microflora and gut permeability

microflora and gut permeability
microflora and gut permeability

https://www.360docs.net/doc/b212155384.html,/mby

ISSN:1040-841X(print),1549-7828(electronic)

Crit Rev Microbiol,Early Online:1–15

!2014Informa Healthcare USA,Inc.DOI:10.3109/1040841X.2013.837863

REVIEW

Early life events influence whole-of-life metabolic health via gut

microflora and gut permeability

Caroline A.Kerr1,2,Desma M.Grice1,2,Cuong D.Tran1,4,Denis C.Bauer1,5,Dongmei Li1,2,Phil Hendry2,and

Garry N.Hannan1,2

1Preventative Health Flagship,CSIRO,North Ryde,Australia,2Division of Animal,Health and Food Sciences,CSIRO,North Ryde,Australia,3Discipline

of Physiology,School of Medical Sciences,The University of Adelaide,Adelaide,Australia,4Gastroenterology Unit,Women’s and Childrens’s Health

Network,North Adelaide,Australia,and5Division of Mathematical and Information Sciences,CSIRO,North Ryde,Australia

Abstract

The capacity of our gut microbial communities to maintain a stable and balanced state,termed

‘resilience’,in spite of perturbations is vital to our achieving and maintaining optimal health.

A loss of microbial resilience is observed in a number of diseases including obesity,diabetes

and metabolic syndrome.There are large gaps in our understanding of why an individual’s

co-evolved microflora consortium fail to develop resilience thereby establishing a trajectory

towards poor metabolic health.This review examines the connections between the developing

gut microbiota and intestinal barrier function in the neonate,infant and during the first years of

life.We propose that the effects of early life events on the gut microflora and permeability,

whilst it is in a dynamic and vulnerable state,are fundamental in shaping the microbial

consortia’s resilience and that it is the maintenance of resilience that is pivotal for metabolic

health throughout life.We review the literature supporting this concept suggesting new

potential research directions aimed at developing a greater understanding of the longitudinal

effects of the gut microflora on metabolic health and potential interventions to recalibrate the

‘at risk’infant gut microflora in the direction of enhanced metabolic health.

Abbreviations:BMI:body mass index;C.difficile:Clostridium difficile;CRP:C-reactive protein;

C.rectus:Campylobacter rectus;C-section:Caesarean section; E.coli:Escherichia coli;

GI:gastrointestinal;IBD:inflammatory bowel diseases;Ig:immunoglobulin;IL:interleukins;

L/R:lactulose/rhamnose;NAFLD:non-alcoholic fatty liver disease;N.mucosa:Neisseria mucosa;

T1DM:type1diabetes mellitus;T2DM:type2diabetes mellitus;TNF-a:tumor necrosis factor-a;

TPN:total parenteral nutrition

Keywords

Development,gut permeability,microbial

diversity,microbial resilience,obesity

History

Received2June2013

Revised31July2013

Accepted21August2013

Published online19March2014

Introduction

The natural gastrointestinal(GI)microflora is predominantly

composed of bacterial taxa,however there are also archaeal,

viral and fungal community members present(Nelson et al.,

2010).In the GI tract bacterial phyla reach numbers as high as

1014,significantly higher than the1013cells that make up the

human body(Savage,1977).During human evolution micro-

bial communities have co-evolved with their human hosts

(Ley et al.,2008).Further these communities co-develop with

individuals from birth,to become extremely complex in

structure(Blaser&Kirschner,2007).Despite this,the gut

microflora community is commonly overlooked as a con-

tributor to the metabolic potential available to the human

individual.The extended genome concept states‘‘that we are

the sum of all our genetic contributions:the karyome,the

chondriome and the microbiome’’(Dumas,2011)and it is the

study of our metagenome(the composite of our genome

and that of our microbiome)that has rapidly advanced our

understanding of the role the gut microflora plays in health

and the pathogenesis of disease.

The gut microflora is at the intersection between the host

genotype and environmental factors,which when combined

impact host physiology,in particular,metabolic health status.

Dietary studies have suggested that humans and their

ancestral relatives have co-evolved with their microflora to

live under conditions that require maximal utilization of

ingested nutrients,i.e.for nutritional efficiency(Ley et al.,

2008).Therefore,the host’s diet influences the gut microbial

community structure(Ley et al.,2008).In terms of access to

stable food sources,the developed world’s environment

differs significantly from that of our ancestors.It is therefore

not surprising that an increasing body of literature has

implicated the gut microbiome as a factor in the development

of metabolic diseases joining the classic factors of host

genetics,environmental factors(Blaser&Kirschner,2007;

Address for correspondence:Caroline A Kerr,Division of Preventative

Health Flagship,CSIRO,North Ryde2113,Australia.E-mail:

Caroline.Kerr@https://www.360docs.net/doc/b212155384.html,.au

C

r

i

t

i

c

a

l

R

e

v

i

e

w

s

i

n

M

i

c

r

o

b

i

o

l

o

g

y

D

o

w

n

l

o

a

d

e

d

f

r

o

m

i

n

f

o

r

m

a

h

e

a

l

t

h

c

a

r

e

.

c

o

m

b

y

C

S

I

R

O

o

n

4

/

2

3

/

1

4

F

o

r

p

e

r

s

o

n

a

l

u

s

e

o

n

l

y

.

Kaplan &Walker,2012;Nelson et al.,2010)and more recently intestinal permeability (Teixeira et al.,2012a).An overarching finding from these studies has been that the gut microflora of patients suffering from metabolic diseases,have decreased consortia diversity.Therefore,the consortia are unstable and susceptible to a shift in community structure towards deleterious microflora (Ley et al.,2006).We define this key feature of gut microflora as ‘resilience’and propose that it is necessary in preventing a long term shift towards dysbiosis and as a consequence,poor disease and health outcomes over a human’s lifetime.We suggest that this may be an indicator of poor health status.Conversely,a stable ‘healthy’microbial composition resilient to change is a positive trait/hallmark of health (Lozupone et al.,2012;Van den Abbeele et al.,2011).It is therefore important to develop an understanding around how the ‘healthy’stable balanced microflora can deviate from a state of resilience.

This review will unravel the dynamic changes in the gut microflora and intestinal permeability in response to typical perturbations in early life that result in changes across the human lifecycle impacting metabolic health.We briefly examine how disruptions in the gut microbial structure and/or gut permeability are implicated in a number of adult disease pathologies,in particular those associated with poor metabolic health.We discuss how the resilience of our co-evolved gut microflora to perturbations is pivotal for sustained metabolic health and that intestinal permeability may have a significant impact on gut microflora resilience.Table 1summarizes our current knowledge of changes in gut microbial diversity and intestinal permeability throughout the human lifecycle.We indicate the key environmental stressors and the gaps in our knowledge including the likely effects of genetics and familial association in microbiome development.We examine the effects of life events on the host’s metabolic health starting with those that occur in the pregnant mother and the developing foetus,then the colonization of the newborn and followed by the establishment of the long term ‘adult’gut microflora in the young child.While beyond the scope of this review,we acknowledge the debates about firstly the hygiene hypothesis and its possible role in metabolic health (see recent reviews:Brooks et al.,2013;Musso et al.,2010b)and secondly probiotic supplementation to improve metabolic health (see recent reviews:Aggarwal et al.,2013;Panwar et al.,2013).This review proposes that the effects of early life events,on the colonization and succession of early microbial consortia and on gut permeability,are pivotal for long term metabolic health and healthy aging (as illustrated in Figure 1).

Microflora optimized for energy harvest:impact on metabolic health

The incidence of obesity has risen significantly over the last decades to epidemic proportions affecting all ages and socioeconomic groups in the developed world (Hill,2006).Of particular concern,childhood and adolescent obesity has reached epidemic levels in developed countries (Dehghan et al.,2005).There is a strong correlation between obesity and the development of type 2diabetes mellitus (T2DM),metabolic syndrome,cardiovascular disease,gall bladder

disease,osteoarthritis,sleep and mental disorders and colo-rectal cancer (Alberti et al.,2005),which are all associated with increased morbidity and mortality.The etiology of human obesity appears to involve interactions between modern environments with individual behavioral,genetic and biological factors that favor energy storage (Alberti et al.,2005;Clement,2011).One proposed environmental/biological factor responsible for weight gain and altered energy metabolism is the gut microflora (Harris et al.,2012).The majority of the gut microbial taxa have a symbiotic relationship that is essential and beneficial to the host when conditions are optimal (Flint,2011).Other species are ‘‘pathobionts’’,commensal in a healthy host,but can become pathogenic when the host is subject to various perturbations such as infection,diet,stress,inflammation and immunosuppression (Chow et al.,2011).An increasing body of literature has indicated that a detrimental gut microflora contributes to the development of metabolic diseases (Musso et al.,2010a).This is presumably because the microflora has the capacity to regulate energy homeostasis,metabolite production and fat disposition (Vrieze et al.,2010).However,whether or not gut microflora actively contribute to change or simply adapt to changes in the host’s health is yet to be ascertained.This topic has recently been extensively reviewed in a number of excellent articles (Angelakis et al.,2012;Holmes et al.,2011;Krajmalnik-Brown et al.,2012;Nicholson et al.,2012).We know that microbial dysbiosis,characterized by shifts in populations and a loss of species diversity,is a feature of chronic disease in adults.This is demonstrated in both animal models (Musso et al.,2010b)and human studies where gut microbiota is different in chil-dren with T1DM compared to healthy children (Murri et al.,2013).Therefore,it can be argued that a stable microbial composition is a positive trait or hallmark of health and conversely unstable microbial communities may be an indicator of poor health.

Epidemiology and animal model studies have suggested a role for the gut microflora in the ‘‘developmental origins of health and disease’’(Donnet-Hughes et al.,2010;Van den Abbeele et al.,2011).The microflora in early life has been linked to allergy and autoimmune disease risk (Donnet-Hughes et al.,2010;Hormannsperger et al.,2012).More recently,it has been suggested that pre-and postnatal effects can influence obesity risk (Kaplan &Walker,2012).One recent and pivotal,longitudinal epidemiology study has concluded that a combination of early exposures (delivery mode,maternal pre-pregnancy body mass index (BMI)and antibiotics in infancy)influence the risk of being overweight in later childhood (Ajslev et al.,2011;Palmer et al.,2007).One group has concluded that a mother’s gut microflora,in parallel with her metabolic health indices,can ‘‘prime’’the developing foetus gut prior to the imminent microbial colonization post-birth (Koren et al.,2012).There appears to be an ecological succession of the gut microflora in response to life cycle perturbations (Ley et al.,2008)that combine to potentially impact on long term metabolic health status.Further research is required to define the role that the gut microflora plays in metabolic dysfunction along with other factors such as diet,exercise and genetics.Therefore,tracking dynamic changes in the gut microflora over the

2 C.A.Kerr et al.

Crit Rev Microbiol,Early Online:1–15

C r i t i c a l R e v i e w s i n M i c r o b i o l o g y

D o w n l o a d e d f r o m i n f o r m a h e a l t h c a r e .c o m b y C S I R O o n 04/23/14F o r p e r s o n a l u s e o n l y

.

T a b l e 1.S u m m a r y o f c u r r e n t k n o w l e d g e o n t h e c h a n g e s t h a t o c c u r i n m i c r o b i a l t a x a a n d i n t e s t i n a l p e r m e a b i l i t y a c r o s s t h e l i f e s t a g e s a n d w h a t i s k n o w n a b o u t t h e e f f e c t s o f v a r i o u s e x t e r n a l f a c t o r s .

H u m a n l i f e c y c l e s t a g e

E n v i r o n m e n t a l f a c t o r o r s t r e s s o r E f f e c t o n g u t m i c r o b e s :g e n u s o r p h y l u m /c l a s s

E f f e c t g u t m i c r o b i o m e E f f e c t o n g u t p e r m e a b i l i t y M e t a b o l i c c o n s e q u e n c e s R e f e r e n c e

P r e g n a n t M o t h e r P r e g n a n c y

"P r o t e o b a c t e r i a &#D i v e r s i t y e s p e c i a l l y i n t h e "

"B l o o d g l u c o s e ,"A d i p o s i t y

(K o r e n e t a l .,2012)

t r a j e c t o r y

(Z h o u e t a l .,2011)"A c t i n o b a c t e r i a 2009b ,C a n i e t a l .,2008)*,(d e L a S e r r e e t a l .,2010)*,(F e r r a r i s &V i n n a k o t a ,1995)*D i a b e t e s

#D i v e r s i t y

"

(d e K o r t e t a l .,2011)*,(V a a r a l a e t a l .,2008a )*I n f l a m m a t o r y B o w e l D i s e a s e

#F .p r a u s n i t z i i "F u s o b a c t e r i u m n u c l e a t u m

D y s b i o s i s

"

(K a n g e t a l .,2010),(S t r a u s s e t a l .,2011)

S e n e s c e n c e N u r s i n g h o m e

"B a c t e r o i d e t e s #F i r m i c u t e s

#D i v e r s i t y

"G l u c o s e ,g l y c i n e ,l i p i d s ,i n f l a m m a t o r y m a r k e r s

(C l a e s s o n e t a l .,2012)

G r e y h o r i z o n t a l s h a d i n g i n d i c a t e s r e s e a r c h a r e a s w i t h s i g n i f i c a n t k n o w l e d g e g a p s w h e r e f u r t h e r r e s e a r c h i s r e q u i r e d .*I n d i c a t e s r e f e r e n c e a s s o c i a t i n g g u t p e r m e a b i l i t y w i t h t h e e n v i r o n m e n t a l f a c t o r o r s t r e s s o r .^I n d i c a t e s m e t a b o l i c c h a n g e s a s s o c i a t e d w i t h t h e e n v i r o n m e n t a l f a c t o r o r s t r e s s o r .N W ?n o r m a l w e i g h t .

DOI:10.3109/1040841X.2013.837863

Early life events influence whole-of-life

3

C r i t i c a l R e v i e w s i n M i c r o b i o l o g y

D o w n l o a d e d f r o m i n f o r m a h e a l t h c a r e .c o m b y C S I R O o n 04/23/14F o r p e r s o n a l u s e o n l y

.

human lifecycle is the first step in understanding how a balance between our natural microflora’s co-evolved state and metabolic health can be either maintained or disrupted.

The GI tract consists of a continuous simple columnar epithelial cell layer,which is interconnected by junction complexes known as tight junctions (Arrieta et al.,2006).A mucus layer on top of the epithelium,provides the microhabitat and nutrient source for the gut microflora (Garrett et al.,2010).The epithelium and mucus layer are the key components of the mucosal barrier,separating the internal body systems from the external environment (Bjarnason et al.,1995).The ability of the immune system and the gut microflora to co-develop during postnatal life allows the host and microflora to coexist in a mutually beneficial relationship.This process involves the maturation,differentiation and growth of the gut and the development of the innate and adaptive immune systems,which has a profound effect on the mucosal barrier function (Sharma et al.,2010).Therefore,the intestinal mucosa is not only an environment for the microflora to reside,but a physical barrier to prevent toxic luminal content from gaining entry into the host’s circulatory systems (Bjarnason et al.,1995).The mucosa prevents a wide range of environmental patho-gens from entering the body,providing protection from infection,inflammation and alteration of normal body functions (de Kort et al.,2011;Hollander,1999).Maintaining a symbiotic gut microflora protects the host against pathogenic microbes by establishing a competitive barrier to their invasion of the mucosal surface (Groschwitz &Hogan,2009;Hollander,1999).One emerging area of important research is around the proposal that a leaky gut (increased intestinal permeability)is associated with a variety of disorders,such as intestinal and liver diseases,autoimmune disorders including T1DM and T2DM (de Kort et al.,2011;Groschwitz &Hogan,2009;Hollander,1999).

