchromatin):用碱性染料染色时着色浅的部位,是构成染色体DNA 的主体,在间期呈高度分散状态。 异染色质(heterochromatin):用碱性染色质染色时着色深的部位,又分为组成型染色质. 组成型染色质(constitutive heterochromatin): 在染色体上的大小和位置恒定,在间期时,仍保持螺旋化。如着丝粒。 兼性异染色体(facultative heterochromatin.): 起源于常染色质,在个体发育的特定阶段可转变成异染色质。如x染色体失活。 着丝粒(centromeres):每个染色体上都有一个高度浓缩的区域。 核型分析(karyotype):是指某一物种染色体的组成,通常用中期染色体的照片,铵长臂的大小或总的长度排列,用来表明物种的特点以及和亲缘种之间的进化关系。 带型(banding patterns):用特定的染料对染色体染色后,会出现深浅不一的条带,条带的位置和大小既有高度的染色体的专一性。 端粒(tele mere): 真核生物染色体的末端,有许多成串短的序列组成。 端粒的功能:稳定染色体末端结构,防止染色体间末端连接,并可补偿前导链和后滞链5’末端在消除RNA 引物后造成的空缺。 细胞周期(cell cycle):一次分裂的开始到下一次分裂的开始的这段时间。 姐妹染色单体(sister chromosome):染色体复制,着丝粒的DNA也复制,尽管仅能看到一个着丝粒。复制了的染色体是两个完全一样的拷贝。 G1 S关卡:检测细胞大小和DNA是否受损伤。 G2 M关卡:细胞进入有丝分裂之前检测细胞的生理状态。(如果DNA复制

2018医学遗传学_考试重点整理知识点复习考点归纳总结

单基因遗传病:简称单基因病,指由一对等位基因控制而发生的遗传性疾病,这对等位基因称为主基因。上下代传递遵循孟德尔遗传定律。分为核基因遗传和线粒体基因遗传。 常染色体显性(AD)遗传病:遗传病致病基因位于1-22号常染色体上,与正常基因组成杂合子导致个体发病,即致病基因决定的是显性性状。 常染色体完全显性遗传的特征 ⑴由于致病基因位于常染色体上,因而致病基因的遗传与性别无关即 男女患病的机会均等 ⑵患者的双亲中必有一个为患者,致病基因由患病的亲代传来;双亲 无病时,子女一般不会患病(除非发生新的基因突变) ⑶患者的同胞和后代有1/2的发病可能 ⑷系谱中通常连续几代都可以看到患者,即存在连续传递的现象 一种遗传病的致病基因位于1~22号常染色体上,其遗传方式是隐性的,只有隐性致病基因的纯合子才会发病,称为常染色体隐性(AR)遗传病。 带有隐性致病基因的杂合子本身不发病,但可将隐性致病基因遗传给后代,称为携带者。 常染色体隐性遗传的遗传特征 ⑴由于致病基因位于常染色体上,因而致病基因的遗传与性别无关, 即男女患病的机会均等 ⑵患者的双亲表型往往正常,但都是致病基因的携带者 ⑶患者的同胞有1/4的发病风险,患者表型正常的同胞中有2/3的可能 为携带者;患者的子女一般不发病,但肯定都是携带者 ⑷系谱中患者的分布往往是散发的,通常看不到连续传递现象,有时 在整个系谱中甚至只有先证者一个患者 ⑸近亲婚配时,后代的发病风险比随机婚配明显增高。这是由于他们 有共同的祖先,可能会携带某种共同的基因 由性染色体的基因所决定的性状在群体分布上存在着明显的性别差异。如果决定一种遗传病的致病基因位于X染色体上,带有致病基因的女性杂合子即可发病,称为X连锁显性(XD)遗传病 男性只有一条X染色体,其X染色体上的基因不是成对存在的,在Y染色体上缺少相对应的等位基因,故称为半合子,其X染色体上的基因都可表现出相应的性状或疾病。 男性的X染色体及其连锁的基因只能从母亲传来,又只能传递给女儿,不存在男性→男性的传递,这种传递方式称为交叉遗传。 X连锁显性遗传的遗传特征 ⑴人群中女性患者数目约为男性患者的2倍,前者病情通常较轻 ⑵患者双亲中一方患病;如果双亲无病,则来源于新生突变 ⑶由于交叉遗传,男性患者的女儿全部都为患者,儿子全部正常;女 性杂合子患者的子女中各有50%的可能性发病 ⑷系谱中常可看到连续传递现象,这点与常染色体显性遗传一致 如果决定一种遗传病的致病基因位于X染色体上,且为隐性基因,即带有致病基因的女性杂合子不发病,称为X连锁隐性(XR)遗传病。(血友病A)X连锁隐性遗传的遗传特征 ⑴人群中男性患者远较女性患者多,在一些罕见的XR遗传病中,往往

