热电偶输入模块231-7PD22-0XA8接线和拨码方式

热电偶输入模块231-7PD22-0XA8接线和拨码方式
热电偶输入模块231-7PD22-0XA8接线和拨码方式

231‐7PD22‐0XA8

订货号:UN 231-7PD22-0XA0

4通道热电耦测温模块,分辨率16位;

光耦隔离,性能稳定;

技术规范

电源损耗

总消耗电流87mA 从L+消耗电流60mA 总功耗 1.8W

模拟量输入通道4

输入类型浮地热电耦

共模抑制>120dB@120V AC

线回路电阻(最大)100?

模块刷新周期405 ms

数据字格式电压:-27648至+27648

输入范围

类型E、J、K、N、R、S、T

电压范围:+ 80mV

测量原理Sigma→delta

分辨率15+1符号位

基本误差0.1%FS

隔离(现场到逻辑)>3000V

24V DC提供电压范围20.4~28.8V DC

尺寸(长×宽×高)

(mm)

71.2×80×62

订货号UN 231-7PD22-0XA0

接线图

热电偶接线端子(欧米茄DRTB系列)

热电偶接线端子 ---可安装于DIN导轨,方便进行检查和故障排除 ?螺丝接线端可提供安全且免维护的连接 ?可用于K、J、T、E、N、R/S和U型分度号热电偶 ?内置小型热电偶母连接器,可进行检查和故障排除 ?全封闭式—无需使用端板 ?可进行DIN导轨安装—宽度小,仅10.7 mm ?带有分度号与"+,-" 连接标识 ?内含书写窗 产品描述 全新DRTB系列热电偶接线盒采用热电偶级合金加工而成,保证可提供精确读数。内置SMP兼容母插座可插接小型热电偶连接器。母连接器让用户可以连接到手持式仪表,用于数据采集、质保合规、功能研究以及故障排除安装或维修等应用。 塑料外壳采用灰色聚酰胺6.6热塑性树脂加工而成,达到UL 94 V0等级(85°C)。这些热电偶接线端为全封闭式,无需使用任何端板。螺钉和夹子都经过镀锌,它们配合使用可提供一种无振动、免维护、抗腐蚀的连接。 DRTB接线盒可安装在标准35 mm DIN导轨或32 mm G型导轨中,可用分度号类型以及正极(+)和负极(-)连接标识它们。导线入口为漏斗形,即便是标准导线,也能实现导线快速插接。 规格:

接线端宽度: 10.7 mm (0.422") 接线端长度/高度: 51 mm (2.008")/42.3 mm (1.666") 安装到35 x 7.5 mm/ 35 x 15 mm DIN导轨中的高度: 43.5 mm (1.713")/51 mm (2.009") 导线最大尺寸: 12 AWG/2.5 mm2 裸线长度: 8 mm (0.31") 扭矩(Nm (in-lb)): 0.4 (3.54) ±10% 额定温度: -40 ~ 85°C (-40 ~ 185°F)

热电阻常用的接线方式及原理

热电阻温度测量原理及常用接线方式 热电阻(如PtIOO )是利用其电阻值随温度的变化而变化这一原理制成的将温度量转换 成电阻量的温度传感器。 温度变送器通过给热电阻施加一已知激励电流测量其两端电压的方 法得到电阻值(电压/电流),再将电阻值转换成温度值,从而实现温度测量。 热电阻和温度变送器之间有三种接线方式:二线制、三线制、四线制。 由于热电阻本身的阻值较小, 随温度变化而引起的电阻变化值更小, 例如,铂电阻在零 度时的阻值R0=100 Q,铜电阻在零度时 R0=100 Qo 因此,在传感器与测量仪器之间的引线 过长会引起较大的测量误差。在实际应用时,通常采用所谓的两线、三线或四线制的方式, 如图所示。 图热电阻的接入方式 在图(a )所示的电路中,电桥输出电压 Vo 为 R r ) 当 R?Rt 、Rr 时, V o [(R t -R r ) 2 式中:Rt 为铂电阻, Rr 为可调电阻,R 为固定电阻,I 为恒流源输出电流值。 1. 二线制 (c )三线制 (d )四线制

二线制的电路如图(b)所示。这是热电阻最简单的接入电路,也是最容易产生较大误差的电路。 图中的两个R是固定电阻。R r是为保持电桥平衡的电位器。二线制的接入电路由于没有 考虑引线电阻和接触电阻,有可能产生较大的误差。如果采用这种电路进行精密温度测量,整个电路必须在使用温度范围内校准。 2.三线制 三线制的电路如图(C)所示。这是热电阻最实用的接入电路,可得到较高的测量精度。 图中的两个R是固定电阻。R是为保持电桥平衡的电位器。三线制的接入电路由于考虑 了引线电阻和接触电阻带来的影响。R11、R12和R l3分别是传感器和驱动电源的引线电阻, 一般说来,R11和R12基本上相等,而R13不引入误差。所以这种接线方式可取得较高的精度。 3.四线制 四线制的电路如图(d)所示。这是热电阻最高精度的接入电路。 图中R ii、R i2、R13和R14都是引线电阻和接触电阻。R ii和R12在恒流源回路,不会引 入误差。R13和R14则在高输入阻抗的仪器放大器的回路中,也不会带来误差。上述三种热电阻传感器的引入电路的输出,都需要后接高输入阻抗、高共模抑制比的仪器放