Maintenance of tight junction integrity and paracellular permeability is especially important for immune system homeostasis (Garrett et al.,2010).Consequently,the integrity of the intestinal barrier can determine health and disease outcomes (Groschwitz &Hogan,2009).Changes in structure and composition of claudins,a component of the tight junction proteins that forms the paracellular gut barrier,can alter the barrier function (Angelow &Yu,2007).The expression of claudins is influenced by several factors

including disease and infections (Bu

¨cker et al.,2010)as well as hormones such as prolactin and steroids (Peixoto &Collares-Buzato,2006).Therefore,this indicates that there are possible therapies to correct abnormal intestinal perme-ability as prevention or treatment for some diseases (Arrieta et al.,2006;Duerksen et al.,2005).

Maternal gut microbiome

Throughout a healthy pregnancy the mother’s body undergoes substantial hormonal,immunological and metabolic changes (Mor &Cardenas,2010;Newbern &Freemark,2011).Recent findings have suggested that the gut microbial community of the mother also undergoes profound changes during preg-nancy (Koren et al.,2012).Koren et al.(2012)reported that the mothers’gut microflora is remodeled to support a healthy pregnancy,with significant compositional changes between the first and third trimesters of pregnancy.Notably,these changes are associated with higher levels of blood glucose and adiposity,increases in Proteobacteria and Actinobacteria,and a reduction in overall microbial diversity (Table 1)(Koren et al.,2012).These changes,in the absence of the alternations in diet and total energy intake,are also observed with obesity (Koren et al.,2012).Further,unlike healthy weight mothers,obese mothers had minimal changes in the microbial structure between trimesters (Koren et al.,

2012).

Figure 1.Starting early in life,environmental factors influence microbial diversity (blue)and gut permeability (green),affecting the duration of resilience and metabolic health (different shadings).(A)During pregnancy,the developing foetal gut is ‘primed’by the maternal gut microflora and intestinal permeability (diagonal lines),particularly towards the latter stages of gestation and prior to the imminent microbial colonization post-birth.(B)Following birth,the gut is colonised with bacteria and diversity develops throughout infancy and childhood with a subsequent decrease of the initially very high intestinal permeability.However,early in life,risk factors,such as maternal obesity,chronic intestinal permeability,antibiotics,delivery mode and nutritional regime can influence the development of a diverse population.(C)In adulthood,events in early life have combined with tight intestinal permeability to influence the ‘resilience’of adult gut’s microflora.This is positively correlated with diversity and determines the health trajectory for the remaining lifespan.(D)In later years,after a period of ‘resilience’,the diversity in the gut microbiome declines and the leakiness increases during normal ageing.A low diversity or high leakiness can lead to the accelerated decline and places the individual at risk of developing a range of chronic metabolic diseases.

4 C.A.Kerr et al.

Crit Rev Microbiol,Early Online:1–15

C r i t i c a l R e v i e w s i n M i c r o b i o l o g y

D o w n l o a d e d f r o m i n f o r m a h e a l t h c a r e .c o m b y C S I R O o n 04/23/14F o r p e r s o n a l u s e o n l y

.

Obesity during pregnancy is associated with adverse out-comes,including excessive foetal birth weight (macrosomia)as well as low birth-weight,preterm birth,increased risk of caesarean (C-section)delivery,high maternal blood pressure (pre-eclampsia)and gestational diabetes (Smith et al.,2008).It is likely that the mother’s gut microflora produces metabolites that reach the developing fetus through the circulation.The metabolic health of the mother,during pregnancy potentially,impacts on fetal development and the infant gut microflora (Figure 1,Section A ‘Gestation’).Maternal microbes and metabolites prime the neonates’gut

The effects of events in utero on the subsequent infant gut microflora and life time health status are not understood.As the body surfaces are largely protected from environmen-tal and microbial exposure during fetal life,for a long time it has been considered that the GI tract of a normal fetus is sterile (Mackie et al.,1999)and is then rapidly colonized by a microbial consortium during and after birth (Figure 1,Section B ‘Newborn’and ‘Infant’).Interestingly,the recent reporting of bacteria in meconium (Jimenez et al.,2008)has caused debate about the likelihood of microbial pre-natal colonization of the fetal gut (Nicholson et al.,2012;Thum et al.,2012).However the consensus view is that this possibility is still to be rigorously proven (Matamoros et al.,2013).

Therefore,the neonate may be influenced by the maternal microflora and its metabolite profile.It is therefore conceiv-able that maternal microbial metabolites and maternal antibodies could prime the neonates developing mucosal immune system for later microbial colonization.To date,there are no reported studies that have investigated the effects of maternal microbial metabolites and obesity on the fetus/infant.However,there are emerging studies investigating metabolomics signatures in preterm labor (Dessi et al.,2011;Koren et al.,2012;Romero et al.,2010).One study demonstrated that metabolomics signatures representative of bacterial products are associated with preterm labor (Romero et al.,2010).Whilst this study failed to measure levels of gut permeability in the pregnant mother or report on the pre-pregnancy BMI,coupled with the aforementioned study by Koren (Koren et al.,2012)it at least demonstrates the potential for maternal microbial metabolites to have a significant impact on the developing neonate.Furthermore,a study investigating urine metabolites in newborns with intrauterine growth retardation (small babies)found that these babies had metabolite signatures of metabolic syndrome (i.e.associated with glucose intolerance and insulin resistance in adults (Dessi et al.,2011).Whilst this later study did not mention microbial signatures or include information on the mother’s BMI,the authors suggested that these infants are at risk of obesity later in life.Thus,the effect of potential interactions between maternal microbial metabolites and the developing foetus that the life time metabolic health is worthy of future investigation.

During pregnancy,immune and metabolic functions of the foetus are dependent on the mother and these functions are refined in utero and appear to be diet sensitive (Sanz,2011).

The aforementioned study (Koren et al.,2012)showed that the gut microflora of children was most similar in compos-ition to that of their mothers’in early pregnancy (first trimester),despite the mothers microflora changing during pregnancy.Suggesting that the mother’s early,and even pre-pregnancy microflora,influences the infants very early gut microflora (see Figure 1,Section A ‘‘Gestation’’).Therefore,it is possible that the mother’s gut microflora and metabolic health status may be an important determinant of the colonization of the infant’s gut as well.

A growing body of literature suggests that the development of the gut associated mucosal immune system occurs in the neonate and is largely determined by the mother’s metabolite profile,specifically,the gut associated lymphoid tissues,which are developed very early in the foetus by commensal and pathogenic intestinal bacteria,parasites and food com-ponents (Pearson et al.,2012).The gut lymphoid tissue inducer cells,which are present in the embryo,are important in the development and organization of prenatal lymphoid tissue (Pearson et al.,2012).Consequently,lymph nodes and Peyer’s patch patterning are pre-programmed in the develop-ing foetus.We propose that the role of the in utero environment,including the mothers’metabolite profile in the development of the gut-associated lymphoid tissues impacts on the ability of the gut to develop and maintain a healthy resilient microflora in later life with long-term health implications,a crucial area demanding further research (Box 1).

Maternal intestinal permeability during pregnancy Changes in intestinal permeability is another factor that plays an important role in determining a resilient microflora during pregnancy,infancy and beyond.It is not known whether the gut barrier function during pregnancy is altered (Box 1),although there is emerging evidence to suggest that there is increased intestinal permeability in pregnant compared to non-pregnant women (Reyes et al.,2006).This is consistent with our preliminary findings (Figure 2)showing that pregnant women (32.8?5.5years of age and BMI of 27.8?6.2)have a higher intestinal permeability compared to non-pregnant women (29.5?6.1years of age and BMI of 24.4?4.9)as measured by the timed blood dual sugar lactulose/rhamnose (L/R)ratio intestinal permeability test.It is unclear how pregnancy contributes to increased gut permeability,although a workable hypothesis might be that hormones induce a change in the structure and composition of the tight junction proteins (Peixoto &Collares-Buzato,2006).The anatomic differentiation of the human fetal gut is completed by 16week gestation (Neu,2007a)but complete gut maturation and differentiation is not reached until beyond birth (Lebenthal &Leung,1987).Maternal changes in gut permeability may affect both the nutrient supply to the fetus (Kobayashi et al.,2009)and may shape the gut microflora community structure and function (Cani et al.,2009).Higher BMI is associated with increased gut permeability in women but the consequences in pregnancy and effect on the fetus are unknown (Teixeira et al.,2012a).The long-term conse-quences of these changes are unknown and are deserving of investigation as they could potentially affect and regulate

DOI:10.3109/1040841X.2013.837863

Early life events influence whole-of-life 5

C r i t i c a l R e v i e w s i n M i c r o b i o l o g y

D o w n l o a d e d f r o m i n f o r m a h e a l t h c a r e .c o m b y C S I R O o n 04/23/14F o r p e r s o n a l u s e o n l y

.

early microbial colonization of the gut and consequently influence metabolic health status in later life (Box 1).

Early life events on microbial colonization

In its early stages the structure and function the intestinal microflora interface of new born is highly plastic and is influenced by the effects of early life events including delivery mode,introduction of solid food and diet,breast/formula feeding and weaning (Fallani et al.,2010)as well as country of origin (Grzeskowiak et al.,2012)and probably also host genetics (Sanchez et al.,2011).Other factors such as incidental environmental exposures to antibiotics (Rautava et al.,2012)and infection (Jangi and Lamont,2010)play a major role in the distinctive characteristics of the microbial community in the infant’s first year of life.A Danish epidemiology study (Ajslev et al.,2011)concluded that a combination of early exposures (maternal pre-pregnancy BMI and antibiotics in infancy)influence the risk of being overweight in later childhood (Antibiotics (OR:1.54,95%CI:1.09–2.17)and maternal BMI (OR:0.85,95%CI:0.41–1.76)).As the infant develops,the gut microflora lose their plasticity and therefore become more resistant to change (Koenig et al.,2011;Lozupone et al.,2012;Palmer et al.,2007;Yatsunenko et al.,2012)and we hypothesize this may ‘‘lock in’’an ideal or a non-ideal gut microbial consortium

well into adulthood.Low intestinal microbial diversity early in life has been associated with allergies such as atopic eczema later in life in a case control study that followed newborns for 20months (Abrahamsson et al.,2012).There may be an association of low microbial diversity early in life with the decreased diversity in obese adults (Greenblum et al.,2012).Therefore,it is conceivable that any factors that affect microbial colonization in the infant can potentially have a long-term impact on metabolic health.This is consistent with observations that childhood obesity is a strong determinant of adult obesity (Thompson,2012).Nonetheless,at this time there is a large gap in knowledge linking the development of the infant gut microflora and the long term effects on adult metabolic health status (Table 1).Overall,this indicates that the relationship between the developing infant microflora and lifelong implications,are very complex and require further investigation (Box 1).However,we suggest that there are advantages in the development and maintenance of a robust stable balanced gut microflora in early life that will have long term health benefits into later years (see Figure 1,Section C ‘‘Resilience’’).

The impact of birth delivery mode

The first major contributing factor to colonization of the infants gut is the delivery mode.Vaginally born babies are first colonized by microbes from their mother’s birth canal (Penders et al.,2006)(Table 1).The maternal vaginal microflora is decreased in diversity and richness during pregnancy,with dominance of Lactobacillus species (L.iners crispatus ,jensenii and johnsonii ,and the orders Lactobacillales (and Lactobacillaceae family),Clostridiales,Bacteroidales and Actinomycetales (Aagaard et al.,2012).Bacteria can also originate from the vaginal and fecal microflora through cross-contamination during birth,the mammary glands through breast-feeding,the skin,mouth and the environment (Palmer et al.,2007).In comparison,the timing of intestinal colonization differs between vaginally born infants and infants delivered by C-section (Gronlund et al.,1999).In C-section delivery Bifidobacterium sp.colonization can be delayed by up to one month as they are deprived of contact with the maternal/vaginal microflora and

Box 1.Future Directions.

General questions:

How do we define the topology and functionality of a healthy ‘resilient’gut microbial profile?

How can stable gut microbiology be established in general and after a disruption caused by disease/antibiotics?

How can gut microflora resilience be targeted for metabolic disturbances including diabetes and metabolic syndrome?

Intestinal permeability may be an important part of the link between diet,gut microbial balance,inflammation,and metabolic disorders and improving the barrier function may become a major strategy for metabolic diseases.

Are there different stages of the human life cycle amenable to modulation and what approaches are likely to be most successful at each stage?Modulating the infant gut microflora:

Breaking the cycle of metabolic dysfunction between mother and infant is crucial and further research is required to determine appropriate methods.Early evidence suggests antibiotics may be used to ‘‘recalibrate’’the gut microflora of infants born to mothers with a high pre-pregnancy BMI.The body of evidence supporting the mode of delivery in microbial establishment is considerable,suggesting that for caesarean births,inoculation of the foetus with microflora from the birth canal could be incorporated into delivery protocols.Is gut barrier function altered during pregnancy and what is the impact on the developing foetus?Modulating adult microbial resilience:

Select for a keystone microflora taxa (diet pre and probiotic)that are beneficial and promote gut health or lost in individuals with metabolic dysfunction to improve metabolic health.

Shanahan (2010)suggests ‘rebooting the system’e.g.by faecal transplantation to treat C.difficile and the appendix (a reservoir of normal microflora),restoring homeostasis,e.g.after antibiotic treatment.

Controls

Pregnant

24

68L /R r a t i o (u n i t s ± S E M )Figure https://www.360docs.net/doc/b212155384.html,ctulose/rhamnose (L/R)ratio in 39healthy non-pregnant and 99pregnant women (gestational age 25?7.6weeks)using a timed blood sample.*denotes pregnant women have a significantly higher (p ?0.03)intestinal permeability compared to non-pregnant women.

6 C.A.Kerr et al.

Crit Rev Microbiol,Early Online:1–15

C r i t i c a l R e v i e w s i n M i c r o b i o l o g y

D o w n l o a d e d f r o m i n f o r m a h e a l t h c a r e .c o m b y C S I R O o n 04/23/14F o r p e r s o n a l u s e o n l y

.

lack of strict anaerobes and the presence of facultative anaerobes such as Clostridium species (Gronlund et al.,1999)(Table 1).C-section babies have lower numbers of Bifidobacteria and Bacteroides and were more often colo-nized with Clostridium difficile (C.difficile ),compared with vaginally born infants (Penders et al.,2006)(Table 1).A recent study has demonstrated that children born via C-section are at increased risk of developing obesity later in life (age 3years)(Huh et al.,2012).This study demonstrated two-fold higher odds of childhood obesity with C-section,even after adjusting for maternal BMI,birth weight and other confounders.These findings were consistent with another earlier study in older children (Zhou et al.,2011).As childhood obesity can be a risk factor for adult obesity,this is a pivotal finding and it is possible that the maternal gut microflora plays a significant role in this relationship.

The effect of country of birth

A number of studies have indicated that country of birth can have a greater impact than delivery and feeding mode on the infant gut microflora (Penders et al.,2006,Mueller et al.,2006).This is partially an effect of westernization and socio-economic status (Adlerberth et al.,1991).Within Europe,the country of birth has a pronounced effect,with Bifidobacteria dominating in the Northern European countries (Fallani et al.,2010).In comparison,greater early diversification and higher numbers of Bacteroides is observed in Southern European countries (Fallani et al.,2010)(Table 1).This study identified that there are major differences in the gut microflora of 6-month-old infants between low-and high-income countries.This possibly reflects differences in energy harvest from the diet typify-ing malnutrition and diarrheal diseases in low-income countries and the previously mentioned Western lifestyle diseases in high-income countries (Grzeskowiak et al.,2012).However,there are potentially many other con-founding factors,such as climate which can affect rates of metabolism and subsequent energy harvest.Consequently,more detailed epidemiology studies are required to fully elucidate these factors.Another study (Yatsunenko et al.,2012)compared the gut microbiota of healthy children and adults from the Amazonas of Venezuela,rural Malawi and metropolitan areas in the USA and found that age-associated changes in the microbial genes (an indicator of the composition of the microbial population)involved in vitamin biosynthesis and metabolism were shared across countries.The most prominent differences involved micro-bial pathways related to vitamin biosynthesis and carbohy-drate metabolism.In this study,Malawian and Amerindian babies had higher components of the vitamin B2(ribofla-vin)biosynthetic pathway and urease than the Western babies (USA).Overall,the structure of the gut microbiome needs to be considered when evaluating human develop-ment,nutritional needs,physiological variations and the impact of westernization.These variables,and factors that are yet to be fully elucidated,could potentially combine to influence the long term resilience of the developing gut microflora in later life (Figure 1,Section D ‘Outcomes’).

