《高等数学》(专科升本科)复习资料_3

《高等数学》(专科升本科)复习资料_3
《高等数学》(专科升本科)复习资料_3

《高等数学》(专科升本科)复习资料

一、复习参考书:全国各类专科起点升本科教材

高等数学(一)第3版 本书编写组 高等教育出版社 二、复习内容及方法:

第一部分 函数、极限、连续

复习内容

函数的概念及其基本性质,即单调性、奇偶性、周期性、有界性。数列的极限与函数的极限概念。收敛数列的基本性质及函数极限的四则运算法则。数列极限的存在准则与两个重要的函数极限。无穷小量与无穷大量的概念及其基本性质。常见的求极限的方法。连续函数的概念及基本初等函数的连续性。函数的间断点及其分类与连续函数的基本运算性质,初等函数的连续性。闭区间上连续函数的基本性质,即最值定理、介值定理与零点存在定理。

复习要求

会求函数的定义域与判断函数的单调性、奇偶性、周期性、有界性。掌握数列极限的计算方法与理解函数在某一点极限的概念,同时会利用恒等变形、四则运算法则、两个重要极限等常见方法计算函数的极限。掌握理解无穷小量与无穷大量的概念及相互关系,在求函数极限的时候能使用等价代换。理解函数连续性的定义,会求给定函数的连续区间及间断点;;能运用闭区间上连续函数的性质证明一些基本的命题。

重要结论

1. 两个奇(偶)函数之和仍为奇(偶)函数;两个奇(偶)函数之积必为偶函数;奇函数与偶函数之积必为奇函数;奇(偶)

函数的复合必为偶函数; 2. 单调有界数列必有极限;

3. 若一个数列收敛,则其任一个子列均收敛,但一个数列的子列收敛,该数列不一定收敛;

4. 若一个函数在某点的极限大于零,则一定存在该点的一个邻域,函数在其上也大于零;

5. 无穷小(大)量与无穷小(大)量的乘积还是无穷小(大)量,但无穷小量与无穷大量的乘积则有多种可能

6. 初等函数在其定义域内都是连续函数;

7. 闭区间上的连续函数必能取到最大值与最小值。

重要公式

1. 若,)(lim ,)(lim 0

B x g A x f x x x x ==→→则

AB x g x f x g x f x x x x x x =?=?→→→)(lim )(lim )]()([lim 0

B

A x g x f x g x f x x x x x x ==→→→)(lim )

(lim )()(lim 0

00。)0(≠B 2. 两个重要极限公式

1)1sin lim

0=→x x ;2) e x x

x =??

?

??+∞

→11lim ,()e x x x =+→101lim 。 3. 在求极限的运算中注意使用等价无穷小量的代换,常见的等价无穷小量代换有:当0→x 时,

x e x x x x x x x x x

~1,2

~c o s 1,~t a n ,~s i n ,~)1

l n (2--+。

第二部分 一元函数微积分

复习内容

导数的概念及其几何、物理意义、基本求导公式与各种求导法则,微分的概念及计算,罗尔定理、拉格朗日中值定理,洛必达法则,函数增减性的判定,函数的极值与极值点、最大值与最小值,函数的凹凸性及拐点,曲线的渐近线。

复习要求

理解导数的定义,同时掌握几种等价定义,即

000000)

()(2)()()()()(x x x f x f x x x f x x f x x f x x f x y x f --=

??--?+=?-?+=??=

';掌握导数的几何意义,了解导数的物理意义;掌握连续与可导的关系,即连续不一定可导,而可导一定连续;熟练掌握基本初等函数的导数公式与导数的四则运算法则、

反函数与复合函数、隐函数、由参数方程确定的函数的求导法则,掌握对数求导法与高阶导数的求法;理解微分的定义,明确一个函数可微与可导的关系,即可微一定可导,反之一样;熟练掌握微分的四则运算和复合函数的微分;理解罗尔中值定理与拉格朗日中值定理,了解其几何意义;能熟练运用洛必达法则求极限,必须记住使用洛必达法则的条件,同时应注意以下几个问题:1.如果使用洛必达法则后,问题仍然是未定型极限,且仍满足洛必达法则的条件,则可再次使用洛必达法则,2.如果在“0/0”型或“∞∞/”型极限中含有非零因子,该非零因子可以单独求极限,不必参与洛必达法则运算,以达到简化运算的目的,3.如果能进行等价无穷小量代换或恒等变形配合使用洛必达法则,也可以达到简化运算的目的;会利用导数的几何意义求已知曲线的切线方程与法线方程,会利用导数的符号判断函数的增减性,熟练掌握函数的极值与最值的求法即需掌握以下步骤:1.求出函数

)(x f y =的定义域,2.求出)(x f ',并在函数的定义域内求出导数等于零与导数不存在的点(驻点)3.判定驻点两侧导数的符号,

4.如果驻点处函数的二阶导数易求,可再次求导通过在该点的符号来判断极值,

5.求最值时,只需求出所有的极值点与端点的值,最大(小)者即为最大(小)值;掌握判断曲线)(x f y =的拐点、凹凸性的一般方法:1.求出该函数的二阶导数,并求出其二阶导数等于零的点,2.同时求出二阶导数不存在的点,3.判定上述各点两侧,该函数的二阶导数是否异号,如果)(x f ''在0x 的两侧异号,则()(,00x f x )为曲线)(x f y =的拐点,4.在0)(>''x f 的x 的取值范围内,曲线是弧是下凹的,在0)(<''x f 的x 的取值范围内,曲线弧是上凸的.;了解渐近线的定义,并会求水平渐近线与铅直渐近线,即C x f x =∞

→)(lim ,则C y =为曲线)

(x f y =的水平渐近线,若∞=→)(lim 0

x f x x ,则称0x x =为曲线)(x f y =的铅直渐近线;

重要结论

1. 如果函数)(x f y =在点0x 的导数)(0x f '存在,则在几何上表明曲线)(x f y =在点()(,00x f x )处存在切线,且切线的斜

率为)(0x f ',且切线方程为

))(()(000x x x f x f y -'=-,

当0)(0≠'x f 时,法线方程为

)()

(1

)(000x x x f x f y -'-

=-, 2. 若函数在点0x 处可导,那么函数)(x f 在点0x 处必定连续,反之不一定;

3. 函数)(x f y =在点x 可微的充分必要条件是)(x f y =在点x 处可导,且有dx y dx x f dy '='=)(;

4. 罗尔定理:若函数)(x f y =满足以下条件:

1)在闭区间],[b a 上连续,2)在开区间),(b a 内可导,3))()(b f a f =, 则在开区间),(b a 内至少存在一点ξ,使得0)(='ξf ; 5. 拉格郎日中值定理:若函数)(x f y =满足以下条件:

1)在闭区间],[b a 上连续,2)在开区间),(b a 内可导, 则在开区间),(b a 内至少存在一点ξ,使得

))(()()(a b f a f b f -'=-ξ。

重要公式

1. 设)(x u u =与)(x v v =在点x 可导,则

v u v u uv '+'=')(, )0(2

≠'-'='

??

