实验二 虚拟存储器

实验二  虚拟存储器
实验二  虚拟存储器

实验二虚拟存储器

一、实验内容

模拟分页式虚拟存储管理中硬件的地址转换和缺页中断,以及选择页面调度算法处理缺页中断。

二、实验目的

在计算机系统中,为了提高主存利用率,往往把辅助存储器(如磁盘)作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间总和可以超出主存的绝对地址空间。用这种办法扩充的主存储器称为虚拟存储器。通过本实验帮助同学理解在分页式存储管理中怎样实现虚拟存储器。

三、设计说明

功能说明:

模拟分页式存储管理中硬件的地址转换和产生缺页中断。

(1)分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。为此,在为作业建立页表时,应说明哪些页已在主存,哪些页尚未装入主存,页表的格式为:

页号标志主存块号在磁盘上的位置

其中,标志----用来表示对应页是否已经装入主存,标志位=1,则表示该页已经在主存,标志位=0,则表示该页尚未装入主存。

主存块号----用来表示已经装入主存的页所占的块号。

在磁盘上的位置----用来指出作业副本的每一页被存放在磁盘上的位置。

(2)作业执行时,指令中的逻辑地址指出了参加运算的操作存放的页号和单元号,硬件的地址转换机构按页号查页表,若该页对应标志为“1”,则表示该页已在主存,这时根据关系式:

绝对地址=块号×块长+单元号

计算出欲访问的主存单元地址。如果块长为2的幂次,则可把块号作为高地址部分,把单元号作为低地址部分,两者拼接而成绝对地址。若访问的页对应标志为“0”,

则表示该页不在主存,这时硬件发“缺页中断”信号,有操作系统按该页在磁盘上 的位置,把该页信息从磁盘读出装入主存后再重新执行这条指令。

(3) 设计一个“地址转换”程序来模拟硬件的地址转换工作。当访问的页在主存时,则

形成绝对地址,但不去模拟指令的执行,而用输出转换后的地址来代替一条指令的执行。当访问的页不在主存时,则输出“* 该页页号”,表示产生了一次缺页中断。该模拟程序的算法如图2-1。

图2-1 地址转换模拟算法

(4) 假定主存的每块长度为128个字节;现有一个共七页的作业,其中第0页至第3页

已经装入主存,其余三页尚未装入主存;该作业的页表为:

0 1 5 011 1 1 8 012 2 1 9 013 3 1 1 021 4 0 022 5 0 023 6

121

查页表

输出“*”页号表 示发生缺页中断

形成绝对地址 输出绝对地址 有后续指令?

结束 取下一条指令

该页标志=1?

如果作业依次执行的指令序列为:

操作页号单元号操作页号单元号

+ 0 70 移位 4 053

+ 1 50 + 5 023

× 2 15 存 1 037

存 3 21 取 2 078

取0 56 + 4 001

- 6 40 存 6 084

(5)运行设计的地址转换程序,显示或打印运行结果。因仅模拟地址转换,并不模拟指令的执行,故可不考虑上述指令序列中的操作。

用先进先出(FIFO)页面调度算法处理缺页中断。

(1)在分页式虚拟存储系统中,当硬件发出“缺页中断”后,引出操作系统来处理这个中断事件。如果主存中已经没有空闲块,则可用FIFO页面调度算法把该作业中最先进入主存的一页调出,存放到磁盘上,然后再把当前要访问的页装入该块。调出和装入后都要修改页表页表中对应页的标志。

(2)FIFO页面调度算法总是淘汰该作业中最先进入主存的那一页,因此可以用一个数组来表示该作业已在主存的页面。假定作业被选中时,把开始的m个页面装入主存,则数组的元素可定为m个。例如:

P[0],P[1],….,P[m-1]

其中每一个P[i](i=0,1,….,m-1)表示一个在主存中的页面号。它们的初值为:P[0]:=0,P[1]:=1,….,P[m-1]:=m-1

用一指针k指示当要装入新页时,应淘汰的页在数组中的位置,k的初值为“0”。

当产生缺页中断后,操作系统选择P[k]所指出的页面调出,然后执行:

P[k]:=要装入页的页号

k:=(k+1) mod m

再由装入程序把要访问的一页信息装入到主存中。重新启动刚才那条指令执行。(3)编制一个FIFO页面调度程序,为了提高系统效率,如果应淘汰的页在执行中没有修改过,则可不必把该页调出(因在磁盘上已有副本)而直接装入一个新页将其覆盖。

因此在页表中增加是否修改过的标志,为“1”表示修改过,为“0”表示未修改过,格式为:

页号标志主存块号修改标志再磁盘上的位置

由于是模拟调度算法,所以,不实际启动输出一页和装入一页的程序,而用输出调

出的页号和装入的页号来代替一次调出和装入的过程。

结构说明:

作业:

操作页号单元号操作页号单元号

+ 0 70 移位 4 053

+ 1 50 + 5 023

× 2 15 存 1 037

存 3 21 取 2 078

取0 56 + 4 001

- 6 40 存 6 084

页表:

页号标志主存块号修改标志在磁盘的位置

0 1 5 0 11

1 1 8 0 12

2 1 9 0 13

3 1 1 0 21

4 0 NULL 0 22

5 0 NULL 0 23

6 0 NULL 0 121

流程图:

是 否 是 否 否(产生缺页中断)

是 模拟FIFO 页面调度 模拟硬件 地址转换 取一条指令

开始

该页标志=1? 取指令中访问的页号→L

查页表

形成绝对地址 输出绝对地址 有后继指令?

