浙江大学化工原理(过程控制)实验报告_传热综合实验2

浙江大学化工原理(过程控制)实验报告_传热综合实验2
浙江大学化工原理(过程控制)实验报告_传热综合实验2

实验报告

课程名称:__过程工程原理实验(甲)I__ 指导老师:____ 成绩:__________ 实验名称:传热综合实验 实验类型:工程实验 同组学生姓名:_______ 一、实验目的和内容 二、实验装置与流程示意图 三、实验的理论依据(实验原理) 四、注意事项 五、原始记录数据表 六、整理计算数据表 七、数据整理计算过程举例 八、实验结论 九、实验结果的分析和讨论 一、实验目的和内容 1、掌握空气在普通和强化传热管内的对流传热系数的测定方法,了解影响传热系数的因素和强化传热的途径。

2、把测得的数据整理成n BRe =Nu 形势的准数方程,并与教材中相应公式进行比较。

3、了解温度、加热功率、空气流量的自动控制原理和使用方法。 二、实验装置与流程示意图

本实验装置流程如图1由蒸汽发生器、孔板流量变送器、变频器、套管换热器及温度传感器、智能显示仪表等构成。

专业: _________ 姓名:_________ 学号:_________ 日期:_________ 地点: _________

图1 竖管对流传热系数测定实验装置流程图

表1 竖管对流传热系数测定实验装置流程图符号说明表

空气进行换热交换,冷凝水经排出阀排入盛水装置。空气由风机提供,流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管换热器内管,热交换后从风机出口排出。

注意:本实验中,普通和强化实验通过管路上的切换阀门进行切换。

三、实验的理论依据(实验原理)

在工业生产过程中,大量情况下,采用间壁式换热方式进行换热。所谓间壁式换热,就是冷、热两种流体之间有一固体壁面,两流体分别在固体壁面的两侧流动,两流体不直接接触,通过固体壁面(传热元件)进行热量交换。

本装置主要研究汽—气综合换热,包括普通管和加强管。其中,水蒸汽和空气通过紫铜管间接换热,空气走紫铜管内,水蒸汽走紫铜管外,采用逆流换热。所谓加强管,是在紫铜管内加了弹簧,增大了绝对粗糙度,进而增大了空气流动的湍流程度,使换热效果更明显。

空气在传热管内对流传热系数的测定

如图2所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。

T

t

图1间壁式传热过程示意图

图2 间壁式传热过程示意图

间壁式传热元件,在传热过程达到稳态后,有 ()()

()()111222211122(1)p p W W M M

m Q m c T T m c t t A T T A t t KA t αα=-=-=-=-=???????

热流体与固体壁面的对数平均温差可由(2)式计算:

()()()11221122

(2)

ln W W W m W W T T T T T T T T T T ----=

--

固体壁面与冷流体的对数平均温差可由(3)式计算:

()()())3(ln

2

21

1

2211 t t t

t t t t t t t W W W W m W -----=-

热、冷流体间的对数平均温差可由(4)式计算:

)

4(ln

)

()(1

2211221 t T t T t T t T t m -----=

?

冷流体(空气)的质量流量可由(5)式计算:

)

5('02 ρV m =

注意:空气在无纸记录仪上显示的体积流量,与空气流过孔板时的密度有关,考虑到实际过程中,空气的进口温度不是定值,为了处理上的方便,无纸记录仪上显示的体积流量是将孔板处的空气密度ρ0当作1kg/m 3时的读数,因此,如果空气实际密度不等于该值,则空气

的实际体积流量应按下式进行校正:

)

6('0

ρV

V =

当内管材料导热性能很好,即λ值很大,且管壁厚度较薄时,可认为同一截面处换热管二侧壁温近似相等,即T W2≈t W1,T W1≈t W2,在传热过程达到稳定后,由式(1)可得:

)

7()()(1221222 m W p t t A t t c m -=-α

即:

22212()(8)

()p W m

m c t t A t t α-=

-

一般情况下,直接测量固体壁面温度,尤其是管内壁温度,实验技术难度较大,因此,工程上也常采用通过测量相对较易测定的冷热流体温度来间接推算流体与固体壁面间的对流传热系数。下面介绍其他两种测定对流传热系数α2的实验方法。

(1)近似法求算空气侧对流传热系数α2。

以管内壁面积为基准的总传热系数与对流传热系数间的关系为:

)9(111

12121222 d d d d R d bd R K s m s αλα++++=

总传热系数K 可由式(1)求得:

)

10()(1222 m

p m t A t t c m t A Q

K ?-=?=

用本装置进行实验室时,换热管外侧、管壁,内侧污垢热阻均忽略不急,则可由式(9)近似得出:

)11(2 K ≈α

由此可见,被忽略的传热热阻与冷流体侧对流传热热阻相比越小,此法所求得的结果准确性越高。

准数方程式

对于流体在圆形直管内作强制湍流对流传热时,传热准数经验式为:

)14(Pr Re 023.08.0 n Nu =

式中:Nu —努塞尔数,

22

'd Nu αλ=

,无因次;

Re —雷诺数 ,

2Re d u ρ

μ=

,无因次;

Pr —普兰特数,

2'Pr p c μ

λ=

,无因次;

上式适用范围为:Re =1.0×104~1.2×105,Pr =0.7~120,管长与管内径之比L/d ≥60。当流体被加热时n =0.4,流体被冷却时n =0.3。