?

??v v v u v u v u 2. 设复合函数))((x g f y =,若)(x g u =点x 处可导,)(u f y =在相应的点可导,则复合函数))((x g f y =在点x 处可导,且

有链式法则

)()(x g u f dx

du

du dy dx dy '?'=?= 3. 设)(x f y =是由???==)

()

(t y t x ψ?所确定,其中)(),(t t ψ?都为可导函数,且0)(≠'t ?,则

)()

(t t dt

dx dt dy

dx dy ?ψ''=

=, 4. 在求导数时,有时要注意对数求导法的应用 5. 洛必达公式:当)(),(x F x f 满足一定条件时,有

)()(lim )()(lim

00

x F x f x F x f x x x x ''=→→,)

()

(lim )()(lim x F x f x F x f x x ''=∞→∞→ 同时应注意可转化为“0/0”型或“∞∞/”型的极限

第三部分 一元函数积分学

复习内容

不定积分的概念与性质,不定积分的基本公式,积分第一换元法与第二换元法,分部积分公式与应用分部积分公式时应注意的一般原则,定积分的基本概念与基本性质,牛顿-莱布尼茨公式,定积分的换元积分法与分部积分法,无穷区间上的广义积分,求平面图形的面积,求旋转体体积。

复习要求

理解原函数与不定积分定义,了解不定积分的几何意义与隐函数存在定理;熟练掌握不定积分的性质与不定积分的基本公式,理解积分第一换元法,即设)(u f 具有原函数)(),(x u u F ?=存在连续导函数,则有换元公式

.))(()

()()()]([)

(C x F C u F du u f dx x x f x u +=+=='=??????

了解积分第二换元法;掌握分部积分公式,同时应注意在使用时应遵循的一般原则;理解定积分的定义与定积分的几何意义;熟练掌握定积分的性质与牛顿-莱布尼茨公式;熟练运用定积分的换元积分法与分部积分法;了解无穷区间上的广义积分的求法;会用定积分的性质求平面图形的面积与旋转体的体积。

重要结论

1.

若)(x F 为)(x f 在某区间上的一个原函数,则C x F +)(为)(x f 的所有原函数,称为)(x f 的不定积分,记为

?dx x f )(;

2. 定积分表示一个数值,它只取决于函数)(x f 与积分区间,与积分变量无关,即dt t f dx x f b

a

b

a

??=)()(;

3. 如果函数)(x f 在区间],[b a 上连续,则定积分

dx x f b

a

?

)(必定存在;

4. 以b x a x x f y ===,),(及OX 轴所围成的曲边梯形的面积等于

dx x f b

a

?

)(;

5.

如果)(x f 在区间],[b a 上连续,则在],[b a 上至少存在一点ξ,使得

))(()(a b f dx x f b

a

-=?

ξ;

6.

如果)(x f 在区间],[b a 上连续,则积分上限函数dt t f x x

a

?

=

Φ)()(在区间),(b a 内可导,且

)(])([)(x f dt t f x x

a

='=Φ'?;

7.

若)(x f 是区间],[a a -上的连续函数)0(>a ,则

???

??=??

-为偶函数,为奇函数)()(2)(,0)(0

x f dx x f x f dx x f a

a

a

重要公式

1. 先积分后求导,作用抵消,即

),())((x f dx x f ='?

先求导后积分,相差一个常数,即

C x f dx x f +=

'?)()(

2. 分部积分公式:

??'-='vdx u uv dx v u

3. 牛顿-莱布尼茨公式:1)如果)(x f 在区间],[b a 上连续,2))(x F 为)(x f 在),(b a 内的一个原函数,则

)()()()(a F b F x F dx x f b

a b

a

-==?

4. 定积分的换元公式:设)(x f 在区间],[b a 上连续,函数)(t x ?=满足以下条件:

1);)(,)(b a ==β?α?

2))(t ?在],[βα上为单值、有连续导数的函数,则有

dt t t f dx x f b

a

)())(()(??β

α

'=??

第四部分 空间解析几何

复习内容

平面方程的基本概念、直线方程的基本概念,简单的二次曲面。

复习要求

了解平面的点法式方程与一般式方程、了解特殊的平面方程、两个平面之间的关系:垂直、平行、重合,会通过已知条件建立平面方程,掌握直线的标准式方程与一般方程,了解直线之间的关系以及直线与平面之间的关系,会根据已知条件建立直线方程,了解常见的二次曲面,即柱面方程、球面方程、椭球面方程、锥面方程、旋转抛物面方程.

重要结论

1. 设有平面

,0:11111=+++D z C y B x A π

,0:22222=+++D z C y B x A π

平面1π与2π相互垂直的充分必要条件是0212121=++C C B B A A , 平面1π与2π平行的充分必要条件是212121///C C B B A A ==,

平面1π与2π重合的充分必要条件是2112121////D D C C B B A A ===,

2. 建立平面方程常用平面点法式:

1) 过点),,(0000z y x M 作平行于0:11111=+++D z C y B x A π的平面方程,取),,(111C B A n =及),,(0000z y x M 即可, 2) 过点),,(0000z y x M 作垂直于向量),,(C B A 的平面方程,只需取平面法线向量),,(C B A n =及点),,(0000z y x M 即可, 3) 过点),,(1111z y x M ,),,(2222z y x M ,),,(3333z y x M 作平面方程,利用平面的一般式方程,设所求的平面为

0=+++D Cz By Ax ,将已给的三点的坐标代入平面方程,可以得到一个以D C B A ,,,为未知量的方程组,求出D C B A ,,,即可,

3. 设有直线

11

11111:

p z z n y y m x x l -=

-=- 2

2

22222:

p z z n y y m x x l -=

-=- 直线1l 与2l 平行的充分必要条件为

2

12121p p

n n m m ==, 直线1l 与2l 垂直的充分必要条件为0212121=++p p n n m m , 4. 设直线l 与平面π的方程为

p

z z n y y m x x l 0

00:

-=

-=- 0:=+++D Cz By Ax π

1) 直线l 与平面π垂直的充分必要条件是Cp n B m A ==// 2) 直线l 与平面π平行的充分必要条件是0=++Cp Bn Am 3) 直线l 落在平面π上的充分必要条件是??

