复杂产品数字化协同设计技术发展_范文慧

复杂产品数字化协同设计技术发展_范文慧
复杂产品数字化协同设计技术发展_范文慧

FORUM

44

航空制造技术?2013 年第 3 期

从设计过程的发展历程来看,C A x 独立应用阶段注重设计工具的实施,并行工程阶段注重CAx/DFx 工具之间的协同,局部协同阶段强调多领域工具并行协同,全局协同阶段强调多领域工具实时并行协同,重视设计、仿真、优化与试验一体化技术的应用。

清华大学自动化系国家CIMS 工程技术研究中心 范文慧 刘博元

复杂产品数字化协同设计

技术发展

Digital Collaboration Design Technology for Complex Product

Simulation)以及基于PLM 的设计信

息集成。

21世纪初,随着产品设计技术的不断发展和社会对产品功能需求的不断提高,各种产品日趋复杂化。尤其是航天器、飞机、车辆、舰船、复杂机电产品等典型的复杂产品,是多个子系统通过复杂的耦合关系集成的产物。如航空飞行器,在设计过程中需要用到机械、电子、液压、控制等多学科、多领域知识,如果要进一步细分,就会涉及到更多的子系统设计问题。复杂产品设计,要求设计出来的产品除了满足单领域所需求的各种功能要求外,更要求其必须满足系统耦合后全系统的行为要求。能否满足这些行为要求往往将直接决定所设计出来的产品能否成功。复杂产品设计方法更加强调系统性与整体性,出现了协同设计、

随着现代信息技术、现代控制技术、系统工程技术等相关学科的不断发展,先进产品系统设计技术得到了飞速的发展,各种新思想和新技术也不断涌现。自20世纪70年代以来,CAx 技术在制造企业中得到了广泛的应用,使企业摆脱了传统的工作方式,设计开发能力得到了极大的提高; 20世纪80年代初,以信息集成为核心的计算机集成制造系

统(Computer Integrated Manufacturing System,CIMS)开始受到普遍重视并得到广泛实施,在CIMS 技术发展的带动下,设计技术开始从局部应用转向系统应用,即将原有的CAx/DFx 等技术集成起来解决问题; 20世纪80年代末,以过程集成为核心的并行工程(Concurrent Engineering,CE)理念的提出使设计信息化水平得到了进一步的提高,出现了PDM 思想,用来对设计技术过程集成和管理;进入20世纪90年代以后,随着理论研究的不断深入以及各种支撑技术的不断完善,许多新的思想和概念陆续被提出,典型的如虚拟制造(Virtual Manufacturing,VM)、敏捷制造(Agile Manufacturing,AM)、虚拟企业(Virtual Enterprise,VE),设计方法中更加强调协同设计(Collaboration Design)、协同仿真(Collaboration

范文慧

博士,清华大学自动化系教授,博士生导师,研究方向为系统仿真与虚拟制造。

数字化协同技术

Digital Collaboration Technology

2013 年第 3 期?航空制造技术

45

协同仿真与协同优化(Collaboration Optimization),而且仿真优化也越来越成为复杂产品设计必不可缺少的手段。以单领域为核心的独立应用阶段自20世纪50年代开始,随着信息技术的发展,各种计算机辅助工具开始出现并逐步应用到产品设计过程中,典型的如各种CAD、CAE、CAPP、CAM 等工具。这些工具的应用表明制造业已经开始利用现代信息技术来改进传统的产品制造过程,标志着产品设计信息化的开始。然而,在经过一段时间的发展之后,人们发现,由于各种计算机辅助工具只注重于解决本领域的问题,忽视了彼

此之间的联系,导致设计过程和制造过程中出现了大量的信息孤岛,严重阻碍了信息化的进一步发展。

因此,企业在产品开发过程中大量采用了计算机辅助工具,并注重各个系统间信息集成的实现,使得企业的新产品开发能力得以极大的提高,市场竞争能力也随之增强。然而,由

于产品开发仍然采用传统的串行开发模式,致使设计的早期阶段不能很

好地考虑产品生命周期中的各种因素,不可避免地造成较多设计返工,这促使企业在实现了内部信息集成之后,开始逐渐关注过程集成的问

题,并由此发展出并行设计理念。以过程为核心的

集成应用阶段

并行设计是对传统的串行产品开发方式的一种根本性改进[1]。并行设计的核心是过程集成。1986年,美国国防部先进计划局DARPA (Defense Advanced Research Projects Agency)制定了一项为期5年的并行工程启动计划DICE(DARPA Initiative in Concurrent Engineering)。统化方法是并行设计的核心。系统

工程的方法强调时、空两方面的整体性,而并行设计更侧重于时间上的协同。从内涵上看,并行设计将一系列在时间上分散的但彼此之间相互作用的过程基于时间轴看作一个统一的系统,进而采用系统工程的思想对这个系统进行整体分析与优化。图1显示了串行产品设计过程与并行产品设计过程在信息流动关系上和上市时间上的区别。这一阶段,出现了大量DFx(Design For X)技术,如DFM——面向制造的设计、DFA——面向装配的设计、DFC——面向成本的设计等,并以PDM (产品数据管理)为集成平台,将这些应用系统集成为一个整体,同时,对产品设计过程及组织形式加以改进,以便在设计早期尽可能做出正确决策。

以互操作为核心的协同应用阶段

传统新产品的开发通常要经过设计、样机试制、工业性试验、改进定型和批量生产几个阶段。由于技术

的限制,在设计阶段获取的产品的各类相关信息极为有限,设计人员对详细设计方案的仿真和评估也很有限,很难保证设计中没有差错。由于产

品的复杂程度加大,很少有人能够在

开始阶段全面细致地了解整个系统。

对于那些成本很高的产品,一旦出现

难以弥补的设计错误,就会造成极大的损失。为了减少这种风险,通常需要建立一个等同于真实产品的物理样机,以获得产品的机械、物理、外观以及可制造性、可装配性等的全面信息反馈,从而更好地消除设计阶段难以发现的重大设计错误。但是复杂产品系统的物理样机通常造价昂贵,而且耗时长久。在迭代的设计过程中,一旦设计方案有重大修改,就需要重新建立物理样机,导致设计成本的增加和设计周期延长。为了解决这些问题,出现了以仿真技术为基础的虚拟样机技术。

虚拟样机是由分布的、不同工具开发的、甚至异构的子模型组成的模型联合体,主要包括:产品的CAD

图1 典型的并行开发过程的比较[2]