取下一条指令

是存指令? 置L 页修改标志为“1” 结束 j:=P[k] j 页修改标志为1 输出“out j ” 输出“in L ” P[k]:=L, k:=(k+1) mod m 修改页表

图2-2 FIFO 页面调度模拟算法

四、测试和使用说明

1、程序开发环境:Visual studio 2013

运行环境:windows操作系统

2、测试用例和运行结果

程序运行截图:

计算机原理实验二 静态随机存储器实验 操作步骤

2.1 静态随机存储器实验 2.1.1 实验目的 掌握静态随机存储器RAM工作特性及数据的读写方法。 2.1.2 实验设备 PC机一台,TD-CMA实验系统一套。 2.1.3 实验原理 实验原理图如图2-1-3所示,存储器数据线接至数据总线,数据总线上接有8个LED 灯显示D7…D0的内容。地址线接至地址总线,地址总线上接有8个LED灯显示A7…A0的内容,地址由地址锁存器(74LS273,位于PC&AR单元)给出。数据开关(位于IN单元)经一个三态门(74LS245)连至数据总线,分时给出地址和数据。地址寄存器为8位,接入6116的地址A7…A0,6116的高三位地址A10…A8接地,所以其实际容量为256字节。 RD WR 图2-1-3 存储器实验原理图 实验箱中所有单元的时序都连接至时序与操作台单元,CLR都连接至CON单元的CLR 按钮。实验时T3由时序单元给出,其余信号由CON单元的二进制开关模拟给出,其中IOM 应为低(即MEM操作),RD、WR高有效,MR和MW低有效,LDAR高有效。 2.1.4 实验步骤 (1) 关闭实验系统电源,按图2-1-4连接实验电路,并检查无误,图中将用户需要连接的信号用圆圈标明。 (2) 将时序与操作台单元的开关KK1、KK3臵为运行档、开关KK2臵为‘单步’档(时序单元的介绍见附录二)。 (3) 将CON单元的IOR开关臵为1(使IN单元无输出),打开电源开关,如果听到有

‘嘀’报警声,说明有总线竞争现象,应立即关闭电源,重新检查接线,直到错误排除。 图2-1-4 实验接线图 (4) 给存储器的00H、01H、02H、03H、04H地址单元中分别写入数据11H、12H、13H、14H、15H。由前面的存储器实验原理图(图2-1-3)可以看出,由于数据和地址由同一个数据开关给出,因此数据和地址要分时写入,先写地址,具体操作步骤为:先关掉存储器的读写(WR=0,RD=0),数据开关输出地址(IOR=0),然后打开地址寄存器门控信号(LDAR=1),按动ST产生T3脉冲,即将地址打入到AR中。再写数据,具体操作步骤为:先关掉存储器的读写(WR=0,RD=0)和地址寄存器门控信号(LDAR=0),数据开关输出要写入的数据,打开输入三态门(IOR=0),然后使存储器处于写状态(WR=1,RD=0,IOM=0),按动ST产生T3脉冲,即将数据打入到存储器中。写存储器的流程如图2-1-5所示(以向00地址单元写入11H为例): WR = 0 RD = 0 IOM = 0 IOR = 0 LDAR = 0 WR = 0 RD = 0 IOM = 0 IOR = 0 LDAR = 1 T3= WR = 0 RD = 0 IOM = 0 IOR = 0 LDAR = 0 WR = 1 RD = 0 IOM = 0 IOR = 0 LDAR = 0 T3= 图2-1-5 写存储器流程图 (5) 依次读出第00、01、02、03、04号单元中的内容,观察上述各单元中的内容是否与前面写入的一致。同写操作类似,也要先给出地址,然后进行读,地址的给出和前面一样,而在进行读操作时,应先关闭IN单元的输出(IOR=1),然后使存储器处于读状态(WR=0,RD=1,IOM=0),此时数据总线上的数即为从存储器当前地址中读出的数据内容。读存储器的流程如图2-1-6所示(以从00地址单元读出11H为例):

四川大学 操作系统上机实验 实验五 Windows虚拟存储器管理

实验报告 实验名称:Windows虚拟存储器管理 实验时间:2013年5月27日 实验人员:____郑笑凡___(姓名)__1143041243__(学号)____2011____(年级) 实验目的:1、了解Windows 2000/XP的内存管理机制,掌握页式虚拟存储技术。 2、理解内存分配原理,特别是以页面为单位的虚拟内存分配方法。 3、学会使用Windows 2000/XP下内存管理的基本API函数 实验环境:windows xp 实验步骤: 1、下载virtumem.cpp; 2、建立工程,将virtumen.cpp加入; 3、编译工程,观察结果,确信六种状态都出现至少一次,必要时可改程 序,方便观察结果; 4、看懂程序,按要求另写一段小程序; 5、编译,执行,观察结果。 6,总结。 实验陈述: 1、基础知识: pagefile.sys文件的位置在:__安装的系统盘根目录下____________________________________此文件的作用:____实现物理内存的扩展__________________________________________________ 改变此文件大小的方法:右击”我的电脑”,依次选择”属性”—“高级”—“性能选项”— “更改”_______________________________________ 虚拟地址空间中的页面分为:提交页面,保留页面,空闲页面 页面的操作可以分为:保留、提交、回收、释放、加锁 2、编程准备. 页面属性是在结构体MEMORY_BASIC_INFORMATION_的字段AllocationProtect 和字段中Protect体现出来的。 简述VirtualFree,VirtualPtotect,VirtualLock,VirtualUnlock,VirtualQuery的作用:_ VirtualFree:__释放虚存___________________________________________________ VirtualPtotect:_保留虚存_________________________________________________ VirtualLock:___加锁虚存_________________________________________________ VirtualUnlock:_解锁虚存________________________________________________ VirtualQuery:____查询虚存_______________________________________________ 3、编程 1)将virtumem.cpp加入工程,编译,执行。 是否能编译成功?是 请描述运行结果:

静态存储器-实验报告

计算机科学与技术系 实验报告 专业名称计算机科学与技术 课程名称计算机组成与结构 项目名称静态随机存储器实验 班级 学号 姓名 同组人员无 实验日期 2015-10-24

一、实验目的与要求 掌握静态随机存储器RAM 工作特性及数据的读写方法 二、实验逻辑原理图与分析 2.1 实验逻辑原理图及分析 实验所用的静态存储器由一片6116(2K ×8bit)构成(位于MEM 单元),如下 图所示。6116有三个控制线:CS(片选线)、OE(读线)、WE(写线),当片选有效(CS=0)时,OE=0时进行读操作,WE=0时进行写操作,本实验将CS 常接地线。 由于存储器(MEM)最终是要挂接到CPU 上,所以其还需要一个读写控制逻辑,使得CPU 能控制MEM 的读写,实验中的读写控制逻辑如下图所示,由于T3的参与,可以保证MEM 的写脉宽与T3一致,T3由时序单元的TS3给出。IOM 用来选择是对I/O 还是对MEM 进行读写操作,RD=1时为读,WR=1时为写。 XMRD XIOR XIOW XMWR RD IOM WE T3 读写控制逻辑 实验原理图如下如所示,存储器数据线接至数据总线,数据总线上接有8 个LED 灯显示D7…D0的内容。地址线接至地址总线,地址总线上接有8个LED 灯显示A7…A0的内容,地址由地址锁存器(74LS273,位于PC&AR 单元)给出。数据开关(位于IN 单元)经一个三态门(74LS245)连至数据总线,分时给出地址和数据。地址寄存器为8位,接入6116的地址A7…A0,6116的高三位地址A10…A8接地,所以其实际容量为256字节。

虚拟存储器管理 页面置换算法模拟实验

淮海工学院计算机工程学院实验报告书 课程名:《操作系统原理A 》 题目:虚拟存储器管理 页面置换算法模拟实验 班级:软件*** 学号:20**1228** 姓名:****

一、实验目的与要求 1.目的: 请求页式虚存管理是常用的虚拟存储管理方案之一。通过请求页式虚存管理中对页面置换算法的模拟,有助于理解虚拟存储技术的特点,并加深对请求页式虚存管理的页面调度算法的理解。 2.要求: 本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。其中虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。 二、实验说明 1.设计中虚页和实页的表示 本设计利用C语言的结构体来描述虚页和实页的结构。 在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。pfn代表实 页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页 的实页号pfn。time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。 在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。pfn代表实页号, 取值范围(0—n-1)由动态指派的实页数n所决定。next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。 2.关于缺页次数的统计 为计算命中率,需要统计在20次的虚页访问中命中的次数。为此,程序应设置一个计数器count,来统计虚页命中发生的次数。每当所访问的虚页的pfn项值不为-1,表示此虚页已被装入某实页内,此虚页被命中,count加1。最终命中率=count/20*100%。 3.LRU算法中“最近最久未用”页面的确定

实验二 数据存储器和程序存储器实验

实验二数据存储器和程序存储器实验 实验目的: 了解DSP内部数据存储器和程序存储器的结构 了解DSP指令的几种寻址方式 实验要求: 主要是对外扩数据存储器进行数据的存储、移动。该实验所需要的硬件主要是DSP、CPLD、DRAM。实验过程是:让学生通过CCS5000的DSP仿真器对DSP 进行仿真,向DSP外扩DRAM写入数据、读数据、数据块的移动,其操作结果通过CCS5000仿真界面进行观察或通过发光二极管观察其正确性。 实验步骤: 经过了实验一以后,相信各位同学对于CCS的基本操作已经了解,故在此不再赘述。 1、以Simulator方式启动CCS,打开项目文件,编译程序,加载目标代码文件。 2、打开各个观察窗口,值得注意的是,本实验需要打开三个内存窗口:Data页的0x2000(.data段)起始处、Data页的0x3000(.stack段)起始处、以及Program页的0x1f00起始处 3、按照实验一的步骤设置断点,观察方法也基本相同,下面仅对各个小段程序进行简要说明: bk0: 通过对XF引脚的置位和复位实现发光二极管的闪烁 bk1: 立即数寻址方式 bk2: 绝对地址寻址方式-数据存储器地址寻址 bk3: 绝对地址寻址方式-程序存储器地址寻址 bk4: 累加器寻址方式 bk5: 直接寻址方式(DP为基准) bk6: 直接寻址方式(SP为基准) bk7: 间接寻址方式 bk8: 存储器映射寄存器寻址方式 bk9: 堆栈寻址方式 bk10: 将程序存储器0x2000为起始地址的0x100个字复制到数据存储器的0x4000为起始地址的空间中