?=+++=++0

000D Cz By Ax Cp Bn Am

5. 建立直线方程,常用直线的标准式方程,只需确定直线上的一点),,(0000z y x M 及直线的方向向量},,{p n m s =,即 1) 作过点),,(0000z y x M ,且垂直与平面0:=+++D Cz By Ax π的直线方程,取),,(0000z y x M 及方向向量

),,C B A s =即可,

2) 作过点),,(1111z y x M ,),,(2222z y x M 的直线方程,取),,(0000z y x M =

),,(1111z y x M 及方向向量},,{121212z z y y x x s ---=即可

第五部分 多元函数微积分学

复习内容

二元函数的概念及几何意义,多元函数的概念,二元函数的极限与连续性以及连续性的基本性质,偏导数的定义,全微分的概念与基本性质,二阶偏导数,复合函数微分法、隐函数微分法,二元函数的极值与条件极值,二重积分的概念与基本性质,直角坐标系下二重积分的计算、极坐标系下二重积分的计算,二重积分的应用。

复习要求

了解二元函数的定义,会求二元函数的定义域,掌握二元函数的连续性与连续的基本性质;理解二元函数偏导数的定义及几何意义;掌握全微分的定义极其存在的基本性质,会求二元函数的二阶偏导数与复合函数的链式法则。理解隐函数微分法;熟练

掌握二元函数极值的求法,了解二元函数的条件极值;理解二重积分的概念,掌握二重积分的基本性质,熟练掌握在直角坐标系与极坐标系下二重积分的计算问题;了解二重积分的应用

重要结论

1. 有界闭区域上的连续函数,在区域上必能取得最大值与最小值,

2. 有界闭区域上的连续函数,在区域上必能取得介于最大值与最小值之间的任何值,

3. 如果),(y x f z =在点),(y x P 处的偏导数

y

z

x z ????,为连续函数则),(y x f z =在点),(y x P 处可微分,且 dy y

z

dx x z dz ??+??=

, 4. 设函数),(y x f z =在点),(00y x 的某个邻域内具有连续的一阶和二阶偏导数,又

0),(,

0),(0000='='y x f y x f y x

记C y x f B y x f A y x f yy

xy xx

=''=''=''),(,),(,),(000000,则 (1)当02

<-AC B 时,在点),(00y x 处取得极值,且当0A 时取得极小值; (2)当02

>-AC B 时,),(00y x 不是极值点;

(3)当02=-AC B ,点),(00y x 是否为极值点需进一步判定。 5. 在D 上若1),(=y x f ,且D 的面积为σ,则有σσσ==??

??d d D

D

1,

重要公式

1. 链式法则:设),(),,(),,(y x v v y x u u v u f z ===,在一定条件下,有

x v v z x u u z x z ????+????=??,y

v v z y u u z y z ????+????=?? 2. 一元隐函数求导:设0),(=y x F 对y x ,存在连续偏导数,且

0≠??y

F

,则由0),(=y x F 确定的函数)(x y y =对x 的导数为 y

F x F dx

dy

????-=,

3. 二元隐函数求导:设0),,(=z y x F ,其中z 为y x ,的二元函数,),,(z y x F 对z y x ,,存在连续偏导数,且

0≠??z

F

,则 z

F x F

dx

dz

????-=,

z F y F dy dz ????-= 4. 直角坐标系下二重积分的计算:1)若d y c b x a D ≤≤≤≤,:,则

dy y x f dx dxdy y x f d c

b a

D

????

=),(),(,dx y x f dy dxdy y x f b

a

d c

D

????=),(),(,

2)若)()(,:21x y x b x a D ??≤≤≤≤,则

dy y x f dx dxdy y x f x x b

a

D

?

???

=)

()

(21),(),(??

3) 若d y c y x y D ≤≤≤≤),()(:21ψψ,则

dx y x f dy dxdy y x f y y d

c

D

?

?

??=)

()

(21),(),(ψψ,

5. 极坐标系下二重积分的计算:1)若)()(:21θθβθαr r r D ≤≤≤≤,,则

??

D

dxdy y x f ),(=?

?????=)

()

(21)cos ,cos ()cos ,cos (θθβ

α

θθθθθθr r D

D

rdr r r f d rdrd r r f 。

2) 若极点O 在区域D 的边界上,积分区域可表为)(0:θβθαr r D ≤≤≤≤,,则

?

?????

=)

(0

)cos ,cos ()cos ,cos (θβα

θθθθθθr D

D

rdr r r f d rdrd r r f 。

3) 若极点O 在区域D 的内部,积分区域可表为)(020:θπθr r D ≤≤≤≤,

,则二重积分可化为 ?

???

=)

(0

20

)cos ,cos ()cos ,cos (θπθθθθθθr D

rdr r r f d rdrd r r f

第六部分 无穷级数

复习内容

数项级数的概念,级数的收敛与发散,级数的基本性质,级数收敛的必要条件,正项级数收敛性的判别法与任意项级数收敛性的判别法;幂级数的概念与基本性质。

复习要求

理解级数收敛、发散的概念,掌握级数收敛的必要条件,了解级数的基本性质,会熟练使用比较判别法与比值判别法判别正项级数的收敛性,掌握几何级数、调和级数、与p 级数的收敛性,了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。了解幂级数的概念及在其收敛区间内的基本性质,会求幂级数的收敛半径、收敛区间,会利用常见函数的麦克劳林公式,将一些简单的初等函数展开为幂级数。

重要结论

1. 在一个级数的前面去掉或添加有限项,不改变级数的收敛性,

2. 若

∞=1

n n u 收敛,则必有0lim =∞

→n n u ,但反之不一定,

3. 幂级数

∞=1

n n n x a 在收敛区间),(R R +-内可以逐项积分(求导),且积分(求导)后所得到的幂级数的收敛半径不

重要公式

1. 三个常用的标准级数:1)?????≥<-=∑∞

=1

||,1||11

1r r r r n n

发散,,2)∑∞=11n n 发散(调和级数),3)p 级数???><<=∑∞=11011p p n n p

收敛,发散, 2. 比值判别法:设

∑∞

=1n n u 为正项级数,且ρ=+∞→n

n n u u 1lim

,则1)当1<ρ时,∑∞=1n n u 收敛,2)当1>ρ时,∑∞

=1n n u 发散,3)

