随机过程在经济学中的应用

随机过程在经济学中的应用
随机过程在经济学中的应用

随机过程在经济学的应用

一、随机过程概述

随机过程是由一组无限多个随机变量组成的序列,是用来描绘一连串随机事件动态关系的序列。随机过程论语其他数学分支如位势论、微分方程、力学及复变函数论邓有密切的关系,是在自然科学、工程科学及社会科学各领域研究随机现象的重要工具。随机过程论目前已得到广泛的应用,在诸多如天气预报、统计物理、天体物理、运筹决策、经济数学、安全科学、人口理论、可靠性及计算机科学等很多领域都要经常用到随机过程的理论来建立数学模型。随机过程的概念很广泛,其研究几乎包括概率论的全部。

在客观世界中有些随机现象表示的是事物随机变化的过程,不能用随机变量和速记矢量来描绘,需要用一族无限多个随见变量来描述,这就是随机过程。

定义:设(Ω,F,P)是一个概率空间,T是一个实数集。{X(t,w),t∈T,w∈Ω}即为定义在T和Ω上的二元函数,若此函数对任意固定的t∈T,X (w,t)是任意(Ω,F,P)上的随机变量,则称{X(t,w),t∈T,w∈Ω}是随机过程(Stochastic Process)。

在研究随机过程是人们透过表面的偶然性描述出必然的内在规律并以概率的形式来描述这些规律,从偶然中悟出必然正是这一学科的魅力所在。

二、随机过程发展简史

概率论的起源与博弈问题有关,而随机过程这一学科最早是起源于对物理学的研究,如布吉斯、玻尔兹曼、庞加莱等人对统计力学的研究,及后来爱因斯坦、维纳、莱维等人对布朗运动的开创性工作。气体分子运动是,由于相互碰撞等原因而迅速改变自己的位置与速度,其运动的过程是随机的。人们希望知道,运动的轨道有什么性质(能否连续、可微的等等);分子从一点出发能达到某区域的概率有多大;如果有两类分子同时运动,由于扩散而互相渗透,那么扩散是如何进行的,要经过多久其混合才会变得均匀......这些实际问题的数学抽象为随机过程论提供了研究的课题。

1900年,Bachelier首次将布朗运动用与股票价格的描述。随后公式化概率论首先使得随机过程的研究获得了新的起点,他是作为随机变化的偶然量的数学模型,是线代概率论研究的主要论题。

1907年前后,A.A.马尔可夫研究过一列有特定相依性的随机变量,后人称之为马尔可夫链。这是一种无后效性随机过程,即在当前状态下,过程未来状态与其过去状态无关。

1923年,N.维纳给出了布朗运动的数学定义(后人也称数学上的布朗运动为维纳过程),这种过程至今仍是重要的研究对象。虽然如此,随机过程一般理论的研究通常认为开始于30年代,维纳还在时间序列和滤波理论的建立做出了贡献。

1931年,A.H.柯尔莫哥洛夫发表了《概率论的解析方法》;三年后,A.R.辛钦发表了《平稳过程的相关理论》。这两篇重要论文为马尔可夫过程与平稳过程奠定了理论基础。

稍后,P.Levy从1938年开始创立研究随机过程的新方法,即着眼于轨道性质的概率方法,1948年出版了《随机过程与布朗运动》,提出了独立增量的一般理论,并以其为基础极大地促进了对作为一类特殊的Markov过程的布朗运动的研究。

