高中物理实验-胡克定律实验

高中物理实验-胡克定律实验
高中物理实验-胡克定律实验

实验_弹力与胡克定律

实验:弹力与胡克定律 河南油田高级中学 一、教学目标 1.了解形变的概念,了解弹力是物体发生弹性形变时产生的。 2.能够正确判断弹力的有无和弹力的方向,正确画出物体受到的弹力。 3.掌握利用胡克定律计算弹簧弹力的方法。 二、重点、难点分析 1.弹力是在物体发生形变后产生的,了解弹力产生的原因、方向的判断和大小的计算是本节教学的重点。 2.弹力的有无和弹力方向的判断是教学中学生较难掌握的知识,在教学中应加以注意。 三、教具 1.演示形变用的橡皮泥、棉线、泡沫塑料、木板、弹簧、木块、激光器、平面镜等。 2.演示胡克定律用的带长度刻度的木板,弹簧、钩码等。 四、主要教学过程 (一)引入新课 前边我们研究了重力的特点,这一节课我们一起研究力学中的第二种力——弹力。 (二)教学过程设计 1.弹力 先来看几个小实验。用手捏橡皮泥、用力拉压弹簧、用力压木板,它们的形状都发生了变化。 (1)形变:物体的形状或体积的改变叫做形变。形变的原因是物体受到了外力。 一块橡皮泥用手可以捏成各种形状,捏后它将保持这种形状。棉线弯曲后的形状也不再复原。把一块木板压弯后,放手木板又恢复原形。把弹簧拉长后也能恢复原形。 能够恢复原来形状的形变,叫做弹性形变。弹簧、木板、泡沫塑料等发生的形变属于这一种。

不能够恢复的形变,叫做塑性形变。棉线,橡皮泥等发生的形变属于这一种。以后重点研究弹性形变,不加说明就指这种弹性形变。 实验:用铁丝弯成一根弹簧,跟用钢丝弯成的弹簧对比。在下面挂较少的钩码时,去掉钩码,两弹簧都能恢复原长。当下面挂的钩码较多时,铁丝制作的弹簧不能恢复原长,而钢丝弯成的弹簧可以恢复原长。可以看出,弹性形变是在一定范围内成立的。 让学生举几个弹性形变的例子。 以上讨论的都是明显的弹性形变,其实有时的弹性形变是用眼看不出但又确实存在的。 实验:桌面上放激光器、两个平面镜,激光通过两个平面镜反射后照到墙上。当用手压桌子时,墙上的光点发生移动,这说明桌面发生了形变。 棉线在拉长时也发生了形变,而这种形变也是不易观察到的。 物体受力后发生形变,形变后的物体对跟它接触的物体又有什么作用呢? 实验:木块压在泡沫塑料上,泡沫塑料形变后对木块产生向上的支持力。 弹簧拉木块时,弹簧伸长后产生对木块的弹力。 (2)弹力:发生形变的物体由于要恢复原状,对与它接触的物体会产生力的作用,这种力叫做弹力。 讨论: 弹力产生的条件:物体发生形变。 定性地分析弹力的大小:跟物体发生的形变有关,跟形变物体的弹性有关。 弹力的方向:垂直于接触面,跟物体恢复形状的方向一致。 例:把书放在桌面上,书压桌面,书和桌面都有微小的变形。书要恢复原状,对桌面有一个向下的弹力,压力。桌要恢复原状有一个向上的弹力,支持力。 一般情况:凡是支持物对物体的支持力,都是支持物因发生形变而对物体产生的弹力;支持力的方向总是垂直于支持面并指向被支持的物体。 例:用绳吊重物,绳对重物是否有弹力?物体受重力和绳的拉力。物拉绳,绳拉重物,使重物和绳都有极微小的形变。发生形变的绳要恢复原形,对重物产生向上的弹力,拉力。发生形变的重物要恢复原状,对绳产生向下的弹力,拉力。 一般情况:凡是一根线(或绳)对物体的拉力,都是这根线(或绳)因为发生形变而对物体产生的弹力;拉力的方向总是指向线收缩的方向。

弹簧振子实验报告

弹簧振子实验报告 一、引言 ?实验目的 1.测定弹簧的刚度系数(stiffness coefficient). 2.研究弹簧振子的振动特性,验证周期公式. 3.学习处理实验数据. ?实验原理 一根上端固定的圆柱螺旋弹簧下端悬一重物后,就构成了弹簧振子.当振子处于静止状况时,重物所受的重力与弹簧作用于它的弹性恢复力相平衡,这是振子的静止位置就叫平衡位置.如用外力使振子离开平衡位置然后释放,则振子将以平衡位置为中心作上下振动.实验研究表明,如以振子的平衡位置为原点(x=0),则当振子沿铅垂方向离开平衡位置时,它受到的弹簧恢复力F在一定的限度与振子的位移x成正比,即 F =_ kx⑴ 式中的比例常数k称为刚度系数(stiffness coefficient),它是使弹簧产生单位形变所须的载荷?这就是胡克定律?式(1)中的负号表示弹性恢复力始终指向平衡位置.当位移x 为负值,即振子向下平移时,力F向上.这里的力F表示弹性力与重力mg的综合作用结果.