当1=ρ时,

∞=1

n n u 收敛性需进一步判定,

3. 收敛半径的求法:设幂级数

∑∞

=1n n n x a 的系数有ρ=+∞→n

n n a a 1lim

,则1)当+∞<<ρ0时,有ρ1

=R ,2)当0=ρ时,定义

+∞=R ,3)当+∞=ρ,定义0=R ,

第七部分 常微分方程

复习内容

微分方程的定义,初始条件,特解,可分离变量的方程,一阶线性方程;二阶线性微分方程解的结构,二阶常系数齐次线性微分方程,二阶常系数非齐次线性微分方程。

复习要求

理解微分方程的定义与微分方程的阶、解、通解、初始条件和特解,掌握可分离变量方程的解法,掌握一阶线性方程的解法;了解二阶线性微分方程解的结构,掌握二阶常系数齐次线性微分方程与二阶常系数非齐次线性微分方程。

重要结论

1. 对可分离变量的微分方程求解,只需将含x 与y 的项移到两边,再分别积分即可,

2. 二阶线性常系数齐次方程021=+'+''y p y p y 的通解求解步骤为: 1)求解其特征方程 0212

=++p r p r , 2)设21,r r 为其两个特征根,则

①若21r r ≠,则其通解为x

r x r e C e C y 2121+=, ②若21r r =,则其通解为x

r e x C C y 1)(21+=,

③若bi a r bi a r -=+=21,,则其通解为)sin cos (21bx C bx C e y ax

+=。

重要公式

1. 一阶线性微分方程求解:若微分方程为)()(x q y x p y =+',其解为

??

????+??=?-C dx e x q e y dx x p dx x p )()()(。

专升本高数复习资料.

第一章极限和连续 第一节极限 [复习考试要求] 1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则。 3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 4.熟练掌握用两个重要极限求极限的方法。 第二节函数的连续性 [复习考试要求] 1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。 2.会求函数的间断点。 3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。 4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。 第二章一元函数微分学 第一节导数与微分 [复习考试要求] 1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。 2.会求曲线上一点处的切线方程与法线方程。 3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。 4.掌握隐函数的求导法与对数求导法。会求分段函数的导数。 5.了解高阶导数的概念。会求简单函数的高阶导数。 6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。 第二节导数的应用 [复习考试要求] 1.熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式的极限的方法。 2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。会利用函数的单调性证明简单的不等式。 3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。 4.会判断曲线的凹凸性,会求曲线的拐点。 5.会求曲线的水平渐近线与铅直渐近线

专升本高数知识点.

第一讲 函数、极限、连续 1、基本初等函数的定义域、值域、图像,尤其是图像包含了函数的所有信息。 2、函数的性质,奇偶性、有界性 奇函数:)()(x f x f -=-,图像关于原点对称。 偶函数: )()(x f x f =-,图像关于y 轴对称 3、无穷小量、无穷大量、阶的比较 设βα,是自变量同一变化过程中的两个无穷小量,则 (1)若0=β α lim ,则α是比β高阶的无穷小量。 (2)若c β α =lim (不为0) ,则α与β是同阶无穷小量 特别地,若1=β α lim ,则α与β是等价无穷小量 (3)若∞=β α lim ,则α与β是低阶无穷小量 记忆方法:看谁趋向于0的速度快,谁就趋向于0的本领高。 4、两个重要极限 (1)100==→→x x x x x x sin lim sin lim 使用方法:拼凑[][ ][][][][] 000 ==→→sin lim sin lim ,一定保证拼凑sin 后面和分母保持一致 (2)e x x x x x x =+=??? ? ?+→∞→1 0111)(lim lim [][][]e =+→1 1)(lim 使用方法1后面一定是一个无穷小量并且和指数互为倒数,不满足条件得拼凑。 5、()() ? ?>∞<==∞→m n m n m n b a X Q x P m n x ,,,lim 00

()x P n 的最高次幂是n,()x Q m 的最高次幂是m.,只比较最高次幂,谁的次幂高,谁的头大,趋向于无穷大的速 度快。m n =,以相同的比例趋向于无穷大;m n <,分母以更快的速度趋向于无穷大;m n >,分子以更快的速度趋向于无穷大。 7、左右极限 左极限:A x f x x =- →)(lim 0 右极限:A x f x x =+ →)(lim 0 A x f x f A x f x x x x x x ===+ - →→→)(lim )(lim )(lim 000 充分必要条件是 注:此条件主要应用在分段函数分段点处的极限求解。 8、连续、间断 连续的定义: []0)()(lim lim 000 =-?+=?→?→?x f x x f y x x 或)()(lim 00 x f x f x x =→ 间断:使得连续定义)()(lim 00 x f x f x x =→无法成立的三种情况 ??? ? ???≠→→)()(lim )(lim )()(00 00 0x f x f x f x f x f x x x x 不存在无意义 不存在, 记忆方法:1、右边不存在 2、左边不存在 3、左右都存在,但不相等 9、间断点类型 (1)、第二类间断点:)(lim 0 x f x x - →、)(lim 0x f x x + →至少有一个不存在 (2)、第一类间断点:)(lim 0 x f x x - →、)(lim 0x f x x + →都存在 ?? ???≠=+ - + - →→→→)(lim )(lim )(lim )(lim 000 x f x f x f x f x x x x x x x x 跳跃间断点:可去间断点: 注:在应用时,先判断是不是“第二类间断点”,左右只要有一个不存在,就是“第二类”然后再判断是不是第 一类间断点;左右相等是“可去”,左右不等是“跳跃” 10、闭区间上连续函数的性质 (1) 最值定理:如果)(x f 在[]b a ,上连续,则)(x f 在[]b a ,上必有最大值最小值。 (2) ξ零点定理:如果)(x f 在[]b a ,上连续,且0)()(

普通专升本高等数学试题及答案

高等数学试题及答案 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设f(x)=lnx ,且函数?(x)的反函数1?-2(x+1) (x)=x-1 ,则 []?=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x 2.()0 2lim 1cos t t x x e e dt x -→+-=-?( ) A .0 B .1 C .-1 D .∞ 3.设00()()y f x x f x ?=+?-且函数()f x 在0x x =处可导,则必有( ) .lim 0.0.0.x A y B y C dy D y dy ?→?=?==?= 4.设函数,1 31,1 x x x ?≤?->?22x f(x)=,则f(x)在点x=1处( ) A.不连续 B.连续但左、右导数不存在 C.连续但 不可导 D. 可导 5.设C +?2 -x xf(x)dx=e ,则f(x)=( ) 2 2 2 2 -x -x -x -x A.xe B.-xe C.2e D.-2e 二、填空题(本大题共10小题,每空3分,共30分) 请在每小题的空格中填上正确答案。错填、不填均无分。 6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-1 4 )的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞ +++ +<= 8.arctan lim _________x x x →∞ = 9.已知某产品产量为g 时,总成本是2 g C(g)=9+800 ,则生产100 件产品时的边际成本100__g ==MC 10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.