************************************************ * FileName: ex2.asm * * Description: 数据存储器和程序存储器实验* ************************************************ CMD文件: MEMORY { PAGE 0: VECS: origin = 0xff80, length = 0x80 PROG: origin = 0x1000, length = 0x1000 PAGE 1: DATA: origin = 0x2000, length = 0x1000 STACK: origin = 0x3000, length = 0x1000 } SECTIONS { .vectors: {} > VECS PAGE 0 .text: {} > PROG PAGE 0 .data: {} > DATA PAGE 1 .stack: {} > STACK PAGE 1 } 5000系列DSP汇编语言: .title "ex2" ;在清单页头上打印标题 .global reset,_c_int00 ;定义reset和_c_int00两个全局(外部标号),_c_int00是C ; ;行环境的入口点,该入口点在连接的rtsxxx.lib库中,DSP ;复位后,首先跳到0地址,复位向量对应的代码必须跳转 ;到C运行环境的入口点_c_int00. .mmregs ;输入存储器映象寄存器进符号表 .def _c_int00 ;识别定义在当前模块和用在其它模块中的一个或多个符号DA T0 .set 00H ;给符号DAT0设置值为00H DA T1 .set 01H DA T2 .set 02H DA T3 .set 03H DDAT0 .set 2004H DDAT1 .set 2005H DDAT2 .set 2006H DDAT3 .set 2007H PDAT0 .set 1f00H PDAT1 .set 1f01H PDAT2 .set 1f02H PDAT3 .set 1f03H .sect ".vectors" ;中断向量表, 表示以下语句行汇编进名为.vectors的初始化段, ;若用户的程序是要写进EPROM并在上电之后直接运 ;行,则必须包含Vectors.asm文件,这个文件的代码将作为IST ;(中断服务表),并且必须被连接命令文件(.cmd)分配到0 ;地址,DSP复位后,首先跳到0地址,复位向量对应的代码

存储管理实验报告

实验三、存储管理 一、实验目的: ? 一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。当用户提出申请存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。主存的分配和回收的实现虽与主存储器的管理方式有关的,通过本实验理解在不同的存储管理方式下应怎样实现主存空间的分配和回收。 在计算机系统中,为了提高主存利用率,往往把辅助存储器(如磁盘)作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间总和可以超出主存的绝对地址空间。用这种办法扩充的主存储器称为虚拟存储器。通过本实验理解在分页式存储管理中怎样实现虚拟存储器。 在本实验中,通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。熟悉虚存管理的各种页面淘汰算法通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。 二、实验题目: 设计一个可变式分区分配的存储管理方案。并模拟实现分区的分配和回收过程。 对分区的管理法可以是下面三种算法之一:(任选一种算法实现) 首次适应算法 循环首次适应算法 最佳适应算法 三.实验源程序文件名:cunchuguanli.c

执行文件名:cunchuguanli.exe 四、实验分析: 1)本实验采用可变分区管理,使用首次适应算法实现主存的分配和回收 1、可变分区管理是指在处理作业过程中建立分区,使分区大小正好适合作业的需求,并 且分区个数是可以调整的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入,作业等待。随着作业的装入、完成,主存空间被分成许多大大小小的分区,有的分区被作业占用,而有的分区是空闲的。 为了说明那些分区是空闲的,可以用来装入新作业,必须有一张空闲说明表 ? 空闲区说明表格式如下:? 第一栏 第二栏 其中,起址——指出一个空闲区的主存起始地址,长度指出空闲区的大小。 长度——指出从起始地址开始的一个连续空闲的长度。 状态——有两种状态,一种是“未分配”状态,指出对应的由起址指出的某个长度的区域是空闲区;另一种是“空表目”状态,表示表中对应的登记项目是空白(无效),可用来登记新的空闲区(例如,作业完成后,它所占的区域就成了空闲区,应找一个“空表目”栏登记归还区的起址和长度且修改状态)。由于分区的个数不定,所以空闲区说明表中应有适量的状态为“空表目”的登记栏目,否则造成表格“溢出”无法登记。 2、当有一个新作业要求装入主存时,必须查空闲区说明表,从中找出一个足够大的空闲区。 有时找到的空闲区可能大于作业需要量,这时应把原来的空闲区变成两部分:一部分分

计算机组成原理存储器读写和总线控制实验实验报告

信息与管理科学学院计算机科学与技术 实验报告 课程名称:计算机组成原理 实验名称:存储器读写和总线控制实验 姓名:班级:指导教师:学号: 实验室:组成原理实验室 日期: 2013-11-22

一、实验目的 1、掌握半导体静态随机存储器RAM的特性和使用方法。 2、掌握地址和数据在计算机总线的传送关系。 3、了解运算器和存储器如何协同工作。 二、实验环境 EL-JY-II型计算机组成原理实验系统一套,排线若干。 三、实验内容 学习静态RAM的存储方式,往RAM的任意地址里存放数据,然后读出并检查结果是否正确。 四、实验操作过程 开关控制操作方式实验 注:为了避免总线冲突,首先将控制开关电路的所有开关拨到输出高电平“1”状态,所有对应的指示灯亮。 本实验中所有控制开关拨动,相应指示灯亮代表高电平“1”,指示灯灭代表低电平“0”。连线时应注意:对于横排座,应使排线插头上的箭头面向自己插在横排座上;对于竖排座,应使排线插头上的箭头面向左边插在竖排座上。 1、按图3-1接线图接线: 2、拨动清零开关CLR,使其指示灯显示状态为亮—灭—亮。 3、往存储器写数据:

以往存储器的(FF ) 地址单元写入数据“AABB ”为例,操作过程如下: 4、按上述步骤按表3-2所列地址写入相应的数据 表3-2 5、从存储器里读数据: 以从存储器的(FF ) 地址单元读出数据“AABB ”为例,操作过程如下: (操作) (显示) (操作) (显示) (操作) (显6、按上述步骤读出表3-2数据,验证其正确性。 五、实验结果及结论 通过按照实验的要求以及具体步骤,对数据进行了严格的检验,结果是正确的,具体数据如图所示:

操作系统实验五虚拟存储器管理

操作系统实验 实验五虚拟存储器管理 学号1115102015 姓名方茹 班级11 电子A 华侨大学电子工程系

实验五虚拟存储器管理 实验目的 1、理解虚拟存储器概念。 2、掌握分页式存储管理地址转换盒缺页中断。 实验内容与基本要求 1、模拟分页式存储管理中硬件的地址转换和产生缺页中断。 分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。为此,在为作业建立页表时,应说 明哪些页已在主存,哪些页尚未装入主存。作业执行 时,指令中的逻辑地址指出了参加运算的操作存放的页号和单元号,硬件的地址转 换机构按页号查页表,若该页对应标志为“ 1”,则表示该页 已在主存,这时根据关系式“绝对地址 =块号×块长 +单元号”计算出欲访问的主 存单元地址。如果块长为 2 的幂次,则可把块号作为高地址部分,把单元号作为低 地址部分,两者拼接而成绝对地址。若访问的页对 应标志为“ 0”,则表示该页不在主存,这时硬件发“缺页中断”信号, 有操作系统按该页在磁盘上的位置,把该页信息从磁盘读出装入主存后 再重新执行这条指令。设计一个“地址转换”程序来模拟硬件的地址转 换工作。当访问的页在主存时,则形成绝对地址,但不去模拟指令的执 行,而用输出转换后的地址来代替一条指令的执行。当访问的页不在主 存时,则输出“ * 该页页号”,表示产生了一次缺页中断。 2、用先进先出页面调度算法处理缺页中断。 FIFO 页面调度算法总是淘汰该作业中最先进入主存的那一页,因此可以用一个数组来表示该作业已在主存的页面。假定作业被选中时, 把开始的 m 个页面装入主存,则数组的元素可定为m 个。 实验报告内容 1、分页式存储管理和先进先出页面调度算法原理。 分页式存储管理的基本思想是把内存空间分成大小相等、位置固定

实验二 I2C存储器实验

I2C存储器实验 实验目的 1、了解I2C总线的工作原理 2、掌握I2C总线驱动程序的设计和调试方法 3、掌握I2C总线存储器的读写方法 实验仪器 单片机开发板、稳压电源、计算机 实验原理 1、 I2C总线常识 I2C总线采用一个双线式漏极开路接口,可在一根总线上支持多个器件和主控器。所连接的器件只会把总线拉至低电平,而决不会将其驱动至高电平。总线在外部通过一个电流源或上拉电阻器连接至一个正电源电压。当总线空闲时,两条线路均为高电平。在标准模式中,I2C 总线上的数据传输速率高达100kbit/s,而在快速模式中则高达400kbit/s。 I2C总线上的每个器件均由一个存储于该器件中的唯一地址来识别,并可被用作一个发送器或接收器(视其功能而定)。除了发送器和接收器之外,在执行数据传输时,还可把器件视作主控器或受控器。主控器是负责启动总线上的数据传输并生成时钟信号以允许执行该传输的器件。同时,任何被寻址的器件均被视作受控器。 CAT24WC01/02/04/08/16是一个1K/2K/4K/8K/16K位串行CMOS EEPROM,内部含有128/256/512/1024/2048个8位字节,CATALYST公司的先进CMOS技术实质上减少了器件的功耗,CAT24WC01有一个8字节页写缓冲器,CAT24WC02/04/08/16有一个16字节页写缓冲器,该器件通过I2C总线接口进行操作,有一个专门的写保护功能,并且器件能与400KHzI2C 总线兼容。 引脚名称和功能如图1所示。 图1 24系例I2C存储器引脚说明 通过器件地址输入端A0、A1和A2可以实现将最多8个24WC01和24WC02器件4个24WC04器件,2个24WC08器件和1个24WC16器件连接到总线上。 2、I2C总线协议 (1)只有在总线空闲时才允许启动数据传送。 (2)在数据传送过程中,当时钟线为高电平时,数据线必须保持稳定状态,不允许有跳变。时钟线为高电平时,数据线的任何电平变化将被看作总线的起始或停止信号。 (3)起始信号 时钟线保持高电平期间,数据线电平从高到低的跳变作为I2C 总线的起始信号。 (4) 停止信号 时钟线保持高电平期间,数据线电平从低到高的跳变作为I2C 总线的停止信号。I2C 总线时序:

南京中医药大学虚拟存储器管理实验

实验三虚拟存储管理 实验性质:验证 建议学时:3 实验目的: 存储管理的主要功能之一是合理的分配空间。请求页式管理是一种常用的虚拟存储管理技术。本实验的目的是请求页式存储管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换方法。 预习内容: 阅读教材《计算机操作系统》第四章,掌握存储器管理相关概念和原理。 实验内容: (1)通过随机数产生一个指令序列,共320条指令。指令的地址按下述原则生成: ①50%的指令是顺序执行的; ②25%的指令是均匀分布在前地址部分; ③25%的指令是均匀分布在后地址部分。 具体的实施方法是: ①在[0,319]的指令地址之间随机选取一起点m; ②顺序执行一条指令,即执行地址为m+1的指令; ③在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’; ④顺序执行一条指令,其地址为m’+1; ⑤在后地址[m’+2,319]中随机选取一条指令并执行; ⑥重复上述步骤,直至执行320次指令。 (2)将指令序列变换成页地址流。 设:①页面大小为1K; ②用户内存容量为10块到32块; ③用户虚存容量为32K; 在用户虚存中,按每页存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为: 第0条~第9条指令为第0页(对应的虚存地址为[0,9]); 第10条~第19条指令为第1页(对应的虚存地址为[10,19]); …… 第310条~第319条指令为第31页(对应的虚存地址为[310,319]); 按以上方式,用户指令可组成32页。 (3)计算并输出下述各种算法在不同的内存容量下的缺页率。 ①先进先出的算法(FIFO); ②最近最少使用算法(LRU); ③最佳淘汰法(OPT):先淘汰最不常用的页地址; ④最少访问页面算法(LFU)。 缺页率=(页面失效次数)/(页地址流长度)= 缺页中断次数/ 320 在本实验中,页地址流的长度为320,页面失效次数为每次访问相应指令时,该指令所对应的页不在内存的次数。

OS实验指导四——虚拟存储器管理

OS实验指导四——虚拟存储器管理

————————————————————————————————作者:————————————————————————————————日期: 2

《操作系统》实验指导四 开课实验室:A207、A209 2015/11/23 、2015/11/24 实验类型设计 实验项目(四)虚拟存储器管理实验 实验学时 4 一、实验目的 设计一个请求页式存储管理方案,并编写模拟程序实现。 二、设备与环境 1. 硬件设备:PC机一台 2. 软件环境:安装Windows操作系统或者Linux操作系统,并安装相关的程序开发 环境,如C \C++\Java 等编程语言环境。 三、实验要求 1) 上机前认真复习页面置换算法,熟悉FIFO算法和LRU页面分配和置换算法的过程; 2) 上机时独立编程、调试程序; 3) 根据具体实验要求,完成好实验报告(包括实验的目的、内容、要求、源程序、实例运行 结果截图)。 四、实验内容 1、问题描述: 设计程序模拟FIFO和LRU页面置换算法的工作过程。假设内存中分配给每个进程的最小物理块数为m,在进程运行过程中要访问的页面个数为n,页面访问序列为P1, … ,Pn,分别利用不同的页面置换算法调度进程的页面访问序列,给出页面访问序列的置换过程,并计算每种算法缺页次数和缺页率。 2、程序具体要求如下: 编写程序用来模拟虚拟页式存储管理中的页面置换 要求: 1)快表页面固定为4块 2)从键盘输入N个页面号 3)输出每次物理块中的页面号和缺页次数,缺页率 4)实现算法选择

3、程序流程图 3、源程序参考: (1)FIFO 算法部分 #include "stdio.h" #define n 12 #define m 4 void main() { int ym[n],i,j,q,mem[m]={0},table[m][n]; char flag,f[n]; printf("请输入页面访问序列\n "); for(i =0;i

计算机组成原理实验报告二半导体存储器原理实验

半导体存储器原理实验 一、实验目的: 1、掌握静态存储器的工作特性及使用方法。 2、掌握半导体随机存储器如何存储和读取数据。 二、实验要求: 按练习一和练习二的要求完成相应的操作,并填写表2.1各控制端的状态及记录表2.2的写入和读出操作过程。 三、实验方案及步骤: 1、按实验连线图接线,检查正确与否,无误后接通电源。 2、根据存储器的读写原理,按表2.1的要求,将各控制端的状态填入相应的栏中以方便实验的进行。 3、根据实验指导书里面的例子练习,然后按要求做练习一、练习二的实验并记录相关实验结果。 4、比较实验结果和理论值是否一致,如果不一致,就分析原因, 然后重做。 四、实验结果与数据处理: (1)表2.1各控制端的状态

2)练习操作 数据1:(AA)16 =(10101010)2 写入操作过程: 1)写地址操作: ①应设置输入数据的开关状态:将试验仪左下方“ INPUT DEVICE ”中的8位数据开关D7-D0 设置为00000000 即可。 ②应设置有关控制端的开关状态:先在实验仪“SWITCH UNIT ”中打开输入三态门控制端,即SW-B=0 ,打开地址寄存器存数控制信号,即LDAR=1, 关闭片选信号(CE ),写命令信号(WE )任意,即CE=1,WE=0 或1。 ③应与T3 脉冲配合可将总线上的数据作为地址输入AR 地址寄存器中:按一下微动开关START 即可。 ④应关闭AR 地址寄存器的存数控制信号:LDAR=0 。 2)写内容操作: ①应设置输入数据的开关状态:将试验仪左下方“ INPUT DEVICE ”中的8位数据开关D7-D0 设置为10101010 。 ②应设置有关控制端的开关状态:在实验仪“SWITCH UNIT ”中打开输入三态门控制端, 即SW-B=O,关闭地址寄存器存数控制信号,即LDAR=O,打开片选信号(CE )和写命令 信号(WE),即CE=0,WE=1。 ③应与T3 脉冲配合可将总线上的数据写入存储器6116的00000000地址单元中:再按一下 微动开关START 即可。 ④应关闭片选信号和写命令信号:即CE=1,WE=0。 读出操作过程: 1 )写地址操作:参考写入操作的写地址操作 2)读内容操作: ①关闭输入三态门控制端,即SW-B=1。 ②地址寄存器存数控制信号(LDAR)任意,不过最好关闭,即LDAR=0 ,防止误按脉冲信号存入数据。 ③关闭写命令信号(WE),即WE=0,打开片选信号(CE),即CE=0,不需要T3脉冲,即 不要按微动开关START。此时00000000地址的内容通过“ BUS UNIT ”中数据显示灯B7-B0 显示出来。 数据2:(55)16 =(01010101)2 写入操作过程: 1)写地址操作: ①设置输入数据的开关状态:将试验仪左下方“ INPUT DEVICE ”中的8位数据开关D7-D0 设置为

