Thioxanthone-Fluorenes as Visible Light Photoinitiators for Free Radical Polymerization

Thioxanthone-Fluorenes as Visible Light Photoinitiators for Free Radical Polymerization
Thioxanthone-Fluorenes as Visible Light Photoinitiators for Free Radical Polymerization

https://www.360docs.net/doc/b212035351.html,/Macromolecules

Published on Web 04/30/2010

r 2010American Chemical Society

4520Macromolecules 2010,43,4520–4526

DOI:10.1021/ma100371y

Thioxanthone -Fluorenes as Visible Light Photoinitiators for Free Radical Polymerization

Gorkem Yilmaz,?Binnur Aydogan,?Gokhan Temel,?Nergis Arsu,§Norbert Moszner,^and Yusuf Yagci*,?

?

Department of Chemistry,Istanbul Technical University,34469Maslak,Istanbul,Turkey,?Department of Polymer Engineering,Faculty of Engineering,Yalova University,77100Yalova,Turkey,§Department of Chemistry,Yildiz Technical University,34210Davutpasa,Istanbul,Turkey,and ^Ivoclar Vivadent AG,Bendererstrasse 2,FL-9494Schaan,Liechtenstein

Received February 16,2010;Revised Manuscript Received April 23,2010

ABSTRACT:Two thioxanthone derivatives with fluorene additional chromophoric groups,namely thioxanthone -fluorenecarboxylic acid (TX-FLCOOH)and thioxanthone -fluorene sodium carboxylate (TX-FLCOONa),as visible light absorbing oil-and water-soluble photoinitiators,respectively,were synthesized and characterized.Their ability to initiate photopolymerization of methyl methacrylate (MMA),2-(2-phosphonoethoxymethyl)acrylic acid ethyl ester (EAEPA),and a multifunctional monomer,trimethylolpropane triacrylate (TMPTA),were examined.The initiation efficiency of TX-FLCOOH was compared with the parent thioxantone (TX)both in the presence and in the absence of a co-initiator,and TX-FLCOOH was found to be more effective in all cases.Photopolymerization and laser flash photolysis studies revealed that depending on the concentration initiation by TX-FLCOOH occurs by intra-and intermolecular H-abstraction of the triplet 3(TX-FLCOOH)*.No polymerization was observed when TX-FLCOONa was used as photoinitiator in the absence of a co-initiator.However,TX-FLCOONa acts as an efficient initiator in the visible range in the presence of H donors in water.

Introduction

Photoinitiated polymerization is a well-known technique exploited in many technologically important areas.1,2Both free radical and cationic polymerizations have been used,and the mechanisms of initiation have been studied in detail.3-6The free radical mode is in more advanced state due to its applicability to a wide range of formulations based on (meth)acrylates,unsaturated polyesters,and acrylated polyurethanes and the availability of photoinitiators having spectral sensitivity in the near-UV and visible range.The radical photopolymerization can be initiated either via bond R -cleavage (type I)or hydrogen abstaction type (type II)photoinitiators whose triplet states readily react with the H-donor compounds like tertiary amines,thiols,ethers,and alcohols to yield the initiating radicals (Scheme 1).7-10Because of the bimolecular radical generation process,they are generally slower than type I photoinitiators,which form radicals unimolecularly.

Typical type II photoinitiators include benzophenone and deri-vatives,thioxanthones,benzil,and quinones.Among type II photoinitiators,thioxanthone (TX)derivatives in conjunction with tertiary amines are efficient photoinitiators with absorption char-acteristics that compare favorably with benzophenones.11Recen-tly,thiol and carboxylic acid derivatives of thioxanthones have been reported to initiate photopolymerization without co-initiators as they contain functional groups with H-donating nature.12-14Alternative approach concerns the attachment of both chromo-phoric and hydrogen-donating groups into polymer chains.15-26This way,the odor and toxicity problems observed with the conventional photoinitiators and amine hydrogen donors were overcome.We have also developed a novel thioxanthone-based

photoinitiator possesssing an anthracene group that does not require an additional hydrogen donor for radical (TX-A)forma-tion and initiates the polymerization of both acrylate and styrene monomers in the presence of air.15In addition,TX-A possesses excellent optical absorption properties in the near-UV spectral region,ensuring efficient light absorption.In fact,photoinitiators with higher wavelength absorption characteristics are desired as they cost lower energy and are defined to be “green”.Photoinitia-tors for visible light 27have found particular interest because of their use in many targeted applications such as dental filling materials,28-31photoresists,printing plates,highly pigmented coat-ings,integrated circuits,laser-induced 3D curing,holographic recordings,and nanoscale micromechanics.The very well-known examples are the titanocene 28and camphorquinone 32in conjunc-tion with an amine for the respective systems.More recently,organic ketones containing germanium were introduced as a new class of cleavable photoinitiators.33,34We have recently demon-strated that these type of photoinitiators can promote cationic polymerization under visible light.35

Another important issue in the practical application of photo-initiators is related to their water solubility.There is a clear shift from organic solvents toward water-borne formulations particu-larly in the paints and coatings industry.Water as a green solvent has several attractive properties such as nontoxicity,cheap cost,

Scheme 1.Photoinitiated Free Radical Polymerization by Using Aro-matic Carbonyl

Compounds

*Corresponding author:e-mail yusuf@https://www.360docs.net/doc/b212035351.html,.tr,Fax t90-212-2856386,Tel t90-212-2853241.

Article Macromolecules,Vol.43,No.10,20104521

and readily availability for coatings technology.The water solubility is usually achieved by incorporation of hydrophilic

substituents such as quarternary ammonium or sulfate to the main body of the photoinitiators.Direct substitution of such

groups on the photoinitiator affects the nature of the chromo-phore and consequently its photoactivity.Generally,water-

soluble photoinitiator have reduced photoactivity to that of its parent oil-soluble initiator.Examples of the typical structure of

water-soluble photoinitiators are derivatives of benzophenones,36 thioxanthones,37benzyl38and hydroxy alkyl ketones,39and

phenyltrimethylbenzoyl phosphinates.40Recently,we also

synthesized phenacylpyridinium oxalate as a water-soluble photoinitiator and investigated its initiating behavior with

water-soluble monomers.41

As part of our continuous interest in developing new photo-

initiating systems to prevail over the existing problems or enhance the efficiency of UV-curable formulations,herein we report

synthesis,characterization,and photoinitiation capability of two different photoinitiators,namely thioxanthone-fluorene carboxylic

acid(TX-FLCOOH)and its sodium salt(TX-FLCOONa).Inter-estingly,while the former photoinitiator is soluble in oil,the

solubility of the latter in water makes it particularly useful in waterborne coatings.Notably both photoinitiators exhibit visible

range absorption characteristics.

Experimental Section

Materials.Thiosalicylic acid(97%,Sigma-Aldrich)and fluo-

rene-4-carboxylic acid(96%,ethyl4-dimethylaminobenzoate, 99%Alfa Aesar)were used without further purification.

N,N-Dimethylaniline(DMA,g99.5%,Fluka)was distilled over CaH2before use.Methyl methacrylate(MMA,99%,Aldrich) was passed through basic alumina column before use to remove

the inhibitor.Trimethylolpropane triacrylate(TMPTA,95%,

Aldrich)was used as received.p-Dioxane(99.9%,J.T.Baker),

sulfuric acid(H2SO4,95-97%,Fluka),dimethylformamide (DMF,99%,Aldrich),and sodium hydroxide(NaOH,Carlos

Erba)were used as received.The adhesive monomer2-(2-phos-

phonoethoxymethyl)acrylic acid ethyl ester(EAEPA)and the

cross-linker N,N-diethyl-1,3-bis(acrylamido)propane(DEBAAP) were provided by IVOCLAR VIVADENT AG(FL-9494

Schaan).

Synthesis of Thioxanthone-Fluorenecarboxylic Acid(TX-FLCOOH).Thiosalicylic acid(0.2g,1.3mmol)was slowly

added to concentrated sulfuric acid(10mL),and the mixture

was stirred for5min to ensure through mixing.Fluorene-4-

carboxylic acid(0.85g,3.9mmol)was added slowly to the stirred mixture over a period of30min.After the addition,the

reaction mixture was stirred at75°C for2h,and later it was left

to stand at room temparature overnight.Afterward,the result-

ing mixture was poured carefully with stirring into a10-fold excess of boiling water,and it was then boiled further for5min.

The solution was cooled and filtered.The residue was recrys-

tallized from dioxane/water mixture to give the pure bright yellow solid.Yield:52%,λ393nm(ε)=3512L mol-1cm-1,λcutoff=550nm.1H NMR(d6-DMSO,250MHz):δ= 9.01-7.51(m,9H,aromatic),4.03(s,2H,CH2),13.5(s,1H,

COOH).13C NMR(d6-DMSO,500MHz):δ=179.5(C d O), 169.6(C d O),149.7-125.2(aromatic),36.9(CH2).FT-IR

(ATR):3420,2883,1703,1584,1438,1395,1256,1175,1082,

873,762cm-1.