Pro/E

协调与冲突化解DFx/CAE 工具Word 等应用软件Windchill PDM BOM 视图管理产品结构

配置管理并行化产品开发流程和过程管理基本

环境管理文档管理电子仓库应用工具的封装与集成

集成数据接口封装Windchill 生产周期循环应用组件基础

构架

Windchill 软硬件

环境

异构分布的计算机硬件环境

操作系统、网络环境Web 机制、数据处理逻辑相关对象模型、基础类库Windchill Foundation 服务

FORUM

46

航空制造技术?2013 年第 3 期

模型、产品的外观表示模型、产品的功能和性能仿真模型、产品的各种分析模型(可制造性、可装配性等)、产品的使用和维护模型以及环境模型

等[2]。借助虚拟样机,

设计人员可以通过成熟的三维计算机图形学,模拟在真实环境下产品的各种运动和动力特性,并能根据仿真结果优化产品的设计方案。

虚拟样机技术是一种基于产品的计算机仿真模型的数字化设计方法,这些数字模型即虚拟样机(Virtual Prototype,VP)能从视觉、听觉、触觉及功能、性能和行为上模拟真实产品[3-4] 。虚拟样机技术是一种基于虚拟样机的产品设计方法,是一门基于先进建模技术、多领域仿真技术、信息管理技术、交互式用户界面技术和虚拟现实技术的综合应用技术,它不仅包括构造虚拟样机的过程,还包括将虚拟样机放到综合虚拟环境中进行仿真分析的活动[5-8]。虚拟样机技术本质上属于一种基于并行工程理念的设计开发方式,为并行工程理念的实现提供了一条可行的实现途径。与传统产品设计技术相比,虚拟样机技术强调系统的观点、涉及产品全生命周期、支持对产品的全方位测试、分析与评估、强调不同领域的虚拟化的协同设计。

以一体化为核心的多领域并行

协同应用阶段

由于复杂产品对象本身十分复杂,工程设计人员必须使用仿真工具对产品设计方案进行仿真分析,并根据分析结果优化设计方案,形成基于仿真的优化过程。复杂产品高性能仿真往往涉及多个领域,需要不同的仿真软件,而基于仿真的优化也需要专业的优化软件。为了使优化过程能够自动进行,不同的科学家、工程师、计算专家需要协同工作。

由于航空航天领域的产品相对更加复杂一些,对成本和性能的

要求都很高,因此,多学科设计优化(MDO)最早是在航空航天领域发展起来的。MDO 技术诞生后,在世界上尤其是美国得到了飞速的发展。目前国际上普遍认可MDO 算法的主要有:多学科可行方法(MDF)、一致性优化方法(AAO)、单学科可行方法(IDF)、并行子空间优化算法(CSSO)、协同优化算法(CO)和两级

集成系统综合方法(BLISS)。根据这5种算法结构的不同,分为单级优化算法和多级优化算法两类。其中MDF、IDF、AAO 属于单级优化算法,CSSO、CO、BLISS属于多级优化算法。

随着MDO 技术在工程设计界的不断发展,出现了许多支持MDO 技术的应用软件和工具。NASA

Langley Research Center 提出了针对MDO 软件工具的框架要求,符合这些框架要求的主要有以下的软件工具:iSIGHT,ModelCenter, DAKOTA(Design Analysis Kit for OpTimizAtion)等[9]。协同是现代复杂装备研发发展的必然要求,系统能否发挥协同效应是由系统内部各子系统或组分的协同作用决定的,协同得好,系统的整体性功能就好。协同设计、仿真、优化与试验是复杂装备研发创新不可缺少的重要方法,也是提升产品知识含量的有效手段。协同设计是基

础、协同仿真是提升、协同优化是目标、协同试验是验证。如图2所示复杂装备多领域融合协同创新研发的体系结构图。其中,PLM 为产品生命周期管理,SDM 为仿真数据管理,ODM 为优化数据管理,TDM 为试验数据管理。

结 论

从设计过程的发展历程来看,CAx 独立应用阶段注重设计工具的实施,并行工程阶段注重CAx/DFx 工具之间的协同,局部协同阶段强调多领域工具并行协同,全局协同阶段强调多领域工具实时并行协同,重视设计、仿真、优化与试验一体化技术

的应用。虽然复杂产品协同仿真优化领域尚不十分成熟,没有建立起完整的科学理论和应用体系。但是,目前在国外有许多学者纷纷将注意力投入这一领域,并取得一定的进展,我相

信未来协同设计、协同仿真、协同优化、协同试验必将是复杂产品设计与研发的不可缺少的手段。本文共有参考文献10篇,因篇幅所限未能一一列出,如有需要请向本刊编辑部索取。 (责编 深蓝)

图2 复杂装备多领域融合协同创新研发的体系结构[10]

复杂装备多领域融合协同创新研发

设计仿真优化试验

CAT

CAO CAE CAD TDM

ODM SDM PLM

协同设计MCD-协同仿真MCS-协同优化MCO-协同试验MCT

数字化设计与制造试题及答案

数字化设计与制造试题及答案 一、填空题 1.在全球化竞争时代,制造企业面临严峻挑战体现在时间产品质量成本服务水平和环保 2.从市场需求到最终产品主要经历两个过程:设计过程和制造过程。 3.设计过程包括分析和综合两个阶段。 4.数字化设计技术群包括:计算机图形学计算机辅助设计计算机辅助分析和逆向工程。 5.有限元方法是运用最广泛的数字化仿真技术。 6.数控加工是数字化制造中技术最成熟最、运用最广泛的技术。 7.实现数据交换的两种方式:点对点交换和星形交换。 8.计算机图形学主要是对矢量图形的处理。 9.笛卡尔坐标系分为:右手坐标系和左手坐标系。 10.常用坐标系的转换关系:建模坐标系-世界坐标系--观察坐标系--规格化坐标系--设备坐标系。 11.参数化造型的软件系统分为:尺寸驱动系统和变量设计系统。 12.仿真的对象是:系统。 13.CAPP的类型:派生型、创成型、智能型、综合型、交互型。 14.高速切削刀具的材料有;金刚石、立方氮化硼、陶瓷刀具、涂层刀具和硬质合金刀具。 15.逆向工程的四种类型:实物逆向、软件逆向、影像逆向和局部逆向。 16.逆向工程基本步骤:分析、再设计、制造。 17.实物逆向工程的关键技术主要有:逆向对象的坐标数据测量、测量数据的处理及模型重构技术。 18.对三坐标测量机数据修正方法:等距偏移法、编程补偿法。 19.典型的快速原型制造工艺及设备:立体光固化(SL)、熔融沉积成形(FDM)、选择性激光烧结(SLS)、叠层实体制造(LOM)、三维印刷(3DP)。 20.尺寸驱动系统只考虑尺寸及拓扑约束,不考虑工程约束,变量设计系统不仅考虑尺寸及拓扑约束还考虑工程约束。 21.FMS是指柔性制造系统 二、简答题 1.CAD、CAE、CAM之间的关系? 答:以计算机辅助设计和计算机辅助分析为基础的数字化设计和以计算机辅助制造为基础的数字化制造,是产品数字化开发的核心技术。 数字化设计与制造的特点有哪些? 答:a.计算机和网络技术是数字化设计与制造的基础; b.计算机只是数字化设计与制造的重要辅助工具; c. 数字化设计与制造能有效地提高了产品质量、缩短产品开发周期、降低产品成本; d.数字化设计与制造技术只涵盖产品生命周期的某些环节。 2.窗口与视口的变换关系是怎样的? 答:视口不变,窗口缩小或放大,视口显示的图形会相应的放大或缩小;窗口不