从1942年开始,日本数学家伊藤清引进了随机积分和随机微分方程。1951年,伊藤清建立了关于布朗运动的随机微分方程的理论,为研究马尔可夫过程开辟了新的道路。

1953年,J.L杜布的名著《随机过程论》问世,它系统且严格的叙述了随机过程的基本理论。

60年代,法国学派基于马尔可夫过程和位势理论中的一些思想与结果,在相当大的程度上发展了随机过程的一般理论,包括截口定理与过程的投影理论等。

随机过程的发展历史当中,中国学者如江泽培、王梓坤、马志明、李文博等人在平稳过程、马尔可夫过程、极限定理、随机微分方程邓方面也做出了较大的贡献。

研究随机过程的方法多种多样,主要可以分为两大类:一类是概率方法,其中用到轨道性质、停时和随机微分方程邓;另一类是分析的方法,其中用到测度论、微分方程、半群理论、函数堆和希尔伯特空间等。另外组合方法和袋鼠方法在某些特殊随机过程的研究中也有一定的作用。研究的主要内容有:多指标随机过程、无穷质点与马尔可夫过程、概率与位势及各种特殊过程的专题讨论等。

三、随机过程在经济学中的应用

在进行经济管理决策之前,往往存在不确定的一些东西,导致所作出的决策存在一定的风险,只有在做出科学的、正确的决策才能使我们获益最大。因此在做决策之前我们应该充分考虑所要投资的东西所带来的风险程度,才能正确的做出投资决策,才能使我们把风险降到最低。利用随机过程知识就可以为我们做出好的决策,下面将从两个方面来进行说明随机过程论在经济决策中的作用。

3.1最大利润与投资风险(数学期望与方差的应用)

在随机过程中有这样两个我们很熟悉的字眼“数学期望”和“方差”,通过“数学期望”和“方差”可以解决人们在经济中的决策问题,帮助人们选择合适的投资方案降低投资风险,尽可能的获得更高的效益。“数学期望”可以表示收益的大小,“数学期望”越大收益就越大,“方差”代表的是波动性的大小,方差越大波动性越大,人们要获得利益最大,风险最小,就只需求出投资方案的期望与方差,选择期望最大,方差最小的方案,就是最优方案。求“数学期望“的公

式]1[为:若离散型随机变量ξ可能取值为a i (i=1,2,3,4),其分布列为p i (i=1,2,3…..)则当+∞<∑+∞

=i i i p a 1时,称ξ存在数学期望,并且数学期望为

E ξ=i i i p a ∑+∞

=1;计算方差的公式是D ξ=E(ξ-E ξ)2

下面将以实例来进行说明:

例3.1:现有A 、B 、C 、D 四种证券,它们的收益与概率如下表

表3.1

(1)某人要投资以上四种证券中的一种问如何选择最好?

解:我们先考虑数学期望

10323031-30E(A)=?+?=

101/2401/2-20E(C)=?+?=

334/5451/5-15E(D)=?+?=可见选择B 中证券的平均收益最大,但还要考虑投资风险,其次再来考虑它的方差:

676=4/5× 33)-(45+1/5× 33)-(-15=D(D) 900

=1/2× 10)-(40+1/2× 10)-(-20=D(C) 675

=3/4× 35)-(50+1/4× 35)-(-10=D(B) 800

=2/3× 10)-(30+1/3× 10)-(-30=D(A) 22222222

可见若要单独投资一种我们要选择效益高而且是风险最低的一种,那就选择B 是最合适的了。

(2)若某人选择投资C A,两种证券,问按什么样的比例来投资他的收益是最大的,而且风险也最小?

解:要投资两种证券,则我们应该构造一个投资组合C )a -(1a A M +?= ,其中a 指一份M 中A 占的比例()1a 0<<。此时

()a -1900+800a =)C (a)D -(1+aD(A)=a)C)-(1+A ×D(a =D(M) 10

=E(C)× a)-(1+E(A)×a =a)C)-(1+A ×E(a =E(M)

我们要选择适当的a ,使D(M)最小,由简单的数学知识我们可算得a=9/17时,D(M)达到最小值为423.53,则当A 与C 按8:9的比例构造M 时,平均收益仍为10元,但投资风险比单独投资A 时减少了将近一半故采用上述投资最好。 可见利用随机过程论中的数学期望与方差可以很好的解决一些经济中的决策问题。当面临几种经济决策时,就可以利用期望和方差做出最优的决策。