Intestinal permeability in the newborn and the developing gut microflora

The developing GI system plays a vital role during infancy as it serves both as a barrier to infectious materials and as a pathway for nutrition.Intestinal permeability needs to be tightly regulated to promote infant growth and avoid severe infant disease (Drozdowski et al.,2010).During the first months of life,newborns are vulnerable to disease as their immune system and mucosal epithelium of the small intestine are anatomically and functionally immature (Rouwet et al.,2002).As the barrier function is still developing at birth,increased gut leakiness is a normal process in the neonate (Beach et al.,1982;Catassi et al.,1995;Weaver et al.,1984).However,both decreases and increases in permeability during the first month after birth have been reported (Beach et al.,1982;Shulman et al.,1998;Weaver et al.,1984).The differences in intestinal permeability may be due to the discrepancies in gestational age,clinical condition,feeding regimen,and postnatal age at the time of assessment (Shulman et al.,1998).

Increased permeability can have beneficial effects,such as uptake of nutrients and development of systemic tolerance (van Elburg et al.,2003).However,there are disadvantages,such as increased uptake of microbes and foreign particles leading to the development of infection,inflammation and systemic hypersensitivity (Insoft et al.,1996;van Elburg et al.,2003).It has also been reported that enteropathy,a consequence of chronic or recurrent exposure to microbial pathogens brought about by living in unhygienic and unsani-tary conditions,was associated with a compromised barrier function (Campbell et al.,2003).This allowed for transloca-tion of antigenic macromolecules from the gut lumen into the body resulting in systemic immune-stimulation and growth faltering.Furthermore,Monira et al.(2011)reported that in malnourished children,bacterial population of Proteobacteria and Bacteroidetes accounted for 46and 18%,respectively (Monira et al.,2011).In contrast in healthy children,Proteobacteria and Bacteroidetes account for 5and 44%,respectively.The authors concluded that the predominance of pathogenic Proteobacteria and minimal level of Bacteroidetes as commensal microbiota may predispose malnourished children to poor metabolic health.These findings differed from Gupta et al.,(2011)where authors reported that gut microbiota of children in India in which Bacteroidetes were shown to be more abundant in malnourished than in healthy children (Gupta et al.,2011).This disparity of gut bacteria may presumably be due to low sample size analysed,only one malnourished child compared with a healthy child (Gupta et al.,2011),contrary to Monira et al.,(2011)in which gut microbiota of seven children in each group.This inconsistency of the results suggests that more research in this space is warranted.

At birth,intestinal permeability is high and then declines rapidly after birth (see Figure 1),leading to a process referred to as ‘‘gut closure’’(Drozdowski et al.,2010).In humans,the exact timing of gut closure is unknown,however it has been reported that growth factors,hormones,breast milk and changes in the thickness and viscosity of the mucus gel layer play a role in regulating this process (Drozdowski et al.,2010;

DOI:10.3109/1040841X.2013.837863

Early life events influence whole-of-life 7

C r i t i c a l R e v i e w s i n M i c r o b i o l o g y

D o w n l o a d e d f r o m i n f o r m a h e a l t h c a r e .c o m b y C S I R O o n 04/23/14F o r p e r s o n a l u s e o n l y

.

Teichberg et al.,1990;VeeremanWauters et al.,1996).VeeremanWauters et al.(1996)reported that factors like gestational age and enteral nutrition may play an important role in the maturation of the small intestine,thereby decreasing intestinal permeability.Furthermore,it has been suggested that the presence of gut microflora may facilitate mutual growth of the gut (Sharma et al.,2010).This decreases leakiness and promotes survival of the microflora by regu-lation of intestinal mucosal inflammation.These processes result in the development of a stable core of diverse and native commensal species which is critical and advantageous to the host (Sharma et al.,2010).Observations are consistent with animal studies demonstrating that many morphological intestinal tissue defects appear in germ-free animals com-pared to their conventionally raised counterparts indicating that the development of the barrier function is inherently connected to presence of microflora (Neu,2007b).However,the role of the gut microflora in the early plasticity of gut permeability and how these factors contribute to health status later in life is unknown and requires investigation (Box 1).Intestinal permeability transiently decreases during the first week after birth in both healthy term infants and in preterm neonates (Rouwet et al.,2002).Preterm infants have increased intestinal permeability in the first few days of life (van Elburg et al.,2003).However at postnatal age of 4–7days,intestinal permeability is not different for preterm and term infants suggesting a rapid postnatal adaptation of the small intestine in preterm infants (van Elburg et al.,2003).This was consistent with the findings of Beach et al.(1982)who showed that preterm babies born at 26–29weeks gestational age,have increased intestinal permeability between 1–2and 3–4postnatal weeks which then declined by 4–6postnatal weeks (i.e.when they would have been close to full term),as demonstrated by the L/R ratio intestinal permeability test (Beach et al.,1982).Similarly,Shulman et al.(1998)reported that 26–30weeks gestational age infants shown,by L/R ratios,had a mean increase in intestinal permeability from postnatal day 10to 28with a decrease at day 50(Shulman et al.,1998).These findings suggest that preterm infants display a period (between 1and 4weeks post-birth)of increased intestinal permeability to promote absorption of larger immunological and growth-promoting molecules from human milk in an attempt to compensate for the shortened gestation (Beach et al.,1982;Insoft et al.,1996;Weaver et al.,1984).Not surprisingly,pre-term babies are highly susceptible to infection by pathogenic microbes and are routinely placed on prophylactic antibiotic treatments (Daley et al.,2004).Besides the immaturity of the immune system,this may be due to increased gut permeability providing a route of infection.Therefore,it is possible that preterm babies are also susceptible to the long term ‘‘obesogenic’’effects of gut microflora.

Recent studies have suggested that diarrhoea,a common early life condition,alters the diversity of bacterial commu-nities colonizing the gut (Monira et al.,2012,2013).More specifically,a reduction in major commensal bacteria of phyla Bacteroidetes,Firmicutes and Actinobacteria,and an increase in harmful Proteobacteria were observed.This may also explain the prevalent malnutrition in children in the developing countries where diarrheal diseases are endemic

(Monira et al.,2011).Interestingly,Keely et al.revealed that in T84cells the activation of water movement by epithelial chloride channels significantly diminish E.coli and S.typhimurium internalization and translocation (Keely et al.,2012).Despite these aforementioned studies on infant gut permeability and the rapid increase in publications on the human gut microbiome,there seems to be a substantial gap in understanding the relationship between gut permeability and the developing gut microflora (as highlighted in Table 1).As there are many potential early life factors that affect gut permeability and consequently the developing gut micro-flora,the role of gut permeability in this setting needs further investigation,particularly as these changes may be a mediator of metabolic health in later life (Box 1).Implications of the nutritional regime

Transmission of bacteria from the mother to the neonate through direct contact with maternal microflora during birth and through breast milk during lactation (the milk microflora,see Table 1)plays a role in the microbial colonization of the infant’s gut (Cabrera-Rubio et al.,2012).During lactation,maternal cells from gut-associated lymphoid tissue,contain-ing bacteria and their genetic material,travel to the breast via the lymphatics and peripheral blood system (Donnet-Hughes et al.,2010)which,when ingested by the infant,primes the infants mucosal associated immune system (Greer &O’Keefe,2011;Mor &Cardenas,2010).The lymphatic system undergoes pre-and postnatal shaping and requires exposure to intestinal microflora after birth to stimulate lymphatic maturation,development and function (Harvey,2005).Therefore,there are a number of maternal physio-logical factors driving the development of the gut and its microflora prenatally,neonatally and in the early months of life (Newbern &Freemark,2011).

There are clear differences in body composition and growth rate between breast and formula fed babies in developed countries,with the latter displaying a higher growth rate and having greater adiposity (reviewed by Thompson (2012)).The microbial structure,particularly the Bifidobacteria component,of a breastfed baby compared to a formula fed baby is controversial (reviewed by Rautava et al.(2012))with this research confounded by the wide variation in the duration and exclusivity of breastfeeding.Solely formula-fed babies tend to be more exclusively colonized with E.coli ,C.difficile ,Bacteroides spp.and Lactobacilli compared to breastfed babies (Penders et al.,2005).One study has shown that term infants who were born vaginally at home and were exclusively breastfed have the highest numbers of Bifidobacteria and lowest numbers of C.difficile and E.coli (Penders et al.,2005).Whilst it is difficult to determine individual variables,it can be concluded that breastfeeding,natural birth and a lack of hospitalisation correlates with a more beneficial microbial consortium.In breast-fed babies,the presence of Bacteroidetes as pioneer bacteria in the majority of neonates demonstrated that adult-type strict anaerobes may reach adult-like population densities within the first week of life (Jost et al.,2012).Consequently,the switch from facultative to strict anaerobes may occur earlier than previously assumed in breast fed neonates,and the

8 C.A.Kerr et al.

Crit Rev Microbiol,Early Online:1–15

C r i t i c a l R e v i e w s i n M i c r o b i o l o g y

D o w n l o a d e d f r o m i n f o r m a h e a l t h c a r e .c o m b y C S I R O o n 04/23/14F o r p e r s o n a l u s e o n l y

.

establishment of the major butyrate-producing popula-tions may be limited by other factors than the absence of anaerobic conditions (Jost et al.,2012).This is of signifi-cance as butyrate producing bacteria (e.g.Faecalibacterium prausnitzii )are considered to be beneficial (Sokol et al.,2008).It would be of great interest to take the mother’s metabolic health status into consideration in future studies as this would help ascertain interactions between feeding mode and BMI.

Human milk contains bioactives that have profound effects upon the function and integrity of the GI tract (Goldman,2000).It has been demonstrated that infants who received the majority of their food as human milk had significantly lower intestinal permeability when compared to infants who received minimal or no human milk at postnatal days 7,14and 30(Taylor et al.,2009).This is consistent with two previous studies (Catassi et al.,1995;Weaver et al.,1987)in which it was demonstrated that lower intestinal permeability occurred in term breastfed infants compared to formula-fed infants.Furthermore,a study of term infants over the first 6postnatal days showed decreased permeability to lactulose with initiation of human milk but not formula feedings (Insoft et al.,1996).These findings can have significant conse-quences for microbial colonization and infant exposure to metabolites (Weaver et al.,1987).

Importantly,it has been shown that supplying nutritional needs to the body,by way of bypassing the digestive system using total parenteral nutrition (TPN),negatively impacts gut barrier function and gut atrophy in piglets (Kansagra et al.,2003;Shulman et al.,1998).The cellular mechanism for the increase in intestinal permeability during TPN has not been elucidated,especially in the newborn.A potential explanation could be a breakdown in tight junction integrity (Kansagra et al.,2003).Human milk is important to premature babies since in preterm neonates early feeding with human milk reduces intestinal permeability (Shulman et al.,1998).This rapid improvement in gut permeability and hence barrier integrity,may be beneficial to the development of a resilient microflora and consequently reduce the risk of developing metabolic diseases later in life.

A mother’s BMI can influence the microbial content of the breast milk,that is the milk microbiome,which in turn inoculates the infant’s gut microflora (Cabrera-Rubio et al.,2012).Maternal obesity and high weight gain during preg-nancy has been shown,for at least the first month,to be compositionally less diverse compared to that of normal weight mothers (Cabrera-Rubio et al.,2012).Although these findings require further investigation with larger sample numbers,they suggest that obese mothers may pass on their poor microbial diversity to their infants (see Table 1).Furthermore,overweight mothers reportedly have higher levels of potentially pathogenic Staphylococcus bacteria and lower levels of the beneficial Bifidobacterium compared to normal-weight mothers (Collado et al.,2012).The prevalence of mucous degrading Akkermansia muciniphila bacteria was also higher in overweight mothers,and the numbers of these bacteria were related to the concentration of the inflammatory marker interleukin (IL)-6in the colostrum (Collado et al.,2012).This in turn is related to lower counts of bacteria of the genus Bifidobacterium in the breast milk of overweight

women (Collado et al.,2012).The authors suggested that excessive weight gain in mothers continues a cycle of poor metabolic health in the successive generation and contributed to the heightened risk of obesity in their infants (Collado et al.,2012).As this mechanism involves shifting the gut microflora scales towards a loss of resilience,it is therefore conceivable that this microbial associated risk can have a lifelong extension into adulthood (Figure 1,Section C ‘‘Resilience’’).Identifying methods for re-calibrating the gut flora of babies e.g.feeding prebiotics such as insulin and galacto-oligosaccharides (Desbuards et al.,2012),or the radical approach of using antibiotics or modulating the maternal gut microflora towards more beneficial species clearly requires additional research (Box 1).Pathogenic infections and hospitalization

To date,no studies have reported a group of ‘keystone’microbes in infants that may be responsible for obesity later in life.Instead our supposition is that the mechanism involves the loss of microbial consortium resilience as opposed to specific phyla.Despite this,there are a number of examples about how incidental GI infections in infants can have positive long-term effects on GI health.The most convincing example concerns C.difficile infection.Approximately 60–70%of healthy newborns and infants are colonized by the enteric pathogen C.difficile acquired through environmental con-tamination in the nursery or home environment (Jangi &Lamont,2010).However,unlike older children and adults who are susceptible to the potent C.difficile exotoxins that cause diarrhoea and pseudomembranous colitis,these infants are unaffected (Hall &Duffett,1935).In fact,between 12and 24months of age C.difficile is eradicated as a commensal (Hafiz &Oakley,1976).This is presumably due to gradual development of the ‘adult’colonic microflora and potentially through immunoglobulins (Ig)provided from birth and breastfeeding (Kelly et al.,1992).Furthermore,an IgG response develops during the carrier state which appears to provide lasting protection against subsequent C.difficile infections in later life (Kyne et al.,2000).This finding is highly significant as this microbe is a growing problem in adults exposed to antibiotics (Kelly &LaMont,2008).As we know microbes can enhance energy harvest (Jumpertz et al.,2011)and are implicated in a number of adult metabolic diseases,it is possible to conclude that the colonization of other microbes in infancy may have life-long impacts (potentially negative and positive)on metabolic health an important area requiring further research (Box 1).The effects of antibiotics of metabolic health status Even though antibiotics have been widely used in the clinical setting for the last 70years their long term effects on commensal bacterial populations and microbial community resilience are largely unknown (Jernberg et al.,2010).No one has assessed the impact of antibiotic usage on the colonization and succession of early microbial consortia in the developing infant gut the long term implications on metabolic health.The infant gut microflora is more dynamic and less resilient than the adult gut microflora (Cho &Blaser,2012;Fallani et al.,2010),consequently effects may be more profound in

DOI:10.3109/1040841X.2013.837863

Early life events influence whole-of-life 9

C r i t i c a l R e v i e w s i n M i c r o b i o l o g y

D o w n l o a d e d f r o m i n f o r m a h e a l t h c a r e .c o m b y C S I R O o n 04/23/14F o r p e r s o n a l u s e o n l y

.

infants with long-term consequences for development and microbial resilience.