热电阻接入电路两线制和三线制接线法的分析

1.10 热电阻接入电路两线制和三线制接线法的分析 热电阻接入电路两线制三线制接线法 1.分析两线制由于引线电阻的误差 图1-12中,r为引线的电阻,R t为Pt电阻,其中由欧姆定律可得: 当R r=R t时(电桥平衡),V0=-I22r 。 从V0的表达式可以看出,引线电阻的影响十分明显,两线制接线法的误差很大。 2.分析三线制如何消除引线电阻的误差 三线制接线法由图1-13所示,由欧姆定律可得: 当R r=R t时,电桥平衡,I1=I2,V0=0。 可见三线制接线法可很好的消除引线电阻,提高热电阻的精度。 工业用热电阻温度计的使用注意事项

热电阻温度计是利用导体或半导体的电阻值随温度变化的性质来测量温度的,在工业生产中广泛用来测量(-100~500)℃范围的温度,其主要特点是测温准确度高,便于自动测量。由于热电偶在低温范围中产生的热电势小,因而对测量仪表要求严格,而采用热电阻温度计测量低温是很适宜的。 热电阻温度计按结构形式可分为普通工业型、铠装型及特殊型等。 常用的普通工业型热电阻主要有: 1.铂热电阻:广泛用来测量(-200~850)℃范围内的温度。在少数情况下,低温可测至1K,高温可测至1000℃。其物理、化学性能稳定,复现性好,但价格昂贵。铂热电阻与温度是近似线性关系。其分度号主要有Pt10和Pt100。 2.铜热电阻:广泛用来测量(-50~150)℃范围内的温度。其优点是高纯铜丝容易获得,价格便宜,互换性好,但易于氧化。铜热电阻与温度呈线性关系。其分度号主要有Cu50和Cu100。 铠装热电阻是在铠装热电偶的基础上发展来的,由热电阻、绝缘材料和金属套管三者组合加工而成,其特点是外形尺寸可以做得很小(最小直径可达20毫米),因而反应速度快,有良好的机械性能,耐振耐冲击,具有良好的挠性,且不易受有害介质的侵蚀。 使用热电阻前必须检查它的好环,简易的检查方法是将热电阻从保护管中抽出,用万用表测量其电阻。若万用表读数为“0"或者万用表读数小于R0值,则该热电阻已短路,必须找出短路处进行修复;若万用表读数为“∞",则该热电阻已断路,不能使用;若万用表读数比R0的阻值偏高一些,说明该热电阻是正常的。 热电阻的阻值不正确时,应从下部端点交叉处增减电阻丝,而不应从其它处调整。完全调好后应将电阻丝排列整齐,不能碰接,仍按原样包扎好。 经修复的热电阻,必须经过检定合格后方可使用。 热电阻安装时,其插入深度不小于热电阻保护管外径的8倍~10倍,尽可能使热电阻受热部分增长。热电阻尽可能垂直安装,以防在高温下弯曲变形。热电阻在使用中为了减小辐射热和热传导所产生的误差,应尽量使保护套管表面和被测介质温度接近,减小热电阻保护套管的黑色系数。 当用与热电阻相配的二次仪表测量温度时,热电阻安置在被测温度的现场,而二次仪表则放置在操作室内。如果用不平衡电桥来测量,那么连接热电阻的导线都分布在桥路的一个臂上。由于热电阻与仪表之间一般都有一段较长的距离,因此两根连接导线的电阻随温度的变化,将同热电阻阻值的变化一起加在不平衡电桥的一个臂上,使测量产生较大的误差。为减小这一误差,一般在测温热电阻与仪表连接时,采用三线制接法(图1),即从热电阻引出三根导线,将连接热电阻的两根导线正好分别处于相邻的两个桥臂内(图2)。当环境温度变化而使导线电阻值改变时,其产生的作用正好互相抵消,使桥路输出的不平衡电压不会因之而改变。另一导线电阻R1的变动,仅对供桥电压有极微小的影响,但在准确度范围内。其示意图如下所示:

热电偶安装手册(中英文)

WR系列热电偶 WR Series Thermocouple WZ系列热电阻 WR Series Thermocouple 使用安装手册Installation & Operation Manual 安徽天康(集团)股份有限公司Anhui Tiankang (Group) Shares Co., Ltd

目录 Index 1、概述General Description (1) 2、工作原理Operation Theory (1) 3、结构Configuration (2) 4、主要技术参数Main Technical Parameters (3) 5、安装及使用Installation & Operation (5) 6、可能发生的故障及维修Possible Troubles & Maintenance (7) 7、运输及储存Transportation & Storage (8) 8、订货须知Notices in Ordering (8) 9、型号命名Type Naming (9)