3.2随机过程论知识在彩票问题中的应用

前几年,“彩票飓风”席卷中华大地,在我国的各个地方流行着各种彩票,花几块钱就可以中百万元大奖,这是多少人梦寐以求的事情。以某省“36选16+”福利彩票为例可得出人们中奖的概率平均为几万分之一。可见中奖的几率太小了,但仍有人很多人抱着“早中,晚中,早晚要中”的侥幸心理,就会一直坚持着买彩票,在这个过程中我们是赚了还是赔了呢?现在我们就用随机过程论中的独立性来分析一下:

我们不妨假设某彩票每周开一次,每次提供一千万分之一的中头奖的机会,并且每周开奖是独立的,你坚持十年买彩票(每年按52周算)你中头奖的概率会是多少呢?

对任意事件C B A 、、,如果有)

()()()()

()()()()()()

()()(C P B P A P ABC P A P C P CA P C P B P BC P B P A P AB P ====四个等式同时成立,则称事件C B A 、、相互独立。

解:我们计i B 为“第i 次开奖中奖”520321 、、=i ,则十年未中奖的概率为21(B B P )520B =)(520

1∏=i i B P =9999948001.0)101(5207=--

这个结果表明,十年以后未中奖是件再正常不过的事了通过以上分析你还会盲目的买彩票吗,还会相信早中晚中早晚要中吗?在上面的例题可以看出,事件的独立性可以使中的一些经济问题的计算得以简单化。

四、小结

通过以上的内容,我们可以清楚地认识到随机过程的起源以及在生活的经济中的现实利用。随机过程在生活中的体现不止于以上所述。学会在生活中综合使用随机过程,它可以为我们的生活提供更多的便利。

应用随机过程学习总结

应用随机过程学习总结 一、预备知识:概率论 随机过程属于概率论的动态部分,即随机变量随时间不断发展变化的过程,它以概率论作为主要的基础知识。 1、概率空间方面,主要掌握sigma代数和可测空间,在随机过程中由总体样本空间所构成的集合族。符号解释: sup表示上确界, inf表示下确界。 本帖隐藏的内容 2、数字特征、矩母函数与特征函数:随机变量完全由其概率分布来描述。其中由于概率分布较难确定,因此通常计算随机变量的数字特征来估算分布总体,而矩母函数和特征函数便用于随机变量的N阶矩计算,同时唯一的决定概率分布。 3、独立性和条件期望:独立随机变量和的分布通常由卷积来表示,对于同为分布函数的两个函数,卷积可以交换顺序,同时满足结合律和分配率。条件期望中,最重要的是理解并记忆E(X) = E[E(X|Y)] = intergral(E(X|Y=y))dFY(y)。 二、随机过程基本概念和类型 随机过程是概率空间上的一族随机变量。因为研究随机过程主要是研究其统计规律性,由Kolmogorov定理可知,随机过程的有限维分布族是随机过程概率特征的完整描述。同样,随机过程的有限维分布也通过某些数值特征来描述。 1、平稳过程,通常研究宽平稳过程:如果X(t1)和X(t2)的自协方差函数 r(t1,t2)=r(0,t-s)均成立,即随机过程X(t)的协方差函数r(t,s)只与时间差 t-s有关,r(t) = r(-t)记为宽平稳随机过程。 因为一条随机序列仅仅是随机过程的一次观察,那么遍历性问题便是希望将随即过程的均值和自协方差从这一条样本路径中估计出来,因此宽平稳序列只需满足其均值遍历性原理和协方差遍历性原理即可。 2、独立增量过程:若X[Tn]– X[T(n-1)]对任意n均相互独立,则称X(t)是独立增量过程。若独立增量过程的特征函数具有可乘性,则其必为平稳增量过程。 兼有独立增量和平稳增量的过程称为平稳独立增量过程,其均值函数一定是时间t的线性函数。