Dethlefsen et al.(2008)examined the short-term effects of a single dose of the antibiotic (ciprofloxacin)in adults and found that it took four weeks for most of the gut micro-flora composition to recover to its pre-treatment state (Dethlefsen et al.,2008).However,there were still several taxa that failed to recover even after 6months.In a birth cohort (KOLA)study,infants treated with antibiotic/anti-fungals (undefined)have been associated with decreased numbers of Bifidobacteria and Bacteroides (Penders et al.,2005)(Table 1).The previously mentioned Danish epidemi-ology study concluded that a combination of early exposures,including antibiotics (not defined),influence the risk of being overweight in later childhood (Ajslev et al.,2011).This effect could be explained by an impact on the establishment and diversity of the gut microflora.For example,of all children treated with antibiotics in this study,those with mothers with a healthy pre-pregnancy BMI had an increased risk of developing obesity,whereas those of obese mothers were at decreased risk of developing obesity (Ajslev et al.,2011).When the effect of overweight mother’s breast milk is considered (Cabrera-Rubio et al.,2012,Collado et al.,2012),it is possible to conclude that results of antibiotic treatment may be contingent on the mothers’metabolic health status or on the composition of the pre-treatment gut microflora.Other studies,not focusing on host metabolic health and metabol-ism,have suggested that antibiotics in early life break tolerance to the gut microflora,altering the microbiome and predisposing individuals to allergies (Madan et al.,2012;Murk et al.,2011).

The effects of antibiotics and adiposity have been investigated in mice demonstrating some gut bacteria survive the treatment better than others,shifting digestion towards enhanced energy harvest (Looft et al.,2012).This is not surprising,as in-feed antibiotics have been administered to agricultural animals for disease treatment,disease prevention,and importantly growth promotion for over 50years.In one study,pigs were raised in a highly controlled environment,with one portion of the littermates receiving a diet containing performance-enhancing antibiotics (chlortetracycline,sulfa-methazine and penicillin)and the other portion receiving the same diet but without the antibiotics (Looft et al.,2012).Metagenomic analyses revealed a significant increase in microbial genes relating to energy production and conversion in the antibiotic-fed pigs (Looft et al.,2012).Whilst the antibiotic doses used in this study were low,albeit chronic,compared to typical clinical treatments in human children,they do help shed some light on the growth promoting nature of antibiotics that could also apply to humans.The effects of genetic and familial factors

We cannot rule out the likelihood that genetic factors are also involved in the early colonization of the infant gut or that the resilience phenotype itself may be inherited and shared amongst family members.These questions are in need of more research but some support comes from a recent study (Faith et al.,2013)in which family members but not unrelated individuals were found to share strains of gut microflora in

common and that these persisted through adulthood.Also while outside the scope of this review,the debate about the genetic basis of inflammatory bowel diseases (IBD)(Rubin et al.,2012)has pointed to the likelihood of heritability of conditions that alter microbial colonization of the infant gut.IBD may begin as early as the first year of life and recently Mendelian mutations were identified in children with very early-onset Crohn’s disease and ulcerative colitis (Shim et al.,2013).Similarly,along with environmental factors,genetic factors linked to celiac disease have been reported to influence infant gut colonization by Bacteroides species (Sanchez et al.,2011).

Plastic structure of the infant gut and microflora

By the first year of life,the infant’s intestines possess a microflora that begins to resemble that of the adult gut microflora,consisting of Bacteroides and Firmicutes,Verrucomicrobia,with low abundance of Proteobacteria and aerobic gram negative bacteria (Palmer et al.,2007).By approximately two and a half (Koenig et al.,2011)to four years of age (Musso et al.,2010a),the gut microflora has fully matured,converging towards the three adult enterotype clusters (Arumugam et al.,2011).Whilst the maternal microflora is thought to have the greatest initial influence on an infant’s initial microbial structure,the factors involved in the transformation into a mature adult microflora remain unclear.It is possible to speculate that it involves diet,host and external factors (e.g.antibiotic treatment)exerting selection pressure towards the ‘fitter’taxa.The healthy adult microflora then remains relatively stable for approxi-mately 70years (Biagi et al.,2012).Interestingly,and unlike the dynamic changes observed in the infant’s developing gut microflora (Fallani et al.,2010)the established long term ‘adult’microflora is considered to be resistant to change in healthy adults (Cho &Blaser,2012).However,changes in microbial resilience and diversity are observed in disease states (Cani et al.,2008;Turnbaugh &Gordon,2009;Vaarala et al.,2008).Key questions remain about how the ‘resilience’of the co-evolved microflora is lost and how that contributes to poor metabolic health,for the host,in later years (Figure 1,Sections C and D).Gut microflora could potentially direct metabolic development early in life and that may then become fixed in place for adult life.

Microbial education of the gut mucosal immune system

As the infant gut microflora develops,a host/microbial mutualism is also established (Palmer et al.,2007).This symbiosis can influence a number of host physiological processes such as nutrient absorption,development of the gut tissue,the gut associated lymphoid tissue,and the shaping of the innate and adaptive immune system (Sanz,2011).The main role of the mucosal associated lymphoid immune system is to manage the exposure of potential antigens from food nutrients and the resident microflora (Sjogren et al.,2009).The latter can be considered to be an environmental regulator of mucosal and systemic immune maturation and vice versa .This ability of gut bacteria to ‘educate’the gut immune system is extremely important as it also involves developing

10 C.A.Kerr et al.

Crit Rev Microbiol,Early Online:1–15

C r i t i c a l R e v i e w s i n M i c r o b i o l o g y

D o w n l o a d e d f r o m i n f o r m a h e a l t h c a r e .c o m b y C S I R O o n 04/23/14F o r p e r s o n a l u s e o n l y

.

tolerance to environmental (nutrients and microbes)antigens (Shanahan,2010).A fine balance between the tolerance and inflammation is important to prevent the development of food allergies,autoimmune diseases,Crohn’s disease and ulcera-tive colitis (Kverka &Tlaskalova-Hogenova,2013;Rubin et al.,2012;Tlaskalova-Hogenova et al.,2011).A balance between T regulatory lymphocytes and T helper 7lympho-cytes is crucial to maintaining tolerance and the ability to respond to pathogens.IL-17is produced by T helper lymphocytes in response to stimulation of NOD1and NOD2by contact with microorganisms.NOD1and 2are intracellular sensors of bacterial peptidoglycan and have key roles in host responses to bacteria as part of the innate immune system (Geddes et al.,2011).Crohn’s disease is associated with genetic variation the NOD2receptor suggest-ing that host genetics plays a role in the colonization and response to the gut microflora (Hugot et al.,2001;Ogura et al.,2001).For information on the complex interplay between host genomics and the microflora refer to the recent review (Leone et al.,2013).IL-17has recently been implicated to play a major role in the pathogenesis of IBD via a key role in bacteria initiated inflammation and antimicrobial defence (Geddes et al.,2011).More recent evidence have suggested that polymorphisms in IL-12/23signalling are likely to be important in IL-17pathways in these diseases (Griseri et al.,2012;Tang &Iwakura,2012).

Is the gut microflora ‘‘fine-tuned’’through adolescence?

Whilst the gut microflora in the young child has been thought to resemble that of an adult,recent evidence (Ringel-Kulka et al.,2013)has suggested that the establishment of an adult-like intestinal microbiota occurs at a later age than previously reported.Therefore,there is potentially a period where refinement of the gut microbial diversity and function occurs during adolescence.Unfortunately,to date we know very little about the gut microflora in adolescents (Table 1).Childhood and adolescence obesity has reached epidemic levels in developed countries (Dehghan et al.,2005).For this reason,adolescence is considered to be a critical period in the onset of obesity and related co-morbidities (Alberga et al.,2012).There are marked changes in body composition:insulin sensitivity;physical activity;lifestyle and diet behav-iors;and psychological issues that make adolescents at an increased risk of becoming overweight and obese.Furthermore,obese youth are considered to be at high risk to progressing further along a poor growth trajectory into adulthood (Baker et al.,2007;Bibbins-Domingo et al.,2007).It is,likely that the foundations regulating metabolic potential are laid down in early life but that refinement of this process continues throughout adolescence.

Intestinal permeability and metabolic diseases

It is also important to consider the emerging concept that a leaky gut (increased intestinal permeability)is associated with a variety of disorders,such as intestinal and liver diseases,autoimmune disorders including T1DM and T2DM (de Kort et al.,2011;Groschwitz &Hogan,2009;Hollander,1999).It has been suggested that increased intestinal permeability

may even be a primary causative factor of disease develop-ment and exacerbation (Arrieta et al.,2006).More recently,a leaky gut has been suggested to contribute to systemic malfunctioning and disease development of obesity-related T2DM (de Kort et al.,2011).These observations may also provide an insight into the low level of inflammation that is typically associated with these metabolic disorders,that is the leaky gut allows increased ingress of inflammatory microbial lipopolysaccharide and other microbial compo-nents.This could conceivably be due to obesity induced dysbiosis of the small intestinal microbial structure resulting in bacterial overgrowth,in turn promoting altered small

intestinal permeability (Sabate

′et al.,2008).A leaky gut results in disturbances between the microflora and the host immune system,ultimately leading to the secretion of pro-inflammatory cytokines (Cani et al.,2008;de La Serre et al.,2010;Ferraris &Vinnakota,1995).Consequently,a low degree of inflammation appears to be a common phenomenon in obesity and T2DM results from increased expression and production of cytokines and acute phase reactants such as CRP,ILs,TNF-a or lipopolysaccharides (Hotamisligil &Erbay,2008).

Persistent elevated circulating levels of inflammatory cytokines,may further reinforce intestinal barrier dysfunc-tion by altering structure and localization of the tight junction proteins (Brun et al.,2007).Evidence of tight junction disruption has been reported in an animal model of obesity and metabolic syndrome (Brun et al.,2007).Furthermore,in genetically obese mice,the intestinal barrier function is impaired leading to a consistent leakage of bacterial endo-toxins into the portal blood circulation.This is consistent with Miele et al.(2009)showing that nuclear and cytoplasmic expression of zonula occludins-1,tight junction proteins,in the duodenal mucosa of patients with non-alcoholic fatty liver disease was lower than that observed in healthy subjects (Miele et al.,2009).

In one of the first human studies,Teixeira et al.,demonstrated that obese women have increased paracellular permeability compared to their lean counterparts (Teixeira et al.,2012b).In addition,intestinal permeability parameters in obese women are correlated with anthropometric meas-urements and metabolic variables (Teixeira et al.,2012b).This suggested that in obese women,intestinal barrier dysfunction might play a role in insulin secretion and immune system activation.Other studies,however,have shown no differences in intestinal permeability between obese and lean subjects (Brignardello et al.,2010).This inconsist-ency warrants further investigation into the role of intestinal permeability and obesity.Furthermore,there have been limited human studies simultaneously evaluating microbial dysbiosis and intestinal permeability.Teixeria et al.postu-lated that factors that influence intestinal permeability in obesity include gut microflora,dietary pattern and nutritional deficiencies (Teixeira et al.,2012a).The interactions between gut microflora,immune system,adipose tissue and hormones may be the critical components underlying the altered intestinal permeability in obesity (Teixeira et al.,2012b).More specifically,stimulating the development and main-taining the innate and adaptive immune systems will be critical strategies for improving intestinal permeability

DOI:10.3109/1040841X.2013.837863

Early life events influence whole-of-life 11

C r i t i c a l R e v i e w s i n M i c r o b i o l o g y

D o w n l o a d e d f r o m i n f o r m a h e a l t h c a r e .c o m b y C S I R O o n 04/23/14F o r p e r s o n a l u s e o n l y

.

(Fredrik et al.,2005).Linking these concepts together may provide further insights into the pathophysiology of metabolic diseases.

Conclusions

This narrative review has described and drawn conclusions around how the co-evolved gut microbial consortia detour to a trajectory of poor metabolic health status.It has highlighted important gaps in our current knowledge.Up until very recently there have been technological limitations to our understanding of some aspects of the human microbiome.However,with rapid advancements in the genomics field (Schloissnig et al.,2013;Weinstock,2012)we have concluded that there are a number of key research questions that should now be addressed as outlined in Box 1.

The evidence has suggested that adult metabolic health can be promoted through addressing the early life stages that are critical for the development of the microbiome and its resilience.The foetus may be exposed to microbial metabol-ites (Fujimura et al.,2010)and potentially directly to microbes through elevated intestinal permeability during pregnancy and thus may influence the developing gut and have potentially profound lifelong affects.Alteration to the epithelial cells and tight junctions that form the selective barrier and ensure the regulation of the trafficking of macromolecules between the environment and the host may have effects on the interactions between the mucosal immune system and luminal contents,including dietary antigens,microbes and their products.

If the mother’s pre-pregnancy or pregnancy BMI is high,this could influence the infant gut towards enhanced nutrient harvest later in life.As this phenomenon appears to occur at all stages of the lifecycle,combined with the loss of the co-evolved gut microflora resilience,to influence poor health outcomes,a leaky gut can therefore further contribute to systemic malfunctioning and disease development.Thus,reinforcing intestinal barrier function may become an import-ant objective to help prevent or counteract pathophysiological mechanisms in patients with metabolic syndrome.It is unclear if the barrier function is a primary causative factor in the predisposition to disease development and the extent to which it contributes to the pathogenesis of obesity remains to be elucidated.

Whilst the early gut microflora is considered to be plastic,early life events such as birth mode,mode of feeding,country of birth,infections,nutrition and antibiotic treatment can potentially play a pivotal role in impacting the development a lifelong resilient gut microflora.We concluded that infants and young children at risk of moving towards a trajectory of poor metabolic health would benefit from interventions or preventative strategies to ‘recalibrate’their gut microflora in the direction of enhanced metabolic health.Whilst we have indicated that there are a number of overarching challenges to be addressed in this space,we can see potential for interventions such as encouraging breast feeding and the strategic use of antibiotics.

Declaration of interest

The authors report no conflicts of interest.

References

Aagaard K,Riehle K,Ma J,et al.(2012).A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy.PLoS One 7:e36466.

Abrahamsson TR,Jakobsson HE,Andersson AF,et al.(2012).Low diversity of the gut microbiota in infants with atopic eczema.J Allergy Clin Immunol 129:434–40.

Adlerberth I,Carlsson B,De Man P,et al.(1991).Intestinal colonization with Enterobacteriaceae in Pakistani and Swedish hospital-delivered infants.Acta Paediatr Scand 80:602–10.

Aggarwal J,Swami G,Kumar M.(2013).Probiotics and their effects on metabolic diseases:an update.J Clin Diagn Res 7:173–7.

Ajslev TA,Andersen CS,Gamborg M,et al.(2011).Childhood overweight after establishment of the gut microbiota:the role of delivery mode,pre-pregnancy weight and early administration of antibiotics.Int J Obesity 35:522–9.

Alberga AS,Sigal RJ,Goldfield G,et al.(2012).Overweight and obese teenagers:why is adolescence a critical period?Pediatr Obesity 7:261–73.

Alberti KGMM,Zimmet P,Shaw J.(2005).The metabolic syndrome –a new worldwide https://www.360docs.net/doc/b212155384.html,ncet 366:1059–62.

Angelakis E,Armougom F,Million M,Raoult D.(2012).The relationship between gut microbiota and weight gain in humans.Future Microbiol 7:91–109.

Angelow S,Yu AS.(2007).Claudins and paracellular transport:an update.Curr Opin Nephrol Hypertens 16:459–64.

Arrieta MC,Bistritz L,Meddings JB.(2006).Alterations in intestinal permeability.Gut 55:1512–20.

Arumugam M,Raes J,Pelletier E,et al.(2011).Enterotypes of the human gut microbiome.Nature 473:174–80.

Baker JL,Olsen LW,Sorensen TI.(2007).Childhood body-mass index and the risk of coronary heart disease in adulthood.N Engl J Med 357:2329–37.

Beach RC,Menzies IS,Clayden GS,Scopes JW.(1982).Gastrointestinal permeability changes in the preterm neonate.Arch Dis Childhood 57:141–5.