根据牛顿第二定律,如振子的质量为m,在弹性力作用下振子的运动方程为: + Arx = O x = Asin +(/>) (3) 式表明?弹簧振子在外力扰动后,将做振幅为A,角频率为宀0的简谐振 动,式中的(叫/ +。)称为相位,0称为初相位?角频率为叫的振子其振动周期 (4) (4) 式表示振子的周期与其质量、弹簧刚度系数之间的关系,这是弹簧振子的 最基本的特性?弹簧振子是振动系统中最简单的一种,它的运动特性(振幅,相 位,频率,周期)是所有振动系统共有的基本特性,研究弹簧振子的振动是认识 更复杂震动的基础. 弹簧的质量对振动周期也有影响?可以证明,对于质量为“0的圆柱形弹簧, 振子周期为 (5) m o/ m o/ 式中 ?称为弹簧的等效质量,即弹簧相当于以 ?的质量参加了振子的 振动?非圆柱弹簧(如锥形弹簧)的等效质量系数不等于1/3. d 2x 上式可化为一个典型的二阶常系数微分方程乔 =0 其解为 (3) 可得 x =

胡克定律实验报告

胡克定律及其拓展(传统实验) 实验目的 1.探究弹性限度内引起弹簧形变的外力F与弹簧的形变量x之间是否成正比,即验证F∝x是否成立; 2.探究弹性限度内弹簧的劲度系数与其匝数之间是否成反比,即验证k∝1 N 是否 成立。 3.用作图标记法直接获取F-X的图像 实验原理 胡克定律的表达式为F=-k·x或△F=-k·Δx,其中k是常数,是物体的劲度(倔强)系数。在国际单位制中,F的单位是牛,x的单位是米,它是形变量(弹性形变),k的单位是牛/米。劲度系数在数值上等于弹簧伸长(或缩短)单位长度时的弹力。 弹性定律是胡克最重要的发现之一,也是力学最重要基本定律之一。胡克的弹性定律指出:弹簧在发生弹性形变时,弹簧的弹力F和弹簧的伸长量(或压缩量)x成正比,即F= -k·x 。k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。 1.用弹簧挂钩上加一定质量的钩码,使得弹簧发生形变,其形变量(伸长量)为x,通过计算验证F∝x; 2.控制弹簧的匝数N,然后通过计算求出弹簧的劲度系数k并验证k∝1 N 。 3.用作图标记法画出F-X图像 实验器材 刻度尺、铁架台(带铁夹)四个弹簧白板卷尺钩码实验步骤 课题一:

1.固定弹簧,用刻度尺测出弹簧长度l ; 2.在其弹性限度内用钩码在弹簧挂钩上加一个力F 1 ,用刻度尺测出弹簧此时长度 l 1 ; 3.仿照步骤2,得到F 2,F 3 ,F 4 ,F 5 ,F 6 和l 2 ,l 3 ,l 4 ,l 5 ,l 6 ; 4.换用另一根弹簧,重复1-3步; 5.整理器材。 课题二: 1.固定弹簧,用刻度尺测出弹簧长度l ; 2.使弹簧匝数为N 1,在其弹性限度内用钩码在弹簧挂钩上加一个力F 1 ,用刻度尺 测出弹簧此时长度l 1 ; 3.仿照步骤2,得到N 2,N 3 ,N 4 ,N 5 ,N 6 ,F 2 ,F 3 ,F 4 ,F 5 ,F 6 和l 2 ,l 3 ,l 4 ,l 5 ,l 6 ; 4.换用另一根弹簧,再重复1-3步5次; 5. 整理器材。 图一 图二图三

大学物理-拉伸法测弹性模量 实验报告

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 班级 姓 名 学号 实验台号 实验时间 年 月 日,第 周,星期 第 节 实验名称 拉伸法测弹性模量 教师评语 实验目的与要求: 1. 用拉伸法测定金属丝的弹性模量。 2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。 3. 学会处理实验数据的最小二乘法。 主要仪器设备: 弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器 实验原理和内容: 1. 弹性模量 一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。 单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。 有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即 l l ?=E S F 其中的比例系数 l l S F E //?= 称为该材料的弹性模量。 性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。

实验中测定E , 只需测得F 、S 、l 和l ?即可, 前三者可以用常用方法测得, 而l ?的数量级很小, 故使用光杠杆镜尺法来进行较精确的测量。 2. 光杠杆原理 光杠杆的工作原理如下: 初始状态下, 平面镜为竖直状态, 此时标尺读数为n 0。 当金属丝被拉长l ?以后, 带动平面镜旋转一角度α, 到图中所示M ’位置; 此时读得标尺读数为n 1, 得到刻度变化为 01n n n -=?。 Δn 与l ?呈正比关系, 且根据小量 忽略及图中的相似几何关系, 可以得到 n B b l ??= ?2 (b 称为光杠杆常数) 将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到 n b D FlB E ?= 2 8π (式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。) 根据上式转换, 当金属丝受力F i 时, 对应标尺读数为n i , 则有 02 8n F bE D lB n i i +?= π 可见F 和n 成线性关系, 测量多组数据后, 线性回归得到其斜率, 即可计算出弹性模量E 。 P.S. 用望远镜和标尺测量间距B : 已知量: 分划板视距丝间距p , 望远镜焦距f 、转轴常数δ 用望远镜的一对视距丝读出标尺上的两个读数N1、N2, 读数差为ΔN 。 在几何关系上忽略数量级差别大的量后, 可以得到 N p f x ?= , 又在仪器关系上, 有x=2B , 则N p f B ??=21 , (100=p f )。 由上可以得到平面镜到标尺的距离B 。

探究胡克定律实验图像

n n-1 n-2 3 图3 F 2 1 “探究弹力与弹簧伸长量关系”实验的研究 徐 正 海 ( 当涂第一中学 安徽 马鞍山 243100 ) 胡克定律是中学物理教学的一个基本内容,而与其相关的“探究弹力与弹簧伸长量的关系”实验,则是高考指定的考点之一。下面有一个的备考题,其流行解答值得思考。 [备考题]在研究弹力与弹簧伸长量关系的实验中,首先将弹簧水平放置测出其自然长度,然后竖直悬挂让其自然下垂,如图1所示;在其下端施加外力F (即钩码重力),实验过程是在弹簧的弹性限度内进行的。用记录的外力F 与弹簧伸长量x 作出x F -图象,如图2所示。问:(1) 弹簧的劲度系数k 是多少?(2) 图线不过坐标原点的原因是什么? [流行解答]因为x F -图线的函数关系为x kx F F 10010+-=+-=,而图线的斜率等于弹簧劲度系数,故m N k /100=;当0=x 时,0F F -=,可见N F 10=表达了弹簧自身的重力大小,这也是引起图线不过原点的原因。 事实上,悬挂弹簧形变量的大小只与外力F 和弹簧的自重0m 有关[1]。 如图3所示,若采用“微元法”把弹簧分成n 等份,则弹簧转化模型为竖直方向上有n 个小物块,每块质量为n m 0,其间用理想轻质弹簧连接,轻弹簧劲度系数为nk ,设相邻小物块间弹簧伸长量由低往高依次为n x x x ??????,,,21,于是有g m F x nk g n m F x nk g n m F x nk n 00201,,2,+=????+=?+=?,整理k F nk n g m n n g m nF x x x x n ++=+???+++=?+???+?+?=2)1()21(0021,当∞→n 时,kx g m F +-=20,式中x 指弹簧的形变量,它为弹簧挂重时长l 与其放置水平桌面长度'0l 之差。 目前,在众多复习备考资料中,该实验的基本原理表述为:首先让弹簧自然下垂,用刻度尺测出弹簧自然伸长状态时的长度0l ,即原长;其次在弹簧下端悬挂质量为m 的 图1 cm x /0 1 2 3 1 2 图2