(完整版)答案应用随机过程a

山东财政学院 2009—2010学年第 1 学期期末考试《应用随机过程》试卷(A ) (考试时间为120分钟) 参考答案及评分标准 考试方式: 闭卷 开课学院 统计与数理学院 使用年级 07级 出题教师 张辉 一. 判断题(每小题2分,共10分,正确划√,错误划ⅹ) 1. 严平稳过程一定是宽平稳过程。(ⅹ ) 2. 非周期的正常返态是遍历态。(√ ) 3. 若马氏链的一步转移概率阵有零元,则可断定该马氏链不是遍历的。(ⅹ ) 4. 有限马尔科夫链没有零常返态。(√ ) 5.若状态i 有周期d, 则对任意1≥n , 一定有:0)(?nd ii p 。(ⅹ ) 二. 填空题(每小题5分,共10分) 1. 在保险公司的索赔模型中,设索赔要求以平均每月两次的速率的泊松过程到达保险公司,若每次赔付金额是均值为10000元的正态分布,一年中保险公司的平均赔付金额是__240000元___。 2.若一个矩阵是随机阵,则其元素满足的条件是:(1)任意元素非负(2)每行元素之和为1。 三. 简答题(每小题5分,共10分) 1. 简述马氏链的遍历性。 答:设) (n ij p 是齐次马氏链{}1,≥n X n 的n 步转移概率,,如果对任意 I j i ∈,存在不依赖于i 的极限0)(?=j n ij p p ,则称齐次马氏链{}1,≥n X n 具有遍历性。 2. 非齐次泊松过程与齐次泊松过程有何不同?

答:非齐次泊松过程与齐次泊松过程的不同在于:强度λ不再是常数,而是与t 有关,也就是说,不再具有平稳增量性。它反映了其变化与时间相关的过程。如设备的故障率与使用年限有关,放射物质的衰变速度与衰败时间有关,等等。 四. 计算、证明题(共70分) 1. 请写出C —K 方程,并证明之. (10分) 解: 2. 写出复合泊松过程的定义并推算其均值公式. (15分) 解:若{}0),(≥t t N 是一个泊松过程,是Λ,2,1,=i Y i 一族独立同分布的随机变量,并且与{}0),(≥t t X 也是独立的, )(t X =∑=t N i i Y 1,那么{}0),(≥t t X 复合泊松过程

(完整版)布朗运动以及维纳过程学习难点总结

1、引言 布朗运动的数学模型就是维纳过程。布朗运动就是指悬浮粒子受到碰撞一直在做着不规则的运动。我们现在用)(t W 来表示运动中一个微小粒子从时刻0=t 到时刻0>t 的位移的横坐标,并令0)0(=W 。根据Einstein 的理论,我们可以知道微粒之所以做这种运动,是因为在每一瞬间,粒子都会受到其他粒子对它的冲撞,而每次冲撞时粒子所受到的瞬时冲力的大小和方向都不同,又粒子的冲撞是永不停息的,所以粒子一直在做着无规则的运动。故粒子在时间段],(t s 上的位移,我们可把它看成是多个小位移的总和。我们根据中心极限定理,假设位移)()(s W t W -服从正态分布,那么在不相重叠的时间段内,粒子碰撞时受到的冲力的方向和大小都可认为是互不影响的,这就说明位移)(t W 具有独立的增量。此时微粒在某一个时段上位移的概率分布,我们便能认为其仅仅与这一时间段的区间长度有关,而与初始时刻没有关系,也就是说)(t W 具有平稳增量。 2.维纳过程 2.1独立增量过程 维纳过程是典型的随机过程,属于所谓的独立增量过程,在随机过程的理论和应用中起着很重要的作用。现在我们就来介绍独立增量过程。 定义:}0),({≥t t X 是二阶矩过程, 那么我们就称t s s X t X <≤-0),()(为随机过程在区间],(t s 上的增量。 若对任意的n )(+∈N n 和任意的n t t t <<<≤Λ100,n 个增量 )()(,),()(),()(11201----n n t X t X t X t X t X t X Λ 是相互独立的,那么我们就称}0),({≥t t X 为独立增量过程。 我们可以证明出在0)0(=X 的条件下,独立增量过程的有限维分布函数族可由增量)0(),()(t s s X t X <≤-的分布所确定。 如果对R h ∈和)()(,0h s X h t X h t h s +-++<+≤与)()(s X t X -的分布是相同的,我们就称增量具有平稳性。那么这个时候,增量)()(s X t X -的分布函数只与时间差)0(t s s t <≤-有关,而与t 和s 无关(令s h -=便可得出)。值得注意的是,我们称独立增量过程是齐次的,此时的增量具有平稳性。