成人高考专升本高数一复习资料

成人高考高数一复习资料 1.理解极限的概念(对极限定义、、等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则。 3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 1.数列 按一定顺序排列的无穷多个数 称为数列,记作,其中每一个数称为数列的项,第n 项。为数列的一 般项或通项,例如 (1)1,3,5,…,,… (2) (3) (4)1 ,0,1,0,…,… 都是数列。 在几何上,数 列 可看作数轴上的一个动点,它依次取数轴 上的点 。 2. 数列的极限 定义对于数列 ,如果当 时, 无限地趋于一个常数A ,则称当n 趋于无穷大时,数列以常数A 为极限,或称数列收敛于A ,记作 否则称数列 没有极限,如果数列没有极限,就称数列是发散的。 数列极限的几何意义:将常数A 及数列的项 依次用数轴上的 点表示,若数列以A 为极限,就表示当n 趋于无穷大时,点 可以无限 定理 1.1(惟一性)若数列 收敛,则其极限值必定惟一。 定理1.2(有界性)若数列收敛,则它必定有界。 注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。 定理 1.3(两面夹定理)若数列 ,, 满足不等式 且 。 定理1.4 若数列单调有界,则它必有极限。 下面我们给出数列极限的四则运算定理。 定理 1.5 (1) (2) (3)当时, (三)函数极限的概念1.当时函数的极限 (1)当时 的极限 定义 对于函数,如果当x 无限地趋于时,函数 无限地趋于一个常数A ,则称当时,函数 的极限是A ,记作 或 (当时) (2 )当 时 的左极限 定义 对于函数 ,如果当x 从 的左边无限地趋于时,函数 无 限地趋于一个常数A ,则称当 时,函数 的左极限是A ,记作 或 例如函数 当x 从0的左边无限地趋于0时,无限地趋于一个常数1.我们称:当 时,的左极限是1,即有 (3 )当 时, 的右极限 定义 对于函数 ,如果当x 从 的右边无限地趋于时,函数 无 限地趋于一个常数A ,则称当 时,函数 的右极限是A ,记作 或 又如函数 当x 从0的右边无限地趋于0时, 无限地趋于一个常数-1 。因此有 这就是说,对于函数 当时,的左极限是1,而右极限是 -1,即 但是对于函数 ,当 时, 的左极限是2,而右极限是2。 显然,函数的左极限、右极限 与函数的极限 之间 有以下关系: 定理1.6 当 时,函数 的极限等于A 的必要充分条件是 这就是说:如果当时,函数 的极限等于A ,则必定有左、右极限 都等于A 。 反之,如果左、右极限都等于A ,则必有。 这个结论很容易直接由它们的定义得到。 以上讲的是当时,函数的极限存在的情况,对于某些函数的某些点 处,当 时, 的极限也可能不存在。 2.当时,函数的极限 (1)当 时,函数 的极限 定义 对于函数 ,如果当 时, 无限地趋于一个常数A , 则称当 时,函数 的极限是A ,记作或 (当 时) (2)当时,函数 的极限 定义 对于函数 ,如果当时, 无限地趋于一个常数A , 则称当 时,函数的极限是A ,记作 这个定义与数列极限的定义基本上一样,只不过在数列极限的定义中一定表示,且n 是正整数;而在这个定义中,则要明确写出, 且其中的x 不一定是整数。

高等数学复习资料大全

《高等数学复习》教程 第一讲函数、连续与极限 一、理论要求 1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期) 几类常见函数(复合、分段、反、隐、初等函数) 2.极限极限存在性与左右极限之间的关系 夹逼定理和单调有界定理 会用等价无穷小和罗必达法则求极限 3.连续函数连续(左、右连续)与间断 理解并会应用闭区间上连续函数的性质(最值、有界、介值) 二、题型与解法 A.极限的求法(1)用定义求 (2)代入法(对连续函数,可用因式分解或有理化消除零因子) (3)变量替换法 (4)两个重要极限法 (5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法 (7)洛必达法则与Taylor级数法 (8)其他(微积分性质,数列与级数的性质)

1.61 2arctan lim )21ln(arctan lim 3030-=-=+->->-x x x x x x x x (等价小量与洛必达) 2.已知2030) (6lim 0)(6sin lim x x f x x xf x x x +=+>->-,求 解:2 0303' )(6cos 6lim )(6sin lim x xy x f x x x xf x x x ++=+>->- 72 )0(''06)0(''32166 ' ''''36cos 216lim 6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x 362 72 2''lim 2'lim )(6lim 0020====+>->->-y x y x x f x x x (洛必达) 3.1 21)1 2( lim ->-+x x x x x (重要极限) 4.已知a 、b 为正常数,x x x x b a 3 0)2 ( lim +>-求 解:令]2ln )[ln(3 ln ,)2(3 -+=+=x x x x x b a x t b a t 2/300)() ln(23)ln ln (3lim ln lim ab t ab b b a a b a t x x x x x x =∴=++=>->-(变量替换) 5.) 1ln(1 2 )(cos lim x x x +>- 解:令)ln(cos ) 1ln(1 ln ,) (cos 2 ) 1ln(1 2 x x t x t x +==+ 2/100 2 1 2tan lim ln lim ->->-=∴-=-=e t x x t x x (变量替换) 6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim 2 2 =? ? >-x x x dt t f x dt t f (洛必达与微积分性质) 7.已知???=≠=-0 ,0 ,)ln(cos )(2x a x x x x f 在x=0连续,求a

高数专升本试题与答案解析

普通专科教育考试 《数学(二)》 一、单项选择题(本大题共10小题,每小题2分,共20题。在每小题给出的四个备选项中, 选出一个正确的答案,并将所选项前面的字母填写在答题纸的相应位置上,填写在其他位置上无效。) 1.极限=+--+→2 32 lim 2 21x x x x x ( ) A.—3 B. —2 2.若函数()??? ? ???>=<+=?0 ,1 sin 0,00,sin 1 x x x x x a x x x 在0=x 处连续,则=a ( ) D.—1 3.函数()x f 在()+∞∞-,上有定义,则下列函数中为奇函数的是( ) A.() x f B.()x f C.()()x f x f -+ D.()()x f x f -- 4.设函数()x f 在闭区间[]b a , 上连续,在开区间()b a ,内可导,且()()b f a f =,则曲线()x f y =在()b a ,内平行于x 轴的切线( ) A.不存在 B.只有一条 C.至少有一条 D.有两条以上 5.已知某产品的总成本函数C 与产量x 的函数关系为C (),2000102.02 ++=x x x C 则当产 量10=x ,其边际成本是( ) A.—14 C.—20 6.设二元函数,xy y e x z +=则=??x z ( ) A. xy y e yx +-1 B.xy y ye yx +-1 C.xy y e x x +ln D.xy y ye x x +ln 7.微分方程y x e dx dy -=2的通解为( ) A.C e e y x =-2 B.C e e y x =-212 C.C e e y x =-22 1 D.C e e y x =+2 8.下列级数中收敛发散的是( ) A.∑∞ =1!1n n B.∑∞=123n n n C.∑∞ =+1 1n n n D.∑∞=13sin n n π