分子动力学实验报告

分子动力学实验报告 实验名称平衡晶格常数和体弹模量 实验目的 1、学习Linux系统的指令 2、学习lammps脚本的形式和内容 实验原理 原子、离子或分子在三维空间做规则的排列,相同的部分具有直线周期平移的特点。为了描述晶体结构的周期性,人们提出了空间点阵的概念。为了说明点阵排列的规律和特点,可以在点阵中去除一个具有代表性的基本单元作为点阵的组成单元,称为晶胞。晶胞的大小一般是由晶格常数衡量的,它是表征晶体结构的一个重要基本参数。 在本次模拟实验中,给定Si集中典型立方晶体结构:fcc,bcc,sc,dc。根据 可判定dc结构是否能量最低,即是否最稳定 材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。弹性模量是描述物质弹性的一个物理量,是一个总称,包括杨氏模量、剪切模量、体积模量等。在弹性变形范围内,物体的体应力与相应体应变之比的绝对值称为体弹模量。表达式为 B=? dP dV V 式中,P为体应力或物体受到的各向均匀的压强,dV V为体积的相对变化。对于立方晶胞,总能量可以表示为ε=ME,E为单个原子的结合能,M 为单位晶胞内的原子数。晶胞体积可以表示为V=a3,那么压强P为 P=?dε dV =? M 3a2 dE da 故体积模量可以表示为 根据实验第一部分算出的平衡晶格常数,以及能量与晶格间距的函数关系,可以求得对应晶格类型的体积模量。并与现有数据进行对比。 实验过程 (1)平衡晶格常数

将share文件夹中关于第一次实验的文件夹拷贝到本地,其中包含势函数文件和input文件。 $ cp□-r□share/md_1□. $ cd□md_1 $ cd□1_lattice 通过LAMMPS执行in.diamond文件,得到输出文件,包括体系能量和cfg文件,log文件。 $ lmp□-i□in.diamond 用gnuplot画图软件利用输出数据作图,得到晶格长度与体系能量的关系,能量最低处对应的晶格长度即是晶格常数。 Si为diamond晶格结构时晶格长度与体系能量关系图如图, 由图可得能量最小处对应取a0=5.43095。 Si为fcc晶格结构时晶格长度与体系能量关系图如图, a0=4.15。 改写后的sc、bcc脚本文件分别如图所示

弹簧振子实验报告记录

弹簧振子实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

弹簧振子实验报告 一、引言 ●实验目的 1.测定弹簧的刚度系数(stiffness coefficient). 2.研究弹簧振子的振动特性,验证周期公式. 3.学习处理实验数据. ●实验原理 一根上端固定的圆柱螺旋弹簧下端悬一重物后,就构成了弹簧振子.当振子处于静止状况时,重物所受的重力与弹簧作用于它的弹性恢复力相平衡,这是振子的静止位置就叫平衡位置.如用外力使振子离开平衡位置然后释放,则振子将以平衡位置为中心作上下振动.实验研究表明,如以振子的平衡位置为原点(x=0),则当 振子沿铅垂方向离开平衡位置时,它受到的弹簧恢复力F在一定的限度内与振子的位移x成正比,即 (1) 式中的比例常数k称为刚度系数(stiffness coefficient),它是使弹簧产生单位形变所须的载荷.这就是胡克定律.式(1)中的负号表示弹性恢复力始终指向平衡位置.当位移x为负值,即振子向下平移时,力F向上.这里的力F表示弹性力与重力mg的综合作用结果.

根据牛顿第二定律,如振子的质量为m,在弹性力作用下振子的运动方程为: (2) 令,上式可化为一个典型的二阶常系数微分方程,其解为 () (3) (3)式表明.弹簧振子在外力扰动后,将做振幅为A,角频率为的简谐振动,式中的()称为相位,称为初相位.角频率为的振子其振动周期为,可得 (4) (4)式表示振子的周期与其质量、弹簧刚度系数之间的关系,这是弹簧振子的最基本的特性.弹簧振子是振动系统中最简单的一种,它的运动特性(振幅,相位,频率,周期)是所有振动系统共有的基本特性,研究弹簧振子的振动是认识更复杂震动的基础. 弹簧的质量对振动周期也有影响.可以证明,对于质量为的圆柱形弹簧,振子周期为 (5)

实验验证平行四边形定则和胡克定律

.. 讲义编号: 2.5实验验证平行四边形法则 探究弹力与弹簧伸长的关系 知识梳理 一、验证力的平行四边形定则 1.实验目的 验证互成角度的两个力合成时的平行四边形定则. 2.实验原理 ①等效法:使一个力F′的作用效果和两个力F1、F2的作用都是让同一条一端固定的橡皮条伸长到某点,所以一个力F′就是这两个力F1和F2的合力,作出力F′的图示,如图所示. ②平行四边形法:根据平行四边形定则作出力F1和F2的合力F的图示. ③验证:比较F和F′的大小和向是否相同,若有误差允的围相同,则验证了力的平行四边形定则. 3.实验器材 木板、白纸,弹簧测力计(两只),橡皮条,细绳套(两个),三角板,刻度尺,图钉(几个).4.实验步骤 ①用图钉把白纸钉在水平桌面上的木板上. ②用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套. Word资料.