数字化设计及仿真

数字化设计及仿真 祝楷天 (盐城工学院优集学院江苏盐城224051) 摘要:制造业信息化的发展促使许多企业建立起了相应的CAD/CAM软件环境平台,并应用CAD/CAM软件进行产品的设计、分析、加工仿真与制造,取得了显著的效果。利用计算机辅助设计和制造(CAD/CAM)软件系统来完成机床夹具设计过程是加速夹具设计效率、提高设计质量的一种重要手段。但现有的通用CAD/CAM软件没有针对机床夹具设计的完整技术手册资料和三维标准件图库系统,设计人员仍然需要使用传统的纸质工具手册书籍进行资料查询和标准件三维实体图绘制工作,影响了机床夹具设计的效率和质量。因此,研究机床夹具数字化设计手册软件和三维标准件图库系统对满足数字化时代工程技术人员的需要具有重要的作用。 关键词:机械产品;数字化;设计仿真。 Digital design and simulation ZHU Kai-tian (UGS College,Yancheng Institute of Technology,Yancheng,Jiangsu 224051)Abstract: The development of manufacturing industry has led many enterprises to set up the corresponding CAD/CAM software environment platform, and the application of CAD/CAM software for product design, analysis, processing simulation and manufacturing, has achieved remarkable results. Using computer aided design and manufacturing (CAD/CAM) software system to accomplish machine tool fixture design process is an important means to accelerate fixture design efficiency and improve design quality. But the existing general CAD/CAM software does not have the complete technical manual data and the 3D standard part library system for the machine tool fixture design, the design personnel still need to use the traditional paper tools manual books to inquire and the standard piece three-dimensional entity chart drawing work, has affected the efficiency and the quality of the machine tool jig design. Therefore, it is important to study the software and 3D standard part library system of the digital design of machine tool fixture to meet the needs of engineering and technical personnel in the digital age. Keywords: Mechanical products, Digitization , Design simulation.

产品设计的数字化

上海大学20 13 ~20 14 学年 冬 季学期课程考试 (课程收获体会 ) 课程名称: 产品设计的数字化 课程编号: 0900L3001000 论文题目: 浅谈产品设计的数字化 学生姓名: 徐广浩 学 号: 12120626 教师评语: 成 绩: 任课教师: 评阅日期: 一 □ 二 □

产品设计的数字化顾名思义就是用数字化的技术来设计产品,首先我们先来了解一下何为数字化。 数字化是指一种纯技术的转换过程,就是将许多复杂多变的信息转变为可以度量的数字、数据,再以这些数字、数据建立起适当的数字化模型,把它们转变为一系列二进制代码,引入计算机内部,进行统一处理。简单地说,所谓数字化就是指把所有的信息都用0和1进行编码表达。因此以现实世界不同的是,在数字化的网络世界中,一切都是由0和1来代表的,就是一些信息变得非常简单,易于处理。随着计算机和软件技术的发展,如今的数字化已经远远超过了0和1的比特组合,不再是一种静态的符号意义,已不能将数字化简单地理解为是物理、电子世界或是机械的数学是的纯逻程序或纯比特的堆积,它已经使我们超越物理时空界限,超越现实社会,拓展出人类实践活动的全新领域,衍生出诸多全新的时间方式。数字化已不再是单纯的网络信息技术概念,而是包括现代科技、社会经济和文化的综合性概念。数字化从根本上改变了信息的获取。传递、处理方式、将人类社会推向信息时代。 什么是设计? 设计作为人类生物性与社会性的生存方式,其渊源是伴随制造工具的人的产生而产生的。设计就是设想、运筹、划算与预算,它是人类为实现某种特定目的而进行的创造性活动。 因此产品设计的数字化,就是用数字化的技术进行产品设计。以前科技不发达时,先辈们就应经设计出来许多美丽的产品,如陶瓷,雕塑……但是传统的设计只能依靠手工操作来完成,设计思想在设计人员的大脑中表现为三维模型,但传统的设计方法是将设计思想表达为二维工程图,这带来了许多的弊端,如表达不清晰、更改费时费工、使用报关不便等。同时,二维工程图对于零部件的性能分析、零部件的装配、结构的优化等帮助不大。随着世界科技与经济的发展,尤其是计算机技术的发展和广泛应用带来了信息革命,使人们的设计思想有了一次飞跃,应用计算机辅助技术设计和计算机辅助工程,将设计思想表达为计算机的三维模型彻底摆脱了传统设计的缺点。利用计算机进行三维建模,吧机械零部件的结构全部用三维实体描述出来,并把各种技术要求、设计说明、材料公差等非几何信息以及各结构之间的相对位置表示清楚,在此基础上进行虚拟准备,检查零部件之间是否发生干涉以及他们之间的间隙,在产品的开发设计阶段就对其生命周期全过程中的各种因素考虑周全,排除某些设计的不合理性,最终形成数字样机。数字样机作为制造一句,能够实现精确设计,最大限度地减少了工程更改,节省了大量汞装模具和生产准备时间。很显然,与传统的设计方法相比,采用三维数字化设计不仅使设计对象几何形状得以直观显示,而且被赋予物理属性的

专升本机械工程及自动化数字化设计与制造技术ok

江南大学现代远程教育课程考试大作业 请于11月10日前提交 考试科目:《数字化设计与制造技术》 一、大作业题目(内容): 一、参照一般系统的性能,对数字化设计制造来说,其主要性能及能力要求有哪些?(10分) 答:参照一般系统的性能,对数字化设计制造来说,其主要性能及能力要求包括以下几方面:1).稳定性。稳定性是指在正常情况下,系统保持其稳定状态的能力。 2).集成性。集成性指系统内各子系统相互关联,能协同工作。 3).敏捷性。敏捷性指系统对环境或输入条件变化及不确定性的适应能力,对内外各种变化能快速响应、快速重组的能力。单件、多品种、小批量是市场对现代产品研制的基本生产要求。 4).制造工程信息的主动共享能力。数字化设计制造中零件设计、工艺设计和工装设计等过程的集成和并行协同要求信息能同步传递,这种信息共享方式称为“信息主动共享”。 5).数字仿真能力。数字仿真能力指系统对产品制造中涉及的诸多问题进行虚拟仿真的能力。6).支持异构分布式环境的能力。无论从不同类型设备联网还是从数据管理考虑,或是从面向全生命周期的零件信息模型考虑,均需对系统的结构体系和数据结构进行合理的综合规划与设计,实现系统分布性与统一性的协调。 7).扩展能力。系统的扩展是通过软件工具集的扩展来实现的。 二、什么是参数化设计?请说明参数化设计在产品设计中的意义。(10分) 答:参数化设计一船是指设计对象的结构形状基本不变,而用一组参数来约定尺寸关系。参数与设计对象的控制尺寸有显式对应关系,设计结果的修改受尺寸驱动,因此参数的求解较简单。 意义:在产品设计中,设计实质上是一个约束满足问题,即由给定的功能、结构、材料及制造等方面的约束描述,经过反复迭代、不断修改从而求得满足设计要求的解的过程。除此之外,设计人员经常碰到这样的情况:①许多零件的形状具有相似性,区别仅是尺寸的不同;⑧在原有罕件的基础上做一些小的改动来产生新零件;③设计经常需要修改。这些需求采用传统的造型方法是难以满足的,一般只朗重新建模。参数化方法提供了设计修改的可能性。 三、CAPP系统由哪些基本部分组成?(10分) 答:传统的CAPP系统通常包括三个基本组成部分,即产品设计信息输入、工艺决策、产品工艺信息输出。 1.产品设计信息输入:工艺规划所需要的最原始信息是产品设计信息。 2.工艺决策:所谓工艺决策,是指根据产品/零件设计信息,利用工艺知识和经验,参考具体的制造资源条件,确定产品的工艺过程。 3.产品工艺信息输出 四、数字化制造体系下的制造计划系统有哪些?(10分) 答:数字化制造体系下的制造计划系统主要有MRP计划系统、JIT(Just ln Time)计划系统、 TOC(Theory of Constraint)计划系统和APS(Advanced P1anning System)计划系统四个主要流派,各自蕴含的原理和方法均有所不同. 1.MRP计划系统:物料需求计划系统是一种将库存管理和生产进度计划结合在一起的计算机辅助生产计划管理系统。