1、概述General Description 工业用热电偶作为温度测量和调节的传感器,通常与显示仪表等配套,以直接测量各种生产过程中-40~1600℃液体、蒸汽和气体介质以及固体表面温度; As sensor for temperature measuring and regulation, industrial-purpose thermocouple is usually connected with display meter and other meters to directly measure temperature of liquid, vapor, gas and solid surface ranging from -40℃to 1600℃. 工业用热电阻作为温度测量和调节的传感器,通常与显示仪表等配套,以直接测量各种生产过程中-200~500℃液体、蒸汽和气体介质以及固体表面温度。 As sensor for temperature measuring and regulation, industrial-purpose thermal resistance is usually connected with display meter and other meters to directly measure temperature of liquid, vapor, gas and solid surface ranging from -200℃to 500℃. 2、工作原理Operation Theory1 热电偶工作原理Operation Theory of Thermocouple 热电偶工作原理是基于两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。 热电偶由两根不同导线(热电极)A和B组成,它们的一端T1是互相焊接的,形成热电偶的测量端T1(也称工作端)。将它插入待测温度的介质中;而热电偶的另一端T0(参比端或自由端)则与显示仪表相连,如果热电偶的测量端与参比端存在温度差,则显示仪表将指出热电偶产生的热电动势。 热电偶的热电动势随着测量端温度的升高而增大,它的大小只与热电偶的材料和热电偶两端的温度有关,而与热电级的长度、直径无关。 Thermocouple is based on physical phenomenon that two conductor of different materials is connected to form return circuit, when temperature on both contact is different, it results in thermoelectric potential in return circuit. 热电阻工作原理Operation Theory of Thermal Resistance 热电阻是利用金属导体或半导体有温度变化时本身电阻也随着发生变化的特性来测量温度的,热电阻的受热部分(感温元件)是用细金属丝均匀地绕在绝缘材料作成的骨架上,当被测介质有温度梯度时,则所测得的温度是感温元件所在范围内介质层的平均温度。 制造热电阻的材料应具有以下特点:大的温度系数,大的电阻率,稳定的化学物理性能和良好的复现性等。在现有的各种纯金属中,铂、铜和镍是制造热电阻的最合适的材料。其中铂因具有易于提纯,在氧化性介质中具有高的稳定性以及良好的复现性等显著的优点,而成为制造热电阻的理想材料。 It is based on that temperature change of material results in change of its resistance. When resistance value changes, the working instrument will display relevant temperature. 3、结构Configuration 感温元件直径及材料Diameter & Material of Thermal Elements 热电偶Thermocouple

热电偶维修作业指导书

热电偶维修作业指导书 一、编制目的:为了提高园区仪表维护人员的技术水平,在生产维护中能及时处理仪 表故障,特编制此指导书。 二、适用范围:本作业指导书适用于自动化仪表专业班组维护人员处理石油化工装置测 温热电偶的各种故障,并提供安全指导 三、热电偶测温基本原理和结构形式: 1.热电偶的测温原理: 图1-7.1热电偶工作原理图 如图1-7.1所示,将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个接点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一定大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。热电偶的一端将A、B两种导体焊在一起,置于温度为t的被测介质中,称为工作端;另一端称为自由端,放在温度为t0的恒定温度下。当工作端的被测介质温度发生变化时,热电势随之发生变化,将热电势送入显示仪表进行显示或记录,或送入微机进行处理,即可获得温度值。当组成热电偶的热电极的材料均匀时,其热电势的大小与热电极本身的长度和直径大小无关,只与热电极材料的成分及两端的温度有关。热电偶两端的热电势差可用下式表示: E t=e AB(t)-e AB(t0) 式中: E t -----热电偶的热电势; e AB(t)-----温度为t时工作端的热电势; e AB(t0)-----温度为t0时自由端的热电势; 2.热电偶的结构(如下图): 2006