Synthesis of Sodium Fluorenecarboxylate-Thioxanthone(TX-FLCOONa).TX-FLCOOH(0.2g,0.58mmol)was added into 50mL of NaOH solution(2.9?10-5mol L-1).The suspension was refluxed at100°C overnight.The mixture was filtered,and the resulting orange-brown solid was dried at vacuum owen for 2days.Yield:98%,λ375nm(ε)=2015L mol-1cm-1,λcutoff= 565.5nm.1H NMR(D2O,250MHz):δ=8.42-6.85(m,9H, aromatic),3.15(s,2H,CH2).13C NMR(D2O,500MHz):δ=179.3(C d O),169.4(C d O),149.5-125.3(aromatic),36.2(CH2). FT-IR(ATR):2888,1772,1713,1588,1424,993,878,737cm-1.

Photopolymerization.Appropriate solutions of the monomer and TX-FLCOOH were irradiated with a Polilight PL400uni-versal forensic light source at415nm in a nitrogen atmosphere. Polymers were obtained after precipitation in methanol and drying under vacuum.Conversions were calculated for all samples gravimetrically.

Instrumentation.1H NMR measurements were recorded in CDCl3with Si(CH3)4as internal standard,using a Bruker AC250(250.133MHz)instrument.13C NMR measurements were recorded in d6-DMSO and D2O with Si(CH3)4as internal standard,using a Bruker AVANCE-500(500MHz)instrument. FT-IR spectra were recorded on a Perkin-Elmer FT-IR Spec-trum One-B spectrometer.UV spectra were recorded on a Shimadzu UV-1601spectrometer.Differential scanning calo-rimetry(DSC)was performed on a Perkin-Elmer Diamond DSC.Molecular weights were determined by gel permeation chromatography(GPC)instrument,Viscotek GPCmax Auto-sampler system,consisting of a pump,three ViscoGEL GPC columns(G2000H HR,G3000H HR,and G4000H HR),a Viscotek UV detector,and a Viscotek differential refractive index(RI) detector with a THF flow rate of1.0mL min-1at30°C.Both detectors were calibrated with PS standards having narrow molecular weight distribution.Data were analyzed using Visco-tek OmniSEC https://www.360docs.net/doc/b212035351.html,ser flash photolysis experi-ments employed the pulses from a Applied Photophysics with YAG laser(355nm,pulse,5ns)and a computer-controlled system.Gas chromatography-mass spectroscopy(GC-MS) was performed using an Agilent6890/5973inert gas chromato-graph/mass selective detector system in electrospray ionization mode(70eV),through an HP-5MS capillary column using helium as carrier gas at a flow rate of1.6mL/min.

Photocalorimetry(Photo-DSC).The photodifferential scan-ning calorimetry(photo-DSC)measurements were carried out by means of a modified Perkin-Elmer Diamond DSC equipped with a high-pressure mercury arc lamp(320-500nm).A uni-form UV light intensity is delivered across the DSC cell to the sample and reference pans.The intensity of the light was measured as58mW cm-2by a UV radiometer capable of broad UV range coverage.The mass of the sample was3mg,and the measurements were carried out in an isothermal mode at30°C under a nitrogen flow of20mL min-1.The reaction heat liberated in the polymerization was directly proportional to the number of acrylate groups reacted in the system.By inte-grating the area under the exothermic peak,the conversion of the acrylate groups(C)or the extent of the reaction was determined according to eq1

C?ΔH t=ΔH0theorye1TwhereΔH t is the reaction heat evolved at time t andΔH0theory is the theoretical heat for complete conversion.ΔH0theory=86kJ mol-1 for an acrylic double bond.42The rate of polymerization(R p)is directly related to the heat flow(d H/d t)by eq2:

R p?d C=d t?ed H=d tT=ΔH0theorye2T

Results and Discussion

Synthesis and Characterization of the Photoinitiators. Thioxanthone-fluorenecarboxylicacid(TX-FLCOOH),13-oxo-7,13-dihydroindeno[1,2-b]thioxanthene-11-carboxylic acid, was synthesized according to the modified literature procedure.43 The sodium derivative,sodium13-oxo-7,13-dihydroindeno[1,2-b]thioxanthene-11-carboxylate(TX-FLCOONa),was simply formed by the treatment of suspension of aqueous TX-FLCOOH with sodium hydroxide(Scheme2).

4522Macromolecules,Vol.43,No.10,2010Yilmaz et al.

The structures of the photoinitiators were confirmed by spectroscopic analysis(see Experimental Section).As can be seen from Figure1both compounds exhibit characteristic protons of both thioxanthone and fluorene structures. The disappearance of the carboxylic acid proton at around 13.5ppm clearly evidences the complete neutralization of the carboxylic acid function with the sodium hydroxide(Figure1).

Photophysical characteristics of the obtained thiox-anthone compounds were investigated by UV and fluores-cence spectroscopy.Figure2demonstrates the comparison of UV spectra of TX-FLCOOH and TX-FLCOONa,with the parent compounds,thioxanthone(TX)and fluorene(F). As can be seen,both new photoinitiators exhibit absorption characteristics very similar to TX,except a tail absorption in the visible wavelength region(λ>400nm),where TX chromophore is transparent.Although F itself does not absorb the light at above310nm,it has a dramatic effect on the absorption characteristics particularly at high wave-lengths due to the extended conjugation.

Figure3demonstrates the comparison of UV spectra of both of the photoinitiators with camphorquinone(CQ), which is widely used in conjunction with hydrogen donors as visible light free-radical photoinitiator particularly in dental applications.Both TX-FLCOOH and TX-FLCOO-Na have greater molar absorbencies in the visible region compared to that of CQ.

Fluorescence spectra of the photoinitiators may also provide information on the nature of the excited states involved.As can be seen from Figure4,excitation

and

Figure3.UV spectra of(a)TX-FLCOOH and CQ in CH2Cl2and

(b)TX-FLCOONa and CQ in

water.

Figure2.UV spectra of thioxanthone-fluorenecarboxylic acid(TX-

FLCOOH)(a),thioxanthone-fluorene sodium carboxylate(TX-

FLCOONa)(b),thioxanthone(TX)(c),and fluorene(F)(d).

Scheme2.Synthesis of Fluorenecarboxylic Acid-Thioxanthone(TX-FLCOOH)and Sodium Fluorene Carboxylate-Thioxanthone

(TX-FLCOONa

)

Article Macromolecules,Vol.43,No.10,20104523

emission fluorescence spectra in THF and water of TX-FLCOOH and TX-FLCOONa,respectively,are almost the same.Both spectra show a nearly mirror-image-like relation between absorption and emission again similar to bare TX, indicating its dominant photoexcited(singlet)state in the photoinitiator. PhotopolymerizationsUsingThioxanthone-Fluorenecarboxylic Acid(TX-FLCOOH).TX-FLCOOH was used as photoini-tiator for the polymerization of methyl methacrylate(MMA) at415nm under a nitrogen atmosphere.The results obtained in the presence or absence of a hydrogen donor are compiled in Table1.For comparison,photopolymerizations with TX were also included.As can be seen,TX is not an efficient photoinitiator when the irradiation is performed at the visible light(λ>415nm).Interestingly,TX-FLCOOH was found to initiate photopolymerization at this region even in the absence of an additional hydrogen donor.Notably,the addition of a hydrogen donor such as N,N-dimethylaniline(DMA)accele-rates the polymerization.

The efficiency of the TX-FLCOOH in the photocuring of formulations containing multifunctional monomers was also studied.The heat released during the photocuring of the formulations was followed by photo-DSC.In Figures5 and6,kinetic profiles referring to the polymerization of trimethylolpropane triacrylate(TMPTA)under polychro-matic light emitting atλ=315-450nm are shown.TX-FLCOOH and TX and DMA served as photoinitiators and hydrogen donor,respectively.The shape of the curves indi-cates the existence of two stages:a rapid first stage followed by a slow stage.It can be seen that at low and sufficiently high concentrations polymerization takes place more rapidly with TX-FLCOOH than with TX.In the absence of a hydrogen donor DMA,TX does not initiate the

polymerization.

Figure4.(A)Normalized excitation(a)and emission(b)fluorescence

spectra of fluorenecarboxylic acid-thioxanthone(TX-FLCOOH)in

THF at room temperature.(B)Normalized excitation(a)and emission

(b)fluorescence spectra of sodium fluorene carboxylate-thioxanthone

(TX-FLCOONa)in H2O at room

temperature.

Figure5.Photo-DSC profiles for photopolymerization of TMPTA

irradiated at30°C by UV light with an intensity of58mW cm-2

.