数字化设计及仿真应用

数字化设计及仿真应用 [摘要]制造业信息化的发展促使许多企业建立起了相应的CAD/CAM软件环境平台,并应用C AD/CAM软件进行产品的设计、分析、加工仿真与制造,取得了显著的效果。利用计算机辅助设计和制造(CAD/CAM)软件系统来完成机械设计过程是加速设计效率、提高设计质量的一种重要手段。 本文首先介绍了数字化设计的概念和发展历史,然后展望了数字化设计的发展趋势,最后主要探讨了数字化设计和仿真分析技术的应用及效益。 [关键词]:机械产品;数字化设计;仿真分析 ? 目录 1.?引言 (1) 2.数字化设计技术1? 2.1数字化设计技术的特点 (1) 2.2 数字化设计技术发展历史......................................................... 错误!未定义书签。 2.3 数字化设计技术发展趋势 (2) 3.数字化仿真技术2? 3.1 数字化建模技术2? 3.2 数字化仿真与虚拟现实技术 (3) 3.3有限元分析技术....................................................................... 错误!未定义书签。 4.数字化设计及仿真的应用和效益................................................................................. 4 4.1 数字化设计及仿真的应用 (4) 4.2 数字技术带来的效益 (5) 4.2.1 产品设计的效益5? 4.2.1工艺规划的效益?错误!未定义书签。 4.2.3 业务规划和生产效益 (6) 5.?数字化设计及仿真的意义6? 5.1数字化设计技术的意义......................................................................................... 7 5.2 数字化仿真的意义7? 6.结束语8?

三维建模数字化设计与制造

附件4:山西省第九届职业院校技能大赛(高职组) “三维建模数字化设计与制造”赛项规程 一、赛项名称 赛项名称:三维建模数字化设计与制造 赛项组别:高职组 赛项归属产业:加工制造类 二、竞赛目的 本项竞赛旨在考核机械制造、数控技术应用等机械类相关专业的学生,组队完成三维逆向扫描、逆向建模设计、机械创新设计、数控加工技术应用等方面的任务,展现参赛队选手先进技术与设备的应用水平和创新设计等方面的能力,以及跨专业团队协作、现场问题的分析与处理、安全及文明生产等方面的职业素养。引领全省职业院校机械制造类专业将新技术、新工艺、新方法应用于教学,加快校企合作与教学改革,提升人才培养适应我国制造业更新换代快速发展的需要。 三、竞赛内容与方式 (一)竞赛内容 竞赛内容将以任务书形式公布。 针对目前批量化生产的具有鲜明自由曲面的机电类产品(或零部件)进行反求、建模,并对产品(或产品局部)外形进行数控编程与加工,对无自由曲面的结构或零件根据机械制造类专业知识按要求进行局部的创新(或改良)设计。 整个竞赛过程,分为第一阶段“数据采集与再设计”和第二阶段“数控编程与加工”这两个可以分离、前后又相互关联的部分,分别为60%和40%的权重。 1、第一阶段:数据采集与再设计 该阶段竞赛时间为3小时,竞赛队完成三项竞赛任务。

任务1:样品三维数据采集。利用给定三维扫描设备和相应辅助用品,对指定的外观较为复杂的样品进行三维数据采集。该模块主要考核选手利用三维扫描设备进行数据采集的能力; 任务2:三维建模。根据三维扫描所采集的数据,选择合适软件,对上述产品外观面进行三维数据建模。该模块主要考核选手的三维建模能力,特别是曲面建模能力; 任务3:产品创新设计。利用给定样品和已经完成的任务2内容,根据机械制造知识,按给定要求对样品中无自由曲面部分的结构或零件或附属物进行创新设计。该模块主要考核选手应用机械综合知识进行机械创新设计的能力。 2、第二阶段:数控编程与加工 竞赛时间为3小时,竞赛队完成两项竞赛任务。 任务4:数控编程与加工。赛场提供第一阶段被测样品的标准三维数据模型,选手根据这组三维模型数据和赛场提供的机床、毛坯,选择合适软件对该产品进行数控编程和加工。主要考核选手选用刀具,以最佳路径和方法按时高质量完成指定数控加工任务。并考核选手工艺编制、程序编制、机床操作等方面的能力。 任务5:职业素养。主要考核竞赛队在本阶段竞赛过程中的以下方面: (1)设备操作的规范性; (2)工具、量具的使用; (3)现场的安全、文明生产; (4)完成任务的计划性、条理性,以及遇到问题时的应对状况等。 (二)竞赛方式 1、竞赛采用团体赛方式。 2、竞赛队伍组成:每支参赛队由2名正式学生比赛选手组成,其中队长1名。每队设指导教师2名。

数字化应用

飞机装配数字化应用 10503532 李凯 1 数字化装配协调技术 数字化协调方法也可称数字化标准工装协调方法,是一种先进的基于数字化标准工装定义的协调互换技术,将保证生产用工艺装备之间、生产工艺装备与产品之间、产品部件与组件之间的尺寸和形状协调互换。 数字量传递协调路线: (1)飞机大型结构件(与飞机外形及定位相关)如框、梁,桁、肋、接头等用NC 方式加工, (2)在飞机坐标系下,工装设计人员以产品工程数模为原始依据,进行工装的数字化设计,并且在工装与产品定位相关的零件上用N C方式加工出所有的定位元素; (3)工装在装配时利用数字标工(数据)协调,采用激光自动跟踪测量系统测量,通过坐标系拟合,定位出零件的安装位置,满足安装基准的空间坐标及精度要求; (4)飞机钣金件模具数字化设计以及用NC方式加工,钣金零件数控加工。 2 数字化装配容差分配技术 容差数值直接影响产品的质量与成本,因而根据产品技术要求,进行零、组件的容差分析和设置,可以经济合理地决定零部件的尺寸容差,保证加工精度,提高产品质量,在满足最终设计要求的同时使产品获得最佳的技术水平和经济效益。 在产品装配前仅凭以往的经验或某个方案分配给每个零件公差,装配成产品后公差能不能达到产品设计的要求,难以定论。现在可通过数理统计的方法来模拟装配过程和次数,可看到最终形成产品的公差与零件的公差、零件的装配顺序等因素有关。在零件数模的基础上,对于我们关注的关键的质量特征,设定公差