应用随机过程试题及答案

应用随机过程试题及答案 一.概念简答题(每题5 分,共40 分) 1. 写出卡尔曼滤波的算法公式 2. 写出ARMA(p,q)模型的定义 3. 简述Poisson 过程的随机分流定理 4. 简述Markov 链与Markov 性质的概念 5. 简述Markov 状态分解定理 6.简述HMM 要解决的三个主要问题得分B 卷(共9 页)第2 页7. 什么是随机过程,随机序列?8.什么是时齐的独立增量过程?二.综合题(每题10 分,共60 分) 1 .一维对称流动随机过程n Y , 0 1 0, , n n k k Y Y X ? ? ? ? 1 ( 1) ( 1) , 2 k k k X p x p x ? ? ? ? ? 具有的概率分布为且1 2 , , ... X X 是相互独立的。试求1 Y 与2 Y 的概率分布及其联合概率分布。 2. 已知随机变量Y 的密度函数为其他而且,在给定Y=y 条件下,随机变量X 的条件密度函数为? ? 其他试求随机变量X 和Y 的联合分布密度函数( , ) f x y . 得分B 卷(共9 页)第3 页 3. 设二维随机变量( , ) X Y 的概率密度为( ,其他试求p{x<3y} 4.设随机过程( ) c o s 2 , ( , ) , X t X t t ? ? ? ? ? ? X 是标准正态分布的随机变量。试求数学期望( ) t E X ,方差( ) t D X ,相关函数1 2 ( , ) X R t t ,协方差1 2 ( , ) X C t t 。B 卷(共9 页)第4 页5 .设马尔科夫链的状态空间为I={0,1}, 一步转移概率矩阵为

(完整版)应用随机过程期末复习资料

第一章 随机过程的基本概念 一、随机过程的定义 例1:医院登记新生儿性别,0表示男,1表示女,X n 表示第n 次登记的数字,得到一个序列X 1 , X 2 , ···,记为{X n ,n=1,2, ···},则X n 是随机变量,而{X n ,n=1,2, ···}是随机过程。 例2:在地震预报中,若每半年统计一次发生在某区域的地震的最大震级。令X n 表示第n 次统计所得的值,则X n 是随机变量。为了预测该区域未来地震的强度,我们就要研究随机过程{X n ,n=1,2, ···}的统计规律性。 例3:一个醉汉在路上行走,以概率p 前进一步,以概率1-p 后退一步(假设步长相同)。以X(t)记他t 时刻在路上的位置,则{X(t), t ≥0}就是(直线上的)随机游动。 例4:乘客到火车站买票,当所有售票窗口都在忙碌时,来到的乘客就要排队等候。乘客的到来和每个乘客所需的服务时间都是随机的,所以如果用X(t)表示t 时刻的队长,用Y(t)表示t 时刻到来的顾客所需等待的时间,则{X(t), t ∈T}和{Y(t), t ∈T}都是随机过程。 定义:设给定参数集合T ,若对每个t ∈T, X(t)是概率空间),,(P ?Ω上的随机变量,则称{X(t), t ∈T}为随机过程,其中T 为指标集或参数集。 E X t →Ω:)(ω,E 称为状态空间,即X(t)的所有可能状态构成的集合。 例1:E 为{0,1} 例2:E 为[0, 10] 例3:E 为},2,2,1,1,0{Λ-- 例4:E 都为), 0[∞+ 注:(1)根据状态空间E 的不同,过程可分为连续状态和离散状态,例1,例3为离散状态,其他为连续状态。 (2)参数集T 通常代表时间,当T 取R, R +, [a,b]时,称{X(t), t ∈T}为连续参数的随机过程;当T 取Z, Z +时,称{X(t), t ∈T}为离散参数的随机过程。 (3)例1为离散状态离散参数的随机过程,例2为连续状态离散参数的随机过程,例3为离散状态连续参数的随机过程,例4为连续状态连续参数的随机过程。 二、有限维分布与Kolmogorov 定理 随机过程的一维分布:})({),(x t X P x t F ≤= 随 机 过 程 的 二 维 分 布 : T t t x t X x t X P x x F t t ∈≤≤=21221121,,},)(,)({),(21 M