Biagi E,Candela M,Fairweather-Tait S,et al.(2012).Ageing of the human metaorganism:the microbial counterpart.Age 34:247–67.Bibbins-Domingo K,Coxson P,Pletcher MJ,et al.(2007).Adolescent overweight and future adult coronary heart disease.N Engl J Med 357:2371–9.

Bjarnason I,Macpherson A,Hollander D.(1995).Intestinal permeabil-ity:an overview.Gastroenterology 108:1566–81.

Blaser MJ,Kirschner D.(2007).The equilibria that allow bacterial persistence in human hosts.Nature 449:843–9.

Brignardello J,Morales P,Diaz E,et al.(2010).Pilot study:alterations of intestinal microbiota in obese humans are not associated with colonic inflammation or disturbances of barrier function.Alimentary Pharmacol Therapeut 32:1307–14.

Brooks C,Pearce N,Douwes J.(2013).The hygiene hypothesis in allergy and asthma:an update.Curr Opin Allergy Clin Immunol 13:70–7.

Brun P,Castagliuolo I,Leo VD,et al.(2007).Increased intestinal permeability in obese mice:new evidence in the pathogenesis of nonalcoholic steatohepatitis.Am J Physiol 292:G518–25.

Bu

¨cker R,Schumann M,Amasheh S,Schulzke JD.(2010).Claudins in intestinal function and disease.Curr Top Membr 65:195–227.

Cabrera-Rubio R,Collado MC,Laitinen K,et al.(2012).The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery.Am J Clin Nutr 96:544–51.

Campbell DI,Elia M,Lunn PG.(2003).Growth faltering in rural Gambian infants is associated with impaired small intestinal barrier function,leading to endotoxemia and systemic inflammation.J Nutr 133:1332–8.

Cani PD,Bibiloni R,Knauf C.(2008).Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice.Diabetes 57:1470–81.

Cani PD,Lambert DM,Muccioli GG,et al.(2009).Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability.Gut 58:1091–103.

Catassi C,Bonucci A,Coppa GV,et al.(1995).Intestinal permeability changes during the first month –effect of natural versus artificial feeding.J Pediatr Gastroenterol Nutr 21:383–6.

12 C.A.Kerr et al.

Crit Rev Microbiol,Early Online:1–15

C r i t i c a l R e v i e w s i n M i c r o b i o l o g y

D o w n l o a d e d f r o m i n f o r m a h e a l t h c a r e .c o m b y C S I R O o n 04/23/14F o r p e r s o n a l u s e o n l y

.

Cho I,Blaser MJ.(2012).The human microbiome:at the interface of health and disease.Nat Rev Genet 13:260–70.

Chow J,Tang HQ,Mazmanian SK.(2011).Pathobionts of the gastrointestinal microbiota and inflammatory disease.Curr Opin Immunol 23:473–80.

Claesson MJ,Jeffery IB,Conde S,et al.(2012).Gut microbiota composition correlates with diet and health in the elderly.Nature 488:178–84.

Clement K.(2011).Bariatric surgery,adipose tissue and gut microbiota.Int J Obesity 35:S7–15.

Collado MC,Laitinen K,Salminen S,Isolauri E.(2012).Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk.Pediatr Res 72:77–85.Daley AJ,Isaacs D,Neonat ASG.(2004).Ten-year study on the effect of intrapartum antibiotic prophylaxis on early onset group B streptococcal and Escherichia coli neonatal sepsis in Australasia.Pediatr Infectious Dis J 23:630–4.

De Kort S,Keszthelyi D,Masclee AA.(2011).Leaky gut and diabetes mellitus:what is the link?Obes Rev 12:449–58.

De La Serre CB,Ellis CL,Lee J,et al.(2010).Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation.Am J Physiol 299:G440–8.

Dehghan M,Akhtar-Danesh N,Merchant AT.(2005).Childhood obesity,prevalence and prevention.Nutr J 4:24–31.

Desbuards N,Gourbeyre P,Haure-Mirande V,et al.(2012).Impact of perinatal prebiotic consumption on gestating mice and their offspring:a preliminary report.Br J Nutr 107:1245–8.

Dessi A,Atzori L,Noto A,et al.(2011).Metabolomics in newborns with intrauterine growth retardation (IUGR):urine reveals markers of metabolic syndrome.J Matern Fetal Neonatal Med 24:35–9.

Dethlefsen L,Huse S,Sogin ML,Relman DA.(2008).The pervasive effects of an antibiotic on the human gut microbiota,as revealed by deep 16S rRNA sequencing.PLOS Biol 6:e280.

Donnet-Hughes A,Perez PF,Dore J,et al.(2010).Potential role of the intestinal microbiota of the mother in neonatal immune education.Proc Nutr Soc 69:407–15.

Drozdowski LA,Clandinin T,Thomson AB.(2010).Ontogeny,growth and development of the small intestine:understanding pediatric gastroenterology.World J Gastroenterol 16:787–99.

Duerksen DR,Wilhelm-Boyles C,Parry DM.(2005).Intestinal perme-ability in long-term follow-up of patients with celiac disease on a gluten-free diet.Digest Dis Sci 50:785–90.

Dumas ME.(2011).The microbial-mammalian metabolic axis:beyond simple metabolism.Cell Metabol 13:489–90.

Faith JJ,Guruge JL,Charbonneau M,et al.(2013).The long-term stability of the human gut microbiota.Science 341:44–52.

Fallani M,Young D,Scott J,et al.(2010).Intestinal microbiota of 6-week-old infants across Europe:geographic influence beyond delivery mode,breast-feeding,and antibiotics.J Pediatr Gastroenterol Nutr 51:77–84.

Ferraris RP,Vinnakota RR.(1995).Intestinal nutrient transport in genetically obese mice.Am J Clin Nutr 62:540–6.

Flint HJ.(2011).Obesity and the gut microbiota.J Clin Gastroenterol 45:S128–32.

Fredrik B,Ley RE,Sonnenburg JL,et al.(2005).Host-bacterial mutualism in the human intestine.Science 307:1915–20.

Fujimura KE,Slusher NA,Cabana MD,Lynch SV.(2010).Role of the gut microbiota in defining human health.Expert Rev Anti Infect Ther 8:435–54.

Garrett WS,Gordon JI,Glimcher LH.(2010).Homeostasis and inflammation in the intestine.Cell 140:859–70.

Geddes K,Rubino SJ,Magalhaes JG,et al.(2011).Identification of an innate T helper type 17response to intestinal bacterial pathogens.Nat Med 17:837–44.

Goldman AS.(2000).Modulation of the gastrointestinal tract of infants by human milk.Interfaces and interactions.An evolutionary perspec-tive.J Nutr 130:426S–31S.

Greenblum S,Turnbaugh PJ,Borenstein E.(2012).Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease.Proc Nat Acad Sci USA 109:594–9.

Greer JB,O’Keefe SJ.(2011).Microbial induction of immunity,inflammation,and cancer.Front Physiol 1:168–75.Griseri T,McKenzie BS,Schiering C,Powrie F.(2012).Dysregulated hematopoietic stem and progenitor cell activity promotes interleukin-23-driven chronic intestinal inflammation.Immunity,37:1116–29.Gronlund MM,Lehtonen OP,Eerola E,Kero P.(1999).Fecal microflora in healthy infants born by different methods of delivery:Permanent changes in intestinal flora after cesarean delivery.J Pediatr Gastroenterol Nutr 28:19–25.

Groschwitz KR,Hogan SP.(2009).Intestinal barrier function:molecular regulation and disease pathogenesis.J Allergy Clin Immunol 124:3–20;quiz 21–2.

Grzeskowiak L,Collado MC,Mangani C,et al.(2012).Distinct gut microbiota in Southeastern African and Northern European infants.J Pediatr Gastroenterol Nutr 54:812–16.

Gupta SS,Mohammed MH,Ghosh TS,et al.(2011).Metagenome of the gut of a malnourished child.Gut Pathog 3:7–16.

Hafiz S,Oakley CL.(1976).Clostridium difficile :isolation and characteristics.J Med Microbiol 9:129–36.

Hall IC,Duffett ND.(1935).The identification of von Hibler’s ‘‘Bacillus VI’’as Bacillus carnis (Klein).J Bacteriol 29:269–91.

Harris K,Kassis A,Major G,Chou CJ.(2012).Is the gut microbiota a new factor contributing to obesity and its metabolic disorders?J Obes 2012:1–14.

Harvey N L.(2005).Embryonic lymphatic development:recent advances and unanswered questions.Lymphat Res Biol 3:157–65.Hill JO.(2006).Understanding and addressing the epidemic of obesity:an energy balance perspective.Endocr Rev 27:750–61.

Hollander D.(1999).Intestinal permeability,leaky gut,and intestinal disorders.Curr Gastroenterol Rep 1:410–16.

Holmes E,Li JV,Athanasiou T,et al.(2011).Understanding the role of gut microbiome-host metabolic signal disruption in health and disease.Tr Microbiol 19:349–59.

Hormannsperger G,Clavel T,Haller D.(2012).Gut matters:microbe–host interactions in allergic diseases.J Allergy Clin Immunol 129:1452–9.

Hotamisligil GS,Erbay E.(2008).Nutrient sensing and inflammation in metabolic diseases.Nat Rev Immunol 8:923–34.

Hugot JP,Chamaillard M,Zouali H,et al.(2001).Association of NOD2leucine-rich repeat variants with susceptibility to Crohn’s disease.Nature 411:599–603.

Huh SY,Rifas-Shiman SL,Zera CA,et al.(2012).Delivery by caesarean section and risk of obesity in preschool age children:a prospective cohort study.Arch Dis Childhood 97:610–16.

Insoft RM,Sanderson IR,Walker WA.(1996).Development of immune function in the intestine and its role in neonatal diseases.Pediatr Clin North Am 43:551–71.

Jangi S,Lamont JT.(2010).Asymptomatic colonization by Clostridium difficile in infants:implications for disease in later life.J Pediatr Gastroenterol Nutr 51:2–7.

Jernberg C,Lofmark S,Edlund C,Jansson JK.(2010).Long-term impacts of antibiotic exposure on the human intestinal microbiota.Microbiology 156:3216–23.

Jimenez E,Marin ML,Martin R,et al.(2008).Is meconium from healthy newborns actually sterile?Res Microbiol 159:187–93.

Jost T,Lacroix C,Braegger CP,Chassard C.(2012).New insights in gut microbiota establishment in healthy breast fed neonates.PLOS One 7:e44595.doi:10.1371/journal.pone.0044595.

Jumpertz R,Le DS,Turnbaugh PJ,Trinidad C,et al.(2011).Energy-balance studies reveal associations between gut microbes,caloric load,and nutrient absorption in humans.Am J Clin Nutr 94:58–65.

Kang S,Denman SE,Morrison M,et al.(2010).Dysbiosis of fecal microbiota in Crohn’s disease patients as revealed by a custom phylogenetic microarray.Inflamm Bowel Dis 16:2034–42.

Kansagra K,Stoll B,Rognerud C,et al.(2003).Total parenteral nutrition adversely affects gut barrier function in neonatal piglets.Am J Physiol 285:G1162–70.

Kaplan JL,Walker WA.(2012).Early gut colonization and subsequent obesity risk.Curr Opin Clin Nutr Metab Care 15:278–84.

Keely S,Kelly CJ,Weissmueller T,et al.(2012).Activated fluid transport regulates bacterial-epithelial interactions and significantly shifts the murine colonic microbiome.Gut Microbes 3:250–60.

Kelly CP,Lamont JT.(2008).Clostridium difficile –more difficult than ever.N Engl J Med 359:1932–40.

DOI:10.3109/1040841X.2013.837863

Early life events influence whole-of-life 13

C r i t i c a l R e v i e w s i n M i c r o b i o l o g y

D o w n l o a d e d f r o m i n f o r m a h e a l t h c a r e .c o m b y C S I R O o n 04/23/14F o r p e r s o n a l u s e o n l y

.

Kelly CP,Pothoulakis C,Orellana J,Lamont JT.(1992).Human colonic aspirates containing immunoglobulin A antibody to Clostridium difficile toxin A inhibit toxin A-receptor binding.Gastroenterology 102:35–40.

Kobayashi K,Inai T,Shibata Y,Yasui M.(2009).Dynamic changes in amniotic tight junctions during pregnancy.Placenta 30:840–7.

Koenig JE,Spor A,Scalfone N,et al.(2011).Succession of microbial consortia in the developing infant gut microbiome.Proc Nat Acad SciUSA 108:4578–85.

Koren O,Goodrich JK,Cullender TC,et al.(2012).Host remodeling of the gut microbiome and metabolic changes during pregnancy.Cell 150:470–80.

Krajmalnik-Brown R,Ilhan ZE,Kang DW,Dibaise JK.(2012).Effects of gut microbes on nutrient absorption and energy regulation.Nutr Clin Prac 27:201–14.

Kverka M,Tlaskalova-Hogenova H.(2013).Two faces of microbiota in inflammatory and autoimmune diseases:triggers and drugs.APMIS 121:403–21.

Kyne L,Warny M,Qamar A,Kelly CP.(2000).Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A.N Engl J Med 342:390–7.

Lebenthal E,Leung YK.(1987).The impact of development of the gut on infant nutrition.Pediatr Ann 16:211–20.

Leone V,Chang EB,Devkota S.(2013).Diet,microbes,and host genetics:the perfect storm in inflammatory bowel diseases.J Gastroenterol 48:315–21.

Ley RE,Hamady M,Lozupone C,et al.(2008).Evolution of mammals and their gut microbes.Science 320:1647–51.

Ley RE,Turnbaugh PJ,Klein S,Gordon JI.(2006).Microbial ecology:human gut microbes associated with obesity.Nature 444:1022–3.

Looft T,Johnson TA,Allen HK,et al.(2012).In-feed antibiotic effects on the swine intestinal microbiome.Proc Nat Acad SciUSA 109:1691–6.

Lozupone CA,Stombaugh JI,Gordon JI,et al.(2012).Diversity,stability and resilience of the human gut microbiota.Nature 489:220–30.

Mackie RI,Sghir A,Gaskins HR.(1999).Developmental microbial ecology of the neonatal gastrointestinal tract.Am J Clin Nutr 69:1035S–45S.

Madan JC,Farzan SF,Hibberd PL,Karagas MR.(2012).Normal neonatal microbiome variation in relation to environmental factors,infection and allergy.Curr Opin Pediatr 24:753–9.

Matamoros S,Gras-Leguen C,Le Vacon F,et al.(2013).Development of intestinal microbiota in infants and its impact on health.Trends Microbiol 21:167–73.

Miele L,Valenza V,La Torre G,et al.(2009).Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease.Hepatology 49:1877–87.

Monira S,Nakamura S,Gotoh K,et al.(2011).Gut microbiota of healthy and malnourished children in Bangladesh.Front Microbiol 2:228–35.

Monira S,Nakamura S,Gotoh K,et al.(2013).Metagenomic profile of gut microbiota in children during cholera and recovery.Gut Pathog 5:1–9.

Monira S,Shabnam SA,Alam NH,et al.(2012).16S rRNA gene-targeted TTGE in determining diversity of gut microbiota during acute diarrhoea and convalescence.J Health Popul Nutr 30:250–6.

Mor G,Cardenas I.(2010).The immune system in pregnancy:a unique complexity.Am J Reprod Immunol 63:425–33.

Mueller S,Saunier K,Hanisch C,et al.(2006).Differences in fecal microbiota in different European study populations in relation to age,gender,and country:a cross-sectional study.Appl Environ Microbiol 72:1027–33.

Murk W,Risnes KR,Bracken MB.(2011).Prenatal or early-life exposure to antibiotics and risk of childhood asthma:a systematic review.Pediatrics 127:1125–38.