和装配顺序,通过数理统计的方法仿真,分析各种因素对质量特性的影响程度,为查找质量问题的原因和改进容差分配提供了依据,不断仿真找出最优的公差分配方案。 3 自定位与无型架定位数字化装配技术 现代的飞机设计遵循面向制造的原则,在零件设计的时候就必须考虑以后零件的加工和装配。在工艺人员的建议下,飞机设计时对主要结构件(梁、框、肋和接头等)建立装配的自定位特征,如小的突耳、装配导孔、槽口和形成定位表面等,或者在产品结构设计的同时,把用来安放光学目标的工艺定位件设计到结构件上。但这些零件的自定位特征需要用数控方式精确加工,在实际装配过程中这些零件自己就能利用自定位特征定位,或应用激光跟踪仪和光学目标定位。 基于飞机产品数模和数字量尺寸协调,无型架定位数字化装配技术采用模块化、自动化的可重新配置的工装系统,大大简化了或减少了传统的复杂型架,缩短了工装设计与制造的时间,降低了工装成本,并提高了装配质量。 4 数字化装配工艺设计技术 数字化装配工艺设计技术是根据企业结构和制造流程在软件环境中构建企业的制造体系结构,包括产品、工艺和资源3个主要部分,完全可描述什么人、在什么地方、用什么工具、用什么方法、制造什么产品,当然也包含成本和时间。其中产品部分又分为EBOM、PBOM和MBOM三个分支,工艺又分为根据工艺分离面设计的工艺Process Plan和根据生产工位设计的工艺Production Plan,资源分为结构化的资源,包括工厂,车间、工段、工位、设备、工装、工具和人。资源又分为资源规划Resource Plan(又称制造概念)。其中成本包含在产品里,时间包含在工艺里,设备利用率包含在资源规划里。 利用设计部门发放的产品三维数模和EBOM,在三维可视环境下进行产品的装配工艺规划及工艺设计。将三维数模数据(属性)导入产品节点,并将三维数模数图形的路径关联到每个零件上,在编制工艺的任何时候都可预览零件和组件的三维图形,直观地反映装配状态。 在产品工艺分离面划分的基础上,对每个工艺大部件进行初步装配流程设

数字化技术与产品开发

数字化技术与产品开发复习题 1、数字化设计概念:将计算机设计用于产品设计领域,通过基于产品的数字化平台,建立数字化的模型等,在产品开发应用当中,达到减少或者是没有实物模型的一种开发技术。 优点:1、没有实物模型 2、适用于并行设计 计算机在制造业中的作用:a、对生产过程进行监控b、用计算机进行产品研发 2、各英文缩写所代表的含义: DD:数字化设计 DM:数字化制造 DB:数据库 CACD:计算机辅助概念设计 CAGM:计算机辅助几何建模CAPP:计算机辅助工艺规划 CAP:计算机辅助规划 CATD:计算机辅助刀具设计 CAE:计算机辅助工程 CAM:计算机辅助制造 PDM:产品数据管理 FE:有限元 FEM:有限元法 PLM、产品全生命周期管理 AI:人工智能 3、考题知识点: 与传统新产品开发方式比较,计算机及其相关应用技术的引入使得整个制造业在“快交付、易变型、高质量”方面取得了显著的优势,同时也大大降低了除时间以外的其他制造成本。 计算机的主要作用可以大致划分为两大方面:一是监控各种硬件设备在生产过程中正常运行;二是辅助设计人员参与产品开发周期的各个阶段。 数字化的核心是离散化,其本质是将连续的物理现象、设计过程中出现的物理量、设计过程中的几何量、设计制造环境中的不确定现象、企业可获得的各种设计资源、设计师的个人只知识及经验加以离散化。 数字化设计(DD):特指在通过数字化的手段来改造传统的产品设计方法,建立一套基于数值计算方法、计算机软硬件技术、网络传输技术、信息处理技术的专门支持产品开发和生产的全过程的设计方法和相关技术。 数字化制造(DM):是指对制造过程和设备进行数字化定义和描述、通过网络环境下的计算机控制来实现产品加工制造的过程,包括CAM(计算机辅助制造)、CAPP(计算机辅助工艺规划)、CATD、(计算机辅助刀具设计)、CAP(计算机辅助规划)等。 产品全生命周期管理(PLM):当设计师接到客户的产品订单时,客户首先是描述他们所需的产品的各种性能,想要实现什么样的功能,能够完成哪些事情。接下来就是设计师们针对客户对产品的要求、特性进行系统化的设计分析。一般情况下产品开发的过程包括以下几个

数字化设计与制造

数字化设计与制造 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

数字化设计与制造 一、背景 在计算机技术出现之前,机械产品的设计与加工的方式一直都是图纸设计和手工加工的方式,这种传统的产品设计与制造方式,这使得产品在质量上完全依赖于产品设计人员与加工人员的专业技术水平,而数量上则完全依赖于产品加工人员的熟练程度,而随着工业社会的不断发展,人们对机械产品的质量提出了更高要求,同时数量上的需求也不断增长。为了适应社会对机械产品在质量与数量上的需求,同时也为了能进一步降低机械产品的生产成本,人们在努力寻求一种全新的机械产品设计与加工方式,而二十世纪四五十年代以来计算机技术的出现及其发展,特别是计算机图形学的出现,让人们看到了变革传统机械产品设计与生产方式的曙光。于是,数字化设计与制作方式应运而生,人们逐步将机械产品的设计与加工任务交给计算机来做,这一方面使得机械产品的设计周期大大缩短,另一方面也使得产品的质量与数量基本摆脱了对于设计与加工人员的依赖,从而大大提升了产品的质量,降低了产品的生产成本,同时也使得产品更加适合批量化生产。 二、概念 数字化设计:就是通过数字化的手段来改造传统的产品设计方法,旨在建立一套基于计算机技术和网络信息技术,支持产品开发与生产全过程的设计方法。 数字化设计的内涵:支持产品开发全过程、支持产品创新设计、支持产品相关数据管理、支持产品开发流程的控制与优化等。 其基础是产品建模,主体是优化设计,核心是数据管理。 数字化制造:是指对制造过程进行数字化描述而在数字空间中完成产品的制造过程。 数字化制造是计算机数字技术、网络信息技术与制造技术不断融合、发展和应用的结果,也是制造企业、制造系统和生产系统不断实现数字化的必然。