Figure6.Conversion vs time curves for photopolymerization of

TMPTA irradiated at30°C by UV light with an intensity of58mW cm-2. Table1.Photoinitiated Polymerization of Methyl Methacrylate(MMA)by TX-FLCOOH at415nm in DMF(Irradiation Time=15min) run a[TX-FLCOOH](mol L-1)[DMA](mol L-1)[TX](mol L-1)conversion(%)M n b?10-3(g mol-1)M w/M n

1 1.0?10-3 3.0?10-311.133.7 1.24

2 5.0?10-

3 1.5?10-229.613.6 1.38

3 1.0?10-2 3.0?10-28.111.8 1.35

4 5.0?10-38.226.

5 1.98

5 1.5?10-2 5.0?10-30

a[MMA]=4.68mol L-1;TX-FLCOOH=thioxanthone-fluorenecarboxylic acid;TX=thioxanthone,DMA=N,N-dimethylaniline.b Determined by gel permeation chromatography(GPC)using polystyrene standards.

4524Macromolecules,Vol.43,No.10,2010Yilmaz et al.

For the evaluation of the potential use of TX-FLCOONa in dental formulations,photoinduced gelation of the water-borne primer formulation29,44,45consisting of a mixture of2-(2-phosphonoethoxymethyl)acrylic acid ethyl ester(EAEPA), N,N-diethyl-1,3-bis(acrylamido)propane(DEBAAP),and water(2:1:2)was used.The photoinitiator/hydrogen donor (ethyl4-(dimethylamino)benzoate)was in a concentration as usually applied under practical conditions.Although the same gel contents were attained,CQ appeared to be more convenient photoinitiator for dental applications,where shorter gelation times are desired.

We have studied the effect of pH on the photopolymeri-zation by increasing acid concentration.The polymerization does not proceed in the acidic media when the hydrogen donor is present in the formulation.This is expected since amino compound is quarternized by the addition of acid which decreases hydrogen-donating efficiency.In the ab-sence of hydrogen donor,the salt is converted to the oil-soluble acidic form and precipitates in water.

Laser Flash Photolysis https://www.360docs.net/doc/b212035351.html,ser flash photolysis studies were performed to investigate the triplet states of the photoinitiators.Figure7a,b shows the transient absorption spectra of degassed acetonitrile solutions containing TX-FLCOOH and TX-FLCOONa after irradiation with laser pulses of355nm.The transients were recorded at280and 680ns,and11and27μs,after the pulse for TX-FLCOOH and TX-FLCOONa,respectively.

Both spectra show two peaks at around340and650nm. The peaks at longer wavelength,680and630nm for TX-FLCOOH and TX-FLCOONa,respectively,were assigned to the triplet-triplet absorption.The bare TX,46its thiol,13 and thioacetic acid14derivatives also exhibit similar transient spectra.Apparently,the lifetimes of the triplet states of these TX compounds are quite close to that of TX-FLCOONa (τ=26μs at630nm)(Figure7b).However,a much shorter triplet lifetime(τ=632ns at680nm)observed in the case TX-FLCOOH indicates a fast quenching process.In con-trast to the sodium derivative,the hydrogen abstraction reaction is facilitated by the carboxylic acid hydrogen pre-sent in the structure of TX-FLCOOH.

To test if triplet quenching occurs in an intramolecular process(Scheme3)or intermolecular process(Scheme4), laser flash photolysis experiments were performed at two different concentrations of TX-FLCOOH,1.01?10-4and 6.09?10-5M.At low concentration very short triplet life-time(163ns)was observed,showing that at these low concentrations no intermolecular reaction occurs,where triplet of TX-FLCOOH gets quenched by another molecule of TX-FLCOOH in the ground state.Furthermore,such as bimolecular quenching process is unlikely at these low concentrations of TX-FLCOOH(6.09?10-5M)because of the short triplet lifetime(163ns).At concentrations

of Table2.Gelation Time and Gel Content Comparison of Dental Formulations with the Photoinitiators TX-FLCOONa and CQ a photoinitiators gelation time(min)gel content(%) TX-FLCOONa2098

CQ198

a Dental formulation:40%EAEPA,20%DEBAAP,and40%water was used as a standard resin.

Article Macromolecules,Vol.43,No.10,20104525

TX-FLCOOH above 10-4M,however,the respective inter-molecular reactions may be operative,where the triplet excited state of TX-FLCOOH reacts with another molecule of TX-FLCOOH in the ground state through various deactivation pathways.

A photolysis experiment was performed in the absence of monomer in order to clarify the initiation mechanism of

TX-FLCOOH and to demonstrate the decarboxylation nature after hydrogen abstraction process (Scheme 3).Thus,1mL of a solution of TX-FLCOOH (6.25?10-2M)in water was placed in a quartz tube and connected to another tube containing (3.40?10-3M)aqueous Na 2CO 3and one drop of phenolphthalein.The pink color of the solution com-pletely disappeared at the end of 2h irradiation.This effect is attributed to the decarboxylation of the initiator resulting in concomitant carbon dioxide evolution and consequently hydrogen carbonate formation.

In complete contrast,much longer triplet lifetimes were observed with the sodium derivative.In this case,the lifetime of triplet TX-FLCOONa was shorter at high concentration,again indicating bimolecular quenching as no hydrogen-donating site exists in the close proximity.Kinetically,the intermolecular process should only be possible above certain concentrations,as the bimolecular reaction cannot compete with the fast intramolecular reaction at lower concentrations.This is supported by laser flash photolysis experiments,where the model compound,fluorenecarboxylic acid (FLCOOH),was used as quencher (Figure 9).Pseudo-first-order treatment of the decay kinetics of the TX-FLCOOH triplet states observed at 680nm gave a quenching rate constant of 7.46?109M -1s -1.This shows that a bimolecular quenching process,where the triplet of TX-FLCOOH gets quenched by FLCOOH in the ground state,can only compete with the intramolecular quench-ing at concentrations in the order of several millimolar.Conclusion

In this article,we synthesized two kinds of thioxanthone fluorene photoinitiators absorbing at visible range and then investigated the effect of structures of on photochemical beha-viors in comparison with the parent thioxanthone compound.Fluorescence and laser flash photolysis studies in conjunction with photopolymerization experiments suggest that at low con-centrations of TX-FLCOOH initiation occurs through intramole-cular hydrogen abstraction.Above a concentration of 0.1mM of TX-FLCOOH,intermolecular hydrogen abstraction probably dominates,which also generates radicals capable of initiating polymerization.The results also show that the sodium derivative,TX-FLCOONa,requires hydrogen donor such as amines for successful polymerization to occur as it does not possess ab-stractable hydrogen in the structure.It is clear that both photo-initiators possess excellent optical absorption properties in the

Scheme 4.Photopolymerization Mechanism in Lower Concentrations

of TX-FLCOOH through Intramolecular

H-Abstraction

Figure 8.Transient absorption kinetics observed (a)at 680nm follow-ing laser excitation (355nm,5ns)of TX-FLCOOH in argon-saturated acetonitrile solution and (b)at 630nm following laser excitation (355nm,5ns)of TX-FLCOONa in argon-saturated water

solution.

Figure 9.Quenching of TX-FLCOOH triplets by FLCOOH in acet-onitrile;dependence of the pseudo-first-order rate constant of the decay at 680nm on the concentration of FLCOOH.

4526Macromolecules,Vol.43,No.10,2010Yilmaz et al.

visible region,ensuring efficient light absortion for many targeted applications such as dental filling materials,photoresists,printing plates,integrated circuits,laser-induced3D curing,holographic recordings,and nanoscale micromechanics. Acknowledgment.The authors thank Istanbul Technical University for financial support.Y.Y.thanks Turkish Academy of Sciences for partial financial support.

References and Notes

(1)Dietliker,K.In Chemistry&Technology of UV&EB Formulation

for Coatings,Inks&Paints,2nd ed.;SITA Technology Ltd.:London, UK,1998;V ol.3.

(2)Fouassier,J.P.In Photoinitiation,Photopolymerization and Photo-

curing:Fundamentals and Applications;Hanser Publishers:Munich, 1995.

(3)Crivello,J.V.Adv.Polym.Sci.1984,62,1–48.

(4)Sangermano,M.;Crivello,J.V.Visible and long-wavelength

cationic photopolymerization.In Photoinitiated Polymerization;

Belfield,K.D.,Crivello,J.V.,Eds.,2003;V ol.847,pp242-252.

(5)Yagci,Y.;Reetz,I.Prog.Polym.Sci.1998,23,1485–1538.

(6)Yagci,Y.;Schnabel,W.Prog.Polym.Sci.1990,15,551–601.

(7)Davidson,R.S.In Advances in Physical Chemistry;Bethel,D.,Gold,

V.,Eds.;Academic Press:London,1983.

(8)Ledwith,A.;Bosley,J.A.;Purbrick,M.D.J.Oil Colour Chem.

Assoc.1978,61,95–104.

(9)Ledwith,A.;Purbrick,M.D.Polymer1973,14,521–522.