故可由实验获取的数据点拟合出相关准数后,在双对数坐标纸上,即可作出Nu~Re 直线,确定Nu=BRe n 的拟合方程,并与公认的经验公式进行对比,以验证实验效果。

通过普通管和强化传热管实验结果的对比,分析影响传热系数的因素和强化传热的途径。 四、注意事项

(1)开始加热功率可以很大,但当温度达到100℃左右,有大量不凝气体排出时,加热电压一般控制在250V 左右。

(2)实际实验管路要和仪表柜上选择开关及计算机上的显示一致,否则实验失败。 (3)实验中不凝气体阀门和冷凝水阀门要一直开启,防止积水,影响实验效果。

(4)测定各参数时,必须是在稳定传热状态下。一般传热稳定时间都至少需保证8分钟以上,以保证数据的可靠性(第一组数据的测定至少稳定15分钟)。

(5)实验过程中,要确保蒸汽发生器内水位不能低于警戒水位。 五、数据处理

处理数据50~60℃下空气热容为1005J/(kg ·K),导热系数为0.0285/[W/(m ·K)]

空气粘度为1.97×10-5/Pa ·s

Nu=0.001 Re1.032强化管实验数据处理

6 实验结果分析:

6.1准数方程式:

根据图像及双对数坐标下直线方程,可得:对于普通管,有Nu=0.001 Re1.032;对于强化管,有Nu=0.036 Re0.772。

6.2 结果分析:

6.2.1 从实验结果可以发现,热流体流速越大,横管对流传热系数越大,热量交换越迅速,越明显,换热效果也越好。另外,随着热流体温度的升高,平均温差变化很小,可以认为基本上没有发生变化,故在生产中在负载允许的情况下,应适当增大流速,以更好地换热任务。

6.2.2 在管内加装弹簧,增大空气流动时的湍流程度后,空气在换热过程中所获得的热量增大,所以强化管的α较普通管有明显的增大,说明传热效果更好。因此在工程上,使用列管式换热器时,常通过增加壳程挡板来增大湍流程度,以获得更好的换热效果。

6.2.3 通过加弹簧方法来提高传热效果,由于污垢不断积累所产生的热阻和流体运行阻力的增加,使得效果的提高并没有想象中那么理想,所以实际生产中很少用这样的方法。

6.3 误差分析:

无论是普通管还是强化管,实验得到的Nu与Re的关系式与公认的经验式(Nu=0.02Re0.8)有一定的偏差。分析起来,产生偏差的主要原因可能有:

(1)测量仪器本身的系统误差和外界因素的干扰。比如由于长期有人做实验,导致管内污垢层积,使管内热阻增大,导致测得的数据发生偏离。

(2)实验数据处理过程中,假设内管材料导热性能很好,即λ值很大,且管壁厚度较薄时,所以可以认为同一截面处换热管两侧壁温近似相等,即:,而实际上内管材料的性能究竟有没有这么好,有待确定。

(3)测定实验数据时,要求在稳定传热状态下,要求稳定时间在8min以上,而事实上测量数据的时候,在温度稳定5min左右就已经开始采集数据,而有可能此时传热尚未达到真正的稳定。即使每次数据都在度数稳定8min采集,也不能保证此时传热已经稳定,因为过程工程原理实验是工程实验,实验结果受实际复杂情况影响较大。

(4)数据处理的时候也会引入一定的误差。

6.4思考题:

6.4.1 实验中冷流体和蒸汽的流向,对传热效果有何影响?

在不考虑错流和折流的情况下,实验中冷流体和蒸汽的流向有两种:一种是两者流动方向相同,即并流;另一种是两者流动方向相反,即逆流。

这两种情况的传热效果是不相同的,因为在同样的进、出口温度下,逆流的传热温差比并流的大,所以当传热管的传热面积和传热系数不变时,逆流时传热速率更大,传热效果也更好。

6.4.2 在计算冷流体质量流量时所用到的密度值与求雷诺数时的密度值是否一致?它们分别表示什么位置的密度,应在什么条件下进行计算?

不一致。计算冷流体质量流量时的密度是孔板流量计测压的地方的温度对应的密度,应该将压力换算到常压下进行计算。本实验测压处的压力近似认为是常压。

求雷诺数时,所也用的密度是传热管中的定性温度所对应的气体密度,它所表示的是管内空气的平均温度。在处理数据的时候,将雷诺数Re的公式进行转化:

6.4.3 实验过程中,冷凝水不及时排走,会产生什么影响?如何及时排走冷凝水?

冷凝水不及时排走将会附着在管壁上,由于水的导热性能远差于紫铜,所以未及时排走的冷凝水将降低传热的速率,使传热效果变差。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强

△t)1/4变化不大,所以认为蒸汽增加时,r 和△t均增加,其它参数不变,故 (ρ2gλ3r/μd

压强对α关联式无影响。

要及时排走冷凝水,可以使管束有一定的倾斜,同时也可以设置冷凝液排泄挡板和改善冷凝表面状况等。

7 讨论心得:

7.1 对间壁式传热器的认识:间壁式换热器是一种传统的、应用最广泛的热交换设备。

由于它结构坚固,且能选用多种材料制造,故适应性极强,尤其在高温、高压和大型装置中得到普遍应用。按照结构区分,可分为管式和板式,实验中所用为管式,且是横管。

7.2 对强化传热的认识:强化传热的目的是用较少的传热面积或较小的设备完成同样的传热任务(设计),或力求使换热设备在单位时间、单位面积传递的热量尽可能地大。从传热速率方程可以看出,增大传热系数、扩展传热面积和增大传热平均温差均可提高传热效率。