③用两只弹簧测力计分别钩住细绳套,互成角度地拉橡皮条,使橡皮条与绳的结点伸长到某一位置O,如图所示,记录两弹簧测力计的读数,用铅笔描下O 点的位置及此时两细绳的向. ④用铅笔和刻度尺从结点O沿两条细绳向画直线,按选定的标度作出这两只弹簧测力计的拉力F1和F2的图示,并以F1和F2为邻边用刻度尺作平行四边形,过O点画平行四边形的对角线,此对角线即为合力F的图示. ⑤只用一只弹簧测力计通过细绳套把橡皮条的结点拉到同样的位置O,记下弹簧测力计的读数和细绳的向,用刻度尺从O点按同样的标度沿记录的向作出这只弹簧测力计的拉力F′的图示. ⑥比较力F′与平行四边形定则求出的合力F在大小和向上是否相同. ⑦改变两个力F1和F2的大小和夹角,再重复实验两次. 5.实验注意事项 ①在同一次实验中,使橡皮条拉长时结点的位置一定要相同. ②用两个弹簧测力计钩住细绳套互成角度地拉橡皮条时,其夹角不宜太小,也不宜太大,以60°~100°之间为宜. ③读数时应注意使弹簧测力计与木板平行,并使细绳与弹簧测力计的轴线在同一条直线上,避免弹簧与测力计外套、弹簧测力计的限位卡之间有摩擦.读数时眼睛要正视弹簧测力计刻度,在合力不超出量程及橡皮条在弹性限度的前提下,测量数据尽量大一些. ④细绳应适当长一些,便于确定力的向.不要直接沿细绳向画直线,应在细绳两端画两个射影点.取掉细绳后,连直线确定力的向. ⑤以调零后的弹簧测力计的两挂钩互钩后对拉,读数相同为宜. ⑥在同一次实验中,画力的图示选定的标度要相同,并且要恰当选定标度,使力的图示稍大一些. 6.实验误差分析 ①读数误差 减小读数误差的法:弹簧测力计数据在允的情况下,尽量大一些.读数时眼睛一定要正视刻度尺,要按有效数字正确读数和记录. ②作图误差 减少作图误差的法:作图时两力的对边一定要平行.两个分力F1、F2间的夹角越大,用平行四边形作出的合力F的误差ΔF就越大,所以实验中不要把F1、F2间的夹角取得太大.二、探究弹力和弹簧伸长的关系 1.实验目的 ①探究弹力和弹簧伸长的关系. ②学会用列表法和图象法处理实验数据. ③培养用所学知识探究物理规律的能力. 2.实验原理 在竖直悬挂的轻弹簧下端悬挂钩码,平衡时弹力大小等于钩码的重力.用刻度尺量出弹簧的

弹性模量的测量实验报告

弹性模量的测量实验报告 一、拉伸法测量弹性模量 1、实验目的 (1) 学习用拉伸法测量弹性模量的方法; (2) 掌握螺旋测微计和读数显微镜的使用; (3) 学习用逐差法处理数据。 2、实验原理 (1)、杨氏模量及其测量方法 本实验讨论最简单的形变——拉伸形变,即棒状物体(或金属丝)仅受轴向外力作用而发生伸长的形变(称拉伸形变)。设有一长度为L ,截面积为S 的均匀金属丝,沿长度方向受一外力后金属丝伸长δL 。单位横截面积上的垂直作用力F /S 成为正应力,金属丝的相对伸长δL /L 称为线应变。实验结果指出,在弹性形变范围内,正应力与线应变成正比,即 L L E S F δ= 这个规律称为胡克定律,其中L L S F E //δ= 称为材料的弹性模量。它表征材料本身的性质,E 越大的材料,要使他发生一定的相对形变所需的单位横截面积上的作用力也越大,E 的单位为Pa(1Pa = 1N/m 2; 1GPa = 109Pa)。 本实验测量的是钢丝的弹性模量,如果测得钢丝的直径为D ,则可以进一步把E 写成: L D FL E δπ2 4= 测量钢丝的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F ,测出钢丝相应的伸长量δL ,即可求出E 。钢丝长度L 用钢尺测量,钢丝直径D 用螺旋测微计测量,力F 由砝码的重力F = mg 求出。实验的主要问题是测准δL 。δL 一般很小,约10?1mm 数量级,在本实验中用读数显微镜测量(也可利用光杠杆法或其他方法测量)。为了使测量的δL 更准确些,采用测量多个δL 的方法以减少测量的随机误差,即在钢丝下端每加一个砝码测一次伸长位置,逐个累加砝码,逐次记录伸长位置。通过数据处理求出δL 。

拉伸法测弹性模量实验报告.doc

大连理工大学 大学物理实验报告 院(系) 材料学院 专业 材料物理 班级 0705 成 绩 姓 名 童凌炜 学号 5 实验台号 实验时间 2008 年 11 月 11 日,第 12 周,星期 二 第 5-6 节 教师签字 实验名称 拉伸法测弹性模量 教师评语 实验目的与要求: 1. 用拉伸法测定金属丝的弹性模量。 2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。 3. 学会处理实验数据的最小二乘法。 主要仪器设备: 弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置) , 米尺, 螺旋测微器 实验原理和内容: 1. 弹性模量 一粗细均匀的金属丝, 长度为 l , 截面积为 S , 一端固定后竖直悬挂, 下端挂以质量为 m 的 砝码; 则金属丝在外力 的作用下伸长 l 。 单位截面积上所受的作用力 F/S 称为应力, 单 F=mg 位长度的伸长量l/l 称为应变。 有胡克定律成立:在物体的弹性形变范围内,应力 F/S 和 l/l 应变成正比, 即 F E l Sl 其中的比例系数 F / S E l / l 称为该材料的弹性模量。 性质: 弹性模量 E 与外力 F 、物体的长度 l 以及截面积 S 无关, 只决定于金属丝的材料。