专升本高等数学知识点汇总

专升本高等数学知识点汇总 常用知识点: 一、常见函数的定义域总结如下: (1) c bx ax y b kx y ++=+=2 一般形式的定义域:x ∈R (2)x k y = 分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0 (4)x y a log = 对数形式的定义域:x >0 二、函数的性质 1、函数的单调性 当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。 当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。 2、 函数的奇偶性 定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-) (1) 偶函数)(x f ——D x ∈?,恒有)()(x f x f =-。 (2) 奇函数)(x f ——D x ∈?,恒有)()(x f x f -=-。 三、基本初等函数 1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。 2、幂函数:u x y =, (u 是常数)。它的定义域随着u 的不同而不同。图形过原点。 3、指数函数

定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。 4、对数函数 定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。图形过(1,0)点。 5、三角函数 (1) 正弦函数: x y sin = π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (2) 余弦函数: x y cos =. π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (3) 正切函数: x y tan =. π=T , },2 ) 12(,|{)(Z R ∈+≠∈=k k x x x f D π , ),()(+∞-∞=D f . (4) 余切函数: x y cot =. π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f . 5、反三角函数 (1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2 ,2[)(π π- =D f 。 (2) 反余弦函数: x y arccos =,]1,1[)(-=f D ,],0[)(π=D f 。 (3) 反正切函数: x y arctan =,),()(+∞-∞=f D ,)2 ,2()(π π- =D f 。 (4) 反余切函数: x y arccot =,),()(+∞-∞=f D ,),0()(π=D f 。 极限 一、求极限的方法 1、代入法 代入法主要是利用了“初等函数在某点的极限,等于该点的函数值。”因此遇到大部分简单题目的时候,可以直接代入进行极限的求解。 2、传统求极限的方法 (1)利用极限的四则运算法则求极限。 (2)利用等价无穷小量代换求极限。 (3)利用两个重要极限求极限。 (4)利用罗比达法则就极限。

专升本高数复习资料(超新超全)

严格依据大纲编写: 笔记目录 第一章极限和连续 第一节极限 [复习考试要求] 1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则。 3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 4.熟练掌握用两个重要极限求极限的方法。 第二节函数的连续性 [复习考试要求] 1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。 2.会求函数的间断点。 3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。 4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。 第二章一元函数微分学 第一节导数与微分 [复习考试要求] 1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。 2.会求曲线上一点处的切线方程与法线方程。 3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。 4.掌握隐函数的求导法与对数求导法。会求分段函数的导数。 5.了解高阶导数的概念。会求简单函数的高阶导数。 6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。

第二节导数的应用 [复习考试要求] 1.熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式的极限的方法。 2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。会利用函数的单调性证明简单的不等式。 3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。 4.会判断曲线的凹凸性,会求曲线的拐点。 5.会求曲线的水平渐近线与铅直渐近线 第三章一元函数积分学 第一节不定积分 [复习考试要求] 1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。 2.熟练掌握不定积分的基本公式。 3.熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换)。 4.熟练掌握不定积分的分部积分法。 5.掌握简单有理函数不定积分的计算。 第二节定积分及其应用 [复习考试要求] 1.理解定积分的概念及其几何意义,了解函数可积的条件 2.掌握定积分的基本性质 3.理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。 4.熟练掌握牛顿—莱布尼茨公式。 5.掌握定积分的换元积分法与分部积分法。 6.理解无穷区间的广义积分的概念,掌握其计算方法。 7.掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。 第四章多元函数微分学

大一经典高数复习资料经典最新经典全面复习

大一经典高数复习资料经典最新(经典全面复习)

————————————————————————————————作者: ————————————————————————————————日期: ?

高等数学(本科少学时类型) 第一章 函数与极限 第一节 函数 ○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){} ,|U a x x a δδ=-< (){},|0U a x x a δδ=<-< 第二节 数列的极限 ○数列极限的证明(★) 【题型示例】已知数列{}n x ,证明{}lim n x x a →∞ = 【证明示例】N -ε语言 1.由n x a ε-<化简得()εg n >, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0 lim 【证明示例】δε-语言 1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ○∞→x 时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x =∞ →lim 【证明示例】X -ε语言 1.由()f x A ε-<化简得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞ →lim 第四节 无穷小与无穷大 ○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ○无穷小与无穷大的相关定理与推论(★★) (定理三)假设()x f 为有界函数,()x g 为无穷小, 则()()lim 0f x g x ?=???? (定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1 -为无穷大 【题型示例】计算:()()0 lim x x f x g x →?????(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0 =→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;) 3.由定理可知()()0 lim 0x x f x g x →?=???? (()()lim 0x f x g x →∞ ?=????) 第五节 极限运算法则 ○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则 关于多项式()p x 、()x q 商式的极限运算 设:()()?????+?++=+?++=--n n n m m m b x b x b x q a x a x a x p 1 101 10 则有()()???????∞=∞→0 lim 0 b a x q x p x m n m n m n >=< ()()() ()000lim 0 0x x f x g x f x g x →?? ??=∞????? ()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00 lim 0 x x f x g x →=(不定型)时,通常分子 分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解) 【题型示例】求值2 3 3 lim 9 x x x →--

关于高等数学B上复习资料归纳

华南理工大学网络教育学院 《高等数学(上)》辅导 一、 求函数值 例题: 1、若2()f x x =,()x x e ?=,则(())f x ?= . 解:() 2 2(())()x x x f x f e e e ?=== 2、若(1)21f x x -=+,则()f x = . 解:令1x t -=,则1x t =+ 所以()2(1)123f t t t =++=+ 即 ()23f x x =+ 二、 常见的等价无穷小及等价无穷小替换原理 常见的等价无穷小: 无穷小替换原理:在求极限过程中,无穷小的因子可以用相应的等价无 穷小替换 例题: 1、320sin 3lim x x x →=? 解:当0sin3~3x x x →, , 原式=3 200(3)lim lim270x x x x x →→== 2、0sin3lim x x x →=? 解:原式=03lim 3x x x →=

3、201-cos lim x x x →=? 解:当2 10cos ~2x x x →,1- 原式=220112lim 2 x x x →= 4、0ln(13) lim x x x →+=? 解:当03)~3x x x →,ln(1+ 原式=.03lim 3x x x →=. 5、201 lim x x e x →-=? 解:当201~2x x e x →-, 原式=.02lim 2x x x →=. 三、 多项式之比的极限 2lim 03x x x x →∞=+,22 11lim 33x x x x →∞-=+,23lim x x x x →∞+=∞ 四、 导数的几何意义(填空题) 0()f x ':表示曲线()y f x =在点00(,())M x f x 处的切线斜率 曲线..()y f x =..在点00(,())M x f x 处的切线方程为: 曲线()y f x =在点00(,())M x f x 处的法线方程为: 例题: 1、曲线44x y x += -在点(2,3)M 的切线的斜率.