现代控制理论实验报告

实验报告 ( 2016-2017年度第二学期) 名称:《现代控制理论基础》 题目:状态空间模型分析 院系:控制科学与工程学院 班级: ___ 学号: __ 学生姓名: ______ 指导教师: _______ 成绩: 日期: 2017年 4月 15日

线控实验报告 一、实验目的: l.加强对现代控制理论相关知识的理解; 2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验内容 1 第一题:已知某系统的传递函数为G (s) S23S2 求解下列问题: (1)用 matlab 表示系统传递函数 num=[1]; den=[1 3 2]; sys=tf(num,den); sys1=zpk([],[-1 -2],1); 结果: sys = 1 ------------- s^2 + 3 s + 2 sys1 = 1 ----------- (s+1) (s+2) (2)求该系统状态空间表达式: [A1,B1,C1,D1]=tf2ss(num,den); A = -3-2 10 B = 1 C = 0 1

第二题:已知某系统的状态空间表达式为: 321 A ,B,C 01:10 求解下列问题: (1)求该系统的传递函数矩阵: (2)该系统的能观性和能空性: (3)求该系统的对角标准型: (4)求该系统能控标准型: (5)求该系统能观标准型: (6)求该系统的单位阶跃状态响应以及零输入响应:解题过程: 程序: A=[-3 -2;1 0];B=[1 0]';C=[0 1];D=0; [num,den]=ss2tf(A,B,C,D); co=ctrb(A,B); t1=rank(co); ob=obsv(A,C); t2=rank(ob); [At,Bt,Ct,Dt,T]=canon(A,B,C,D, 'modal' ); [Ac,Bc,Cc,Dc,Tc]=canon(A,B,C,D, 'companion' ); Ao=Ac'; Bo=Cc'; Co=Bc'; 结果: (1) num = 0 01 den = 1 32 (2)能控判别矩阵为: co = 1-3 0 1 能控判别矩阵的秩为: t1 = 2 故系统能控。 (3)能观判别矩阵为: ob = 0 1

自动控制原理实验报告

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G 200,1002)(211 212==-=-=- = 其对应的模拟电路及SIMULINK 图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+= s s G 和1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+= 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK 图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

化工原理试验试题集

化工原理实验试题3 1、干燥实验进行到试样重量不再变化时,此时试样中所含的水分是什么水分?实验过程中除去的又是什么水分?二者与哪些因素有关。 答:当干燥实验进行到试样重量不再变化时,此时试样中所含的水分为该干燥条件下的平衡水分,实验过程中除去的是自由水分。二者与干燥介质的温度,湿度及物料的种类有关。 2、在一实际精馏塔内,已知理论板数为5块,F=1kmol/h,xf=0.5,泡点进料,在某一回流比下得到D =0.2kmol/h,xD=0.9,xW=0.4,现下达生产指标,要求在料液不变及xD 不小于0.9的条件下,增加馏出液产量,有人认为,由于本塔的冷凝器和塔釜能力均较富裕,因此,完全可以采取操作措施,提高馏出物的产量,并有可能达到D =0.56kmol/h ,你认为: (1) 此种说法有无根据?可采取的操作措施是什么? (2) 提高馏出液量在实际上受到的限制因素有哪些? 答:在一定的范围内,提高回流比,相当于提高了提馏段蒸汽回流量,可以降低xW ,从而提高了馏出液的产量;由于xD 不变,故进料位置上移,也可提高馏出液的产量,这两种措施均能增加提馏段的分离能力。 D 的极限值由 DxD

控制理论实验报告MATLAB仿真实验解析

实验报告 课程名称:控制理论(乙) 指导老师:林峰 成绩:__________________ 实验名称:MATLAB 仿真实验 实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验九 控制系统的时域分析 一、 实验目的: 1.用计算机辅助分析的办法,掌握系统的时域分析方法。 2.熟悉Simulink 仿真环境。 二、实验原理及方法: 系统仿真实质上就是对系统模型的求解,对控制系统来说,一般模型可转化成某个微分方程或差分方程表示,因此在仿真过程中,一般以某种数值算法从初态出发,逐步计算系统的响应,最后绘制出系统的响应曲线,进而可分析系统的性能。控制系统最常用的时域分析方法是,当输入信号为单位阶跃和单位冲激函数时,求出系统的输出响应,分别称为单位阶跃响应和单位冲激响应。在MATLAB 中,提供了求取连续系统的单位阶跃响应函数step ,单位冲激响应函数impulse ,零输入响应函数initial 等等。 二、实验内容: 二阶系统,其状态方程模型为 ? 1x -0.5572 -0.7814 1x 1 = + u ? 2x 0.7814 0 2x 0 1x y = [1.9691 6.4493] +[0] u 2x 四、实验要求: 1.编制MATLAB 程序,画出单位阶跃响应曲线、冲击响应曲线、系统的零输入响应、斜坡输入响应; (1)画出系统的单位阶跃响应曲线; A=[-0.5572 -0.7814;0.7814 0 ]; B=[1;0];

现代控制理论实验

华北电力大学 实验报告| | 实验名称状态空间模型分析 课程名称现代控制理论 | | 专业班级:自动化1201 学生姓名:马铭远 学号:2 成绩: 指导教师:刘鑫屏实验日期:4月25日