图1-7.2 1)普通型热电偶普通型热电偶按其安装时的连接型式可分为固定螺纹连 接、固定法兰连接、活动法兰连接、无固定装置等多种形式。虽然它们的结 构和外形不尽相同,但其基本组成部分大致是一样的。通常都是由热电极、 绝缘材料、保护套管和接线盒等主要部分组成。 2)铠装热电偶铠装热电偶是由热电偶丝、绝缘材料和金属套管三者经拉伸加 工而成的坚实组合体。它可以做得很细、很长,在使用中可以随测量需要任意弯 曲。套管材料般为铜、不锈钢或镍基高温合金等。热电极与套管之间填满了绝缘 材料的粉末,常用的绝缘材料有氧化镁、氧化铝等。铠装热电偶的主要特点是 测量端热容量小,动态响应快;机械强度高;挠性好,可安装在结构复杂的装 置上,因此已被广泛用在许多工业部门中。 3.三种常用热电偶分度号及补偿导线: 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100oC。我厂常用的热电偶有三种,如表1-7.1所示: 表1-7.1 4.热电偶的检查: 1).外观检查:热电偶的热接点应焊接牢固,表面光滑,无气孔,无明显的缺损及裂纹。热电偶的瓷管、绝缘层、保护套管、接线座、垫片及头盖应完好无损。 2).对于使用中的热电偶应定期检查其热电特性,检定周期一般为3~5年。重要的及特殊使用的场合,按实际需要定期检查。 3).保护套管一般4~5年检查一次,对于安装在腐蚀及磨损严重部位的保护套管,停工检查期间均应检查。使用于2.5MPa以下的保护管应能承受1.5倍的工作压力而无渗漏,用于高压容器的热电偶保护套管使用前应经探伤或拍片检查,达到二级合格标准。 四、热电偶维修作业危害分析和安全措施 1.在维修前询问工艺,如果该点带联锁,则要开出联锁作业票,切除联锁后才能维修,防止联锁动作 2.在检查补偿导线时,摇绝缘只能使用500V兆欧表,并且要将补偿导线两端脱离回路,防止摇绝缘时损坏仪表。 3.在现场高空作业时必须采取安全措施,搭好脚手架和系好合格安全带,防止跌落伤人。4.在拆卸热电偶套管时,如果要用到铁锤敲打,要注意抓好板手,正确击打,防止铁锤打偏伤手。 5.在拆卸生产现场热电偶套管时,必须要先将管道介质放空,防止介质喷出伤人,同时要穿戴好防护衣服和眼镜。 6.在检查高温热电偶时要穿戴好防护衣服和手套,防止烫伤。

Pt100热电阻的三种接线方式

Pt100热电阻的三种接线方式 发布时间:10-08-05 来源:点击量:2596 字段选择:大中小

WZP-17□Y-□-L-□-□-(-50℃~120℃) WZP-27□Y-□-L-□-□-(-50℃~120℃) WZP-27□Y-□-L-□-□-(-50℃~120℃)-M12×1

分度号:Pt100、Pt1000 规格:φ6、φ5、φ4、φ3,管长L=30~300mm,引出线为三线制或四线制精度:B、A、1/3B~1/10B 温度范围:-100~120℃ 材料:不锈钢;接插件为螺纹锁紧航空插头,耐热温度120℃ WZP-27□Y-□-L/L1-□-□-(-50℃~500℃) 分度号:Pt100 规格:φ6、φ5,管长L=30~300mm,引出线为三线制或四线制 精度:B、A、1/3B~1/10B 温度范围:-100~500 材料:不锈钢;接插件为螺纹锁紧航空插头,耐热温度120℃

外加焊接护套型WZPT-27□Y-□-L-□□-(-50~120℃)-M12×1 分度号:Pt100 规格:φ6、φ5,管长L=30~300mm,引出线为三线制或四线制 精度:B、A、1/3B~1/10B 温度范围:-100~120℃ 材料:不锈钢;接插件为钢球锁紧航空插头,耐热温度120℃ 1、Pt100热电阻的三种接线方式在原理上的不同: 二线制和三线制是用电桥法测量,最后给出的是温度值与模拟量输出值的关系。四线没有电桥,完全只是用恒流源发送,电压计测量,最后给出测量电阻值。 2、Pt100热电阻的三种接线方式对测量精度的影响 连接导线的电阻和接触电阻会对Pt100铂电阻测温精度产生较大影响,铂电阻三线制或者四线制接线方式能有效消除这种影响。与热电阻连接的检测设备(温控仪、PLC输入等)都有四个接线端子:I+、I-、V+、V-。其中,I+、I-端是为了给热电阻提供恒定的电流,V+、V-是用来监测热电阻的电压变化,依次检测

热电阻接线接线方式分类(特制材料)

热电阻的引线接线方式主要有三种方式 ○1二线制热电阻:在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制:这种引线方法很简单,但由于连接导线必然存在引线电阻r,r大小与导线的材质和长度的因素有关,因此这种引线方式只适用于测量精度较低的场合 ○2三线制热电阻:在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,是工业过程控制中的最常用的。 ○3四线制热电阻:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。可见这种引线方式可完全消除引线的电阻影响,主要用于高精度的温度检测 1.接线方式的不同,在检测原理上的区别: 二线和三线是用电桥法测量,最后给出的是温度值与模拟量输出值的关系。 四线没有电桥,完全只是用恒流源发送,电压计测量,最后给出测量电阻值。 2.为什么会产生不同的接线方式: 因为热电阻的阻值小,因此连接导线的电阻以及接触电阻会对其测温精度产生较大影响,所以引入三线制或者四线制就是要消除这些影响。 与热电阻连接的检测设备(温控表、PLC输入等)都有四个接线端子。I+、I-、V+、V-。 其中,I+、I-端是为了给热电阻提供恒定的电流,V+、V-是用来监测热电阻的电压变化,依次检测温度变化。 4线就是从热电阻两端引出4线,和4个端子连接。 3线就是引出3线,这需要检测设备方的I-\V-短接。 2线就使引出2线,这需要检测设备方的I-\V-、I+/V+短接。