(10)Pappas,S.P.In UV Curing:Science and Technology;Technology

Marketing Corp.:Norwalk,CT,1978.

(11)Davis,M.J.;Doherty,J.;Godfrey,A.A.;Green,P.N.;Young,

J.R.A.;Parrish,M.A.J.Oil Colour Chem.Assoc.1978,61,256–263.

(12)Aydin,M.;Arsu,N.;Yagci,Y.Macromol.Rapid Commun.2003,

24,718–723.

(13)Cokbaglan,L.;Arsu,N.;Yagci,Y.;Jockusch,S.;Turro,N.J.

Macromolecules2003,36,2649–2653.

(14)Aydin,M.;Arsu,N.;Yagci,Y.;Jockusch,S.;Turro,N.J.Macro-

molecules2005,38,4133–4138.

(15)Balta,D.K.;Arsu,N.;Yagci,Y.;Jockusch,S.;Turro,N.J.

Macromolecules2007,40,4138–4141.

(16)Temel,G.;Arsu,N.J.Photochem.Photobiol.A:Chem.2009,202,

63–66.

(17)Temel,G.;Arsu,N.;Yagci,Y.Polym.Bull.2006,57,51–56.

(18)Temel,G.;Aydogan,B.;Arsu,N.;Yagci,Y.Macromolecules2009,

42,6098–6106.

(19)Corrales,T.;Catalina,F.;Peinado,C.;Allen,N.S.J.Photochem.

Photobiol.A:Chem.2003,159,103–114.(20)Corrales,T.;Catalina,F.;Peinado,C.;Allen,N.S.;Rufs,A.M.;

Bueno,C.;Encinas,M.V.Polymer2002,43,4591–4597.

(21)Carlini,C.;Angiolini,L.;Caretti,D.;Corelli,E.Polym.Adv.

Technol.1996,7,379–384.

(22)Jiang,X.S.;Luo,J.;Yin,J.Polymer2009,50,37–41.

(23)Jiang,X.S.;Luo,X.W.;Yin,J.J.Photochem.Photobiol.A:Chem.

2005,174,165–170.

(24)Jiang,X.S.;Xu,H.J.;Yin,J.Polymer2004,45,133–140.

(25)Jiang,X.S.;Yin,H.Polymer2004,45,5057–5063.

(26)Wei,J.;Wang,H.Y.;Jiang,X.S.;Yin,J.Macromol.Chem.Phys.

2006,207,2321–2328.

(27)Fouassier,J.P.In Radiation Curing in Polymer Science and Techno-

logy:Photoinitiating Systems;Elsevier Appl.Sci.:Amsterdam,1993;

V ol.II,p717.

(28)Jakubiak,J.;Rabek,J.F.Polimery1999,44,447–461.

(29)Moszner,N.;Salz,U.Prog.Polym.Sci.2001,26,535–576.

(30)Moszner,N.;Salz,U.Macromol.Mater.Eng.2007,292,245–271.

(31)Degirmenci,M.;Genli,N.Macromol.Chem.Phys.2009,210,1617–1623.

(32)Jakubiak,J.;Allonas,X.;Fouassier,J.P.;Sionkowska, A.;

Andrzejewska,E.;Linden,L.A.;Rabek,J.F.Polymer2003, 44,5219–5226.

(33)Ganster,B.;Fischer,U.K.;Moszner,N.;Liska,R.Macromol.

Rapid Commun.2008,29,57–62.

(34)Ganster,B.;Fischer,U.K.;Moszner,N.;Liska,R.Macromole-

cules2008,41,2394–2400.

(35)Durmaz,Y.Y.;Moszner,N.;Yagci,Y.Macromolecules2008,41,

6714–6718.

(36)Lougnot,D.J.;Fouassier,J.P.J.Polym.Sci.,Part A:Polym.

Chem.1988,26,1021–1033.

(37)Catalina,F.;Corrales,T.;Peinado,C.;Allen,N.S.;Green,W.A.;

Timms,A.Eur.Polym.J.1993,29,125–130.

(38)Fouassier,J.P.;Burr,D.;Wieder,F.J.Polym.Sci.,Part A:Polym.

Chem.1991,29,1319–1327.

(39)Kojima,K.;Ito,M.;Morishita,H.;Hayashi,N.Chem.Mater.

1998,10,3429–3433.

(40)Lougnot,D.J.;Turck,C.;Fouassier,J.P.Macromolecules1989,

22,108–116.

(41)Tasdelen,M.A.;Karagoz,B.;Bicak,N.;Yagci,Y.Polym.Bull.

2008,59,759–766.

(42)Andrzejewska,E.;Andrzejewski,M.J.Polym.Sci.,Part A:Polym.

Chem.1998,36,665–673.

(43)Catalina,F.;Tercero,J.M.;Peinado,C.;Sastre,R.;Mateo,J.L.;

Allen,N.S.J.Photochem.Photobiol.A:Chem.1989,50,249–258.

(44)Tasdelen,M.A.;Moszner,N.;Yagci,Y.Polym.Bull.2009,63,

173–183.

(45)Ullrich,G.;Burtscher,P.;Salz,U.;Moszner,N.;Liska,R.

J.Polym.Sci.,Part A:Polym.Chem.2006,44,115–125.

(46)Amirzadeh,G.;Schnabel,W.Makromol.Chem.1981,182,2821–2835.

数码管引脚图

七段数码管引脚图 《七段数码管引脚图》 数码管使用条件: a、段及小数点上加限流电阻 b、使用电压:段:根据发光颜色决定;小数点:根据发光颜色决定 c、使用电流:静态:总电流 80mA(每段 10mA);动态:平均电流 4-5mA 峰值电流 100mA 上面这个只是七段数码管引脚图,其中共阳极数码管引脚图和共阴极的是一样的,4位数码管引脚图请在本站搜索我也提供了,有问题请到电子论坛去交流. 数码管使用注意事项说明: (1)数码管表面不要用手触摸,不要用手去弄引角; (2)焊接温度:260度;焊接时间:5S (3)表面有保护膜的产品,可以在使用前撕下来。

这类数码管可以分为共阳极与共阴极两种,共阳极就是把所有LED的阳极连接到共同接点com,而每个LED的阴极分别为a、b、c、d、e、f、g及dp(小数点);共阴极则是把所有LED的阴极连接到共同接点com,而每个LED的阳极分别为a、b、c、d、e、f、g及dp(小数点),如下图所示。图中的8个LED分别与上面那个图中的A~DP各段相对应,通过控制各个LED的亮灭来显示数字。 那么,实际的数码管的引脚是怎样排列的呢?对于单个数码管来说,从它的正面看进去,左下角那个脚为1脚,以逆时针方向依次为1~10脚,左上角那个脚便是10脚了,上面两个图中的数字分别与这10个管脚一一对应。注意,3脚和8脚是连通的,这两个都是公共脚。 还有一种比较常用的是四位数码管,内部的4个数码管共用 a~dp这8根数据线,为人们的使用提供了方便,因为里面有4个数码管,所以它有4个公共端,加上a~dp,共有12个引脚,下面便是一个共阴的四位数码管

物质的属性与特性

物质的属性与特性 在初中物理教学中,学生往往很难分清物质的属性与特性有什么不同。其主要原因是对这两个概念本身的含义没搞清和对物理量的物理意义的理解不够深刻。 属性是所有物质共有的性质。如质量,质量是物质的量,是物体所含物质数量的多少,所有物体都有质量。物体的质量有大有小,因所含物质的多少而不同。不同物质组成的物体的质量是完全可以相同的。我们无法用质量来区分物质的不同。一桶水的质量可以是10千克,一块铁的质量也可以是10千克,我们从质量大小无法区分它们。把物质往小里分,最终都是质子、电子、中子等粒子组成的,质量实质就是它们所含的质子、电子、中子等粒子的数量不同。 特性,是一种物质特有的性质,是一种物质区别于其他物质的性质。在这种性质上每一种物质都与别的不一样。例如密度,密度反映的是同体积的不同物质其质量是不相同的,也就是不同物质的质量的疏密程度不同(特殊情况除外)。这种不同是由物质内部质子、电子、中子等粒子组成的内部结构形式不同而造成的。水的密度是1000kg/m3它的含义是每一立方米水的质量是1000kg。1000kg/m3是水所特有的。反过来说,如果有一种物质(纯净物)它的密度是1000kg/m3,我们就可以说它是水。每种物质都有自己的密度(个别除外,例如煤油和酒精,因为他们内部粒子组成的内部形式类似)。再如,2700kg/m3是铝所特有的,是铝区别于其他物质的性质。通过比较物质的密度是不是2700kg/m3,可以判断它是不是铝。 正确理解比热容。比热容也是物质的一种特性。每种物质都有自己的比热容(个别除外),用它可以鉴别物质。那么比热容反映的是物质的那一种性质呢?它反映的是同样质量的不同物质,升高(或降低)相同温度时,吸收(或放出)的热量不同。或者说不同物质容热能力不同。例如水,1kg的水,升高1℃需要吸收4200J的热量,而同质量的煤油温度升高1℃只需要2400J 的热量。反之,1kg的水,降低1℃能够放出4200J的热量,而同质量的煤油降低1℃只放出2400J,这说明水所能容热的本领大(把物体比喻为一个容器)。从这个意义说,比热容反映的是物质的容热能力,或者说是容热本领。 二十多年前的物理学中密度叫比重。现在改为密度,除纠正不是比重量的错误外,更能反映这个物理量的本义,既物体质量的疏密程度。虽然不比不知它们的不同,但是不比它们也是客观存在的,不是一个过程量,所以改掉“比”字具有深刻的意义。比热容所反映的是物质容热的本领,也是在不比较的时候同样存在,不是只有比较才存在的,似乎把它改叫热容度或热容量更能与这个物理量物理意义相符合。