状态空间模型分析 一、实验目的 1.加强对现代控制理论相关知识的理解; 2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验仪器与软件 1. MATLAB7.6 环境 三、实验内容 1 、模型转换 图 1、模型转换示意图及所用命令 传递函数一般形式: MATLAB 表示为: G=tf(num,den),,其中 num,den 分别是上式中分子,分母系数矩阵。 零极点形式: MATLAB 表示为:G=zpk(Z,P,K) ,其中 Z,P ,K 分别表示上式中的零点矩阵,极点矩阵和增益。 传递函数向状态空间转换:[A,B,C,D] = TF2SS(NUM,DEN); 状态空间转换向传递函数:[NUM,DEN] = SS2TF(A,B,C,D,iu)---iu 表示对系统的第 iu 个输入量求传递函数;对单输入 iu 为 1。

例1:已知系统的传递函数为G(S)= 2 2 3 24 11611 s s s s s ++ +++ ,利用matlab将传递函数 和状态空间相互转换。 解:1.传递函数转换为状态空间模型: NUM=[1 2 4];DEN=[1 11 6 11]; [A,B,C,D] = tf2ss(NUM,DEN) 2.状态空间模型转换为传递函数: A=[-11 -6 -11;1 0 0;0 1 0];B=[1;0;0];C=[1 2 4];D=[0];iu=1; [NUM,DEN] = ss2tf(A,B,C,D,iu); G=tf(NUM,DEN) 2 、状态方程状态解和输出解 单位阶跃输入作用下的状态响应: G=ss(A,B,C,D);[y,t,x]=step(G);plot(t,x). 零输入响应 [y,t,x]=initial(G,x0)其中,x0 为状态初值。

自动化控制实验报告(DOC 43页)

自动化控制实验报告(DOC 43页)

本科生实验报告 实验课程自动控制原理 学院名称 专业名称电气工程及其自动化 学生姓名 学生学号2013 指导教师 实验地点6C901 实验成绩 二〇一五年四月——二〇一五年五月

线性系统的时域分析 实验一(3.1.1)典型环节的模拟研究 一. 实验目的 1. 了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式 2. 观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响 二.典型环节的结构图及传递函数 方 框 图 传递函数 比例 (P ) K (S) U (S) U (S)G i O == 积分 (I ) TS 1 (S)U (S)U (S)G i O == 比例积分 (PI ) )TS 1 1(K (S)U (S)U (S)G i O +== 比例微分 (PD ) )TS 1(K (S) U (S) U (S)G i O +== 惯性 TS 1K (S)U (S)U (S)G i O += =

环节 (T) 比例 积分 微分 (PI D) S T K S T K K (S) U (S) U (S) G d p i p p i O + + = = 三.实验内容及步骤 观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。 改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告 运行LABACT程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。具体用法参见用户手册中的示波器部分。1).观察比例环节的阶跃响应曲线 典型比例环节模拟电路如图3-1-1所示。 图3-1-1 典型比例环节模拟电路 传递函数: 1 (S) (S) (S) R R K K U U G i O= = = ;单位阶跃响应:

化工原理传热综合实验

传热综合实验(一) 实验时间2020年5月14日成绩________指导老师_______________ 一、实验目的 1.通过对简单套管换热器的实验研究,掌握对流传热系数α i 的测定方法,加深对其概念和影响因素的理解。 2.应用线性回归分析方法,确定关联式Nu=ARe m Pr0.4中常数A、m的值。 二、实验原理 (1)传热过程基本原理 传热是指由于温度差引起的能量转移,又称热传递。由热力学第二定律可知,凡是有温度差存在时,热量就必然发生从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。 总传热系数K是评价换热器性能的一个重要参数,也是对换热器进行传热计算的依据。对于已有的换热器,可以通过测定有关数据,如设备尺寸、流体的流量和温度等,然后由传热速率方程式(1-1)计算K值。传热速率方程式是换热器传热计算的基本关系。在该方程式中,冷、热流体的温度差△T是传热过程的推动力,它随传热过程冷热流体的温度变化而改变。 传热速率方程式Q=K×S×ΔTm(1-1) 所以对于总传热系数K=Cp×W×(T2-T1)/(S×ΔTm) (1-2) 式中: Q----热量(W); S----传热面积(m2); △Tm----冷热流体的平均温差(℃);△Tm=Tw-Tm K----总传热系数(W/(m2·℃)); C P ----比热容 (J/(kg·K)); W----空气质量流量(kg/s); △T=T 2-T 1 ----冷物流温度差(℃)。 换热器的面积:S i=πd i L i(1-3)式中:d i—内管管内径,m; L i —传热管测量段的实际长度,m; 平均空气质量流量W m=V mρm 3600(1-4)

现代控制理论实验报告

现代控制理论实验报告

实验一系统能控性与能观性分析 一、实验目的 1.理解系统的能控和可观性。 二、实验设备 1.THBCC-1型信号与系统·控制理论及计算机控制技术实验平台; 三、实验内容 二阶系统能控性和能观性的分析 四、实验原理 系统的能控性是指输入信号u对各状态变量x的控制能力,如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间内把系统所有的状态引向状态空间的坐标原点,则称系统是能控的。 对于图21-1所示的电路系统,设iL和uc分别为系统的两个状态变量,如果电桥中 则输入电压ur能控制iL和uc状态变量的变化,此时,状态是能控的。反之,当 时,电桥中的A点和B点的电位始终相等,因而uc不受输入ur的控制,ur只能改变iL的大小,故系统不能控。 系统的能观性是指由系统的输出量确定所有初始状态的能力,如果在有限的时间内根据系统的输出能唯一地确定系统的初始状态,则称系统能观。为了说明图21-1所示电路的能观性,分别列出电桥不平衡和平衡时的状态空间表达式: 平衡时:

由式(2)可知,状态变量iL和uc没有耦合关系,外施信号u只能控制iL的变化,不会改变uc的大小,所以uc不能控。基于输出是uc,而uc与iL无关连,即输出uc中不含有iL的信息,因此对uc的检测不能确定iL。反之式(1)中iL与uc有耦合关系,即ur的改变将同时控制iL和uc的大小。由于iL与uc的耦合关系,因而输出uc的检测,能得到iL的信息,即根据uc的观测能确定iL(ω) 五、实验步骤 1.用2号导线将该单元中的一端接到阶跃信号发生器中输出2上,另一端接到地上。将阶跃信号发生器选择负输出。 2.将短路帽接到2K处,调节RP2,将Uab和Ucd的数据填在下面的表格中。然后将阶跃信号发生器选择正输出使调节RP1,记录Uab和Ucd。此时为非能控系统,Uab和Ucd没有关系(Ucd始终为0)。 3.将短路帽分别接到1K、3K处,重复上面的实验。 六、实验结果 表20-1Uab与Ucd的关系

自动控制原理实验报告

实验报告 课程名称:自动控制原理 实验项目:典型环节的时域相应 实验地点:自动控制实验室 实验日期:2017 年 3 月22 日 指导教师:乔学工 实验一典型环节的时域特性 一、实验目的 1.熟悉并掌握TDN-ACC+设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃相应曲线和实际阶跃响应曲线。对比差异,分析原因。 3.了解参数变化对典型环节动态特性的影响。 二、实验设备 PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。 三、实验原理及内容 下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。 1.比例环节 (P) (1)方框图 (2)传递函数: K S Ui S Uo =) () ( (3)阶跃响应:) 0()(≥=t K t U O 其中 01/R R K = (4)模拟电路图: (5) 理想与实际阶跃响应对照曲线: ① 取R0 = 200K ;R1 = 100K 。 ② 取R0 = 200K ;R1 = 200K 。

2.积分环节 (I) (1)方框图 (2)传递函数: TS S Ui S Uo 1 )()(= (3)阶跃响应: ) 0(1)(≥= t t T t Uo 其中 C R T 0= (4)模拟电路图 (5) 理想与实际阶跃响应曲线对照: ① 取R0 = 200K ;C = 1uF 。 ② 取R0 = 200K ;C = 2uF 。

1 Uo 0t Ui(t) Uo(t) 理想阶跃响应曲线 0.4s 1 Uo 0t Ui(t) Uo(t) 实测阶跃响应曲线 0.4s 10V 无穷 3.比例积分环节 (PI) (1)方框图: (2)传递函数: (3)阶跃响应: (4)模拟电路图: (5)理想与实际阶跃响应曲线对照: ①取 R0 = R1 = 200K;C = 1uF。 理想阶跃响应曲线实测阶跃响应曲线 ②取 R0=R1=200K;C=2uF。 K 1 + U i(S)+ U o(S) + Uo 10V U o(t) 2 U i(t ) 0 0 .2s t Uo 无穷 U o(t) 2 U i(t ) 0 0 .2s t

化工原理实验答案

实验四 1.实验中冷流体和蒸汽的流向,对传热效果有何影响? 无影响。因为Q=αA△t m,不论冷流体和蒸汽是迸流还是逆流流动,由 于蒸汽的温度不变,故△t m不变,而α和A不受冷流体和蒸汽的流向的影响, 所以传热效果不变。 2.蒸汽冷凝过程中,若存在不冷凝气体,对传热有何影响、应采取什么 措施? 不冷凝气体的存在相当于增加了一项热阻,降低了传热速率。冷凝器 必须设置排气口,以排除不冷凝气体。 3.实验过程中,冷凝水不及时排走,会产生什么影响?如何及时排走冷 凝水? 冷凝水不及时排走,附着在管外壁上,增加了一项热阻,降低了传热速 率。在外管最低处设置排水口,及时排走冷凝水。 4.实验中,所测定的壁温是靠近蒸汽侧还是冷流体侧温度?为什么?传热系数k 接近于哪种流体的 壁温是靠近蒸汽侧温度。因为蒸汽的给热系数远大于冷流体的给热系 数,而壁温接近于给热系数大的一侧流体的温度,所以壁温是靠近蒸汽侧温度。而总传热系数K接近于空气侧的对流传热系数 5.如果采用不同压强的蒸汽进行实验,对α关联式有何影响? 基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t 均增加,其它参数不变,故(ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强 对α关联式无影响。

实验五固体流态化实验 1.从观察到的现象,判断属于何种流化? 2.实际流化时,p为什么会波动? 3.由小到大改变流量与由大到小改变流量测定的流化曲线是否重合,为什么? 4流体分布板的作用是什么? 实验六精馏 1.精馏塔操作中,塔釜压力为什么是一个重要操作参数,塔釜压力与哪些因素有关? 答(1)因为塔釜压力与塔板压力降有关。塔板压力降由气体通过板上孔口或通道时为克服局部阻力和通过板上液层时为克服该液层的静压力而引起,因而塔板压力降与气体流量(即塔内蒸汽量)有很大关系。气体流量过大时,会造成过量液沫夹带以致产生液泛,这时塔板压力降会急剧加大,塔釜压力随之升高,因此本实验中塔釜压力可作为调节塔釜加热状况的重要参考依据。(2)塔釜温度、流体的粘度、进料组成、回流量。 2.板式塔气液两相的流动特点是什么? 答:液相为连续相,气相为分散相。 3.操作中增加回流比的方法是什么,能否采用减少塔顶出料量D的方法? 答:(1)减少成品酒精的采出量或增大进料量,以增大回流比;(2)加大蒸气量,增加塔顶冷凝水量,以提高凝液量,增大回流比。 5.本实验中进料状态为冷态进料,当进料量太大时,为什么会出现精馏段干板,甚至出现塔顶既没有回流也没有出料的现象,应如何调节?