遗传学期末试卷及答案

遗传学期末试卷及答案 云南大学生命科学学院 09级遗传学期末试卷题 Part1 1.F'因子是从Hfr细胞中不准确地切除F因子时产生的。(?) 2(一个成熟的卵细胞中有36条染色体,期中18条一定是来自父本。(×) 3(“三系”杂交种优势利用中保持系与不育系杂交目的的是繁殖保持系。(×) 4(在一个大群体中,只要进行随机交配,那么该群体就可以达到平衡。(×) 5(生物的生殖细胞不一定都是单倍性的。(?) 6(互补基因是指相同对的两个基因,它们互相作用产生了新性状。(×) 7(基因突变可在个体发育的任何使其发生。(?) 8(Watson和Crick的DNA结构模型要求A与T分子数量相等,但G与C可以不等。(×) 9(两个单交换百分率的乘积等于理论双交换率。(?) 10(一个顺反子内可以有多个突变位点。(?) 11(只要有细胞质k颗粒(卡巴粒)或细胞核K基因就能保持草履虫稳定的放毒性状。(×) 12(遗传学中所指的群体实质就是孟德尔群体。(?) 13(连锁基因的重组率只能低于50%。(?) 14(Y染色体上的性别决定区域决定胎儿性别发育的方向。(?) 15(雌性哺乳动物的体细胞中X染色体的Barr体数量等于X染色体数量。(×) 16(体细胞交换与性细胞形成过程中的交换一样发生在非姐妹染色单体之间。(×) 17(基因突变可以在个体发育的任何时期发生。(?) 18(Trans-acting element反式作用因子可以使DNA序列,也可以使蛋白质。(×) 19(转录因子可以说就是反式作用因子。(?)

20(群体遗传学中的“适合度”和“选择系数”均可大于1。(×) Part2 1(在细胞质遗传中,玉米雄性不育系的遗传是由核质互作所决定的,酵母菌的小菌落是受线粒体所决定的,紫茉莉的花斑遗传是受叶绿体(质体)所决定的。 2(染色体结构变异包括倒位、易位、重复、和缺失。 3(根据产生的原因,突变可分为自发突变和诱发突变,而从DNA分子水平看,基因突变的可能方式有碱基替换和移码突变。 4(DNA复制的可能模型有3种,它们是保留(守)复制、半保留复制和分散复制。 5(基因表达调控,不管是可诱导的还是可阻遏的,都有正调控和负调控之分。 6(基因的转译部分(序列)称为外显子(extron),不转译的部分称为内含子(intron)。 7(在果蝇的X染色体数与常染色体组数(A)之比称为性指数,性指数决定果蝇性别。这些果蝇个体性别:(a)AAX雄性(b)AAAXX兼性(c)AAXXY雌性 (d)AAXXX超雌。 8(由于倒位环内的交换产生缺失和重复,导致配子的死亡。 9(植物杂种优势利用中的“三系”是指雄性不育系、保持系和恢复系。 10(表现为不连续变异,可明确区分的相对性状是质量性状,而表现为连续变异,很难明确区分的相对性状是数量性状。 11(狭义遗传力等于V/V,而由加性效应方差V,显性效应方差V和环境效应方差VA PADE构成。 12(DNA转录的产物主要是信使RNA(mRNA)、核糖体RNA(rRNA)和转运 (移)RNA(tRNA)。 13(居群遗传结构改变时生物进化的根本动力,而引起居群遗传结构改变的因素有:即突变、基因流动、自然选择和随机遗传漂变。 Part3