四位共阴和共阳数码管的引脚介绍及检测方法概括

内部的四个数码管共用a~dp这8根数据线,为人们的使用提供了方便,因为里面有四个数码管,所以它有四个公共端,加上a~dp,共有12个引脚,下面便是一个共阴的四位数码管的内部结构图(共阳的与之相反)。引脚排列依然是从左下角的那个脚(1脚)开始,以逆时针方向依次为1~12脚,下图中的数字与之一一对应。 数码管使用条件: a、段及小数点上加限流电阻 b、使用电压:段:根据发光颜色决定;小数点:根据发光颜色决定 c、使用电流:静态:总电流 80mA(每段 10mA);动态:平均电流 4-5mA 峰值电流 100mA

上面这个只是七段数码管引脚图,其中共阳极数码管引脚图和共阴极的是一样的,4位数码管引脚图请在本站搜索我也提供了数码管使用注意事项说明: (1)数码管表面不要用手触摸,不要用手去弄引角; (2)焊接温度:260度;焊接时间:5S (3)表面有保护膜的产品,可以在使用前撕下来。 数码管测试方法与数字显示译码表

ARK SM410501K SM420501K 数码管引脚图判断 数码管识别 ARK SM410501K 共阳极数码管 ARK SM420501K 共阴极数码管 到百度搜索下,这两种数码管只有销售商,并无引脚图。 对于判断引脚,对于老手来说,很简单,可是对于新手来讲,这是件很难的事情,因为共阴、 共阳表示的含义可能还不太懂 ZG工作室只是将该数码管的引脚图给出,并让大家一起分享。 注:SM410501K 和SM420501K 的引脚排列是一模一样的。 这张图很明确给出该数码管的引脚排列。 数字一面朝向自己,小数点在下。左下方第一个引脚为1、右下方第二个引脚为5,右上方第一个引脚为6。见图所示。 其中PROTEL图中K 表示共阴、A表示共阳。 能显示字符的LED数码管(三) 常用LED数码管的引脚排列图和内部电路图 CPS05011AR(1位共阴/红色 0.5英寸)、SM420501K(红色 0.5英寸)、 SM620501(蓝色0.5英寸)、SM820501(绿色0.5英寸)

java复习题

1、下列选项中关于Java中封装的说法错误的是()。 A、封装就是将属性私有化,提供共有的方法访问私有属性 B、属性的访问方法包括setter方法和getter方法 C、setter方法用于赋值,getter方法用于取值 D、包含属性的类都必须封装属性,否则无法通过编译 2、Java中,如果类C是类B的子类,类B是类A的子类,那么下面描述正确的是() A、C不仅继承了B中的成员,同样也继承了A中的成员 B、C只继承了B中的成员 C、C只继承了A中的成员 D、C不能继承A或B中的成员 3、分析选项中关于Java中this关键字的说法正确的是() A、this关键字是在对象内部指代自身的引用 B、this关键字可以在类中的任何位置使用 C、this关键字和类关联,而不是和特定的对象关联 D、同一个类的不同对象共用一个this 4、以下关于布局的说法,错误的是() A、BorderLayout是边框布局,它是窗体的默认布局 B、null是空布局,它是面板的默认布局 C、FlowLayout是流布局,这种布局将其中的组件按照加入的先后顺序从左向右排列,一行排满之后就转到下一行继续从左至右排列 D、GridLayout是网格布局,它以矩形网格形式对容器的组件进行布置。容器被分成大小相等的矩形,一个矩形中放置一个组件 5、以下用于创建容器对象的类是()(多选) A、Frame B、Checkbox

C、Panel D、TextField 6、以下关于抽象类和接口的说法错误的是() A、抽象类在Java语言中表示的是一种继承关系,一个类只能使用一次继承。但是一个类却可以实现多个接口。 B、在抽象类中可以没有抽象方法 C、实现抽象类和接口的类必须实现其中的所有方法,除非它也是抽象类。接口中的方法都不能被实现 D、接口中的方法都必须加上public关键字。 7、关于面向对象的说法正确的是() A、类可以让我们用程序模拟现实世界中的实体 B、有多少个实体就要创建多少个类 C、对象的行为和属性被封装在类中,外界通过调用类的方法来获得,但是要知道类的内部是如何实现 D、现实世界中的某些实体不能用类来描述 8、下列不属于面向对象编程的三个特征的是 A.封装 B.指针操作 C.多态性 D.继承 9、类所实现的接口以及修饰不可以是 A.public B.abstract C.final D.void

物质的属性(专题)

物质的属性 库尔勒市第三中学 许琼 一、选择题 1、质量为150 g 的物体可能是 ( ) A. 一个乒乓球 B. 一支铅笔 C .一个苹果 D .一只铅球 2、铁块在降温过程中,会发生变化的物理量是 ( ) A .内能 B. 质量 C .体积 D .密度 3、几种燃料的密度见下表,三辆完全相同的油罐车分别盛满这三种燃料,质量最大的是 ( ) A. 甲车 B. 乙车 C. 丙车 D. 三车重量相同 4、 如下图所示是小明在探究甲、乙、丙三种物质质量与体积关系时作出的图像,分析图像可知 ( ) A. ρρρ>>乙甲丙 B. ρρρ>>乙甲丙 C. ρρρ>>乙丙甲 D. ρρρ>>乙甲丙 第4题 第5题 5、如上图所示分别由不同物质a 、b 、c 组成的三个实心体,它们的体积和质量的关系如同所示,由图可知下列说法中不正确的是 ( ) A .a 物质的密度最小 B. b 物质的密度是3 3 1.010/kg m ? C .c 物质的密度是a 的两倍 D .b 、c 物质的密度与它们的质量、体积有关 6、下列对密度定义式v m = ρ的几种理解中,正确的是( ) A 、密度与物体的质量成正比 B 、密度与物体的质量成正比,与其体积成反比 C 、密度与物体的体积成反比 D 、密度是物体本身的一种特性,与物体的质量和体积无关 7、小王测量了五个体积、质量各不相同的铝块,将所得数据描绘成网表.图中能与实验结果吻合的是 ( )

8、一个瓶子装满水时的总质量是400 g ,装满酒精时的总质量是350 g 。则瓶子的容积是(31.0/c g m ρ=水,3 0.8/g cm ρ=酒精) ( ) A .400 c 3m B .250c 3m C .350 c 3m D .200 c 3 m 9、世界上密度最小的固体“气凝胶”是人类探索新材料中取得的重要成果.该物质的坚固耐用程度不亚于钢材,且能承受 1 400℃的高温,而密度只有 3 kg /m 3.一架用钢材(33 =7.910/kg m ρ?钢)制成的质量约160 t 的大型飞机,如果用“气凝胶”做成,其质量相当于 ( ) A 一根鸡毛的质量 B .一个鸡蛋的质量 C .一个成年人的质量 D .一台大卡车的质量 10、有甲、乙两金属块,甲的密度是乙的2倍,乙的质量是甲的3倍,那么甲与乙的体积之比 ( ) A . 2:1 B .3:1 C .6:1 D.1:6 11、2009年9月.我国自主研发生产的一种碳纤维产品,各项性能达到国际先进水平,其密度是钢的四分之一。强度是钢的十倍.它最适合用于制作 ( ) A. 汽车的底盘 B. 产品包装金 C .打夯的重锤 D .航空器部件 12、一容积为10L 的汽缸内储存有密度为1.5×103 Kg/m 3 的氧气,现用活塞将氧气的体积压 缩为4L ,则压缩后氧气的密度为[ ] A.1.5×103 Kg/m 3 B.3.75×103 Kg/m 3 C.0.6×103 Kg/m 3 D.6×103 Kg/m 3 13、甲物质的密度为5 g/cm 3,乙物质的密度为 2 g /cm 3, 各取一定质量混合后密度为3 g/cm 3.假没 混合前后总体积保持不变,则所取甲、乙两种物质的质量之比是 ( ) A .5:2 B .2:5 C .5:4 D .4:5 二、填空题: 14、世界上最大的鸟是鸵鸟,它的卵有1.5Kg ,合_________g ;世界上最小的鸟是蜂鸟,它的卵只有0.35g ,合_________mg ;铁的密度是7.9×103 Kg/m 3 ,合__________g/cm 3 ;在常见物质中,_____的比热最大,其比热容是___________________。 15、实验室所用的托盘天平是测量__________的工具;水的密度是____ ______kg/m 3 ,其