Murri M,Leiva I,Gomez-Zumaquero JM,et al.(2013).Gut microbiota in children with type 1diabetes differs from that in healthy children:a case-control study.BMC Med 11:46–57.

Musso G,Gambino R,Cassader M.(2010a).Gut microbiota as a regulator of energy homeostasis and ectopic fat deposition:mechan-isms and implications for metabolic disorders.Curr Opin Lipidol 21:76–83.Musso G,Gambino R,Cassader M.(2010b).Obesity,diabetes,and gut microbiota:the hygiene hypothesis expanded?Diabetes Care 33:2277–84.

Nelson KE,Weinstock GM,Highlander SK,et al.(2010).A catalog of reference genomes from the human microbiome.Science 328:994–9.Neu J.(2007a).Gastrointestinal development and meeting the nutritional needs of premature infants.Am J Clin Nutr 85:629S–34S.

Neu J.(2007b).Perinatal and neonatal manipulation of the intestinal microbiome:a note of caution.Nutr Rev 65:282–5.

Newbern D,Freemark M.(2011).Placental hormones and the control of maternal metabolism and fetal growth.Curr Opin Endocrinol Diabetes Obesity 18:409–16.

Nicholson JK,Holmes E,Kinross J,et al.(2012).Host-gut microbiota metabolic interactions.Science,336:1262–7.

Ogura Y,Bonen DK,Inohara N,et al.(2001).A frameshift mutation in NOD2associated with susceptibility to Crohn’s disease.Nature 411:603–6.

Palmer C,Bik EM,Digiulio DB,et al.(2007).Development of the human infant intestinal microbiota.PLOS Biol 5:1556–73.

Panwar H,Rashmi HM,Batish VK,Grover S.(2013).Probiotics as potential biotherapeutics in the management of type 2diabetes –prospects and perspectives.Diabetes Metab Res Rev 29:103–12.Pearson C,Uhlig HH,Powrie F.(2012).Lymphoid microenviron-ments and innate lymphoid cells in the gut.Trends Immunol 33:289–96.

Peixoto EB,Collares-Buzato CB.(2006).Modulation of the epithelial barrier by dexamethasone and prolactin in cultured Madin-Darby canine kidney (MDCK)cells.Cell Biol Int 30:101–13.

Penders J,Thijs C,Vink C,et al.(2006).Factors influencing the composition of the intestinal microbiota in early infancy.Pediatrics 118:511–21.

Penders J,Vink C,Driessen C,et al.(2005).Quantification of Bifidobacterium spp.,Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR.Fems Microbiology Letters 243:141–147.

Rautava S,Luoto R,Salminen S,&Isolauri E.(2012).Microbial contact during pregnancy,intestinal colonization and human disease.Nature Reviews Gastroenterology &Hepatology 9:565–576.

Reyes H,Zapata R,Hernandez I,et al.(2006).Is a leaky gut involved in the pathogenesis of intrahepatic cholestasis of pregnancy?Hepatology 43:715–722.

Ringel-Kulka T,Cheng J,Ringel Y,et al.(2013).Intestinal microbiota in healthy U.S.young children and adults–a high throughput microarray analysis.PLoS One 8:e64315.

Romero R,Mazaki-Tovi S,Vaisbuch E,et al.(2010).Metabolomics in premature labor:a novel approach to identify patients at risk for preterm delivery.J Maternal-Fetal Neonatal Med 23:1344–59.

Rouwet EV,Heineman E,Buurman WA,Ter Riet G.(2002).Intestinal permeability and carrier-mediated monosaccharide absorption in preterm neonates during the early postnatal period.Pediatr Res 51:64–70.

Rubin DC,Shaker A,Levin MS.(2012).Chronic intestinal inflamma-tion:inflammatory bowel disease and colitis-associated colon cancer.Front Immunol 3:107–17.Sabate

′J-M,Joue ¨t P,Harnois F,et al.(2008).High prevalence of small intestinal bacterial overgrowth in patients with morbid obesity:a contributor to severe hepatic steatosis.Obesity Surg 18:371–7.

Sanchez E,De Palma G,Capilla A,et al.(2011).Influence of environmental and genetic factors linked to celiac disease risk on infant gut colonization by Bacteroides species.Appl Environ Microbiol 77:5316–23.

Sanz Y.(2011).Gut microbiota and probiotics in maternal and infant health.Am J Clin Nutr 94:2000s–5s.

Savage DC.(1977).Microbial ecology of the gastrointestinal tract.Annu Rev Microbiol 31:107–33.

Schloissnig S,Arumugam M,Sunagawa S,et al.(2013).Genomic variation landscape of the human gut microbiome.Nature 493:45–50.Shanahan F.(2010).99th Dahlem Conference on Infection,Inflammation and Chronic Inflammatory Disorders:Host-microbe interactions in the gut:target for drug therapy,opportunity for drug discovery.Clin Exp Immunol 160:92–7.

Sharma R,Young C,Neu J.(2010).Molecular modulation of intestinal epithelial barrier:contribution of microbiota.J Biomed Biotechnol 2010:1–15.

14 C.A.Kerr et al.

Crit Rev Microbiol,Early Online:1–15

C r i t i c a l R e v i e w s i n M i c r o b i o l o g y

D o w n l o a d e d f r o m i n f o r m a h e a l t h c a r e .c o m b y C S I R O o n 04/23/14F o r p e r s o n a l u s e o n l y

.

Shim JO,Hwang S,Yang HR,et al.(2013).Interleukin-10receptor mutations in children with neonatal-onset Crohn’s disease and intract-able ulcerating enterocolitis.Eur J Gastroenterol Hepatol 25:1235–40.Shulman RJ,Schanler RJ,Lau C,et al.(1998).Early feeding,antenatal glucocorticoids,and human milk decrease intestinal permeability in preterm infants.Pediatr Res 44:519–23.

Sjogren YM,Tomicic S,Lundberg A,et al.(2009).Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses.Clin Exp Allergy 39:1842–51.

Smith SA,Hulsey T,Goodnight W.(2008).Effects of obesity on pregnancy.J Obstet Gynecol Neonatal Nurs 37:176–84.

Sokol H,Pigneur B,Watterlot L,et al.(2008).Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients.Proc Nat AcadSci USA 105:16731–6.

Tang C,Iwakura Y.(2012).IL-23in colitis:targeting the progenitors.Immunity 37:957–9.

Taylor SN,Basile LA,Ebeling M,Wagner CL.(2009).Intestinal permeability in preterm infants by feeding type:mother’s milk versus formula.Breastfeed Med 4:11–5.

Teichberg S,Isolauri E,Wapnir RA,Roberts B.(1990).Development of the neonatal rat small intestinal barrier to nonspecific macromolecular absorption:effect of early weaning to artificial diets.Pediatr Res 28:31–7.

Teixeira,TF,Collado MC,Ferreira CL,et al.(2012a).Potential mechanisms for the emerging link between obesity and increased intestinal permeability.Nutr Res 32:637–47.

Teixeira TF,Souza NC,Chiarello PG,et al.(2012b).Intestinal permeability parameters in obese patients are correlated with meta-bolic syndrome risk factors.Clin Nutr 31:735–40.

Thompson AL.(2012).Developmental origins of obesity:Early feeding environments,infant growth,and the intestinal microbiome.Am J Human Biol 24:350–60.

Thum C,Cookson AL,Otter DE,et al.(2012).Can nutritional modulation of maternal intestinal microbiota influence the develop-ment of the infant gastrointestinal tract?J Nutr 142:1921–8.Tlaskalova-Hogenova H,Stepankova R,Kozakova H,et al.(2011).The role of gut microbiota (commensal bacteria)and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer:contribution of germ-free and gnotobiotic animal models of human diseases.Cell Mol Immunol 8:110–20.

Turnbaugh PJ,Gordon JI.(2009).The core gut microbiome,energy balance and obesity.J Physiol 587:4153–8.

Vaarala O,Atkinson MA,Neu J.(2008).The ‘‘perfect storm’’for type 1diabetes:the complex interplay between intestinal micro-biota,gut permeability,and mucosal immunity.Diabetes 57:2555–62.

Van Den Abbeele P,Van De Wiele T,Verstraete W,Possemiers S.(2011).The host selects mucosal and luminal associations of coevolved gut microorganisms:a novel concept.FEMS Microbiol Rev 35:681–704.

Van Elburg RM,Fetter WPF,Bunkers CM,Heymans HSA.(2003).Intestinal permeability in relation to birth weight and gestational and postnatal age.Arch Dis Childhood 88:4–F52.

Veeremanwauters G.(1996).Neonatal gut development and postnatal adaptation.Eur J Pediatr 155:627–32.

Vrieze A,Holleman F,Zoetendal EG,et al.(2010).The environment within:how gut microbiota may influence metabolism and body composition.Diabetologia 53:606–13.

Weaver LT,Laker MF,Nelson R.(1984).Intestinal permeability in the newborn.Arch Dis Childhood 59:236–41.

Weaver LT,Laker MF,Nelson R,Lucas A.(1987).Milk feeding and changes in intestinal permeability and morphology in the newborn.J Pediatr Gastroenterol Nutr 6:351–8.

Weinstock GM.(2012).Genomic approaches to studying the human microbiota.Nature 489:250–6.

Yatsunenko T,Rey FE,Manary MJ,et al.(2012).Human gut microbiome viewed across age and geography.Nature 486:222–7.

Zhou L,He G,Zhang J,et al.(2011).Risk factors of obesity in preschool children in an urban area in China.Am J Epidemiol 173:S279.

DOI:10.3109/1040841X.2013.837863

Early life events influence whole-of-life 15

C r i t i c a l R e v i e w s i n M i c r o b i o l o g y

D o w n l o a d e d f r o m i n f o r m a h e a l t h c a r e .c o m b y C S I R O o n 04/23/14F o r p e r s o n a l u s e o n l y .

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.

智能存包柜(储物柜)产品技术说明书

条码式寄存柜(储物柜)产品技术说明 一、适用范围 自助行李寄存柜,用于高效率、规范化且消费群体较密集的高档公共场所,如:超市、学校、机场、俱乐部、游泳馆、健身房、超市、大卖场、商场、事业单位等。客户可根据自身特点选择不同类型的机组,有条码型、指纹型、IC卡、条形码卡、磁卡、射频卡以及TM扣等,或者使用客户各自所持有的会员卡。 二、基本组成 自助行李寄存柜,是由嵌入式计算机进行控制,具有管理功能的小件物品寄存系统。主要由输入设备(条码阅读器)、输出设备(如中文液晶显示)、嵌入式计算机处理中心、管理软件以及电源组成。 三、结构、材料、钣金说明 寄存柜柜体选用0.8mm以上优质冷轧板,经冷加工成形后,用二氧化碳气体保护焊焊接装配而成,柜体结构坚固结实。箱体表面经除锈、除油、打磨、磷化处理后喷塑,塑面的颜色可由用户选定。?箱门背面增加纵向加强筋,提高箱门的防撞击能力;能有效防止和降低使用者因疏忽碰伤、磕伤,电控锁采用360度具有防撬、带防软片插入装置。 四、元器件说明 1)电控锁:经过10万次寿命测试无故障,性能可靠稳定。部件的表面均作热 涂锌防锈处理,装配成形后每把锁均作电气绝缘试验和开启试验,并按加工批量的1%作寿命试验。 2)扫描枪:台湾欣技C1000,性能稳定,读码速度快。 3)液晶显示屏:3.5寸彩色显示屏。例如:

表示:空箱,顾客可以存入的箱子 表示:满箱,有合法密码,箱内有物 4)打印机:自主研发使用日本精工打印机芯。 5)控制主板:自主研发生产。 6)切纸刀:自主研发生产、10万次寿命测试,性能稳定,配有走纸导向。 7)控制芯片:采用国际上著名大公司的工业级产品,有ATMEL公司、INTEL公 司、日立公司、德州公司等。 8)键盘:选用电话机水晶键盘,工作可靠,永不退色,使用寿命长。 五、常规技术指标 (1)功率-待机:25W 开箱:60W (2)电源电压:AC110V—AC240V 50HZ (3)后备电源(可选):18V 7AH (4)打印速度:35mm/s (5)打印机寿命:50Km (6)柜体冷轧钢板厚度:0.8mm (7)读码速度:<0.4s (8)显示分辨率:3.5寸彩色液晶屏(可定制显示LOGO) 六、条码寄存柜主要功能说明 ?大屏幕液晶显示屏 操作步骤提示、箱门5种状态显示、时钟显示、常规故障指示、设置菜单、管理界面、工作状态显示等。 在现场安装就位后,确认各个部件正常后,即可上电开机,完整的显示: ?全开放式中文设置菜单(可定制多国语言、语音) 寄存柜的各个管理参数全部面向客户开放,客户可选择相应的菜单进行设置。设有三级管理密码,方便不同级别的管理要求。 ?快捷管理员管理菜单 在管理模式下,管理快捷菜单可应急开启箱门、清除箱门ID、查询箱门状态等操作。可设置500位管理员进行管理,每个管理员可根据自己的用户号及管

古汉语中“相”和“见”的特殊用法

古汉语中“相”和“见”的特殊用法 在古汉语中,常常可以看到两个具有指代作用的副词,就是“相”和“见”。它们在具体的语言环境中,具有指代动作行为受事者的作用。这一用法,多见于汉以后的文献中。现分述如下: 相 “相”可以称代三种人(物)称。例如: 1.今王与耳旦暮且死,而公拥兵百万,不肯相救。(《史记?张耳陈余列传》)这句的意思是:现在大王和我早晚之间就要死去,可是你拥有几万士兵,不肯救我。 2.本是同根生,相煎何太急!(《世说新语?文学》)曹植《七步诗》的这两句的意思是:本来是从一条根上长出来的,煎熬我怎么这么急迫! 3.汝知悔过伏罪,今一切相赦。(《后汉书?冯鲂传》)这句的意思是:你知道悔过服罪,现在一切都赦免你。 4.问于愈者多矣,念生之言不志乎利,聊相为言之。(韩愈《答李翊书》)这句的意思是:向我韩愈问的人多,考虑你的话用心不急切为利,姑且为你说这些。 5.登即相许和,便可作婚姻。(《孔雀东南飞》)这两句诗的意思是:现在就立即答应他家(指代太守家)吧,马上成就两家的婚姻。 6.稍出近之,憫然莫相知。(柳宗元《黔之驴》)这句的意思是:渐渐地出来靠近它,提心吊胆地不知道它(是什么东西)。 例1、2两句中的“相”指代第一人称的人,例3、4两句中的“相”指代第二人称的人,例5、6两句中的“相”指代第三人称的人和物。 由上所述,可以明确以下两点有关“相”的用法: 1.各句的“相”都用在动词或介词之前。加点的词,除例4是介词以外,其他全是动词。画浪线的“相”与动词或介词组成的语言单位,类似倒置的动宾短语。"相"的这种用法,从成语中可以看到。如:拔刀相助、倒屣相迎、豆萁相煎、反戈相向、刮目相看、降心相从、解囊相助、士别三日,当刮目相待等。 2.要和范围副词的“相”区别开来。表示范围的副词“相”用在不带宾语的及物动词前,既表示动作行为的施事者,又表示动作行为的受事者,此为"互指"。如:“爷娘闻女来,出郭相扶将”(《木兰诗》)中的“相”是指“爷和娘”,义为互相。表示范围的副词“相”又可表示动作行为一个一个地相继出现。如:“岂非计久长,有子孙相继为王也哉”(《战国策?赵策》)中的“相”是指子子孙孙一代接一代,此为“递指”。回顾前文的“相”只表示一方发出的动作行为涉及另一方。由于主语只表示施事,而受事者又不出现,只有用它指代,此为“偏指”。互指和递指的“相”,表示范围,所以叫范围副词,偏指的“相”除了表示动作的单向性以外,即表指代,所以叫指代性副词。 见 "见",作为指代性副词,也和“相”一样,在语言形式上,它是副词作状语,其语意类似宾语。例举如下: 1