医学遗传学复习重点必考

临床药学医学遗传学复习提纲 1、多基因家族、假基因、同义突变、错义突变、无义突变、移码突变、动态突变、核型。 多基因家族:指由某一共同祖先基因经过重复和变异所产生的一组基因。 假基因:具有与功能基因相似的序列,但由于有许多突变以致失去了原有的功能,所以假基因是不能编码蛋 白。 同义突变:因于编码氨基酸的密码子所具有的兼并性,碱基替换后组成的密码子仍是编码同一氨基酸的密 码子,成为同义突变。 错义突变:是编码某种氨基酸的密码子经碱基替换以后,变成编码另一种氨基酸的密码子。 无义突变:是指由于某个碱基的改变使代表某种氨基酸的密码子突变为终止密码子UAA,UGA,UAG中的一种, 从而使肽链合成提前终止,肽链缩短,成为没有 活性的多肽链片段。 * 移码突变:在DNA分子的碱基组成中插入或者缺失一个或者几个碱基对,使在插入或者缺失点以下的DNA 编码全部发生改变,这种基因突变成为移码突 变。

动态突变:组成DNA分子中的核苷酸序列拷贝数发生不同倍数的扩增。 核型:指一个体细胞全部染色体所构成的图像。 2、DNA修复系统的种类。 光修复,切除修复,复制后修复。 3、染色体和染色质的相同点(化学组成)、不同点(不同存在形式)。 ^ 相同点(化学组成):DNA,组蛋白,非组蛋白,RNA。 不同点(不同存在形式):同一物质不同时期的不同存在形式。 4、常染色质和异染色质的相同点、不同点。 相同点:都是遗传物质,染色质,化学组成都是DNA,组蛋白,非组蛋白,RNA; 不同点:①常染色质染色较浅且着色均匀,异染色质染色深。 ②常染色质多分布于核中央,异染色质多分布于核周缘,紧靠核内膜。 ③常染色质呈高度分散状态,异染色质螺旋化程度高。

遗传学(第二版)刘庆昌-重点整理1

Heredity (遗传) 亲代与子代(上下代)之间相似的现象 遗传的特点:相对稳定性、保守性。 Variation (变异) 亲代与子代之间以及子代个体之间的差异。 变异的特点:普遍性和绝对性。 分为可遗传的变异(hereditable variation),和不可遗传的变异(non-hereditable variation), 变异的多态性(polymorphism of variation)。 Evolution (进化) 生物体在生命繁衍进程中,一代一代繁殖,通过遗传把物种特性传递下去。但不可避免地遭受自然和人为的干涉,即遗传—变异—选择(淘汰坏的,保留好的),后代优于亲代,称为进化。 进化的两种方式: 渐变式:积累变异成为新类型(continual variation),如适应性进化。 跃变式:染色体加倍成为新物种,如倍性育种和基因工程育种。 遗传与变异的关系 遗传与变异是矛盾对立统一的两个方面。即遗传是相对的,保守的;变异是绝对的,进步的;变异受遗传控制,不是任意变更的。具体如下: ★遗传与变异同时存在于生物的繁殖过程中,二者之间相互对立、又相互联系,构成生物的一对矛盾。每一代传递既有遗传又有变异,生物就是在这种矛盾的斗争中不断向前发展。选择所需要的变异,从而发展成为生产和生活中所需要的品种。因此,遗传、变异和选择是生物进化和新品种选育的三大要素。 3、遗传、变异与进化的关系 生物进化就是环境条件(选择条件)对生物变异进行自然选择,在自然选择中得以保存的变异传递给子代(遗传),变异逐代积累导致物种演变,产生新物种。 动、植物和微生物新品种选育(育种)实际上是一种人工进化过程,只是以选择强度更大的人工选择代替了自然选择,其选择的条件是育种者的要求。 摩尔根创立基因学说 克里克提出的“中心法则”。 Human Genome Project (HGP) Epigenetics 表观遗传学 1. 概念:基因的DNA序列不发生改变的情况下,基因的表达水平与功能发生改变,并产生可遗传的表型。 2. 特征: (1)可遗传;(2) 可逆性;(3) DNA不变 3. 表观遗传学的现象: (1) DNA甲基化 (2) 组蛋白修饰 (3) MicroRNA (4) Genomic imprinting (5)休眠转座子激活…

相关文档
最新文档