七段数码管引脚图

由于很多多都需要这个数码管引脚图,于是今天专门用qq截了图,请大家记好引角的顺序 《七段数码管引脚图》 数码管使用条件: a、段及小数点上加限流电阻 b、使用电压:段:根据发光颜色决定;小数点:根据发光颜色决定 c、使用电流:静态:总电流 80mA(每段 10mA);动态:平均电流 4-5mA 峰值电流 100mA 上面这个只是七段数码管引脚图,其中共阳极数码管引脚图和共阴极的是一样的,4位数码管引脚图请在本站搜索我也提供了数码管使用注意事项说明: (1)数码管表面不要用手触摸,不要用手去弄引角; (2)焊接温度:260度;焊接时间:5S (3)表面有保护膜的产品,可以在使用前撕下来。 数码管测试方法与数字显示译码表

图 三、测试:同测试普通半导体二极管一样。注意!万用表应放在R×10K档,因为R×1K档测不出数码管的正反向电阻值。对于共阴极的数码管,红表笔接数码管的“-”,黑表笔分别接其他各脚。测共阳极的数码管时,黑表笔接数码管的vDD,红表笔接其他各脚。另一种测试法,用两节一号电池串联,对于共阴极的数码管,电池的负极接数码管的“-”,电池的正极分别接其他各脚。对于共阳极的数码管,电池的正极接数码管的VDD,电池的负极分别接其他各脚,看各段是否点亮。对于不明型号不知管脚排列的数码管,用第一种方法找到共用点,用第二种方法测试出各笔段a-g、Dp、H等。 uchar bit_secl=0x01; for(n=0;n<8;n++) //显示数字 {P0=bit_secl; P2=0x03;

delay_ms(1500); } return; } void display4(void) {uchar n; uchar bit_secl=0x01; for(n=0;n<8;n++) //显示数字{P0=bit_secl; P2=0x04; bit_secl=bit_secl<<1; delay_ms(1500); } return; } void display5(void) {uchar n; uchar bit_secl=0x01; for(n=0;n<8;n++) //显示数字{P0=bit_secl; P2=0x05; bit_secl=bit_secl<<1; delay_ms(1500); } return; } void display6(void) {uchar n; uchar bit_secl=0x01; for(n=0;n<8;n++) //显示数字{P0=bit_secl; P2=0x06; bit_secl=bit_secl<<1; delay_ms(1500); } return; } void display7(void) {uchar n; uchar bit_secl=0x01; for(n=0;n<8;n++) //显示数字{P0=bit_secl; P2=0x07;

物理属性

第六章 物质的属性 A 卷 楚州 徐勇 一、填空题( 每空1分,共24分) 1. 某条交通主干道上有一座桥,桥梁旁竖着一块如图6-1所示的标志牌,它表 示的物理意思是 。 2.现有一头蓝鲸,一只蜜蜂,一只公鸡,一个电子,试估测其质量,则从大到小的顺序排列: 。 3.给下列物体质量数后面填上适当的单位: (1)一瓶矿泉水的质量为5×102 (2)一个中学生的质量约为0.05 。 4.小华在使用天平测固体质量时,发现天平的指针偏向左侧,可能造成此现象的原因有哪些可能(至少写出2种): ; 。 5.“神州六号”飞船将在未来几年内升入太空。当飞船飞向月球的过程中,其载物舱中有一天平,其自身的质量将 (选填“变大”、“变小”或 “不变”)。 6.某次实验时,需要测一个形状不规则的铜块,小名用经过调节平衡后的托盘天平称出铜块的质量为105g ;小华紧接着没有将小名使用过的托盘天平调节平衡就进行了实验,实验前,小华还发现了此天平的指针偏在标尺中央的右侧,则小华测得这个铜块的质量数值 (选填“大于、“小于”或“等于”)105g 。 7.如图6-2所示,是常见物质的密度,其中液体酒精的密度为 kg/m 3,其物理含义是: , 若将一块金属铝切去2/5,则剩余部分驴块的密度将 (选填“变大”、“变小”或“不变”),这反映了密度是 一种属性。 8.用调节好的托盘天平测物体A 的质量,在测量过程中 若指针静止在如图6-3甲所示的位置,只调节游码,则 应向 调(选填“左”或“右”),天平才能平衡,当 指针静止在中央刻度线上,天平使用的砝码的情况和游 码的位置如图6-3乙所示,则物体A 的质量为 g 。 9.医院ICU 重症监护室内配有充满氧气的钢瓶,供病人 急救时使用,其密度为5kg/m 3。若某次抢救病人用去瓶内氧气一半, 则瓶内剩余的氧气的质量将 (选填“变大”、“变小”或“不变”), 其密度为 kg/m 3。 10.把一金属块浸没在盛满酒精的玻璃杯中,从杯中溢出10g 酒精。 若将该金属块浸没在盛满水的烧杯中,则从杯中溢出的水的质量为 g 。(已知酒精的密度为0.8g/cm 3) 11.如图6-4所示,表中生活中常见物质的比热容。仔细观察表中的 数据,你能得出结论为(至少2条): ; 。 12.现有两种质量相同,初温相同的不同液体a 、b ,分别用两个完 全相同的加热器加热,加热过程中各种损失相同,在加热过程中, a 、 b 两种液体的温度随时间的变化的图线如图6-5所示, 则这两种 图 6-1 图6-2 图6-4 图6-3

(word完整版)It+willbe+时间段+before等表示“在……之后……才”的句型总结,推荐文档

It + will be + 时间段 + before等表示“在……之后……才”的句型总结 一、用于句型“It + will be + 时间段 + before...”句型中,表示“要过多久才…”,也可用于“It + may be + 时间段 + before...”,表示“也许要过多久才……”。Before 后的句子中用一般现在时态。 其否定形式“It will/would not be +时间段+ before…”表示“不久就……,过不了多久就……”。 【典型考例】 (1)The field research will take Joan and Paul about five months; it will be a long time _____ we meet them again.(2007安徽卷) A. after B. before C. since D. when (2)—How long do you think it will be ______China sends a manned spaceship to the moon? (2006福建卷) —Perhaps two or three years. A. when B. until C. that D. before (3)It ________ long before we _______ the result of the experiment.( 上海春招2002) A. will not be...will know B. is...will know C. will not be...know D. is...know (4) Scientists say it may be five or six years_________ it is possible to test this medicine on human patients. (2004福建) A. since B. after C. before D. when 解析:答案为BDCC。考题 (1)(2)before 用于肯定的“It + will be + 时间段 + before...”句型中,表示“要过多久…才…”。 (3)before在本题中用于否定句,意为“过不了多久就会……”, 状语从句要用一般现在时代替一般将来时,可知C项为正确答案,句意是:要不了多久我们就会知道试验的结果了。 (4)宾语从句中含有句型“It + may be + 时间段 + before...”,表示“也许要过多久才……”,故选择答案C。 二、用于句型“it was +时间段+ before …”表示“过了(多长时间)才……”。其否定形式“ it was not +时间段+ before …”意为“不久就……”, “没过(多长时间)就……”。 【典型考例】 It was some time ___________we realized the truth. (2005山东) A. when B. until C. since D. before 解析:答案为D。before用于句型“it was +时间段+ before …”表示“过了(多长时间)才……”。该题题意是“过了一段时间我们才意识到事情的真相”。故正确答案为C项。

before用法归纳

before用法知多少? 在高考中,状语从句是每年高考单项填空部分必考的题目之一,考查的重点是考生容易混淆并且近似的连词在逻辑行文和语篇结构中的使用。before作连词的用法一直是高考的重点,也是学生感觉掌握起来比较头疼的地方。下面选取近几年各省市的高考试题进行归纳分析,使考生通过典型实例,把握高考对before所引导的句型的命题规律,帮助同学们更好地解答此类题目。 1. before作为连词时的基本意义是“在……之前”,用于表示时间或顺序。 You can’t borrow books from the school library ______ you get your student card. (2009上海,32) A. before B. if C. while D. as 【解析】选A。考查连词,该句的意思是:在你得到你的学生卡之前你不能从学校图书馆借书。before表示先后顺序。 2. 表示“过了多久才……”,说明主句的持续时间比较长而从句的动作缓缓来迟。 (1) The American Civil War lasted four years _______ the North won in the end. (2005广东,30) A. after B. before C. when D. then 【解析】选B。本题考查连词before表示“在多久之后才……”的用法,根据本句含义“美国南北战争持续了四年,北方才最终取得胜利”,可知本题应选B。 (2) Several weeks had gone by I realized the painting was missing. (2004宁夏,39) A. as B. before C. since D. when 【解析】选B。before表示“过多久才……”。句意:几个星期已经过去了,我才意识到油画丢了。内含的意思是油画丢了好几个星期了,我才意识到。 3. 表示从句动作还没来得及发生或完成,主句动作就已经发生或完成了,意为“尚未……就”,“没来得及……就”,常用于before sb. can/ could…。 —Why didn’t you tell him about the meeting? ( 2006四川,35) — He rushed out of the room _________ I could say a word. A. before B. until C. when D. after 【解析】选A。本题考查连词before表示“还没来得及……就……”的用法。句意为:我还没来得及说一句话,他就冲出了房间。 4. 表示“以免,以防,趁……还没有……”,强调动作的必要性,以避免或防止从句动作的发生。 He made a mistake, but then he corrected the situation _____ it got worse.(2003北京) A. until B. when C. before D. as 【解析】选C。由made a mistake和转折词but可知本题句意是“他犯了一个错误,但在事情进一步恶化之前他改变了形势。”故答案正确答案为C项。