数字化设计技术总结

. . 1、广义的数字化设计技术涵盖以下内容: 1) 产品的概念化设计、几何造型、虚拟装配、工程图生成及相关文档编写。 2) 进行产品外形、结构、材质、颜色的优选及匹配,满足顾客的个性化需求,实现最佳的产品设计效果。 3) 分析产品公差、计算质量、计算体积和表面积、分析干涉现象等。 4) 对产品进行有限元分析、优化设计、可靠性设计、运动学及动力学仿真验证等,以实现产品拓扑结构和性能特征的优化。 2、曲线二阶参数连续性,二阶几何连续性含义及其之间的关系? 二阶参数连续性,记作C 2连续,是指两个曲线段在交点处有一阶和二阶导数的方向相同,大小相等。 二阶几何连续性,记为G 2连续,指两个曲线段在交点处其一阶、二阶导数方向相同,但大小不等。 关系: 1)曲线面造型中,一般只用到一阶和二阶连续性; 2)同级参数连续必能保证同级几何连续,同级几何连续不能保证同级参数连续; 3)二者形成的曲线面形状有差别。 3、实体造型优缺点: 优点:完整定义三维形体,确定物体的物性参数,方便的生成三维物体的多视图和剖视图,可以消除隐藏线和面,直接进行数控加工编程。 缺点:不能适应形体的动态修改,缺乏产品在产品设计开发整个生产周期中所需的所有信息,难以实现CAD/CAM/CAPP 集成。 4、参数化造型的含义和特点 参数化造型使用约束来定义和修改几何模型。约束反映了设计时要考虑的因素,包括尺寸约束、拓扑约束及工程约束(如应力、性能)等。 参数化设计中的参数与约束之间具有一定关系。当输入一组新的参数数值,而保持各参数之间原有的约束关系时,就可以获得一个新的几何模型。 5、逆向工程有哪些关键技术及其主要内容 实物逆向工程的关键技术:逆向对象的坐标数据测量、测量数据处理 模型重构 数据处理及模型重构技术等 主要内容:1)根据实物模型的结构特点,做出可行的测量规划,选择合适的数据采集,设备,将实物模型数据化。 2)初步处理:剔除误差明显偏大的数据点,补测某些关键点,测量数据分块处理,产品功能结构分析以及数据曲率分布,定义曲面边界,提取边界线,对测量数据进行分块,对边界进行规则化处理,提高边界拟合曲线由于疏密不均的数据精度。 3)根据所采集的样本几何数据在计算机内重构样本模型的过程,根据点数据特征分析,确定构建特征曲线所需的数据点,构造曲线网格,控制曲线的准确性和平滑度,编辑曲面间的连续性和光滑性,形成逆向对象的曲面和实体造型。 6、数字化仿真的基本步骤: 系统建模,仿真实验,仿真结果分析 1)在计算机上将描述实际系统几何、数学模型转化为能被计算机求解的仿真模型 2)运行仿真过程,进行仿真研究过程,对所建立的仿真模型进行试验求解的过程 3)仿真结果分析:从试验中提取有价值的信息以指导实际系统的开发 7、有限元分析方法的基本原理 将形状复杂的连续体离散化为有限个单元组成的等效组合体,单元之间通过有限个节点相互连接;根据精度要求,用有限个参数来描述单元的力学或其他特性,连续体的特性就是全部单元体特性的叠加;根据单元之间的协调条件,可以建立方程组,联立求解就可以得到所求的参数特征。 5/数字化开发技术: 以计算机辅助设计CAD 、计算机辅助工程分析CAE 为基础的数字化设计DD 和计算机辅助制造CAM 为基础的数字化制造DM 技术,是产品数字化开发技术的核心内容。 4/数字化开发技术的意义: 产品的数字化开发技术深刻地改变了产品设计、制造和生产组织模式,成为加快产品更新换代、提高企业竞争力、推进企业技术进步的关键技术和有效工具。 3/数字化制造技术包括: 用于编制零件的制造工艺的成组技术GT 及计算机辅助工艺规划CAPP 技术; 控制刀具和机床的相对运动,进而实现零件加工的数控NC 编程及数控加工技术; 实现产品快速开发的快速原型制造RPM 技术; 实现快速复制的逆向工程RE 技术 1. 什么是数字化设计,涵盖哪些环节和内容? 数字化设计(DD)是以实现新产品设计为目标,以计算机软硬件技术为基础,以数字化信息为辅助手段,支持产品建模、分析、修改、优化以及生成设计文档的相关技术的有机集合. 2. 论述数字化设计、制造与产品开发之间的关系。 从产品开发的角度,数字化设计和数字化制造之间具有密切的双向联系:只有与数字化制造技术结合,产品数字化设计模型的信息才能被充分利用;只有基于产品的数字化设计模型,才能充分体现数字化制造的高效性。

数字化设计与制造的现状和关键技术讲解学习

数字化设计与制造的现状和关键技术 一、数字化设计与制造的发展现状 数字化设计与制造主要包括用于企业的计算机辅助设计(CAD)、制造(CAM)、工艺设计(CAPP)、工程分析(CAE)、产品数据管理(PDM)等内容。其数字化设计的内涵是支持企业的产品开发全过程、支持企业的产品创新设计、支持产品相关数据管理、支持企业产品开发流程的控制与优化等,归纳起来就是产品建模是基础,优化设计是主体,数控技术是工具,数据管理是核心。 由于通过CAM及其与CAD等集成技术与工具的研究,在产品加工方面逐渐得到解决,具体是制造状态与过程的数字化描述、非符号化制造知识的表述、制造信息的可靠获取与传递、制造信息的定量化、质量、分类与评价的确定以及生产过程的全面数字化控制等关键技术得到了解决,促使数字制造技术得以迅速发展。 作为制造业的一个分支,船舶行业要实现跨越式发展,必须以信息技术为基础。世界造船强国从CAX开始,逐步由实施CIMS、应用敏捷制造技术向组建“虚拟企业”方向发展,形成船舶产品开发、设计、建造、验收、使用、维护于一体的船舶产品全生命周期的数字化支持系统,实现船舶设计全数字化、船舶制造精益化和敏捷化、船舶管理精细化、船舶制造装备自动化和智能化、船舶制造企业虚拟化、从而大幅度提高生产效率和降低成本。所谓数字化设计就是运用虚拟现实、可视化仿真等技术,在计算机里先设计一条“完整的数字的船”。不仅可以点击鼠标进入船体内部参观一番,还可以在虚拟的大海中看它的速度、强度、抗风浪能力。这样一来船舶设计的各个阶段和船、机、舾、涂等多个专业模块在同一数据库中进行设计。 船舶是巨大而复杂的系统,由数以万计的零部件和数以千计的配套设备构成,包括数十个功能各异的子系统,通过船体平台组合成一个有机的整体。造船周期一般在10个月以上,既要加工制造大量的零部件,又要进行繁杂的逐级装配,涉及物资、经营、设计、计划、成本、制造、质量、安全等各个方面。这样的一个复杂的系统需要非常强大的信息处理能力。我国船舶行业今年来虽有很大的发展,但与国际造船强国相比,无论在产量,还是在造船技术上差距甚大,信息化水平落后是直接原因。其中,集成化设计系统与生产进程联系不紧密、船舶零部