现代控制理论实验报告

现代控制理论 实 验 报 告 学院:机电学院 学号:XXXXX 姓名:XXXXX 班级:XXXX

实验一系统的传递函数阵和状态空间表达式的转换 一、实验目的 1.熟悉线性系统的数学模型、模型转换。 2.了解MATLAB 中相应的函数 二、实验内容及步骤 1.给定系统的传递函数为 150 3913.4036 18)(23++++= s s s s s G 要求(1)将其用Matlab 表达;(2)生成状态空间模型。 2.在Matlab 中建立如下离散系统的传递函数模型 y (k + 2) +5y (k +1) +6y (k ) = u (k + 2) + 2u (k +1) +u (k ) 3.在Matlab 中建立如下传递函数阵的Matlab 模型 ?????? ??????+++++++++++=7266 11632256 51 2)(2 32 2s s s s s s s s s s s s G 4.给定系统的模型为 ) 4.0)(25)(15() 2(18)(++++= s s s s s G 求(1)将其用Matlab 表达;(2)生成状态空间模型。 5.给定系统的状态方程系数矩阵如下: []0 , 360180,001,010001 1601384.40==???? ? ?????=????? ?????---=D C B A 用Matlab 将其以状态空间模型表示出来。 6.输入零极点函数模型,零点z=1,-2;极点p=-1,2,-3 增益k=1;求相应的传递函数模型、状态空间模型。 三、实验结果及分析 1.程序代码如下: num = [18 36]; den = [1 40.3 391 150]; tf(num,den) ss(tf(num,den))

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

化工原理实验传热实验报告

传热膜系数测定实验(第四组) 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4.0Pr Re ??=a A Nu 中的参数A 、a * 4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βg ΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βg ΔT ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βg ΔT : Gr =βg ΔT l 3ρ2/μ2 5)原函数无量纲化 6)实验 Nu =ARe a Pr b Gr c 强制对流圆管内表面加热:Nu =ARe a Pr 0.4 圆管传热基本方程: 热量衡算方程: 圆管传热牛顿冷却定律: 圆筒壁传导热流量:)] /()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54.02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]

现代控制理论实验报告河南工业大学

河南工业大学 现代控制理论实验报告姓名:朱建勇 班级:自动1306 学号:201323020601

现代控制理论 实验报告 专业: 自动化 班级: 自动1306 姓名: 朱建勇 学号: 201323020601 成绩评定: 一、实验题目: 线性系统状态空间表达式的建立以及线性变换 二、实验目的 1. 掌握线性定常系统的状态空间表达式。学会在MATLAB 中建立状态空间模型的方法。 2. 掌握传递函数与状态空间表达式之间相互转换的方法。学会用MATLAB 实现不同模型之 间的相互转换。 3. 熟悉系统的连接。学会用MATLAB 确定整个系统的状态空间表达式和传递函数。 4. 掌握状态空间表达式的相似变换。掌握将状态空间表达式转换为对角标准型、约当标准 型、能控标准型和能观测标准型的方法。学会用MATLAB 进行线性变换。 三、实验仪器 个人笔记本电脑 Matlab R2014a 软件 四、实验内容 1. 已知系统的传递函数 (a) ) 3()1(4)(2++=s s s s G

(b) 3486)(22++++=s s s s s G

(c) 6 1161)(232+++++=z z z z z z G (1)建立系统的TF 或ZPK 模型。 (2)将给定传递函数用函数ss( )转换为状态空间表达式。再将得到的状态空间表达式用函 数tf( )转换为传递函数,并与原传递函数进行比较。 (3)将给定传递函数用函数jordants( )转换为对角标准型或约当标准型。再将得到的对角 标准型或约当标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。 (4)将给定传递函数用函数ctrlts( )转换为能控标准型和能观测标准型。再将得到的能控标 准型和能观测标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。

西安交大自动控制原理实验报告

自动控制原理实验报告 学院: 班级: 姓名: 学号:

西安交通大学实验报告 课程自动控制原理实验日期2014 年12月22 日专业班号交报告日期 2014 年 12月27日姓名学号 实验五直流电机转速控制系统设计 一、实验设备 1.硬件平台——NI ELVIS 2.软件工具——LabVIEW 二、实验任务 1.使用NI ELVIS可变电源提供的电源能力,驱动直流马达旋转,并通过改变电压改变 其运行速度; 2.通过光电开关测量马达转速; 3.通过编程将可变电源所控制的马达和转速计整合在一起,基于计算机实现一个转速自 动控制系统。 三、实验步骤 任务一:通过可变电源控制马达旋转 任务二:通过光电开关测量马达转速 任务三:通过程序自动调整电源电压,从而逼近设定转速