软件质量属性

(1)正确性 正确性是指软件按照需求正确执行任务的能力。“正确性”的语义涵盖了“精确性”。 正确性无疑是第一重要的软件质量属性。 技术评审和测试的第一关都是检查工作成果的正确性。 (2)健壮性 健壮性是指在异常情况下,软件能够正常运行的能力。 正确性描述软件在需求范围之内的行为,而健壮性描述软件在需求范围之外的行为。 开发者往往把异常情况错当成正常情况而不作处理,结果降低了健壮性。 健壮性有两层含义:一是容错能力,二是恢复能力。 从语义上理解,恢复不及容错那么健壮。 Unix容错能力很强,可惜不好用。 Windows容错能力较差,但是恢复能力很好,而且很好用。占了90% 的操作系统市场。 (3)可靠性 可靠性是指在一定的环境下,在给定的时间内,系统不发生故障的概率。 平时软件运行得好好的,说不准哪一天就不正常了,如(千年等一回的“千年虫”问题)等。 软件可靠性分析通常采用统计方法 时隐时现的错误一般都属于可靠性问题,纠错的代价很高。例如当维护人员十万火急地赶到现场时,错误消失了;等维护人员回家后,错误又出现了。… 软件可靠性问题主要是在编程时候埋下的祸害(很难测试出来),应当提倡规范化程序设计,预防可靠性祸害。 (4)性能 性能通常是指软件的“时间-空间”效率,而不仅是指软件的运行速度。 既要马儿跑得快,又要马儿吃的少。 性能优化的关键工作是找出限制性能的“瓶颈”,不要在无关痛痒的地方瞎忙乎。 性能优化就好像从海绵里挤水一样,你不挤,水就不出来,你越挤海绵越干。 (5)易用性 易用性是指用户使用软件的容易程度 导致软件易用性差的根本原因: 理工科大学教育存在缺陷 开发人员犯了“错位”的毛病 软件的易用性要让用户来评价。 (6)清晰性 清晰意味者所有的工作成果易读、易理解,可以提高团队开发效率,降低维护代价。 开发人员只有在自己思路清晰的时候才可能写出让别人易读、易理解的程序和文档。 可理解的东西通常是简洁的。 (7)安全性

数码管引脚图(常用)

由于很多多都需要这个数码管引脚图,下边介绍几种常用的二极管数码管引脚 《七段数码管引脚图》 数码管使用条件: a、段及小数点上加限流电阻 b、使用电压:段:根据发光颜色决定;小数点:根据发光颜色决定 c、使用电流:静态:总电流 80mA(每段 10mA);动态:平均电流 4-5mA 峰值电流 100mA 上面这个只是七段数码管引脚图,其中共阳极数码管引脚图和共阴极的是一样的,4位数码管引脚图请在本站搜索我也提供了数码管使用注意事项说明: (1)数码管表面不要用手触摸,不要用手去弄引角; (2)焊接温度:260度;焊接时间:5S (3)表面有保护膜的产品,可以在使用前撕下来。 数码管测试方法与数字显示译码表

图 三、测试:同测试普通半导体二极管一样。注意!万用表应放在R×10K档,因为R×1K档测不出数码管的正反向电阻值。对于共阴极的数码管,红表笔接数码管的“-”,黑表笔分别接其他各脚。测共阳极的数码管时,黑表笔接数码管的vDD,红表笔接其他各脚。另一种测试法,用两节一号电池串联,对于共阴极的数码管,电池的负极接数码管的“-”,电池的正极分别接其他各脚。对于共阳极的数码管,电池的正极接数码管的VDD,电池的负极分别接其他各脚,看各段是否点亮。对于不明型号不知管脚排列的数码管,用第一种方法找到共用点,用第二种方法测试出各笔段a-g、Dp、H等。 数码管引脚图,一般都是一样的。

数字对应数码管显示控制转换字节 (共阴编码) 显示--HGFE,DCBA--编码 0 --0011,1111--0x3F; 1 --0000,0110--0x06; 2 --0101,1011--0x5B; 3 --0100,1111--0x4F; 4 --0110,0110--0x66; 5 --0110,1101--0x6D; 6 --0111,1101--0x7D; 7 --0000,0111--0x07; 8 --0111,1111--0x7F; 9 --0110,1111--0x6F; 共阳为编码取反即可, 接线为高低端口对应接法。 备注:第一脚的识别很简单,看管脚的底部,有一个方块型的就是第一脚。或者正面(就是显示那面)超你,左下角第一个为第一脚。

特性与属性的区别

特性与属性的区别? 简单地说:属性,即无变件的不变.比如物质的质量,惯性.其它条件再变,属性不变.特性,即有条件的不变.比如物质的密度,在常温常压下,密度是固定值,可是温度一变,密度就要变了. 特性:该物体专有的,其他物体所没有的属性;属性:属于该类物体的性质;例:人:鼻子,眼睛,嘴巴都属于人的属性;但是:你区别与其他人的属性是什么呢?找到这个就是特性了。。。这样说不知道你明白否?性质: xìnɡ zhì事物本身所具有的与他事物不同的特征化学性质: huà xué xìnɡ zhì物质在发生化学变化时表现出来的性质,如酸性、碱性、化学稳定性等。物理性质: wù l ǐ xìnɡ zhì物质不需要发生化学变化就呈现出来的性质。如颜色、状态、熔点、沸点、密度等。属性: shǔ xìnɡ事物本身所固有的性质。是物质必然的、基本的、不可分离的特性,又是事物某个方面质的表现。一定质的事物常表现出多种属性。有本质属性和非本质属性的区别。特有属性: tè yǒu shǔ xìnɡ某类事物都具有而别的事物都不具有的属性(特性、特征)。如自然界中有生命的物体,就是生物的特有属性。事物的特有属性反映到人的思想里,就形成该事物的概念。特性: tè xìnɡ 1.某一事物所特有的性质。 2.特殊的品性、品质。特性是该物质特有的性质,属性是使该物质能被判定属于什么类群的性质,性质是物质可表现出的与其它事物不同的现象。比如常温下水和乙醇和乙酸乙酯都有透明液态这个性质,但是水没有易燃这个特性,也没有有机物这个属性。物质的属性是指物质共有的性质特性是指某类物质特有的性质如质量,所有物质都有质量,是物质共有的性质如惯性,所有物质都有惯性,是物质共有的性质如导电性,不同的物质具有不同的导电性,是某类物质特有的性质,再如导热性,都是特性再如自然属性和社会属性是称为真正意义上的人的两大属性,而每个人具有不同的肤色、身高、爱好……,所以肤色、身高、爱好都是特性。 水和冰是同一种物质,只是存在的状态不同,它存在的状态决定它的密度.所以水的密度是它在某种状态下的特性.由水变成冰,发生的只是物理变化,并没有发生化学反应,物理变化是由一种状态变为另一种状态,而它的本质没有变化.它们在结构上是一样的,所以它们是同一种物质.

but,than引导定语从句和before,until用法辨析

but和than引导定语从句的用法 一、but可被看作关系代词,引导定语从句,在句中作主语,在意义上相当于 who not或that not,即用在否定词或具有否定意义的词后,构成双重否定。 如:①There is no mother but loves her children.没有不爱自己孩子的母亲。 ②There was no one present but knew the story already.在场的人都知道这个故事。 二、than作关系代词时,一般用在形式为比较级的复合句中,其结构为形容词比较级(more)...than+从句,than在从句中作主语,相当于that,代表它前面的先行词。(这时,它兼有连词和代词的性质,也有学者认为这种用法的than是连词,后面省略了主语what。) 如:①The indoor swimming pool seems to be a great deal more luxious than is necessary.室内游泳池过于豪华。 ②He got more money than was wanted.他得到了更多的钱。运用上述知识翻译下列句子: 1.任何人都喜欢被赞扬。(but) 2.我们大家都想去桂林。(but) 3.没有人不同情那些嗷嗷待哺的孩子。(but) 4.我们班上没有一个人不想帮你。(but) 5.无论多么荒凉,多么难以行走的地方,人们也能把它变成战畅(but)6.这件事情比想象的要复杂。(than) 7.这个广告的效果比预想的要好。(than) 8.这个问题看起来容易,实际上很难。(than) 9.他爸妈给他的零用钱总是超过他的需要。(than) 10.因为这项工程非常困难,所以需要投入更多的劳动力。(than) 答案: 1.There is no one but likes to be praised. 2.There is no one of us but wishes to visit Guilin. 3.There is no man but feels pity for those starving children.4.There is no one in our class but wants to help you. 5.There is no country so wild and difficult but will be made a theatre of war. 6.This matter is more complex than is imagined. 7.This advertisement is more affective than is expected. 8.The problem may be more difficult in nature than would appear.9.He got more pocket money from his parents than was demanded.