数字化设计

数字化技术在工程技术领域中应用 一、数字化技术概念 数字化技术指的是运用0和1两位数字编码,通过电子计算机、光缆、通信卫星等设备,来表达、传输和处理所有信息的技术。数字化技术一般包括数字编码、数字压缩、数字传输、数字调制与解调等技术。 数字化技术是信息技术的核心,信息的媒体有多种,如字符、声音、语言和图像等。这些信息媒体存在着共同的问题,一是信息量太小,二是难以交换、交流。如一本厚厚的辞海虽然有1300万汉字,但与大型数据库相比,包含的信息量仍太少,辞海只能查找字词的基本涵义,若想查去年世界各国的国防开支是多少则无可奉告。一本书,要从一个城市寄到另一个城市少则数天多则数周。这种信息,交换起来很不方便。又如,当今世界大约有3500种语言,使用不同语言的人,信息交流就非常困难。 数字化技术的实现,这些问题便迎刃而解。无论是字符、声音、语言和图像;也无论是中文还是外文,都使用世界上共同的两个数字0和1编码来表达、传输和处理,到了终端,即用户手上,又原原本本地还它本来面目。这无异于消除了世界各个国家,各个民族之间的语言隔阂。一般说来8个0和1,就是一个最基本的信息单位,称之为1个比特,简写为1b。每秒钟传输的信息量称之为信息的传递速率(b/s,即每秒传送多少个比特)。每秒传送1千比特为1kb/s,每秒传送1兆比特表示为1Mb/s,再大就是每秒1千兆,表示为1Gb/s,等等。 用简单的两位数0和1表达、传输和处理一切信息,把信息数字化、一体化,这是信息史上的又一次重要革命。但从技术上讲,却又相当复杂,相当困难。世界上如此庞杂的事物、浩如烟海的信息,都要用简单的0和1 来表达,这是非

数字化设计与制造技术

江南大学现代远程教育课程考试大作业 考试科目:《数字化设计与制造技术》 一、大作业题目(内容): 一、参照一般系统的性能,对数字化设计制造来说,其主要性能及能力要求有哪些?(10分) 答:1)、稳定性。是指在正常情况下,系统保持其很定状态的能力。 2)、集成性。是指系统内各子系统相互关联,能协同工作。 3)、敏捷性。是指系统对环境或输入条件变化及不确定性的适应能力,对内外各种变化能快速响应、快速重组的能力。单件、多品种、小批量是市场对现代产品研制的基本生产要求。 4)、制造工程信息的主动共享能力。数字化设计制造中零件设计、工艺设计和工装设计等过程的集成和并行协同要求能同步传递,这种信息共享方式称为“信息主动共享”。 5)、数字仿真能力。是指系统对产品制造中涉及的诸多问题进行虚拟仿真的能力。 6)、支持异构分布式环境的能力。无论从不同类型设备联网还是从数据管理考虑,或是从面向全生命周期的零件信息模型考虑,均需对系统的结构体系和数据结构进行合理的综合规划与设计,实现系统分布性与统一性的协调。 7)、扩展能力。系统的扩展是通过软件工具集的扩展来实现的。 二、什么是参数化设计?请说明参数化设计在产品设计中的意义。(10分) 答:参数化设计一般是指设计对象的结构形状基本不变,而用一组参数来约定尺寸关系。参数与设计对象在控制尺寸有显式对应关系,设计结果的修改受尺寸驱动,因此参数的求较简单。 意义:在产品设计中,设计实质上是一个约束满足问题,即由给定的功能、结构、材料及制造等方面的约束描述,经过反复迭代、不断修改从而求得满足设计要求的解的过程。除此之外,设计人员经常碰到这样的情况:1、许多零件的形状具有相似性,区别仅是尺寸的不同;2、在原有罕件的基础上做一些小的改动来产生新零件;3、设计经常需要修改。这些需求采用传统的造型方法是难以满足的,一般只重新建模。参数化方法是提供了设计修改的可能性。 三、CAPP系统由哪些基本部分组成?(10分) 答:传统的CAPP系统通常包括三个基本组成部分,即产品设计信息输入、工艺决策、产品工艺信息输出。 1、产品设计信息输入:工艺规划所需要的最原始信息是产品设计信息。 2、工艺决策:指根据产品、零件设计信息,利用工艺知识和经验,参考具体的制造资源条件,确定产品的工艺过程。 3、产品工艺信息输出 四、数字化制造体系下的制造计划系统有哪些?(10分) 答:主要有MRP计划系统、JIT(Just In Time)计划系统、TOC(Theory of Constraint)计划系统和APS (Advanced Planning System)计划系统四个主要流派,各处蕴含的原理和方法均有所不同。 1、MRP计划系统:物料需求计划系统是一种将库存管理和生产进度计划结合在一起的计算机辅助生产计划管理系统。 2、JIT计划系统:顾名思义,JIT计划系统的核心思想是在需要的时候才去生产所需要的品种和数量,不要多生产,也不要提前生产。 3、TOC计划系统:约束理论(TOC)的指导思想实质是寻求系统的关键约束点,集中精力优先解决主

三维建模数字化设计与制造

附件4: 山西省第九届职业院校技能大赛(高职组) “三维建模数字化设计与制造”赛项规程 一、赛项名称 赛项名称:三维建模数字化设计与制造 赛项组别:高职组 赛项归属产业:加工制造类 二、竞赛目的 本项竞赛旨在考核机械制造、数控技术应用等机械类相关专业的学生,组队完成三维逆向扫描、逆向建模设计、机械创新设计、数控加工技术应用等方面的任务,展现参赛队选手先进技术与设备的应用水平和创新设计等方面的能力,以及跨专业团队协作、现场问题的分析与处理、安全及文明生产等方面的职业素养。引领全省职业院校机械制造类专业将新技术、新工艺、新方法应用于教学,加快校企合作与教学改革,提升人才培养适应我国制造业更新换代快速发展的需要。 三、竞赛内容与方式 (一)竞赛内容 竞赛内容将以任务书形式公布。 针对目前批量化生产的具有鲜明自由曲面的机电类产品(或零部件)进行反求、建模,并对产品(或产品局部)外形进行数控编程与加工,对无自由曲面的结构或零件根据机械制造类专业知识按要求进行

局部的创新(或改良)设计。 整个竞赛过程,分为第一阶段“数据采集与再设计”和第二阶段“数控编程与加工”这两个可以分离、前后又相互关联的部分,分别为60%和40%的权重。 1、第一阶段:数据采集与再设计 该阶段竞赛时间为3小时,竞赛队完成三项竞赛任务。 任务1:样品三维数据采集。利用给定三维扫描设备和相应辅助用品,对指定的外观较为复杂的样品进行三维数据采集。该模块主要考核选手利用三维扫描设备进行数据采集的能力; 任务2:三维建模。根据三维扫描所采集的数据,选择合适软件,对上述产品外观面进行三维数据建模。该模块主要考核选手的三维建模能力,特别是曲面建模能力; 任务3:产品创新设计。利用给定样品和已经完成的任务2内容,根据机械制造知识,按给定要求对样品中无自由曲面部分的结构或零件或附属物进行创新设计。该模块主要考核选手应用机械综合知识进行机械创新设计的能力。 2、第二阶段:数控编程与加工 竞赛时间为3小时,竞赛队完成两项竞赛任务。 任务4:数控编程与加工。赛场提供第一阶段被测样品的标准三维数据模型,选手根据这组三维模型数据和赛场提供的机床、毛坯,选择合适软件对该产品进行数控编程和加工。主要考核选手选用刀具,以最佳路径和方法按时高质量完成指定数控加工任务。并考核选