编程思路:PID控制器输入SP为期望转速输出,PV为实际测量得到的电机转速,MV为PID输出控制电压。其中SP由前面板输入;PV通过光电开关测量马达转速得到;将PID 的输出控制电压接到“可变电源控制马达旋转”模块的电压输入控制端,控制可变电源产生所需的直流电机控制电压。通过不断地检测马达转速与期望值对比产生偏差,通过PID控制器产生控制信号,达到直流电机转速的负反馈控制。 PID参数:比例增益:0.0023 积分时间:0.010 微分时间:0.006 采样率和待读取采样:采样率:500kS/s 待读取采样:500 启动死区:电机刚上电时,速度为0,脉冲周期测量为0,脉冲频率测量为无限大。通过设定转速的“虚拟下限”解决。本实验电机转速最大为600r/min。故可将其上限值设为600r/min,超过上限时,转速的虚拟下限设为200r/min。 改进:利用LabVIEW中的移位寄存器对转速测量值取滑动平均。

化工原理实验资料

实验一 干燥实验 一、实验目的 1. 了解洞道式循环干燥器的基本流程、工作原理和操作技术。 2. 掌握恒定条件下物料干燥速率曲线的测定方法。 3. 测定湿物料的临界含水量X C ,加深对其概念及影响因素的理解。 4. 熟悉恒速阶段传质系数K H 、物料与空气之间的对流传热系数α的测定方法。 二、实验内容 1. 在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其 影响因素。 2. 测定恒速阶段物料与空气之间的对流传热系数α和传质系数K H 。 三、基本原理 干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。概括起来说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。目前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大多采用实验的方法。 干燥实验的目的是用来测定干燥曲线和干燥速率曲线。为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不变。 本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。测定单位时间内湿物料的质量变化,实验进行到物料质量基本恒定为止。物料的含水量常用相对与物料总量的水分含量,即以湿物料为基准的水分含量,用ω来表示。但因干燥时物料总量在变化,所以采用以干基料为基准的含水量X 表示更为方便。ω与X 的关系为: X = -ω ω 1 (8—1) 式中: X —干基含水量 kg 水/kg 绝干料; ω—湿基含水量 kg 水/kg 湿物料。 物料的绝干质量G C 是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。干燥曲线即物料的干基含水量X 与干燥时间τ的关系曲线,它说明物料在干燥过程中,干基含水量随干燥时间变化的关系。物料的干燥曲线的具体形状因物料性质及干燥条件而变,但是曲线的一般形状,如图(8—1)所示,开始的一小段为持续时间很短、斜率较小的直线段AB 段;随后为持续时间长、斜率较大的直线BC ;段以后的一段为曲线

北理工自动控制理论实验报告

本科实验报告 实验名称:控制理论基础(实验)

实验一:控制系统的模型建立 一、实验目的 1.掌握利用MATLAB 建立控制系统模型的方法。 2.掌握系统的各种模型表述及相互之间的转换关系。 3. 学习和掌握系统模型连接的等效变换。 二、实验原理 1、系统模型的 MATLAB描述 系统的模型描述了系统的输入、输出变量以及内部各变量之间的关系,表征一个系统的模型有很多种,如微分方程、传递函数模型、状态空间模型等。这里主要介绍系统传递函数(TF)模型、零极点增益(ZPK)模型和状态空间(SS)模型的MATLAB 描述方法。 1)传递函数(TF)模型 传递函数是描述线性定常系统输入-输出关系的一种最常用的数学模型,其表达式一般为 在MATLAB 中,直接使用分子分母多项式的行向量表示系统,即 num = [bm, bm-1, … b1, b0] den = [an, an-1, … a1, a0] 调用tf 函数可以建立传递函数TF对象模型,调用格式如下: Gtf = tf(num,den) Tfdata 函数可以从TF对象模型中提取分子分母多项式,调用格式如下: [num,den] = tfdata(Gtf) 返回cell 类型的分子分母多项式系数 [num,den] = tfdata(Gtf,'v') 返回向量形式的分子分母多项式系数 2)零极点增益(ZPK)模型 传递函数因式分解后可以写成

式中, z1 , z2 , …,zm 称为传递函数的零点, p1,p2,…,pn称为传递函数的极点,k 为传递系数(系统增益)。 在MATLAB 中,直接用[z,p,k]矢量组表示系统,其中z,p,k 分别表示系统的零极点及其增益,即: z=[z1,z2,…,zm]; p=[p1,p2,…,pn]; k=[k]; 调用zpk 函数可以创建ZPK 对象模型,调用格式如下: Gzpk = zpk(z,p,k) 同样,MATLAB 提供了zpkdata 命令用来提取系统的零极点及其增益,调用格式如下: [z,p,k] = zpkdata(Gzpk) 返回cell 类型的零极点及增益 [z,p,k] = zpkdata (Gzpk,’v’) 返回向量形式的零极点及增益 函数pzmap 可用于求取系统的零极点或绘制系统得零极点图,调用格式如下: pzmap(G) 在复平面内绘出系统模型的零极点图。 [p,z] = pzmap(G) 返回的系统零极点,不作图。 3)状态空间(SS)模型 由状态变量描述的系统模型称为状态空间模型,由状态方程和输出方程组成: 其中:x 为n 维状态向量;u 为r 维输入向量; y 为m 维输出向量; A 为n×n 方阵,称为系统矩阵; B 为n×r 矩阵,称为输入矩阵或控制矩阵;C 为m×n 矩阵,称为输出矩阵; D为m×r 矩阵,称为直接传输矩阵。 在MATLAB 中,直接用矩阵组[A,B,C,D]表示系统,调用ss 函数可以创建ZPK 对象模型,调用格式如下: Gss = ss(A,B,C,D) 同样,MATLAB 提供了ssdata 命令用来提取系统的A、B、C、D 矩阵,调用格式如下: [A,B,C,D] = ssdata (Gss) 返回系统模型的A、B、C、D 矩阵 4)三种模型之间的转换