我国媒体公共性的属性

我国媒体公共性的属性 尽管各家之言言之有理,但笔者仍认为,因公共性定义的流动性,对新闻媒体的公共性作出永恒而固定的定义是不切实际的,我们需要的是用一些属性来对新闻媒体公共性的阐述作出框定。 1.从政府体制方面看,我国媒体的所有权由政府所有,代表人民对传媒体制进行积极的、切实可行的宏观调控 新闻媒体公共性具有民主共享性。一方面媒体的公共性并不孤立存在,它必须和一些不可撼动的基本原则结合起来探讨,包括民主、自由、平等等;另一方面就媒体体制而言,它是一种公共资源和战略性资源,具有非排他性的特点,强调最大范围的均有和最大公约数的利益满足。 新闻媒体公共性具有适当独立性。对新闻自由的呼唤由来已久,无论中外媒体,都不可能有绝对的新闻自由,均不同程度地受制于政府。但就世界范围来看,新闻自由已经取得了相当进步,媒体作为政府的牛虻,其批判和监督职能日益得到发挥和重视;其自主经营权也得到一定范围的拓展。 2.从受众服务方面看,数量巨大,是媒体服务的对象,且公民的参与意识和政治意识正在觉醒,新闻媒体公共性具有公众性 现代媒介社会已经逐渐由传者中心本位转变为受者本位,媒体服务的对象是公众,维护的是最广泛的公众利益,而公众的思考力、辨别力和批判力在逐渐增强,公民意识和要求参与社会公共事务管理的诉求也在与日俱增。 3.从媒体操作方面看,媒体的公共性是一个抽象概念,它最终落实于新闻媒体的话语表达及其实践活动中 新闻媒体公共性具有公开性。新闻是对新近发生的事实的报道,媒体的主要责任就是为人们的工作、学习、生活提供外部世界变动的新闻和信息,以有利于澄清和引导人们理解外部世界,而不是使之观念混淆。新闻信息的公开性决定了公众的知情权和监督权。 新闻媒体公共性具有实践性。媒体通过议程设置、话语实践和文本呈现等具体实践活动维护和确保公共利益,“评判某一媒体对于公共利益的贡献,其在本质上参与的公共利益事件,而不是其所获得的私有经济利益。” 新闻媒体公共性具有多样性。一方面体现为利益多元化,媒体公共性是一件华丽的外衣,其背后存在着错综复杂的权力利益关系,并受其制约,这引发出了“媒体为谁服务”,媒体、政府、商业资本以及公众之间的利益关系等问题;另一方面体现在新闻实务中,反映多方声音,提供背景材料。

before句型辨析与解析

before句型辨析与解析 It + will be + 时间段+ before等表示“在……之后……才”的句型总结 一、用于句型“It + will be + 时间段+ before...”句型中,表示“要过多久才…”,也可用于“It + may be + 时间段+ before...”,表示“也许要过多久才……”。Before 后的句子中用一般现在时态。 其否定形式“It will/would not be +时间段+ before…”表示“不久就……,过不了多久就……”。 (1)The field research will take Joan and Paul about five months; it will be a long time _____ we meet them again. A. after B. before C. since D. when (2)—How long do you think it will be ______China sends a manned spaceship to the moon? —Perhaps two or three years. A. when B. until C. that D. before (3)It ________ long before we _______ the result of the experiment. A. will not be...will know B. is...will know C. will not be...know D. is...know (4) Scientists say it may be five or six years_________ it is possible to test this medicine on human patients. A. since B. after C. before D. when 解析:答案为BDCC。考题 (1)(2)before 用于肯定的“It + will be + 时间段+ before...”句型中,表示“要过多久…才…”。 (3)before在本题中用于否定句,意为“过不了多久就会……”, 状语从句要用一般现在时代替一般将来时,可知C项为正确答案,句意是:要不了多久我们就会知道试验的结果了。 (4)宾语从句中含有句型“It + may be + 时间段+ before...”,表示“也许要过多久才……”,故选择答案C。 二、用于句型“it was +时间段+ before …” 表示“过了(多长时间)才……”。其否定形式“ it was not +时间段+ before …” 意为“不久就……”, “没过(多长时间)就……”。 It was some time ___________we realized the truth. A. when B. until C. since D. before 解析:答案为D。before用于句型“it was +时间段+ before …” 表示“过了(多长时间)才……”。该题题意是“过了一段时间我们才意识到事情的真相”。故正确答案为C项。 表示“在……之后……才”。副词“才”在汉语中强调某事发生得晚或慢。如果在含有before从句的复合句中,强调从句动作发生得晚或慢时,就可以应用这种译法。 The American Civil War lasted four years _______ the North won in the end. A. after B. before C. when D. then 解析:答案为B。本题考查连词before表示“在……之后才……”之的用法,根据本句含义“美国南北战争持续了四年,北方才最终取得胜利”,可知本题应选B。 三、表示“……还没来得及……就……”。目的在于强调从句动作发生之前,主句动作已发生。 —Why didn't you tell him about the meeting? — He rushed out of the room _________ I could say a word. A. before B. until C. when D. after 解析:答案为A。本题考查连词before表示“……还没来得及……就……”的用法。句意是“我还没来得及说一句话,他就冲出了房间”。 四、表示“在……之前就……”。这时主句与before从句中的两个动作按时间先后依次发生。 It was evening______ we reached the little town of Winchester. A. that B. until C. since D. before 解析:答案为D。本题考查连词before表示“在……之前就……”的用法。句意是“我们到达小镇Winchester 之前就已经是傍晚时分了”。 五、表示“趁……”,“等到……”,或“没等……就…… ”等。

最全四位七段数码管引脚图、公共脚

最全四位七段数码管引脚图、公共脚 数码管在现在的自动控制中的显示应用极为广泛,由于使用时间的问题会导致缺画的现象发生,为了便于大家更好找到合适的数码管进行更换,特给大家详细介绍 《七段数码管实物图》

数码管使用条件: a、段及小数点上加限流电阻 b、使用电压:段:根据发光颜色决定;小数点:根据发光颜色决定 c、使用电流:静态:总电流 80mA(每段 10mA);动态:平均电流 4-5mA 峰值电流 100mA 上面这个只是七段数码管引脚图,其中共阳极数码管引脚图和共阴极的是一样的,4位数码管引脚图请在本站搜索我也提供了数码管使用注意事项说明: (1)数码管表面不要用手触摸,不要用手去弄引角; (2)焊接温度:260度;焊接时间:5S (3)表面有保护膜的产品,可以在使用前撕下来。

一种四位双排引脚共阴(阳)脚位图

常见的四位双排引脚共阴(阳)脚位图 单排四位双排引脚共阴(阳)脚位图 国内外生产LED数码管的公司很多,命名方法也各不相同。下面主要介绍国产LED数码管和立得公司的LED数码管的命名方法,因为市面上这两中型号的数码管销售的最多。 国产LED数码管型号命名方法为: 示例:BS12.7R-1表示字高为12.7mm,红色,共阳极数码管。字串3 立得公司的LED数码管的命名方法为: 其中,A:极性;B:字高;C:发光颜色;D:位数;E:高效率,红;F:其它。字串2 极性:字串1 LA:共阳(单);LC:共阴(单);LD:共阳(双);LE:共阴(双);LN:共阳(加大);LM:共阴(加大)。

发光颜色: 1:红色(红底);2:绿色;3:黄色;4:橙色;5:红色;6:红色(高效率)。 位数: 1:(单位);2:(双位);3:(三位) 上图是字高为0.8英寸的四位共阳极双排12脚数码管,四个公共脚为,6、8、9、12 上图是字高为0.52英寸的四位共阳极双排12脚数码管,四个公共脚为2、3、6、10数码管测试方法与数字显示译码表

相关文档
最新文档