专升本高等数学学习经验

任何一门学科的学习都需要付出艰苦的努力才会取得令人满意的结果。 第一天去听高数课,我信心满满的,并暗下决心我一定能学好这门课,可是事情并不如意,当老师在黑板上写下一堆我生平从未见到过的符号,说着一连串我听都没听过的术语的时候,我只觉内心伊真崩溃世界上最难受的精神折磨莫过于你想做好的一件事,近在眼前,你却根本无法完成甚至是无从拿起我的内心就如同煎锅上的生煎一样被煎熬了一节课。下课后我去和授课老师交流,我问老师:什么是绝对值?老师说:绝对值你都不知道你还听什么高数!面对这突如其来的打击,我缓缓的镇定了一下,继续给老师说了我的情况 :打从小学毕业后我就没再学过数学,老师喝了口茶,慢悠悠的说:回去找老师给你补补吧,我的课你不要再听了,听了也没用!完全是在浪费时间。毫不夸张的说,当时真的是万念俱灰,我垂头丧气的回到了学校。由于我们学校最后一年的后半学期要出去实习加上还是周末,所以宿舍只有我一个人,面对空荡荡的宿舍,看着窗外被萧瑟的秋风一片又一片剥落的枯叶,心里百感交集不知所措。夜色渐暗,天气转凉,我独自走在河边,思索着下一步怎么走突然想起了徐悲鸿大师的一句话:人不可有傲气但不可无傲骨。意思是在告诉我们:人在何时都要谦虚谨慎,但在失落无助的时候也要保持坚强不折不挠的性格。于是我决定自学数学,从小学数学开始自学。数学学科的学习可以提前预习,自己去学,这当然是有好处的,但是不要按照自己的思维去理解每一个章节的字面意思否则只会是自己坑自己把自己绕糊涂,比如不定积分和定积分这两个知识点,如果你按照自己的思维从字面意思去理解,你会误以为它们两个基本是一样的,无非就是定积分多了一个几何意义,多了一步原函数带入上下限做差的

专升本高数试题(卷)库

全国教师教育网络联盟入学联考 (专科起点升本科) 高等数学备考试题库 2012年 一、选择题 1. 设)(x f 的定义域为[]1,0,则)12 (-x f 的定义域为( ). A: ?? ?? ??1,21 B: 1,12?? ??? C: 1,12???? ?? D: 1,12?? ??? 2. 函数()()a r c s i n s i n f x x =的定义域为( ). A: (),-∞+∞ B: ,22ππ??- ?? ? C: ,22ππ??-???? D: []1,1- 3.下列说法正确的为( ).

A: 单调数列必收敛; B: 有界数列必收敛; C: 收敛数列必单调; D: 收敛数列必有界. 4.函数x x f sin )(=不是( )函数. A: 有界 B: 单调 C: 周期 D: 奇 5.函数1 23sin +=x e y 的复合过程为( ). A: 12,,sin 3+===x v e u u y v B: 12,sin ,3+===x v e u u y v C: 123,sin ,+===x e v v u u y D: 12,,sin ,3+====x w e v v u u y w 6.设??? ??=≠=0 1 4sin )(x x x x x f ,则下面说法不正确的为( ). A: 函数)(x f 在0=x 有定义; B: 极限)(lim 0 x f x →存在; C: 函数)(x f 在0=x 连续; D: 函数)(x f 在0=x 间断。 7. 极限x x x 4sin lim 0→= ( ). A: 1

高等数学3复习提纲

复习提纲 注意:以下出现的Ex1表示的对应习题中的第一题,其余表示符号类推。 1、掌握三重积分在直接坐标系下、柱面坐标系下、球面坐标系下化三次积分的方法并计算三重积分 直角坐标系下: 把三重积分化为先二后一或先一后二的积分顺序,再把其中的二重积分化为二次积分,由此把三重积分化为三次积分。 先一后二:先把Ω向某个坐标面投影得到平面闭区域D(比如向xOy 面投影得到Dxy),再以Dxy 的边界曲线为准线作母线平行于z 轴的柱面,把Ω的边界曲面分为上下部分,其方程分别记作()()21,,,z z x y z z x y ==,()()12,,z x y z x y ≤。则Ω表示为:()()()12,,,xy x y D z x y z z x y ∈≤≤,。再把Dxy 上的二重积分化为二重积分即得三重积分对应的三次积分。 先二后一:先把Ω向某个坐标轴投影得到区间I(比如向z 轴投影得到[Z1,Z2]),再从[Z1,Z2]上任取一点z ,过该点作一垂直于z 轴的平面,截Ω得到平面闭区域Dz ,则Ω表示为:()12,z z z z x y D ≤≤∈, 。再把Dz 上的二重积分化为二重积分即得三重积分对应的三次积分。 柱面坐标系下:实为直角坐标系下使用先一后二的做法时,选择Dxy 为极坐标系,把Ω表示为如下形式:()()()12,,,xy D z z z ρθρθρθ∈≤≤,。Dxy 下,ρθ的取值范围可参照二重积分(有两种情形)。当Ω的边界曲面是球面、圆柱面、圆锥面、旋转抛物面等围成或与平面围成时,可考虑使用柱面坐标系。 球面坐标系下:当Ω的是球体或半球体或球面与锥面围成时,可考虑使用球面坐标系,其积分变量,,r θ?的范围的确定请参照课堂例题。 示例:159页 例1,例2,例3;习题10-3,Ex1,Ex4,Ex9,Ex10。 2、了解曲面面积的计算公式、平面薄片的质量、质点公式,会套用公式计算。 示例:167页 例1,例4习题10-4,Ex1,Ex5 3、掌握对弧长的曲线积分的基本计算方法,曲线质量、质心的求法 L 是平面曲线时,其方程是直角坐标方程或参数方程或极坐标方程,化弧长的曲线积分为定积分的关键点:曲线方程代入被积函数进行化简;弧微分ds 套公式化简;由曲线方程确定积分限。 L 是空间曲线时,只考虑其方程是参数方程的情形,做法同上。 示例:习题11-1,Ex3 (1),(2),(4),(6),(7),Ex4。