3.不同的接线方式对精度的影响: 2线,电流回路和电压测量回路合二为1,精度差。(二线制的误差主要在电流回路在电缆中产生一定压降造成的测量误差) 3线,电流回路的参考位和电压测量回路的参考位为一条线。精度稍好。 4线,电路回路和电压测量回路独立分开,精度高,但费线。另外,A级精度的热电阻是不能用2线制连接的。 注释:RTD-电阻温度检测器 热电阻不带变送器,输出的是电阻信号; 带变送器,可输出4—20mA标准信号。 SIEMENS 温变产品有热电偶,热电阻变送器。 PLC模块中有专门的热电阻(RTD)和热电偶( TC)模块的。直接选用这样的模块就可以了,它接受热电阻(阻值)和热电偶(毫伏值)信号。 问 有那么8个PT100热电阻要进PLC柜,那么:
(1)可否用30X0.75平方的软线一根线布过来?还是每个热电阻用单独的线布进来??
(2)不需要屏蔽线吧?
(3)线缆长度20米的话,误差不会太太大吧?
(4)0.75的线径够了吧?
谢谢 答

热电偶的接线问题

热电偶的接线问题 来源:无线测温 https://www.360docs.net/doc/b010946949.html, 在材料的热处理(加工)过程中,常需要对温度进行准确的测量,以便对整个过程进行平稳地控制。尤其是实验条件下,对所测量的温度的准确度要求很高。在这些领域温度的测量通常采用热电偶传感器来实现。热电偶本身具有经济、测量误差小等优点。由于热电偶在测量中产生的电信号是毫伏级的,若在热电偶与测量设备的导线连接点上处理不当就会产生错误的测量结果。尤其在现场处理温度测量值困难,需要将不同的测量点的信号集中引到中心测量站来分析时,或在热处理过程中,需对几个测温点同时并行监测或模拟分析时,需要在热电偶回路中通过接点引线,此时必须保证在测量点和测量设备之间的电路的所有材料特性一致且连接点无误差,才能避免电路产生的任何测量误差。 热电偶的测温范围可从-200℃∽1600℃,不同型号的热电偶的测温范围也不同。按组成热电偶的材料副的不同,可分为J、K、T型等型号,见表1。表1 常见的热电偶型号热电偶型号材料副温度范围(℃)热偶电压(mV) J Fe-CuNi -210∽1200 -8.1∽69.5 K Ni-CrNi -200∽1372 -5.9∽54.9 T Cu-CuNi -200∽400 -5.6∽20.9 R Pt-PtRh13 -50∽1768 -0.2∽21.1 B PtRh6-PtRh30 -60∽1820 -0.006∽13.8 S Pt-PtRh10% -50∽1768 -0.2∽18.7 热电偶是由二种不同材料的金属丝组成的(例如铜线和铜镍合金线)。它们的一端通过焊接或搭接成一点作为测温头,另一端彼此绝缘地连接到测量设备上。当热作用于测温头时,在这两种不同的材料之间就会产生一种可测量的热

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

什么是热电阻两线三线或四线制的方式

由于热电阻本身的阻值较小,随温度变化而引起的电阻变化值更小,例如,铂电阻在零度时的阻值R0=100Ω,铜电阻在零度时R0=100Ω。因此,在传感器与测量仪器之间的引线过长会引起较大的测量误差。在实际应用时,通常采用所谓的两线、三线或四线制的方式,如图所示。 (a ) 电路原理 (b ) 二线制 (c ) 三线制 (d ) 四线制 图 热电阻的接入方式 在图(a )所示的电路中,电桥输出电压Vo 为 当R>>Rt 、Rr 时, 式中:Rt 为铂电阻, Rr 为可调电阻,R 为固定电阻,I 为恒流源输出电流值。 Vo

1.二线制 二线制的电路如图(b)所示。这是热电阻最简单的接入电路,也是最容易产生较大误差的电路。 是为保持电桥平衡的电位器。二线制的接入电图中的两个R是固定电阻。R r 路由于没有考虑引线电阻和接触电阻,有可能产生较大的误差。如果采用这种电路进行精密温度测量,整个电路必须在使用温度范围内校准。 2.三线制 三线制的电路如图(c)所示。这是热电阻最实用的接入电路,可得到较高的测量精度。 是为保持电桥平衡的电位器。三线制的接入电图中的两个R是固定电阻。R r 路由于考虑了引线电阻和接触电阻带来的影响。R l1、R l2和R l3分别是传感器和驱动电源的引线电阻,一般说来,R l1和R l2基本上相等,而R l3不引入误差。所以这种接线方式可取得较高的精度。 3.四线制 四线制的电路如图(d)所示。这是热电阻最高精度的接入电路。 图中R l1、R l2、R l3和R l4都是引线电阻和接触电阻。R l1和R l2在恒流源回路,不会引入误差。R l3和R l4则在高输入阻抗的仪器放大器的回路中,也不会带来误差。 上述三种热电阻传感器的引入电路的输出,都需要后接高输入阻抗、高共模抑制比的仪器放大器。 热电阻的应用原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 1.热电阻测温原理及材料 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。 2.热电阻的结构 (1)精通型热电阻工业常用热电阻感温元件(电阻体)的结构及特点见表 2-1-11。从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制,有 (2)铠装热电阻铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,如图2-1-7所示,它的外径一般为φ2~φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。 (3)端面热电阻端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,其结构如图2-1-8所示。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 (4)隔爆型热电阻隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。