实验中测定E,只需测得F、S、l 和l 即可,前三者可以用常用方法测得,而l 的数量级很小,故使用光杠杆镜尺法来进行较精确的测量。 2. 光杠杆原理 光杠杆的工作原理如下:初始状态下,平面镜为竖直状态,此时标尺读数为 n0。当金属丝被拉长 l 以后,带动平面镜旋转一角度α,到图中所示 M’位置;此时读得标尺读数为n1,得到刻度变化为n n1 n0。n与l 呈正比关系,且根据小量忽略及图中的相似几何关系,可以得到 b n ( b 称为光杠杆常数) l 2B 将以上关系,和金属丝截面积计算公式代入弹性模量的计算公式,可以得到 E 8FlB D 2b n (式中 B 既可以用米尺测量,也可以用望远镜的视距丝和标尺间接测量;后者的原理见附录。)根据上式转换,当金属丝受力 F i时,对应标尺读数为n i,则有 8lB n i D 2bE F i n0 可见 F 和 n 成线性关系,测量多组数据后,线性回归得到其斜率,即可计算出弹性模量E。 . 用望远镜和标尺测量间距B: 已知量:分划板视距丝间距p,望远镜焦距 f 、转轴常数δ 用望远镜的一对视距丝读出标尺上的两个读数N1、N2,读数差为N。在几何关系上忽略数量级差别大的量后, 可以得到 x f N ,又在仪器关系上,有 x=2B,则 B 1 f N ,( f 100 )。p 2p p 由上可以得到平面镜到标尺的距离B。

光杠杆法测定杨氏模量实验报告

杨氏弹性模量测定实验报告 一、摘要 弹性模量是描述材料形变与应力关系的重要特征量,是工程技术中常用的一个参数。在实验室施加的外力使材料产生的变形相当微小,难以用肉眼观察,同时过大的载荷又会使得材料发生塑形变形,所以要通过将微小变形放大的方法来测量。本实验通过光杠杆将外力产生的微小位移放大,从而测量出杨氏弹性模量,具有较高的可操作性。 二、实验仪器 弹性模量测定仪(包括:细钢丝、光杠杆、望远镜、标尺和拉力测量装置);钢卷尺、螺旋测微器、游标卡尺。 三、实验原理 (1)杨氏弹性模量定义式 任何固体在外力作用下都要发生形变,最简单的形变就是物体受外力拉伸(或压缩)时发生的伸长(或缩短)形变。设金属丝的长度为L ,截面积为S ,一端固定,一端在伸长方向上受力为F ,伸长为△L 。 定义: 物体的相对伸长 L L ?=ε为应变, 物体单位面积上的作用力S F = σ为应力。 根据胡克定律,在物体的弹性限度内,物体的应力与应变成正比,即 L L E S F ?= 则有: L S FL E ?= 式中的比例系数E 称为杨氏弹性模量(简称弹性模量)。 实验证明:弹性模量E 与外力F 、物体长度L 以及截面积的大小均无关,而只取决定于物体的材料本身的性质。它是表征固体性质的一个物理量。 对于直径为D 的圆柱形钢丝,其弹性模量为: L D FL E ?= 24π 根据上式,测出等号右边各量,杨氏模量便可求得。式中的F 、D 、L 三个量都可用一般方法测得。唯有L ?是一个微小的变化量,用一般量具难以测准。故而本实验采用光杠杆法进行间接测量。 (2)光杠杆放大原理 光杠杆测量系统由光杠杆反射镜、倾角调节架、标尺、望远镜和调节反射镜组成。实验时,将光杠杆两个前足尖放在弹性模量测定仪的固定平台上,后足尖放在待测金属丝的测量端面上。当金属丝受力后,产生微小伸长,后足尖便随着测量端面一起作微小移动,并使得光杠杆绕前足尖转动一个微小角度,从而带动光杠杆反射镜转动相应的微小角度,这样标尺的像在光杠杆反射镜和调节反射镜之间反射,便把这一微小角位移放大成较大的线位移。 如右图所示,当钢丝的长度发生变化时,光杠杆镜面的竖直度必然要发生改变。那么改

胡克定律教案

胡克定律教案 一、教学目标 1.知识目标:掌握胡克定律的表达式并熟练运用胡克定律来解决问题 2.技能目标:培养学生归纳、总结的能力,引导学生勤于思考,激发学生的学习兴趣 二、教学重点难点 胡克定律的表达式 三、教具 演示胡克定律用的带长度刻度的木板、弹簧、钩码等 四、教学方法 讲授法、实验法、图示法 五、教学过程 (一)演示实验引入新课 1.弹簧秤在称量不同重物的时弹簧伸长量不同 2.不同弹簧秤在称量相同重物时的弹簧伸长量也不同 引导学生总结得出:弹力的大小与物体的材料和物体发生弹性形变的程度有关(二)实验探究 将全班分为两大组,两组用硬度(劲度系数)不同的弹簧做实验,组内交流讨 论,最后全班交流并得出结论。 将弹簧挂起来,测出弹簧的原长,然后在弹簧上分别挂上质量不同的勾码, 并分别用刻度尺测出弹簧伸长以后的长度l,根据x =l-,算出对应的伸长 量,观察弹簧弹力与伸长量的关系。 初态指针对应的刻度(cm) 指针所指刻度(cm) 弹簧伸长量(cm) 弹簧弹力(N) 通过图像观察,在误差范围内,弹力F与伸长量X成正比(F与x的比值为定 值,即直线斜率一定),不同硬度的弹簧下直线斜率不同。 推导得:F=kx