高等数学教材(专升本)

目录 一、函数与极限 (2) 1、集合的概念 (2) 2、常量与变量 (3) 2、函数 (4) 3、函数的简单性态 (4) 4、反函数 (5) 5、复合函数 (6) 6、初等函数 (6) 7、双曲函数及反双曲函数 (7) 8、数列的极限 (8) 9、函数的极限 (9) 10、函数极限的运算规则 (11)

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a?A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A?B(或B?A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作?,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A?A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

专升本高数复习资料

第一章极限和连续 第一节极限 [复习考试要求] 1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则。 3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 4.熟练掌握用两个重要极限求极限的方法。 第二节函数的连续性 [复习考试要求] 1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。 2.会求函数的间断点。 3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。 4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。 第二章一元函数微分学 第一节导数与微分 [复习考试要求] 1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。 2.会求曲线上一点处的切线方程与法线方程。 3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。 4.掌握隐函数的求导法与对数求导法。会求分段函数的导数。 5.了解高阶导数的概念。会求简单函数的高阶导数。 6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。 第二节导数的应用 [复习考试要求] 1.熟练掌握用洛必达法则求“0〃∞”、“∞-∞”型未定式的极限的方法。 2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。会利用函数的单调性证明简单的不等式。 3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。 4.会判断曲线的凹凸性,会求曲线的拐点。 5.会求曲线的水平渐近线与铅直渐近线 第三章一元函数积分学 第一节不定积分 [复习考试要求] 1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。 2.熟练掌握不定积分的基本公式。 3.熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换)。 4.熟练掌握不定积分的分部积分法。 5. 掌握简单有理函数不定积分的计算。 第二节定积分及其应用 [复习考试要求] 1.理解定积分的概念及其几何意义,了解函数可积的条件 2.掌握定积分的基本性质 3.理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。 4.熟练掌握牛顿—莱布尼茨公式。 5.掌握定积分的换元积分法与分部积分法。 6.理解无穷区间的广义积分的概念,掌握其计算方法。 7.掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。 第四章多元函数微分学 [复习考试要求] 1.了解多元函数的概念,会求二元函数的定义域。了解二元函数的几何意义。 2.了解二元函数的极限与连续的概念。 3.理解二元函数一阶偏导数和全微分的概念,掌握二元函数的一阶偏导数的求法。掌握二元函数的二阶偏导数的求法,掌握二元函数的全微分的求法。 4.掌握复合函数与隐函数的一阶偏导数的求法。 5.会求二元函数的无条件极值和条件极值。 6.会用二元函数的无条件极值及条件极值解简单的实际问题。 第五章概率论初步 [复习考试要求] 1.了解随机现象、随机试验的基本特点;理解基本事件、样本空间、随机事件的概念。 2.掌握事件之间的关系:包含关系、相等关系、互不相容关系及对立关系。 3.理解事件之间并(和)、交(积)、差运算的意义,掌握其运算规律。 4.理解概率的古典型意义,掌握事件概率的基本性质及事件概率的计算。 5.会求事件的条件概率;掌握概率的乘法公式及事件的独立性。 6.了解随机变量的概念及其分布函数。 7.理解离散性随机变量的意义及其概率分布掌握概率分布的计算方法。 8.会求离散性随机变量的数学期望、方差和标准差。 第一章极限和连续 第一节极限 [复习考试要求] 1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则。 3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 4.熟练掌握用两个重要极限求极限的方法。 [主要知识内容] (一)数列的极限 1.数列 定义按一定顺序排列的无穷多个数 称为无穷数列,简称数列,记作{x n },数列中每一个数称为数列的项,第n 项x n 为数列的一般项或通项,例如 (1)1,3,5,…,(2n -1),…(等差数列) (2)(等比数列) (3) (递增数列) (4)1,0,1,0,…,…(震荡数列) 都是数列。它们的一般项分别为 (2n-1),。 对于每一个正整数n ,都有一个x n 与之对应,所以说数列{x n }可看作自变量n 的函数x n =f (n ),它的定义域是全体正整数,当自变量n 依次取1,2,3…一切正整数时,对应的函数值就排列成数列。 在几何上,数列{x n }可看作数轴上的一个动点,它依次取数轴上的点x 1,x 2,x 3,...x n,…。 2.数列的极限 定义对于数列{x n },如果当n →∞时,x n 无限地趋于一个确定的常数A ,则称当n 趋于无穷大时,数列{x n }以常数A 为极限,或称数列收敛于A ,记作 比如: 无限的趋向0 ,无限的趋向1 否则,对于数列{x n },如果当n →∞时,x n 不是无限地趋于一个确定的常数,称数列{x n }没有极限,如果数列没有极限,就称数列是发散的。 比如:1,3,5,…,(2n-1),… 1,0,1,0,… 数列极限的几何意义:将常数A 及数列的项依次用数轴上的点表示,若数列{x n }以 A 为极限,就表示当n 趋于无穷大时,点x n 可以无限靠近点A ,即点x n 与点A 之间的距离|x n -A| 趋于0。 比如: 无限的趋向0 无限的趋向1 (二)数列极限的性质与运算法则 1.数列极限的性质 定理1.1(惟一性)若数列{x n }收敛,则其极限值必定惟一。 定理1.2(有界性)若数列{x n }收敛,则它必定有界。 注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。比如: 1,0,1,0,…有界:0,1 2.数列极限的存在准则 定理1.3(两面夹准则)若数列{x n },{y n },{z n }满足以下条件: (1) , (2), 则 定理1.4若数列{x n }单调有界,则它必有极限。 3.数列极限的四则运算定理。 定理1.5 (1) (2) (3)当时, (三)函数极限的概念 1.当x →x 0时函数f (x )的极限 (1)当x →x 0时f (x )的极限 定义对于函数y=f (x ),如果当x 无限地趋于x 0时,函数f (x )无限地趋于一个常数A ,则称当x →x 0时,函数f (x )的极限是A ,记作 或f (x )→A (当x →x 0时) 例y=f (x )=2x+1 x →1,f (x )→? x<1x →1 x>1x →1 (2)左极限 当x →x 0时f (x )的左极限 定义对于函数y=f (x ),如果当x 从x 0的左边无限地趋于x 0时,函数f (x )无限地趋于一个常数A ,则称当x →x 0时,函数f (x )的左极限是A ,记作 或f (x 0-0)=A (3)右极限 当x →x 0时,f (x )的右极限 定义对于函数y=f (x ),如果当x 从x 0的右边无限地趋于x 0时,函数f (x )无限地趋于一个常数A ,则称当x →x 0时,函数f (x )的右极限是A ,记作 或f (x 0+0)=A 例子:分段函数

相关文档
最新文档