热电阻与热电偶的安装方法

热电偶与热电阻的安装方法 一、热电偶与热电阻的安装与检修实训 1、学会使用热电偶,热电阻进行温度测量; 2、掌握热电偶与热电阻的安装方法; 3、掌握热电偶,热电阻与二次仪表的连接方法. 二、热电偶与热电阻的选型 1、被测量对象的温度范围在200℃以下的选用热电阻. 2、被测量对象的温度范围在200℃以上的选用热电偶. 三、热电偶与热电阻的安装要求 对热电偶与热电阻的安装,应注意有利于测温准确,安全可靠及维修方便,而且不影响设备运行和生产操作.要满足以上要求,在选择对热电偶和热电阻 的安装部位和插入深度时要注意以下几点: 1、为了使热电偶和热电阻的测量端与被测介质之间有充分的热交换,应合理选择测点位置,尽量避免在阀门,弯头及管道和设备的死角附近装设热电偶或热电阻. 2、带有保护套管的热电偶和热电阻有传热和散热损失,为了减少测量误差,热电偶和热电阻应该有足够的插入深度: 2.1 对于测量管道中心流体温度的热电偶,一般都应将其测量端插入到管道中心处(垂直安装或倾斜安装).如被测流体的管道直径是200毫米,那热电偶或热电阻插入深度应选择100毫米; 2.2 对于高温高压和高速流体的温度测量(如主蒸汽温度),为了减小保护套对流体的阻力和防止保护套在流体作用下发生断裂,可采取保护管浅插方式 或采用热套式热电偶.浅插式的热电偶保护套管,其插入主蒸汽管道的深度应不小于75mm;热套式热电偶的标准插入深度为100mm; 2.3 假如需要测量是烟道内烟气的温度,尽管烟道直径为4m,热电偶或热 电阻插入深度1m即可. 2.4 当测量原件插入深度超过1m时,应尽可能垂直安装,或加装支撑架和保护套管.

pt100热电阻接线

Pt100热电阻两线制、三线制和四线制接线对测温精度的影响 1、Pt100热电阻的三种接线方式在原理上的不同: 二线制和三线制是用电桥法测量,最后给出的是温度值与模拟量输出值的关系。四线没有电桥,完全只是用恒流源发送,电压计测量,最后给出测量电阻值。 2、Pt100热电阻的三种接线方式对测量精度的影响 连接导线的电阻和接触电阻会对Pt100铂电阻测温精度产生较大影响,铂电阻三线制或者四线制接线方式能有效消除这种影响。与热电阻连接的检测设备(温控仪、PLC输入等)都有四个接线端子:I+、I-、V+、V-。其中,I+、I-端是为了给热电阻提供恒定的电流,V+、V-是用来监测热电阻的电压变化,依次检测温度变化。请参阅下图: (1)四线制就是从热电阻两端引出4线,接线时电路回路和电压测量回路独立分开接线,测量精度高,需要导线多。(2)三线制就是引出三线,Pt100B铂电阻接线时电流回路的参端和电压测量回路的参考为一条线(即检测设备的I-端子和V-端子短接)。精度稍好。(3)两线制就使引出两线,Pt100B铂电阻接线时接线时电流回路和电压测量回路合二为一(即检测设备的I-端子和V-端子短接、I+端子和V+短接短接)。测量精度差。 模块中A、B两个端子是用来接收电压信号的,一般是毫伏级电压信号。C端是一个电流输出端子,工作时由采集模块输出一个恒定的电流信号。这样在热电阻C、B端会流过一个恒定的电流,当温度变化时,热电阻的阻值变化,这样,A、B端的电压信号就随着温度的变化而线性变化。达到测温的目的。