德语sein 的妙用

sein 的妙用 was ist? 什么事? Ist was? Was ist?有事吗? Wenn was ist ,werden Sie sich einfach an mich !有事尽管找我。 Kann sein .可能是这样。 Das kann doch nicht sein !这怎么可能呢!这完全不可能! wer kann es gewesen sein ?这会是谁呢? Mag sein .也许吧。 Muss nicht sein .不一定非这样不可。 Muss das sein ?这有必要吗?非这样不可吗? Was sein muss,muss sein .该来的总要来的。 Lass es lieber sein .最好别做这事。 Es braucht nicht gleich zu sein .这事不着急。 Mir ist nicht gut.我不舒服。 Mir ist schlecht.我不好受。我难受。 Ihm ist uebel.他觉得恶心。 Mir ist kalt/heiss.我冷/我热。 Mir ist schwindlig.我头晕。 Das ist schon lange her.这是好久以前的事了。 V orbei ist vorbei .过去的事就让它过去吧。 Das ist Schnee von gestern .这是老皇历了。这是陈年旧事了。 Ich bin ihn los.我摆脱/甩掉他了。 Ich bin fix und fertig/todmuede/ hundemuede /wie geraedert /geschlaucht /ausgela ugt/ erschoepft/ geschafft.我累死了。我筋疲力尽。 Es ist halb so schlimm.不要紧。 Es ist halb so wird.事情没有那么糟。 Er ist auch nicht von gestern.他并不傻。 Das ist fehl am Platz.这不合适。这不妥当。 Das ist nicht angebracht.这不恰当。 Heute ist nichts los .今天冷冷清清的。今天什么事也没有。 Am Mariienplatz in Muenchen ist eine Menge los .慕尼黑的玛丽亚广场热闹非凡。Auf dem Oktoberfest ist Hochbetrieb.十月啤酒节上人声鼎沸。 Surfen ist im Monment sehr in .冲浪现在很流行。 Die Sach ist schon/ noch nicht gegessen.这件事已经了结了。 Das Thema ist vom Tisch .这个题目已了了。 Wie dem auch sei ,wir muessen den Termin trotzdem einhalten.不管怎么说,我们还得遵守约定的日期。 Dem ist leider nicht so .可惜事情并非如此。 Das ist in aller Munde .这事已家喻户晓。 Das ist ein absolutes Muss/ kein Muss.这是绝对要做的事。 Es ist fuenf vor zwoelf.时间非常紧迫。

德语语法zu的用法

um…zu的目的不定式结构 um…zu的目的不定式结构在句中作目的状语,意为“为了……”。目的不定式结构中 不能出现主语,其动作主体应该同主句主语一致。目的不定式结构可放在句首、句中或句末,并用逗号将前后句分开。提问用wozu,warum或zu welchem Zweck, mit welcher Absicht Viele Deutsche fahren gern mit dem Fahrrad, um gesund zu bleiben、 Wozu fahren viele Deutsche gern Fahrrad? 注意: 1、 zu位于动词不定式之前,如动词就是分离动词,则zu位于两者之间,并连写,例如: ich gehe zum Bahnhof, um meine Gro?mutter abzuholen、 2、目的不定式结构放在句首,主句用反语序,也就就是,紧跟的就是可变位动词;目的 不定式结构放在主句后,主句用正语序: Um gesund zu bleiben, fahren viele Deutsche Rad、 Viele Deutsche fahren Rad, um gesund zu bleiben、 3、目的不定式假设主语同主句主语不一致时,用damit目的从句,如: Herr Li gibt seinem Sohn 100 Yuan, damit er (der Sohn) das Englischw?rterbuch kauft、 李先生给她儿子100元钱,以便她儿子买一本英语字典。 带zu的不定式作宾语与作名词的定语 带zu不定式可作部分动词的宾语与部分名词的定语,它一般放在句尾与被修饰的定语 之后。“zu”位于动词不定式前面。如遇可分动词,则放在可分动词中间并连写。带“zu”的不定式用逗号同主句分开,但在简单不定式前则不必加逗号。

照相馆的冲突——像、相、象的区别用法

照相馆的冲突 ——像、相、象的区别用法 陕西省镇安县城关小学张鹏程 学校评选校园之星。阿璀被评为礼仪之星,阿璨被评为阅读之星。校园橱窗要张贴他们的照片,妈妈领着他们到照相馆照相,以便给学校提供相片。 两家照相馆毗邻,哥哥要进“照相馆”,妹妹要进“照像馆”。 妹妹眼锐,一眼发现两家之别,嗤嗤笑着说:“呵呵,你进吧,现代通假字先生!” 哥哥虽然眼拙,妹妹一提醒,反应倒挺敏捷:“招牌用字不一样?是呀,哪家错了?” 哥哥想了想,说:“还是写作照相馆对。” 妹妹说:“写作照像馆,也没错啊!” 兄妹相持,谁也说服不了谁。 妈妈说:“国家公布了异形词整理表,其中就有‘照相—照像’,建议使用照相。” 纷争平息了。妹妹还是表示要求得真相。 妈妈一听,顿时来了精神:“真相—真象是一个词,国家语委建议写作‘真相’。要搞清真面目,就得考证象相像三个字。” 阿璀说:“象,我知道。曼谷小象——你看,‘象’的篆体

字的形体多像大象啊!” 妈妈说:“对。大象是陆地上最大的动物,仓颉造字的时候,‘以类象形’,‘象’就是象形字了。先民造‘象’字之后,又根据大象的特征,把一些有形可见的物体、形状、范围、甚至天气变化称为表象、景象、象限、气象等,因此,‘象’指自然界或、物的本来样子。大象很大,人们印象深,但又不易见到,常常谈起大象的样子,就有了‘想象’一词。” 妹妹说:“嗯,我懂了:象形字是先民们对事物的相对简单的模拟描绘,当某些字造出来之后,觉得字的意思不够用,又给他加一些其他部件,构成新字,表示新的意思。‘像’就是这么造出来的。这样的情形:也有你从镜子里看自己的样子,给自己画像,可以写作像片,看哥哥的样子,给他雕像,旅游时,妈妈还会录像摄像。‘像’指用比较、模仿的方法获取事物的样子,也指用光线反射折射获取的相同或相似的样子。‘像’还有好似、如同的意思。” “相,篆文是,我似乎看到一个木匠,睁一只眼闭一只眼,在察视、审视一截木头,看看它能做什么用。”哥哥说。 “我似乎看到一个盲人拄着拐杖在探路。”妹妹说。 “由此可以看出,‘相’是事物的外观形态与事物的内部联系。”妈妈总结说。 “嗯。于是就可以表示对事物作出判断,如‘人不可貌相,海水不可斗量’‘相机而断’;还引申出辅助、帮助,如丞相、宰相,由人和木头的两者的关系引申用于互相。”妈妈补充说。

Als的用法总结

Als的用法总结: 1、als 做连词,表示“当……的时候”,用于指过去发生的一次性的行为。 Als ich gehen wollte, (da) l?utete das Telefon. 我正想走的时候,电话铃响了。 Als ich nach Hause kam, war meine Frau bereits weg. 当我回到家的时候,我的妻子已经走了。 Als er nach China gekommen war, fing das Oktoberfest an. 当他回到中国后,啤酒节才开始。 Als ich gestern dich anrief, bist du nicht da. 当我昨天给你打电话的时候,你不在家。 2、als 做连词,用于比较从句。之前有形容词的比较级。 Thomas ist kleiner als sein Bruder. Thomas比他的哥哥个子矮。 Er ist flei?iger als du. 他比你勤奋。 Das Problem ist viel schwerer, als wir gedacht haben. 这个问题比我们想象中的要难的多。 3、als 做连词,用于第二虚拟式中,表示非现实比较,als后面跟动词或动词的变化形式。Er tat so, als h?tte er nichts davon geh?rt. 他这么做,好像是没听说过此事似的。 Er spricht so gut Deutsch, als w?re er lange in Deutschland gewesen. 他的德语说的很好,好像他在德国待过很久似的。 4、als 做连词,表示“作为……”。 Als ein Deutschlehrer soll er viel davon wissen. 作为一名德语老师他应该知道此事。 5、als 用于固定表达或词组中。 如:anders als 不同于 nichts als 仅仅,无非 zu ... als dass 太……,以至于不…… z.B. Er kommt zu sp?t, als dass er den Zug erreichen k?nnte. 他来得太晚了以至于没赶上火车。

基于单片机的自动存包系统设计

基于单片机的自动存包系统设计 摘要 近年来,随着生活水平的提高,人们对于社会消费品的质量和数量的要求也在逐渐增加。为了更好的为广大顾客服务,在一些商场、影院、超市等公共场合通常设置有自动存包柜,本次便是针对这一现象进行设计。 本文详细介绍了国内自动存包控制系统的发展现状,发展中所面临的问题。并详细介绍了本系统采用的AT89S52单片机做控制器,可以同时管理四个存包柜。柜门锁是由继电器控制,当顾客需要存包的时候,可以自行到存包柜前按“开门”键,需要顾客向光学指纹识别系统输入个指纹,然后通过继电器进行开门(用亮灯表示),顾客即可存包,并需将柜门关上。当顾客需要取包时,要将只要将之前输入的指纹放置于指纹识别器前方,指纹识别器采集到指纹信息输出相应的高低电平信号传给单片机,系统比较密码一致后,发出开箱信号至继电器将柜门打开,顾客即可将包取出。它具有功能实用、操作简便、安全可靠、抗干扰性强等特点。 关键词:自动存包柜,单片机,指纹识别器

李少鹏:基于单片机的自动存包系统设计 Based on single chip microcomputer automatic package design Abstract In recent years, with the improvement of living standards, people for social consumer goo ds quality and quantity requirements are to increase gradually. In order to better service for the g eneral customers, in some stores, movie theaters, supermarkets public Settings are to be put auto matically usually bag ark, it is functional practical, simple operation, safe and reliable, anti-jamm ing strong sexual characteristics. Domestic deposit automatic control system are introduced in detail in this paper the development of the status quo, problems faced in the development of. And introduces in detail the system adopts single chip microcomputer controller, can simultaneously manage multiple pack ark. Cupboard door lock controlled by relay, when customers need to save package, will be allowed to save package before the ark according to the "open" button, need customer to the system input fingerprint, and then through the relay to open the door (with lighting), customers can save package, and the cupboard door must be closed. When customers need to pick up package, as long as before the input fingerprint should be placed on the fingerprint recognizer, fingerprint recognizer collecting to the fingerprint information and output the corresponding high and low level signal to the microcontroller, the system is password consistent, signal out of the box to the relay Key words: Automatic Storage Bag, Microcontroller, Fingerprint recognizer。

孔雀东南飞中19个相字的用法归纳

《孔雀东南飞》中19个"相"字的用法归纳《孔雀东南飞》中相”字出现的频率极高,量化统计可知,它共出现了十七次。理解好如此之多的“相”字,不仅有助于同学们较全面地掌握它的多个含义,也有利于对文句的准确把握。鉴此,笔者对其做了分类梳理,下面结合例句加以具体解释。 一、读xiāng,其词性有如下两类: 第一类,作副词,表示彼此对待的关系,译为“互相、相互”,如: ①贱妾留空房,相见常日稀 ②黄泉下相见,勿违今日言 ③枝枝相覆盖,叶叶相交通 ④仰头相向鸣,夜夜达五更 从意思上看,①②的“相见”显然涉及夫妻双方,因而当是互相见面。③中“相覆盖”的是“枝枝”,“相交通”的是“叶叶”,④中“相向鸣”的是“双飞鸟”,它们都涉及多方或双方的行为,因而“相覆盖”译为相互覆盖,“相交通”译为互相交接,“相向鸣”就是面对面哀鸣。 第二类,做人称代词,表示动作所涉及的一方,不可解作“互相”。按照人称的不同可分为三种: 一是作第一人称代词,可译为“我”。如: ⑤便可白公姥,及时相遣归 ⑥时时为安慰,久久莫相忘 ⑦初七及下九,嬉戏莫相忘 上述三句的⑤⑥句是刘兰芝对焦仲卿说的话,第⑦句是刘兰芝对小姑之言。这里的“相”都不是表示彼此对待的关系,三个句子都表示说话者(刘兰芝)希望对方对待自己(即“相”)的某种态度和行为,“相”均指代说话人。“相遣归”就是把我休回娘家,“莫相忘”就是不要忘记我。 二是作第二人称代词,译为“你”。如: ⑧吾已失恩义,会不相从许。 ⑨不久当归还,还必相迎取 ⑩誓不相隔卿 ⑾不久当还归,誓天不相负 ⑿幸可广问讯,不得便相许 此处的⑧句是焦母回绝儿子求情时说的话,“会不相从许”就是(我)一定不会答应你。⑨⑩⑾句是焦仲卿对刘兰芝所讲的,“相迎取”就是迎接你,“誓不相隔卿”就是发誓不断绝(与)你(的恩情),“不相负”就是不辜负你。⑿句是焦母对媒人所言,“不得便相许”就是(我)不能就答应你。这些句子都表示说话者对待对方(即“相”)的某种态度,“相”都指代听话人。 三是作第三人称代词,可译为“他(她)”。如:⒀勤心养公姥,好自相扶将 ⒁登即相许和,便可作婚姻 ⒂新妇识马声,蹑履相逢迎 ⒃怅然遥相望,知是故人来 上述四句中的“相”分别出现在对话句和叙述句中。⒀是兰芝叮咛小姑要好好侍奉婆母,所谓“相扶将”就是服侍她。⒁是兰芝对兄长的答语,让他赶快答应媒人的婚聘,“相许和”就是答应他(媒人)。⒂⒃是兰芝听到仲卿的马嘶后的反应,

lassen用法总结

https://www.360docs.net/doc/b212155384.html,ssen als Vollverb Lass das ! 算了吧!别干了! Du sollst das Rauchen lassen ! 别再抽烟了!把烟戒掉吧! Verdammt , ich habe dn Schlüssel im Auto gelassen . 真该死,我把钥匙落在汽车里了。 Wir lassen heute den Wagen in der Garege und machen eine Radtour . 今天我们不开车,骑自行车出去兜风。 Im Kaufhaus haben wir heute mehrere hundert Euro gelassen . 今天我们在百货公司花了好几百欧元。 Wo habe ich nur meinen Pass gelassen ? 我把护照放哪儿去了? Lass diese Scherz / den L?rm / das Weinen ! 别开玩笑了/别吵闹了/别再哭了! Lass diesen Bl?dsinn ! 别犯傻了! Lass endlich die Katze aus dem Sack ! 快讲讲您的真实想法吧!/快讲讲事情的真相吧! Du sollst die Kinder in Ruhe lassen / Lass mich in Ruhe ! 你就随孩子们去吧(别管孩子们)。/别烦我! Lass alles so , wie es ist ! 就让事情这样吧。 Lassen wir alles beim Alten ! 让一切都照旧吧! Bei aller Begeisterung , man sollte die Kirche im Dorf lassen . 不管多么高兴都应该一是一,二是二(切莫言过其实)。 Die SPD musste bei der Landtagswahl Federn lassen . 社民党在州议会选举中失去了很多选票。 Das Auf und Ab an der B?rse l?sst mich kalt . 股市行情的涨落对我无所谓。 Das Kleinkind darfst du keinen Augenblick aus den Augen lassen . 对小孩子你要时刻留心照看。 Diesen Punkt / Seine Vergangenheit lassen wir fürs Erste au?en vor . 这一点/他的历史我们暂且不谈。