说明:1.k为弹簧的劲度系数,单位为N/m,生活中弹簧的“软”“硬”,指 的就是他们的劲度系数不同 (三)介绍胡克定律发展历史 胡克定律是由英国力学家胡克(Robert Hooke, 1635-1703) 于1678年发现的,胡克提出该定律的过程颇有趣味,他于1676年发表了一句拉丁语字谜, 谜面是:ceiiinosssttuv。两年后他公布了谜底是:ut tensio sic vis,意 思是“力如伸长(那样变化)”,这正是胡克定律的中心内容。实际上早于他1500年前,东汉的经学家和教育家郑玄(公元127-200)为《考工记·马人》一文的“量其力,有三钧”一句作注解中写到:“假设弓力胜三石,引之中三尺,驰其弦,以绳缓擐之,每加物一石,则张一尺。”,正确地提示了力与形变成正比的关系,而郑玄的发现要比胡克要早一千五百年。因此有物理学家认为胡克定律应称之为“郑玄-胡克定律”。 强调科学精神 起初,胡克在做实验的过程中,发现“弹簧上所加重量的大小与弹簧的伸长量成正比”,随后通过多次实验最终验证自己的猜想:力如伸长。 知道科学探究涉及的主要活动,理解科学探究的基本特征;能通过对身边自然事物的观察,发现和提出问题;能运用自己所掌握的知识作出对问题的猜想,并制定简单的科学探究活动计划。

大学物理一实验报告(共5篇)

篇一:大学物理实验报告模板. **学院物理系大学物理 学生实验报告 实验项目:实验地点:班级:姓名:座号: 实验时间:月 物理系编制 一、实验目的: 二、实验仪器设备: 三、实验原理: 四、实验步骤: 教师签名: 五、实验数据记录 六、实验数据处理 七、实验结论与分析及思考题解答 1、对实验进行总结,写出结论: 2、思考题解答: 篇二:大学物理实验报告 **学院物理系大学物理 学生实验报告 实验项目:空气比热容比测定实验实验地点:班级:姓名:座号: 实验时间:月日 物理系编制 一、实验目的: ①用绝热膨胀法测定空气的比热容比?。②观察热力学过程中状态变化及基本物理规律。 ③学习气体压力传感器和电流型集成温度传感器的原理及使用方法。 二、实验仪器设备: 贮气瓶,温度计,空气比热容比测定仪。 数字电压表 1-进气活塞;2-放气活塞;3-ad590; 4-气体压力传感器;5-704胶粘剂图4-4-1 实验装置简图 三、实验原理: 气体由于受热过程不同,有不同的比热容。对应于气体受热的等容及等压过程,气体的比热容有定容比热容c和定压比热容c。定 v p 容比热容是将1kg气体在保持体积不变的情况下加热,当其温度升高 1?c 时所需的热量;而定压比热容则是将1kg气体在保持压强不变的情 ?cv 况下加热,当其温度升高1?c时所需的热量。显然,后者由于要对外作功而大于前者,

即c定容比热容c之比 v p 。气体的比热容比?定义为定压比热容c和 p ? ? cc pv 是一个重要的物理量,经常出现在热力学方程中。 2 四、实验步骤: 5 (1)用气压计测量大气压强p0 设为(1.0248?10pa); (2)开启电源,将电子仪器部分预热10分钟,然后用调零电位器调节零点; (3)关闭放气活塞2,打开进气活塞1,用充气球向瓶内打气,使瓶内压强升高(即数字电压表显示值升高120~140mv左右,关闭进气活塞1。待瓶中气压强稳定时,瓶内气体状态为ⅰ。记下p1; (4) 迅速打开放气活塞2,使瓶内气体与大气相通,由于瓶内气压高于大气压,瓶内部分气体将突然喷出,发出“嗤”的声音。当瓶内压强降至p0时(“嗤”声刚结束),立刻关闭放气活塞2,此时瓶内气体状态为ⅱ。 (5)当瓶内压强稳定后,此时瓶内气体状态为ⅲ。记下p2。 p0pp每次测出一阻压强值、1、2,利用公式 ??p51 (4-4-2) ?p1???p?100?? ?2000? 计算 教师签名: 3 p1、p2;再用以下公式 lnp?lnp ?p2?5 ?p2???p?100??2000 ?? lnp/p (4-4-3) 1010??? lnp1?lnp2 计算空气比热容比 ?。重复4次,计算?的平均值。 lnp1/p2 五、实验数据记录: 测量数据填入下表。 t? 27 ℃ 1.0248×105 pa

高一物理 实验:力的合成与胡克定律

注意事项: 1)弹簧秤选取方法是:将两只弹簧秤调零厚互钩水平对拉,若两只弹簧秤在对拉过程中读数相同,则可选;若读数不同,应另换,直到相同为止。 2) 实验前,首先检查指针是否在零刻度线上,若不在应校正零位(无法校正的,要记录零误差)。实验中,弹簧秤必须保持与木板平行,使用时不能超过弹性限度,读数时应正对、平视刻度,估读到最小刻度的下一位。 3)不要用老化橡皮筋检查方法时用一个弹簧拉橡皮筋,要反复做几次使橡皮筋拉到相同的尺度,看弹簧秤示数有无变化。 4)不要直接以橡皮筋端点为节点。可拴一细绳连两细绳套,以三绳交点为节点,且节点应小点,以便准确记录O 点位置。 5)细绳套应适当长些,便于确定力的方向,不要直接沿细绳套方向画直线,应在细绳套末端用铅笔画一个点,去掉细绳套后,再将所标点与 O 点连线用来确定力的方向。 6)本次实验中,以橡皮条的伸长(节点到达某一位置)来衡量力的 作用效果,因此,在同一次实验中应使两种情况下节点到达同一位 置。 7) 画力的图示时,标度的选取应恰当,要严格按几何作图法求合力。 3、 数据处理及误差分析 以F 1、F 2为邻边作平行四边形,并作出对角线F’与F 比较,如右图。F 和F ′在误差范围内重合。 本实验的主要误差来源于读数、作图,此外还有弹簧秤本身的误差,因此,首先应检查弹簧秤的零点是否准确,在实验中拉细绳时必须与木板平行,读数时眼睛一定要正对刻度,按有效数字记录示数,作图时要准确,两个分力 F 1 和 F 2 间夹角不能太大或太小,要按实验的要求进行操作、读数、作图,即使存在误差,也应该是正常的,不能用数据拼凑使实验非常完美,也不能只用特殊角度而不管其一般性。 【当堂检测】 1.在《探究共点力合成的规律》的实验中, 某同学的实验情况如图甲所示,其中A 为固定 橡皮筋的图钉,O 为橡皮筋与细绳的结点,OB 与OC 为细绳, (1)图乙是在白纸上根据实验结果画出的力的图示,则下列说法中正确的是( ) F 1 F 2 F’