其实有两线制、三线制、四线制三种, 如上图中,A\B\C三点好比另个图中的3、2、1三点及另个图中的兰、绿、黄 这样子,简单的接线把蓝绿黄对应A、B、C或3、2、1接起来就OK了, 当然如果你的变送器只有两个接线端子,你只需要把蓝绿线接进去就行了。 两线制在测量精度不是很高的情况下使用 三线制应用较广泛 四线制用于精度高的场合。 热电阻温度测量原理及常用接线方式 热电阻(如Pt100)是利用其电阻值随温度的变化而变化这一原理制成的将温度量转换成电阻量的温度传感器。温度变送器通过给热电阻施加一已知激励电流测量其两端电压的方法得到电阻值(电压/ 电流),再将电阻值转换成温度值,从而实现温度测量。 热电阻和温度变送器之间有三种接线方式:二线制、三线制、四线制。 二线制 如图1。变送器通过导线L1、L2给热电阻施加激励电流I,测得电势V1、V2。 计算得Rt: 由于连接导线的电阻RL1、RL2无法测得而被计入到热电阻的电阻值中,使测量结果产生附加误差。如在100℃时Pt100热电阻的热电阻率为0.379Ω/℃,这时若导线的电阻值为2Ω,则会引起的测量误差为5.3 ℃。 三线制

S7-300 热电偶的接线及信号处理

S7-300/400 热电偶的接线及信号处理 1.热电偶的概述 1.1 热电偶的工作原理 热电偶和热电阻一样,都是用来测量温度的。 热电偶是将两种不同金属或合金金属焊接起来,构成一个闭合回路,利用温差电势原理来测量温度的,当热电偶两种金属的两端有温度差,回路就会产生热电动势,温差越大,热电动势越大,利用测量热电动势这个原理来测量温度。 结构示意图如下: 图1 热电偶测量结构示意图 注意:如上图所示,热电偶是有正负极性的,所以需要确保这些导线连接到正确的极性,否则将会造成明显的测量误差 为了保证热电偶可靠、稳定地工作,安装要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离; ⑤热电偶对于外界的干扰比较敏感,因此安装还需要考虑屏蔽的问题。

1.2 热电偶与热电阻的区别 表1 热电偶与热电阻的比较 2. 热电偶的类型和可用模板 2.1热电偶类型 根据使用材料的不同,分不同类型的热电偶,以分度号区分,分度号代表温度范围,且代表每种分度号的热电偶具体多少温度输出多少毫伏的电压,热电偶的分度号有主要有以下几种。

表2 分度号对照表 2.2可用的模板 表3 S7 300/400 支持热电偶的模板及对应热电偶类型

3. 热电偶的补偿接线 3.1 补偿方式 热电偶测量温度时要求冷端的温度保持不变,这样产生的热电势大小才与测量温度呈一定的比例关系。若测量时冷端的环境温度变化,将严重影响测量的准确性,所以需要对冷端温度变化造成的影响采取一定补偿的措施。 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到控制仪表的距离都很远,为了节省热电偶材料,降低成本可以用补偿导线延伸冷端到温度比较稳定的控制室内,但补偿导线的材质要和热电偶的导线材质相同。热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度变化造成的影响,补偿方式见下表。 表4 各类补偿方式 3.2各补偿方式接线 3.2.1内部补偿 内部补偿是在输入模板的端子上建立参比接点,所以需要将热电偶直接连接到模板的输入端,或通过补偿导线间接的连接到输入端。每个通道组必须接相同类型的热电偶,连接示意图如下。

四线制热电阻的特点及接线图

四线制热电阻的特点及接线图 国产热电阻有二线制,三线制,四线制。此篇文章介绍四线制热电阻的特点和接线方式,其他线制请参阅其他文档。 四线制:在热电阻体的电阻丝两端各连出两根引出线。测温时,它不仅可以消除引出线电阻的影响,还可以消除连接导线间接触电阻及其阻值变化的影响。四线制多用在标准铂电阻的引出线上。 四线制:在热电阻体的电阻丝两端各连出两根引出线。测温时,它不仅可以消除引出线电阻的影响,还可以消除连接导线间接触电阻及其阻值变化的影响。四线制多用在标准铂电阻的引出线上。 几个问题释疑: 1、Pt100热电阻的三种接线方式在原理上的不同:

二线制和三线制是用电桥法测量,最后给出的是温度值与模拟量输出值的关系。四线没有电桥,完全只是用恒流源发送,电压计测量,最后给出测量电阻值。 2、Pt100热电阻的三种接线方式对测量精度的影响 连接导线的电阻和接触电阻会对Pt100铂电阻测温精度产生较大影响,铂电阻三线制或者四线制接线方式能有效消除这种影响。与热电阻连接的检测设备(温控仪、PLC输入等)都有四个接线端子:I+、I-、V+、V-。其中,I+、I-端是为了给热电阻提供恒定的电流,V+、V-是用来监测热电阻的电压变化,依次检测温度变化。请参阅下图: (1)四线制就是从热电阻两端引出4线,接线时电路回路和电压测量回路独立分开接线,测量精度高,需要导线多。(2)三线制就是引出三线,Pt100B铂电阻接线时电流回路的参端和电压测量回路的参考为一条线(即检测设备的I-端子和V-端子短接)。精度稍好。(3)两线制就使引出两线,Pt100B铂电阻接线时接线时电流回路和电压测量回路合二为一(即检测设备的I-端子和V-端子短接、I+端子和V+短接短接)。测量精度差。