自动存包柜的设计与仿真

自动存包柜的设计与仿真 摘要 本课题是基于单片机的自动存包柜设计。自动存包柜是新一代的存包柜,具有功能实用、操作简单、管理方便、安全可靠等特点,能够更好的服务于不同市场的广大群众,使用者可以根据简明清晰的操作说明自行完成存包取包工作。本系统由MCS-51单片机构成核心控制系统,整个系统由主控部分、键盘显示控制部分、执行部分三部分组成,通过随机密码的产生和核对完成自动存包取包过程。本设计中各元器件便于安装且操作简单,能基本实现存包取包功能。 关键词:自动存包柜;单片机;随机密码

Design and Simulation of Automatic Lockers ABSTRACT This topic is microcontroller-based automatic lockers.Automatic lockers is a new generation of lockers, with a practical, simple operation, easy management, safe and reliable, able to better serve the broad masses of the different markets, users are based on a clear and concise instructions to complete the deposit bags to take the package. The system consists of MCS-51 microcontroller core control system, the entire system from the main section, the keyboard display control part of the implementation of some of the three-part composition, random password generation and check completed automatically save the package to take the package process. Various components of this design is easy to install and easy to operate, can basically save the package to take package function. Key words :Automatic lockers; microcontroller; random password

临床常见药物用法

盐酸多巴胺注射液【20mg 2ml/支】 【用法】1-5μg/kg*min,每15-30min增加1-4μg/kg*min 【泵入】kg×3+NS 至50ml,1ml/h=1μg/kg*min 【滴入】5%GS 70ml 多巴胺 300mg ,1.2ml/h=1μg/kg*min 【中日急诊】5%GS 100ml 多巴胺 300mg ,5ml/h起(约11.5mg/h,对60kg约3.2ug/kg/min) 盐酸乌拉地尔注射液【亚宁定,25mg 5ml/支】 【用法】25mg+10mlNS慢推一半,15分钟后再推另一半,然后100-400μg/ min(6-24mg/h)维持 【泵入】乌拉地尔100mg NS 30ml , 3ml/h=6mg/h 【滴入】乌拉地尔 50mg NS 250ml ,10滴/min=30ml/h=6mg/h 【中日急诊】NS 100ml 乌拉地尔 200mg,5ml/h起(约7mg/h) 注射用生长抑素【思他宁3000ug/支*】 【用法】上消化道出血:250μg缓慢注射(>3min),止血后250μg/h维持3-4天,但<120h。 急性胰腺炎:250μg/h维持5-7天 【泵入】生长抑素 6mg NS48ml ,2ml/h=240μg/h;先入2ml。 【滴入】NS或GS 500ml 生长抑素 3mg,ivgtt连续静滴12h。 奥曲肽注射液【善宁,0.1mg 1ml/支】 【用法】25μg缓慢注射,25-50μg/h维持3-4天 【泵入】奥曲肽 0.6 NS 48ml ,2ml/h=24μg/h;先入2ml。 【皮下】预防胰腺手术后并发症,0.1mg 皮下 Q8h×7天,第一次用药至少在术前1小时进行。 注射用甲磺酸加贝酯【100mg/支,70.39元】 【滴入】急性轻型胰腺炎或重症辅助: 加贝酯 100mg 5%GS或林格500ml ,ivgtt(<1mg/kg/h) tid×3天,改为100mg/日,共6-10天 注射用乌司他丁【天普洛安,10万U/支,134.99】 急性胰腺炎、慢性复发性胰腺炎的急性恶化期: 【滴入】5%GS或0.9%NS 500ml 乌司他丁 10万U ,ivgtt 1-2h入 Qd-Tid,随症状改善减量 急性循环衰竭: 【滴入】 5%GS或0.9%NS 500ml 乌司他丁 10万U ,ivgtt 1-2h入 Qd-Tid 【静推】2ml 0.9% NS 乌司他丁 10万U ,缓慢静脉推注 Qd-Tid

偏指副词“相”“见”用法探微

偏指副词“相”“见”用法探微 古汉语中,作为副词的“相”和“见”用于动词前,有时表示动作行为只涉及一方,或动作只从单方面发出,有称代作用。 1. “相”用于动词前,可指代第一、二、三人称,相当于“你”“我”“他”“它”等。例如: ①“便可白公姥,及时相遣归。”此句中的“相”可释义为“我”。 ②“吾已失恩义,会不相从许。”此句中的“相”可释义为“你”。 ③“勤心养公姥,好自相扶将。”此句中的“相”可释义为“她”。 ④“登即相许和,便可作婚姻。”此句中的“相”可释义为“它”。 2. “见”则用于及物动词之前,有称代动作行为的受事者的作用(称代前置的宾语),而且句中要出现动作行为的施事者(主动者)。一般只能指代第一人称,可译作“我”或者“自己”。例如: ①兰芝初还时,府吏见丁宁。(《孔雀东南飞》) 此句中“见丁宁”即“丁宁我”之意。 ②君既若见录,不久望君来。(《孔雀东南飞》) 这里的“见录”意思即为“记得我”。 ③冀君实或见恕也。(《答司马谏议书》) 此句中“见恕”可译为“宽恕我”。 (1)翻译下面句子,注意“相”的用法。 ①今王与耳旦暮且死,而公拥兵数万,不肯相救。《史记·张耳陈馀列传第二十九》 ②不久当还归,誓天不相负。(《孔雀东南飞》) ③苟富贵,勿相忘。(《陈涉世家》) ④本是同根生,相煎何太急?(《七步诗》) ⑤穆居家数年,在朝诸公多有相推荐者。(《后汉书·朱乐何列传》)

⑥一年三百六十日,风刀霜剑严相逼。(《红楼梦》第二十七回) (2)翻译下面句子,注意“见”的用法。 ①生孩六月,慈父见背。(《陈情表》) ②吾相遇甚厚,何以见负?《晋书·列传第五十九》) ③凡举事无为亲厚者所痛,而为见仇者所快。(《与彭宠书》) ④岳父见教的是。(《儒林外史》) ⑤张祖希若欲相识,自应见诣。(《世说新语》) ⑥“见谅”“见告”“见怪”。 参考答案: (1)①现在大王和张耳很快将要死了,然而您拥有数万军队,却不肯救我。 ②不久一定回来,我对天发誓永远不辜负你。 ③如果有一天我富贵了,我不会忘记你们。 ④你我本来都是同一个根苗生的,煎熬我为什么这样急迫呢? ⑤朱穆在家闲居多年,朝廷上的官员有很多人推荐他。 ⑥一年三百六十天,刀一样的风,剑一样的霜,无情地摧残它(指花枝)。(2)①我生下来才六个月,父亲便丢下我死去。(这里“见背”即“背我”。) ②我对待你很好(非常优厚),你为什么背叛(背离、辜负)我呢? ③做事不要让自己亲近的人感到痛心、而让仇视自己的人感到高兴。 ④岳父大人指教(我)很对。 ⑤张祖希如果想认识我,自然应该来拜访我。 ⑥原谅我、告知我、怪罪我。

德语形容词用法大总结

形容词在做定语时,必须按照名词的性数格加上不同的词尾. 1. 与定冠词连用的形容词的变格. 规则: 阳性名词第一格,阴性和中性名词第一,第四格词尾为-e , 其余所有结尾均为-en 注: 定冠词位置也可以是以下各词: dieser, diese, dieses diese (Pl.) jener, jene, jenes jene (Pl.) jeder, jede, jedes jede (Pl.) mancher, manche,manches manche (Pl.) solcher, solche, solches solche (Pl.) welcher, welche, welches welche (Pl.) derjeniger, diejenige, dasjeniges diejenigen (Pl.) derselber, dieselbe, dasselbes dieselben (Pl.) 2. 与不定冠词连用的形容词的变格

3.和物主代词连用的形容词的变格 注: kein, keine, kein 和复数的keine 同物主代词一样变格. 4,不带冠词且修饰不可数名词的形容词的变格. 三.形容词的比较级与最高级 与英语类似,德语中形容词也有比较级与最高级. 形容词比较级的构成一般是在词尾加上-er, 比较级后用als .(注: 定语的比较级除了有-er还需要有相应的变格词尾.) 形容词最高级必须和定冠词连用,其构成形式为词尾加上-st. .(注: 定语的最高级除了有-st还需要有相应的变格词尾.) 比较级和最高级变化特殊的形容词: 1: 一些单元音形容词在构成比较级和最高级的时候元音要变音. am , ?rmer , am ?rmsten 同类的词还有: alt , dumm , grob , hart , kalt , jung , klug , lang , scharf , stark , schwach , warm 2.比较特殊的一些. gro? , gr??er , gr??te , am gr??sten hoch ,h?her , h?chste , am h?chsten nah , n?her , n?chste , am n?chsten gut , besser , beste , am besten viel , mehr , meist , am meisten wenig , weniger , wenigste , am wenigsten (mehr和weniger做定语时不论后面的名词为单数或复数永远不变格.)

各种临床使用指南精简版(珍藏版)

中国急性缺血性脑卒中诊治指南 急性期诊断与治疗 一、评估和诊断 (一)病史和体征 1.病史采集:询问症状出现的时问最为重要。 2.一般体格榆查与神经系统体榆:评估气道、呼吸和循环功能后,立即进行一般体格检查和神经系统体检。 3.可用脑卒中量表评估病情严重程度。常用量表有: (1)中国脑卒中患者临床神经功能缺损程度评分量表。 (2)美国国立卫生院脑卒中量表(National Institutes of}tcalth Strok|(NIHss)是目前国际上最常用量表。 (3)斯堪的纳维亚脑卒中量表(ScandinavianStmke Seale,SSS)。 (二)脑病变与血管病变检查 脑部病变检查:1 平扫CT,疑似脑卒中首选检查;2 多模式CT;3 标准MRI;4多模式MRI。 血管检查:1 颈动脉双功超声;2 TCD;3 MRA、CTA、DSA (三)实验室及影像检查选择 所有患者都应做的检查:①平扫脑cT或MRl;②血糖、肝肾功能和电解质;③心电图和心肌缺血标志物;④全血计数,包括血小板计数;⑤凝血酶原时问(Frr)、国际标准化比率(INR)和活化部分凝血活酶时问(AHT);⑥氧饱和度;⑦胸部x线检查。 部分患者必要时可选择的检查:①毒理学筛查;②血液酒精水平;③妊娠试验;④动脉血气分析(若怀疑缺氧);⑤腰穿(怀疑蛛网膜下腔出血而cT末显示或怀疑脑卒中继发于感染性疾病);⑥脑电图(怀疑癫痫发作)。 (四)急性缺血性脑卒中的诊断可根据: (1)急性起病; (2)局灶件神经功能缺损,少数为全面神经功能缺损; (3)症状和体征持续24 h以上(溶栓可参照适应证选择患者); (4)排除非血管性脑部病变; (5)脑CT或MRI排除脑出血和其他病变,有责任缺血病灶。 (五)急性缺血性脑卒中诊断流程应包括如下5个步骤 (1)是否为脑卒中,排除非血管性疾病。 (2)是否为缺血性脑卒中,进行脑CT或MRI检查排除出血性脑卒中。 (3)脑卒中严重程度,根据神经功能缺损量表评估。 (4)能否进行溶栓治疗,核对适应证和禁忌证(见溶栓中相关内容)。 (5)病因分型参考TOAST标准,结合病史、实验窜、脑病变和血管病变等检查资料确定病因。 推荐意见:(1)对所有疑似脑卒中患者应进行头颅平扫CT或MRI检查(I 级推荐)。(2)在溶栓等治疗前,应进行头颅平扫CT检查(I级推荐)。(3)应进行上述血液学、凝血功能和生化检查(I级推荐)。(4)所有脑卒中患者应进行心电图检查(I级推荐)。(5)用神经功能缺损量表评估病情程度(Ⅱ级推荐)。(6)应进行血管病变检查(Ⅱ级推荐),但在症状出现6 h内,不过分强调此类检查。(7)根据上述规范的诊断流程进行诊断(I级推荐)。

文言虚词“相”“见”的特殊用法

文言虚词“相”“见”的特殊用法 文言学习 0302 1322 文言虚词“相”“见”的特殊用法 分析近几年的高考情况,文言虚词考查不会再过多地纠缠于名词术语,而会想方设法地把对虚词的理解落实到对原文的把握上,出题者越来越重视那些有碍于文章阅读的文言虚词,“相”“见”的一些特殊用法正属此种类型。 “相”充当文言虚词时读作“xiāng”,有两个义项:①[副词],译成“互相”;如:司马迁《廉颇蔺相如列传》:“卒相与欢,为刎颈之交。”②[代词],表示动作偏指一方,或从单方面发出,而非互相的关系。如:《孔雀东南飞》:“新妇识马声,蹑履相逢迎。”其中第二个义项就属是一种比较特殊的用法,正如上例,由于“相”所处的位置是在动词的前面,很多学生会把它翻译成副词“互相”,而实际上,它是代词,是一种宾语前置。如果在翻译时不知道此用法就往往会出错,贺之章的名篇《回乡偶书》中有这样一句话“儿童相见不相识,笑问客从何处来”,此处的“相”字翻译成“互相”是无论如何也解释不通的,而你如果知道“相”的第二种用法,那么问题就会迎刃而解。“相”字的这种用法在课文中的例子还很多,这里就不一一例举了。 “见”充当文言虚词时读作“jiàn”也有两个义项:①表示被动,相当于“被”。如《孟子·尽心下》:“盆成括见杀。”《荆轲刺秦王》中“而燕国见陵之耻除矣。”②放在动词前,表示对自己怎么样。王安石《答司马谏议书》:“冀君实或见恕也。”(冀:希望。君实:司马光。或:或许。恕:原谅)今有熟语“见教”(指教我)“见谅”(原谅我)“见示”“见告”(告知我)。应该说,这两种用法都比较特殊。如果不加以正确掌握,势必会变成文言文理解的障碍。

情态动词主观用法讲解及习题

1.请用情态动词改写下列的句子(主观用法)。 1)Sie hat der Nachbarin berichtet, dass die Polizei zweimal das Zimmer durchsucht hat. 2)Einem Gerücht zufolge haben diese Personen untereinander Streit bekommen. 3)Der Schauspieler behauptet von sich, dass er an vielen Bühnen zu Hause war. 4)Es ist sehr wahrscheinlich, dass die kleineren Konflikte in Europa noch zunehmen. 5)Ich halte es für m?glich, dass morgen die Sonne scheint. 6)Angeblich haben diese auch neulich nachts im Treppenhaus gro?en L?rm gemacht. 7)Es ist sicher, dass er diesmal auch die Wahrheit sagt. Er hat mich noch nie belogen. 8)Ich glaube, dass es jetzt halb zehn ist. 9)Er rauchte so viel. Es war nicht anders zu erwarten, als dass er eines Tages an Lungenkrebs leiden würde. 10)Das Gewicht dieses Pakets sch?tzte ich auf 5 kg. 11)Ich nehmen an, dass das alte Fahrrad noch für 100 Euro verkauft werden kann. 12)Besonders gibt er damit an, dass er seine Rollen schon nach zweimaligem Lesen beherrscht hat. 13)Man erz?hlt sich auch, dass der Untermieter Mitglieg einer Bande ist. 14)Es ist damit zu rechnen, dass neue au?enpolitische Schwierigkeiten auftauchen. 15)Es spricht einiges dafür, dass solche Formulierungen bald aus den Nachrufen verschwinden. 16)Der Herr auf dem Foto ist sicher nicht mein Gro?vater, denn dieser trug niemals einen Bart. 17)Er hei?t, dass Herr Wang lange im Ausland lebte. 18)Ich glaube, dass er noch im Büro ist. 19)Man sagt, dass früher hier Ackerland war. 20)Es ist v?llig sicher, dass sie nicht in Shanghai war, denn sie kennt den Bund nicht. 21)Die Leute sagen: …Sie war eine sehr erfolgreiche Ballektt?nzerin.“ 22)Schlie?lich versichert er, dass er innerlich jung blieb und deshalb noch mit 70 Jahren den jugendlichen Liebhaber sehr überzeugend spielte.

相关文档
最新文档