高中物理必修1胡克定律实验专题

第4讲实验二探究弹力和弹簧伸长的 关系 1.(多选)在“探究弹力和弹簧伸长的关系”的实验中,以下说法正确的是 ().A.弹簧被拉伸时,不能超出它的弹性限度 B.用悬挂钩码的方法给弹簧施加拉力,应保证弹簧位于竖直位置且处于平衡状态 C.用直尺测得弹簧的长度即为弹簧的伸长量 D.用几个不同的弹簧,分别测出几组拉力与伸长量,得出拉力与伸长量之比相等 2.在“探究弹力和弹簧伸长关系”的实验中,某实验小组将不同数量的钩码分别挂在竖直弹簧下端,进行测量,根据实验所测数据,利用描点法作出了所挂钩码的重力G与弹簧总长L的关系图象,如图2-4-5所示.根据图象回答以下问题. 图2-4-5 (1)弹簧的原长为________. (2)弹簧的劲度系数为________. (3)分析图象,总结出弹簧弹力F跟弹簧长度L之间的关系式为________.3.用如图2-4-6甲所示的装置测定弹簧的劲度系数,被测 弹簧一端固定于A点,另一端B用细绳绕过定滑轮挂钩码,旁边竖直固定一最小刻度为mm的刻度尺,当挂两个钩码时,绳上一定点P对应刻度如图乙中ab虚线所示,再增加一个钩码后,P点对应刻度如图乙中cd虚线所示,已知每个钩码质量为50 g,重力加速度g=9.8 m/s2,则被测弹簧的劲度系数为________N/m,挂三个钩码时弹簧的形变量为________cm.

图2-4-6 4.某同学利用如图2-4-7(a)装置做“探究弹簧弹力大小与其长度的关系”的实验. (1)在安装刻度尺时,必须使刻度尺保持________状态. (2)他通过实验得到如图(b)所示的弹力大小F与弹簧长度x的关系图线.由此 图线可得该弹簧的原长x0=________ cm,劲度系数k=________ N/m. (3)他又利用本实验原理把该弹簧做成一把弹簧秤,当弹簧秤上的示数如图(c) 所示时,该弹簧的长度x=________ cm. 图2-4-7 5.某实验小组做“探究弹力和弹簧伸长量的关系”的实验.实验时,先把弹簧平放在桌面上,用刻度尺测出弹簧的原长L0=4.6 cm,再把弹簧竖直悬挂起来,在下端挂钩码,每增加一只钩码均记下对应的弹簧的长度x,数据记录如下表所示. (1)

【最新完整版】高中物理实验总结大全(图文并茂_重点突出)

2019年高考专题: 高中物理实验总结【最新完整版】 (一共有55页,物理实验总结大全,包括高中所有必考的实验啦! 是目前最完整的啦!!) ★知识结构:

方法指导: 物理是以实验为基础的科学,实验能力是物理学科的重要能力,物理高考历来重视考查实验能力。 一、基本实验的复习 要应对各类实验试题,包括高层次的实验试题,唯一正确的方法是把要求必做的学生实验真正做懂、做会,特别是在实验原理上要认真钻研,对每一个实验步骤都要问个为什么,即不但要记住怎样做,更应该知道为什么要这样做.对基本的实验,复习过程中要注意以下六个方面的问题: (1)实验原理 中学要求必做的实验可以分为4个类型:练习型、测量型、验证型、探究型.对每一种类型都要把原理弄清楚. 应特别注意的问题:验证机械能守恒定律中不需要选择第一个间距等于2mm的纸带.这个实验的正确实验步骤是先闭合电源开关,启动打点计时器,待打点计时器的工作稳定后,再释放重锤,使它自由落下,同时纸带打出一系列点迹.按这种方法操作,在未释放纸带前,打点计时器已经在纸带上打出点迹,但都打在同一点上,这就是第一点.由于开始释放的时刻是不确定的,从开始释放到打第二个点的时间一定小于0.02s,但具体时间不确定,因此第一点与第二点的距离只能知道一定小于2mm(如果这段时间恰等于0.02s,则这段位移s=gt2/2=(10×0.022/2)m=2×10-3m=2mm),但不能知道它的确切数值,也不需要知道它的确切数值.不论第一点与第二点的间距是否等于2mm,它都是从打第一点处开始作自由落体运动的,因此只要测量出第一点O与后面某一点P间的距离h,再测出打P点时的速度v,如果: gh≈( ), 就算验证了这个过程中机械能守恒. (2)实验仪器 要求掌握的实验仪器主要有:刻度尺、游标卡尺、螺旋测微器(千分尺)、天平、停表(秒表)、打点计时器(电火花计时仪)、弹簧秤、温度表、电流表、电压表、多用电表、滑动变阻器、电阻箱,等等。对于使用新教材的省市,还要加上示波器等。对这些仪器,都要弄清其原理、会正确使用它们,包括测量仪器的正确读数。 (3)实验装置 对电学实验主要指电路图。

研究性实验报告

北航物理实验研究性报告 专题:拉伸法测钢丝弹性模型 扭摆法测定转动惯量 第一作者:王堃 学号:14051168 班级:140517 第二作者:肖明杰 学号:14051180 班级:140517