实验四 虚拟存储器管理实验

实验四虚拟存储器管理实验 ◆实验名称:存储器管理实验 ◆仪器、设备:计算机 ◆参考资料:操作系统实验指导书 ◆实验目的: 设计一个请求页式存储管理方案,并编写模拟程序实现。 ◆实验内容: 编写程序用来模拟虚拟页式存储管理中的页面置换 要求: 1.快表页面固定为4块 2.从键盘输入N个页面号 3.输出每次物理块中的页面号和缺页次数,缺页率 ◆实验原理、数据(程序)记录: #define PAGES 4 /* 物理块数*/ #define N 16 /*最多输入的页面号*/ int pages[PAGES][2]; /*page[i][0]保存页面号,page[i][1]保存页面存留时间*/ int queue[N]; /*页面号数组*/ void initialise(void) /*------------初始化:快表和页面号数组++++++++++++++*/ { int i; for(i=0;i

实验五存储器读写实验报告

实验五存储器读写实验报告 实验报告 课程名:《计算机组成原理》题目:实验五存储器读写班级:计算机+ 自动化0901班姓名:张哲玮,郑俊飞 《计算机组成原理》实验报告- 1 - 实验五、存储器读写实验 一、目的与要求 (1)掌握存储器的工作特性 (2)熟悉静态存储器的操作过程,验证存储器的读写方法 二、实验原理及原理图 (1)?静态存储器芯片6116的逻辑功能 6116是一种数据宽度为8位(8个二进制位),容量为2048字节的静态存储器芯片,封在24引脚的封装中,封装型式如图2-7所示。6116芯片有8根双向三态数据线D7-D0,所谓三态是指输入状态,输出状态和高阻状态,高阻状态数据线处于一种特殊的“断开”状态;11根地址线A10-A0,指示芯片内部2048个存储单元号;3根控制线CS片选控制信号,低电平时,芯片可进行读写操作,高电平时,芯片保存信息不能进行读写;WE 为写入控制信号,低电平时,把数据线上的信息存入地址线A10-A0指示的存储单元中;0E为输出使能控制信号,低电平时,把地址线A10-A0指示的存储单元中的数据读出送到数据线上。

6116芯片控制信号逻辑功能表 (2).存储器实验单元电路 因为在计算机组成原理实验中仅用了256个存储单元,所以6116芯片的3根地址线A11-A8接地也没有多片联用问题,片选信号CS接地使芯片总是处于被选中状态。芯片的WE和0E信号分别连接实验台的存储器写信号M-W和存储器读信号M-Ro这种简化了控制过程的实验电路可方便实验进行。 存储器部件电路图 (3)?存储器实验电路 存储器读\写实验需三部分电路共同完成:存储器单元(MEM UNIT),地址寄存器单元(ADDRESS UNIT)和输入,输出单元(INPUT/OUTPIT UNIT).存储器单元6116芯片为中心构成,地址寄存器单元主要由一片74LS273组成,控制信号B-AR的作用是把总线上的数据送入地址寄存器,向存储器单元电路提供地址信息,输入,输出单元作用与以前相同。

实验四 虚拟存储器管理

实验四虚拟存储器管理 一、实验目的 1、为了更好的配合《操作系统》有关虚拟存储器管理章节的教学。 2、加深和巩固学生对于请求页式存储管理的了解和掌握。 3、提高学生的上机和编程过程中处理具体问题的能力。 二、实验内容 请求页式存储管理是一种常用的虚拟存储管理技术。本实验的目的是通过请求页式存储管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。 1.通过随机数产生一个指令序列,共320条指令。 指令的地址按下述原则生成: a.50%的指令是顺序执行的。 b.25%的指令是均匀分布在前地址部分。 c.25%的指令是均匀分布在后地址部分。 具体的实施方法是: a.在[0,319]指令地址之间随机选取一起点; b.顺序执行一条指令,即执行地址为m+1的指令; c.在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’; d.顺序执行一条指令,其地址为m’; e.在后地址[m’+2,319]中随机选取一条指令并执行; f.重复上述步骤a~e,直到执行320次指令。 2.将指令序列变换成为页地址流 设: a.页面大小为1K; b.用户内存容量为4到32页; c.用户虚存容量为32K。 在用户虚存中,按每K存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为: 第0条~第9条指令为第0页,对应虚存地址为[0,9];

第10条~第19条指令为第1页,对应虚存地址为[10,19] . . 第310条~第319条指令为第31页,对应虚存地址为[310,319]。 按以上方式,用户指令可组成32页。 3、输出下述各种算法在不同内存容量下的命中率。 a.先进先出的算法; b.最近最少访问算法; c.最近最不经常使用算法。 其中:命中率=1-页面失效次数/页地址流长度 页地址流长度为320,页面失效次数为每次访问相同指令时,该指令所对应的页不在内存的次数。 三、实验要求 实验课时4学时。要求画出利用各种算法置换时的置换图,并可以分析说明。编程可分 为几个部分完成:指令的分页,算法的选择,算法的实现,命中率的输出。编写程序前可先 阅读Linux源代码页面换入: static int do_swap_page(struct mm_struct * mm, struct vm_area_struct * vma,unsigned long address, pte_t * page_table,swp_entry_t entry,int write_access) { struct page *page = lookup_swap_cache(entry); pte-t pte; if (!pgae){ lock_kernel( ); swapin_readahead(entry); page = read_swap_cache(entry); unlock_kernel( ); if (!page) return -1;