现代控制理论课程报告

现代控制理论课程总结 学习心得 从经典控制论发展到现代控制论,是人类对控制技术认识上的一次飞跃。现代控制论是用状态空间方法表示,概念抽象,不易掌握。对于《现代控制理论》这门课程,在刚拿到课本的时候,没上张老师的课之前,咋一看,会认为开课的内容会是上学期学的控制理论基础的累赘或者简单的重复,更甚至我还以为是线性代数的复现呢!根本没有和现代控制论联系到一起。但后面随着老师讲课的风格的深入浅出,循循善诱,发现和自己想象的恰恰相反,张老师以她特有的讲课风格,精心准备的ppt 课件,向我们展示了现代控制理论发展过程,以及该掌握内容的方方面面,个人觉得,我们不仅掌握了现代控制理论的理论知识,更重要的是学会了掌握这门知识的严谨的逻辑思维和科学的学习方法,对以后学习其他知识及在工作上的需要大有裨益,总之学习了这门课让我受益匪浅。 由于我们学习这门课的课时不是很多,并结合我们学生学习的需求及所要掌握的课程深入程度,张老师根据我们教学安排需要,我们这学期学习的内容主要有:1.绪论;2.控制系统的状态表达式;3.控制系统状态表达式的解;4.线性系统的能空性和能观性;5.线性定常系统的综合。而状态变量和状态空间表达式、状态转移矩阵、系统的能控性与能观性以及线性定常系统的综合是本门课程的主要学习内容。当然学习的内容还包括老师根据多年教学经验及对该学科的研究的一些深入见解。 在现代科学技术飞速发展中,伴随着学科的高度分化和高度综合,各学科之间相互交叉、相互渗透,出现了横向科学。作为跨接于自然科学和社会科学的具有横向科学特点的现代控制理论已成为我国理工科大学高年级的必修课。 经典控制理论的特点 经典控制理论以拉氏变换为数学工具,以单输入-单输出的线性定常系统为主要的研究对象。将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。通常是采用反馈控制,构成所谓闭环控制系统。经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,这是因为它的以下几个特点所决定。 1.经典控制理论只限于研究线性定常系统,即使对最简单的非线性系统也是无法处理的;这就从本质上忽略了系统结构的内在特性,也不能处理输入和输出皆大于1的系统。实际上,大多数工程对象都是多输入-多输出系统,尽管人们做了很多尝试,但是,用经典控制理论设计这类系统都没有得到满意的结果;2.经典控制理论采用试探法设计系统。即根据经验选用合适的、简单的、工程上易于实现的控制器,然后对系统进行分析,直至找到满意的结果为止。虽然这种设计方法具有实用等很多完整,从而促使现代控制理论的发展:对经典理论的精确化、数学化及理论化。优点,但是,在推理上却是不能令人满意的,效果也

化工原理传热复习题

传热复习题1 (1)保温瓶在设计和使用过程中采取了哪些防止热损失的措施? 答:首先,保温瓶瓶胆设计成玻璃夹层结构。夹层因空气被抽出接近真空,可防止对流散热损失。其次,瓶胆夹层内两表面均镀有银、铝等低黑度涂层,增加了辐射传热热阻大幅度降低了辐射散热量。举例说,如夹层内壁温度为98οC ,外壁温度为28ο C ,黑度为0.95的玻璃表面镀上黑度为0.02的银层后,其辐射散热量可由原来的5502m W 降至6.152m W 。第三,在使用保温瓶时,瓶盖选用导热系数很小的软木制作, 大,在数值上常视为相等,但就其本质讲,含义是完全不同的。 (4)何谓换热器的控制热阻? 答:换热器的总热阻1/K 主要取决于冷、热流体的对流传热热阻,当然也和管壁的热阻及污垢热阻有关,即, λ ααb K i ∑++=0111 若忽略管壁及污垢热阻,则有 1 11αα+≈i K

如果i α和0α相接近,也就是两种流体的传热阻力差不多时,在谋求强化传热过程中,一般要考虑把 i α、0α都增大。但往往有这种情况,两者的α 值相差很大,例如i α>>0α,则 1 1 αα<< i 。 这时 11α≈K K ≈0α 即总传热系数K 值接近对流传热系数小的一侧流体的α 值,在本例条件下总热阻完全被管外的对流传热热阻所控制。1/0α被称为控制热阻。 答:不正确。 冷却介质的出口温度越高,其用量越小,回收热能的品位也越高,动力消耗也随之减小。但出口温度升高的结果,导致传热推动力即对数平均温差降低,所需传热面积增大,设备费用增大。因此必须从综合角度考虑,全面加以权衡,确定一个适宜的出口温度。 对于常用的冷却介质工业水,出口温度不宜过高。还因为工业水中含有许多盐类。如CaCO 3、 MgCO 3、CaS04、、MgSO 4等。若出口温度过高,上述盐类就会因溶解度减小而析出,附在器壁表面上形成热阻很大的垢层,使传热过程恶化。尽管可以采取在冷却水中添加阻垢剂等化学方法,但至少从目前看,效果很有限。所以无节制了提高冷却介质出口温度的方法是行不通的。设计时常取冷却水进、出口的温度差为5-10℃ 四`选择题

相关文档
最新文档