什么是热电阻两线三线或四线制的方式

什么是热电阻两线三线或四线制的方式 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

由于热电阻本身的阻值较小,随温度变化而引起的电阻变化值更小,例 如,铂电阻在零度时的阻值R0=100Ω,铜电阻在零度时R0=100Ω。因此,在传感器与测量仪器之间的引线过长会引起较大的测量误差。在实际应用时,通常 (b ) 二线制 (c ) 三线制 (d ) 四线制 图 热电阻的接入方式 在图(a )所示的电路中,电桥输出电压Vo 为 当R>>Rt 、Rr 时, 式中:Rt 为铂电阻, Rr 为可调电阻,R 为固定电阻,I 为恒流源输出电流值。 1. 二线制 Vo

二线制的电路如图(b)所示。这是热电阻最简单的接入电路,也是最容易产生较大误差的电路。 图中的两个R是固定电阻。R r 是为保持电桥平衡的电位器。二线制的接入电路由于没有考虑引线电阻和接触电阻,有可能产生较大的误差。如果采用这种电路进行精密温度测量,整个电路必须在使用温度范围内校准。 2.三线制 三线制的电路如图(c)所示。这是热电阻最实用的接入电路,可得到较高的测量精度。 图中的两个R是固定电阻。R r 是为保持电桥平衡的电位器。三线制的接入 电路由于考虑了引线电阻和接触电阻带来的影响。R l1、 R l2 和R l3 分别是传感器 和驱动电源的引线电阻,一般说来,R l1和R l2 基本上相等,而R l3 不引入误差。 所以这种接线方式可取得较高的精度。 3.四线制 四线制的电路如图(d)所示。这是热电阻最高精度的接入电路。 图中R l1、R l2 、R l3 和R l4 都是引线电阻和接触电阻。R l1 和R l2 在恒流源回 路,不会引入误差。R l3和R l4 则在高输入阻抗的仪器放大器的回路中,也不会带 来误差。 上述三种热电阻传感器的引入电路的输出,都需要后接高输入阻抗、高共模抑制比的仪器放大器。 热电阻的应用原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 1.热电阻测温原理及材料 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。 2.热电阻的结构 (1)精通型热电阻工业常用热电阻感温元件(电阻体)的结构及特点见表2-1-11。从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制,有 (2)铠装热电阻铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,如图2-1-7所示,它的外径一般为φ2~φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。 (3)端面热电阻端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,其结构如图2-1-8所示。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。(4)隔爆型热电阻隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。

热电阻接线图

热电阻测温三线制接线原理 热电阻测温传感器 热电阻是电阻值随温度变化的温度检测元件。它是利用物体(常见的是特定的金属或半导体材料)的导电率随温度变化而变化的原理制成。它的阻值跟温度的变化成正比,随着温度上升而成匀速增长。 使用热电阻测温的过程实际上是一个测量置于测量点上的热电阻的阻值的过程。 采用三线制接线的原因 电阻是基本电参数之一,其阻值R 可按伏安特性定义,即R=U/I,其中U 为电阻两端的电压,I 为流过电阻的电流或者按功率P 来定义,即R=P/(I^2)。。 可见测量热电阻必须在热电阻两端连接导线,而导线的阻值以及阻值随温度变化的特性以及引入的其它干扰,必然会影响测量结果。而要消除这种影响,就必须知道引线的状况,在对热电阻进行测量的同时,从引线的两端对引线进行监测。在两根引线参数一致的前提下,要知道其中一根的状况,至少需要增加一根导线,用来将测量引线中的一根的现场端连接到仪表端。这就是热电阻的三线制连接的由来。 电桥三线制测量原理 热电阻测量仪表(温度指示仪、温度变送器等)比较常见的是采用电桥作为前置电路,在采用三线制的条件下,能够有效的消除现场到控制室之间数十到数千米导线对的测量造成的影响。 为了说明其工作原理,下面从电桥平衡原理说起。 对图一所示的电桥,当A、C端加 上电压Ue时,B、D端的电压: Uo=Ue×[R2/(R1+R2)]-Ue×[R3/(R3+R4)] 当电桥平衡,即Uo=0时,有: Ue×[R2/(R1+R2)]=Ue×[R3/(R3+R4)] 整理后有: R1×R3=R2×R4或R1/R2=R4/R3

由这个公式可以看出电桥平衡时: 供电电压Ue波动时,输出电压Uo不变; 桥路的四个桥臂电阻R1、R2、R3、R4按相同比例变化时,输出电压Uo不变; 相邻的两个桥臂电阻(R1、R4,R2、R3,R1、R2,R3、R4) 按相同比例变化时,输出电压Uo不变; 在平衡电桥的任意一个桥臂上增加一个电阻R△,如图二所示。 当R△= 0时,电桥仍然保持平衡; 当R△发生改变时,Uo的变化仅与R△的变化相关 这时如果将R△作为被测热电阻代入桥路,桥臂电阻的一部分转化为测量接线的电阻值R1’、R2’,如图三所示。 则根据前面的分析可以看出:

相关文档
最新文档