计算机组成原理实验五存储器读写实验

实验五 存储器读写实验实验目的 1. 掌握存储器的工作特性。 2. 熟悉静态存储器的操作过程,验证存储器的读写方法。 二、实验原理 表芯片控制信号逻辑功能表

2. 存储器实验单元电路 芯片状态 控制信号状态 DO-D7 数据状态 M-R M -W 保持 1 1 高阻抗 读出 0 1 6116-^总钱 写人 1 0 总线-*6116 无效 报警 ^2-10 D7—DO A7—A0

團2-8存储器实验电路逻辑图 三、实验过程 1. 连线 1) 连接实验一(输入、输出实验)的全部连线。 2) 按逻辑原理图连接M-W M-R 两根信号低电平有效信号线 3) 连接A7-A0 8根地址线。 4) 连接B-AR 正脉冲有效信号 2. 顺序写入存储器单元实验操作过程 1) 把有B-AR 控制开关全部拨到0,把有其他开关全部拨到1,使全部信号都处 于无效 状态。 2) 在输入数据开关拨一个实验数据,如“ 00000001”即16进制的01耳 把IO-R 控制开关拨下,把地址数据送到总线。 3) 拨动一下B-AR 开关,即实现“1-0-1 ”产生一个正脉冲,把地址数据送地 址寄存器保存。 4) 在输入数据开关拨一个实验数据,如“ 10000000',即16进制的80耳 把IO-R 控 制开关拨下,把实验数据送到总线。 3. 存储器实验电路 0 O O 0 0 olo O O O O 0 00 OUTPUT L/O :W 8-AR £ ■」2 ■七 ol^Fgr' L P O 74LS273 A7- AO vz 0 o|o 0 r 6116 A7 INPUT D7-O0 [olololololololol T2

虚拟存储器管理实验报告

淮海工学院计算机科学系实验报告书 课程名:《操作系统》 题目:虚拟存储器管理 页面置换算法模拟实验 班级: 学号: 姓名:

一、实验目的与要求 1.目的: 请求页式虚存管理是常用的虚拟存储管理方案之一。通过请求页式虚存管理中对页面置换算法的模拟,有助于理解虚拟存储技术的特点,并加深对请求页式虚存管理的页面调度算法的理解。 2.要求: 本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。其中虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。 二、实验说明 1.设计中虚页和实页的表示 本设计利用C语言的结构体来描述虚页和实页的结构。 在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。 在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。 2.关于缺页次数的统计 为计算命中率,需要统计在20次的虚页访问中命中的次数。为此,程序应设置一个计数器count,来统计虚页命中发生的次数。每当所访问的虚页的pfn项值不为-1,表示此虚页已被装入某实页内, 此虚页被命中,count加1。最终命中率=count/20*100%。 3.LRU算法中“最近最久未用”页面的确定 为了能找到“最近最久未用”的虚页面,程序中可引入一个时间计数器countime,每当要访问 一个虚页面时,countime的值加1,然后将所要访问的虚页的time项值设置为增值后的当前

实验二数据存储实验

实验二数据存储实验 一、实验目的 1、掌握TMS320C54的程序空间的分配; 2、掌握TMS320C54的数据空间的分配; 3、熟悉操作TMS320C54数据空间的指令。 二、实验设备 计算机,CCS 2.0版软件,DSP仿真器,实验箱。 三、实验原理 本实验指导书是以TMS320C5416为例,介绍相关的内部和外部存储器资源。对于其他类型的CPU请参考查阅相关的数据手册。 下面给出TMS320C5416的存储器分配表: 对于数据存储空间而言,映射表相对固定。值得注意的是内部寄存器都映射到数据存储空间内。因此在编程应用是这些特定的空间不能作其他用途。对于程序存储空间而言,其映射表和CPU的工作模式有关。当MP/MC引脚为高电平时,CPU工作在微处理器模式;当MP/MC引脚低电平时,CPU工作在为计算机模式。具体的存储器映射关系如上如所示。 存储器试验主要帮助用户了解存储器的操作和DSP的内部双总线结构。并熟悉相关的指令代码和操作等。 四、实验步骤与内容 1、连接好DSP开发系统,运行CCS软件;

2、在CCS的Memory窗口中查找C5416各个区段的数据存储器地址,在可以改变 的数据地址随意改变其中内容; 3、在CCS 中装载实验示范程序,单步执行程序,观察程序中写入和读出的数据存储地址的变化; 4、联系其他寻址方式的使用。 5、样例程序实验操作说明 启动CCS 2.0,并加载“exp02.out”; 图2.1 加载out文件 用“View”下拉菜单中的“Memory”查看内存单元;

图2.2 memory视图菜单 输入要查看的内存单元地址,本实验要查看0x1000H~0x100FH单元的数值变化,输 入地址0x1000H; 图2.3 memory 参数设置窗 查看0x1000H~0x100FH 单元的初始值,单击“Run”运行程序,也可以“单步”运 行程序;

相关文档
最新文档