数字化设计与制造

数字化设计与制造 一、背景 在计算机技术出现之前,机械产品的设计与加工的方式一直都是图纸设计和手工加工的方式,这种传统的产品设计与制造方式,这使得产品在质量上完全依赖于产品设计人员与加工人员的专业技术水平,而数量上则完全依赖于产品加工人员的熟练程度,而随着工业社会的不断发展,人们对机械产品的质量提出了更高要求,同时数量上的需求也不断增长。为了适应社会对机械产品在质量与数量上的需求,同时也为了能进一步降低机械产品的生产成本,人们在努力寻求一种全新的机械产品设计与加工方式,而二十世纪四五十年代以来计算机技术的出现及其发展,特别是计算机图形学的出现,让人们看到了变革传统机械产品设计与生产方式的曙光。于是,数字化设计与制作方式应运而生,人们逐步将机械产品的设计与加工任务交给计算机来做,这一方面使得机械产品的设计周期大大缩短,另一方面也使得产品的质量与数量基本摆脱了对于设计与加工人员的依赖,从而大大提升了产品的质量,降低了产品的生产成本,同时也使得产品更加适合批量化生产。 二、概念 数字化设计:就是通过数字化的手段来改造传统的产品设计方法,旨在建立一套基于计算机技术和网络信息技术,支持产品开发与生产全过程的设计方法。 数字化设计的内涵:支持产品开发全过程、支持产品创新设计、支持产品相关数据管理、支持产品开发流程的控制与优化等。 其基础是产品建模,主体是优化设计,核心是数据管理。 数字化制造:是指对制造过程进行数字化描述而在数字空间中完成产品的制造过程。 数字化制造是计算机数字技术、网络信息技术与制造技术不断融合、发展和应用的结果,也是制造企业、制造系统和生产系统不断实现数字化的必然。 三、工具 1、CAD---计算机辅助设计 CAD在早期是英文Computer Aided Drawing (计算机辅助绘图)的缩写,随着计算机软、硬件技术的发展,人们逐步的认识到单纯使用计算机绘图还不能称之为计算机辅助设计。真正的设计是整个产品的设计,它包括产品的构思、功能设计、结构分析、加工制造等,二维工程图设计只是产品设计中的一小部分。于是CAD的缩写由Computer Aided Drawing改为Computer Aided Design,CAD也不再仅仅是辅助绘图,而是协助创建、修改、分析和优化的设计技术。 2、CAE---计算机辅助工程分析

数字化设计与制造技术课程论文

数字化制造技术的发展现状与发展趋势 学院:机械工程学院 班级: 姓名: 学号: 指导教师: 日期: 2014年1月

摘要 从20世纪50年代数控机床的出现开始,经过了单元制造技术、集成制造技术和网络化制造技术的发展过程,数字化制造技术得到了迅猛的发展。本文在大量阅读相关文献的基础上,对数字化技术进行了介绍,综述了国内外数字化制造技术的研究现状,论述了数字化制造技术是先进制造技术的核心,对数字化制造技术的几个核心技术进行了较为详细的介绍,并分析数字化制造技术的发展现状、展望其未来发展趋势,最后概括总结了数字化制造经历的深刻变化与发展。 关键词:数字化数字化制造发展现状发展趋势

数字化技术指的是运用0和1两位数字编码,通过电子计算机、光缆、通信卫星等设备,来表达、传输和处理所有信息的技术。数字化技术一般包括数字编码、数字压缩、数字传输、数字调制与解调等技术。当今世界已经进入了数字化时代,数字化技术在生产、生活、经济、社会、科技、文化、教育和国防等各个领域不断扩大应用并取得显著成效。数字化技术与各种专业技术相融合形成了各种数字化专业技术,如数字化制造技术、数字化设计技术、数字化测量技术、数字化视听技术等。 数字化制造技术是一项融合数字化技术和制造技术、以制造工程科学为理论基础的重大制造技术革新[1],并在虚拟现实、计算机网络、快速原型、数据库和多媒体等支撑技术的支持下,根据用户的需求,迅速收集资源信息,对产品信息、工艺信息和资源信息进行分析、规划和重组,实现对产品设计和功能的仿真以及原型制造,进而快速生产出达到用户要求性能的产品整个制造全过程。它是制造技术、计算机技术、网络技术与管理科学的交叉、融合、发展与应用的结果,也是制造企业、制造系统与生产过程、生产系统不断实现数字化的必然趋势。 数字化制造技术的发展现状 目前在工业技术先进国家,数字化制造技术已经成为提高企业和产品竞争力的重要手段[5]。特别是近30年来,数字化制造技术发展日益加快,在发达国家的大型企业中,已开始实现无图纸生产,全面使用CAD/CAM,实现100%数字化设计。数字化制造技术在数字化设计、数字化制造、数字化产品、信息传递与协作、数字化管理等方面都有不同程度的发展。

数字化设计与制造技术的研究现状

数字化设计与制造技术的研究现状 摘要:数字化设计与制造在先进制造技术、医疗康复器械与生物工程等众多相关领域中占有越来越重要的地位。从20世纪50年代数控机床的出现开始,经过了单元制造技术、集成制造技术和网络化制造技术的发展过程,数字化制造技术得到了迅猛的发展。本文在大量阅读相关文献的基础上,对数字化技术进行了介绍,综述了国内外数字化制造技术的研究现状,论述了数字化制造技术是先进制造技术的核心,对数字化制造技术的几个核心技术进行了较为详细的介绍,并分析数字化制造技术的发展现状、展望其未来发展趋势,最后概括总结了数字化制造经历的深刻变化与发展。 关键词:数字化;国内外研究现状;制造技术;计算机辅助工业设计。 正文:1.数字化制造技术的概念 所谓数字化制造,指的是在虚拟现实、计算机网络、快速原型、数据库和多媒体等支撑技术的支持下,根据用户的需求,迅速收集资源信息,对产品信息、工艺信息和资源信息进行分析、规划和重组,实现对产品设计和功能的仿真以及型制造,进而快速生产出达到用户要求性能的产品的整个制造过程。也就是说,数字制造实际上就是在对制造过程进行数字化的描述中建立数字空间,并在其中完成产品制造的过程[1]。 由于计算机的发展以及计算机图形学与机械设计技术的结合,产生了以数据库为核心,以交互图形系统为手段,以工程分析计算为主体的一体化计算机辅助设计( C A D )系统。 C A D系统能够在二维与三维的空间精确地描述物体,大大地提高了生产过程中描述产品的能力和效率。正如数控技术与数控机床一样,C A D的产生和发展,为制造业产品的设计过程数字化和自动化打下了基础。将C A D的产品设计信息转换为产品的制造、工艺规则等信息,使加工机械按照预定的工序组合和排序,选择刀具、夹具、量具,确定切削用量,并计算每个工序的机动时间和辅助时间,这就是计算机辅助工艺规划(C A P P)。将包括制造、检测、装配等方面的所有规划,以及面向产品设计、制造、工艺、管理、成本核算等所有信息的数字化,转换为能被计算机所理解并被制造过程的全阶段所共享,从而形成所谓的C A D/C A M/C A P P,这就是基于产品设计的数字制造观。 从数字制造的要领出发,可以清楚地看到,数字制造是计算机数字技术、网络信息技术与制造技术不断融合、发展和应用的结果,也是制造企业、制造系统和生产系统不断实现数字化的必然。对制造设备而言,其控制参数均为数字信号。对制造企业而言,各种信息(包

相关文档
最新文档