目录 目录····························错误!未定义书签。摘要····························错误!未定义书签。 1 实验目的························错误!未定义书签。 2 实验原理························错误!未定义书签。 2.1 拉伸法测钢丝弹性模型················错误!未定义书签。 2.2 扭摆法测定转动惯量·················错误!未定义书签。 3 实验仪器························错误!未定义书签。 3.1. 拉伸法测钢丝弹性模型················错误!未定义书签。 3.2. 扭摆法测定转动惯量·················错误!未定义书签。 4 实验步骤························错误!未定义书签。 4.1. 拉伸法测钢丝弹性模型················错误!未定义书签。 4.2. 扭摆法测定转动惯量·················错误!未定义书签。 5 数据记录与处理·····················错误!未定义书签。 5.1. 拉伸法测钢丝弹性模型················错误!未定义书签。 5.2. 扭摆法测定转动惯量·················错误!未定义书签。 6 讨论与总结·······················错误!未定义书签。 实验思考 (13) 实验感想 (13) 7参考文献························错误!未定义书签。 8 原始数据图片 (13)

2.1胡克定律实验

1 1 实验:探究弹力与弹簧伸长量的关系 一、实验器材 弹簧、刻度尺、钩码、铁架台. 二、实验步骤 1.将弹簧的一端挂在铁架台上,让其自然下垂,用刻度尺测出弹簧自然伸长状态时的长度l 0,即原长. 2.如图2所示,在弹簧下端挂质量为m 1的钩码,测出此时弹簧的长度l 1,记录m 1和l 1. 图2 3.改变所挂钩码的质量,测出对应的弹簧长度,记录m 2、m 3、m 4、m 5、…和相应的弹簧长度l 2、l 3、l 4、l 5、…. 4.计算出每次弹簧的伸长量x (x =l -l 0)和弹簧受到的拉力F (F =mg ),并将数据填入表格. 四、数据处理 1.建立直角坐标系,以F 为纵轴,x 为横轴,根据测量数据用描点法作图.连接各点得出F 随弹簧伸长量x 变化的图线. 2.以弹簧的伸长量为自变量,写出图线所代表的函数.首先尝试一次函数,如果不行则考虑二次函数. 3.得出弹力和弹簧伸长量之间的定量关系,解释函数表达式中常数的物理意义. 五、误差分析 1.本实验误差的主要来源为读数和作图时的偶然误差.为了减小误差,要尽量多测几组数据. 2.弹簧竖直悬挂时,未考虑弹簧自身重力的影响会带来系统误差.为了减小该系统误差,实验中应使用轻质弹簧. 例1 某同学做“探究弹力与弹簧伸长量的关系”的实验,他先把弹簧放在水平桌面上使其自然伸展, 用直尺测出其长度L 0,再把弹簧竖直悬挂起来,刻度尺的零刻度线跟弹簧上端对齐,在弹簧的下部A 处固定一个指针.如图4所示.挂上钩码,平衡后测出其长度L ,令x =L -L 0.改变钩码个数,进行多次测量. 图4 (1)有一个同学通过以上实验测量后,把6组数据描点在图8坐标系中,请作出FL 图线. 图8 (2)由此图线可得出该弹簧的原长L 0=________ cm ,劲度系数k =________ N/m. (3)一个实验小组在“探究弹力与弹簧伸长量的关系”的实验中,使用两根不同的轻质弹簧a 和b ,得到弹力与弹簧长度的图象如图2所示.下列表述正确的是... .. 图2 A .a 的截距比b 的小,由此判断a 的劲度系数比b 的小 B .a 的斜率比b 的大,由此判断a 的劲度系数比b 的大 C .a 的截距比b 的小,由此判断a 的原长比b 的小 D .由图象获得的信息表明弹力与弹簧的长度成正比

2020年高考物理:验证胡克定律专题复习

2020年高考物理:验证胡克定律专题复习 (名师精选历年真题+实战训练,建议下载练习) 【纲要导引】 验证胡克定律在新课标卷中常考,计算每增加一个砝码弹簧的平均伸长量属于难点,需要用到逐差法,并且计算量比较大,需要同学们认真计算。 【点拨练习】 1.(2018?新课标Ⅰ)如图(a),一弹簧上端固定在支架顶端,下端悬挂一托盘:一标尺由游标和主尺构成,主尺竖直固定在弹簧左边;托盘上方固定有一能与游标刻度线准确对齐的装置,简化为图中的指针。 现要测量图(a)中弹簧的劲度系数。当托盘内没有砝码时,移动游标,使其零刻度线对准指针,此时标尺读数为1.950cm;当托盘内放有质量为0.100kg的砝码时,移动游标,再次使其零刻度线对准指针,标尺示数如图(b)示数,其读数为cm.当地的重力加速度大小为9.80m/s2,此弹簧的劲度系数为N/m(保留3位有效数字)。

【答案】3.775;53.7。 【解析】图(b)中主尺读数为3.7cm,游标卡尺的读数为0.05mm×15=0.75mm,故读数为3.7cm+0.75mm=3.775cm; 由题意可得:托盘内放质量m=0.100kg的砝码,弹簧伸长量△x=3.775cm﹣1.950cm=1.825cm; 根据受力分析可得:mg=k△x,故弹簧的劲度系数; 2.(2015?四川)某同学在“探究弹力和弹簧伸长的关系”时,安装好实验装置,让刻度尺零刻度与弹簧上端平齐,在弹簧下端挂1个钩码,静止时弹簧长度为l1,如图1所示,图2是此时固定在弹簧挂钩上的指针在刻度尺(最小分度是1毫米)上位置的放大图,示数l1=cm.在弹簧下端分别挂2个、3个、4个、5个相同钩码,静止时弹簧长度分别是l2、l3、l4、l5,已知每个钩码质量是50g,挂2个钩码时,弹簧弹力F2=N(当地重力加速度g=9.8m/s2)。要得到弹簧伸长量x,还需要测量的是。作出F﹣x曲线,得到弹力与弹簧伸长量的关系。

相关文档
最新文档