应用随机过程答题(2)

--------------------------------------装----------------------------------------订 ---------------------------------------线-------------------------------------- 第 - 1 - 页 共 -3- 页 2005-2006学年秋季学期《 随机分析 》课程期末考试试题B 说明:学生必须将答案全部写在答题纸上,凡写在试题上的一律无效。学生可随身携带计算器。 一、填空题(每小题3分,共计10×3=30分) 1)随机变量()2~,X N μδ,则其矩母函数()=t g 。 2)(){}0,≥t t N 为以参数2=λ的Possion 过程,则()()}{=2211=且=N N P 。 3)设Poisson 过程(){}0,≥t t N 的强度为3,n X 表示过程第1-n 次与第n 次事件的 时间间隔,则}{=n X E , }{=n X D 。 4)设某刊物邮购部的顾客数是平均速率为6的Poisson 过程,订阅1年、2年、3年的概率分别21, 31和6 1,且相互独立。订阅一年时,可得1元手续费。以()t X 记在[]t ,0得到的总手续费。则()}{=t X E = ,()}{= t X D = 。 5)考虑状态0,1,2的一个Markov 链{}0,≥n X n ,其一步转移概率矩阵为 ????? ??=1.08.01.04.02.04.06.03.01.0P ,初始分布为2.0,5.0,3.0210===p p p ,则 ()====1,0,1210X X X P 。 6)已知状态为1,2,3,4的齐次Markov 链{}0,≥n X n 及其一步转移概率矩阵为

a第7讲-第8讲第3章 泊松过程

一.假定某天文台观察到的流星流是一个泊松过程, 据以往资料统计为每小时平均观察到 3 颗流星.试求: ( 1 ) 在上午 8 点到 12 点期间, 该天文台没有观察到流星的概率 . ( 2 ) 下午( 12 点以后)该天文台观察到第一颗流星的时间的分布函数 . 二.设电话总机在] X是具有强度 ,0(t内接到电话呼叫数) (t λ的泊松过程,求 (每分钟)2 = (1)两分钟内接到2次呼叫的概率; (2)“第二分钟内收到第2次呼叫”的概率。

维纳过程 如果它满足 给定实随机过程,}0),({≥t t W ; )2(是平稳的独立增量过程;0)),(,0()()( ,0 )3(2 >??≥>σσ且~增量 对任意的s t N s W t W s t . 0)0()1(=W 则称此过程为维纳过程.

3. 维纳过程的特征 ). ,min(),(),(2t s t s R t s B W W σ==; 0),,0()( 2>σσ且~t N t W ). ,min()]()()(()([(2 a t a s a W s W a W s W E ??=??σ, ,0+∞<<≤?t s a (1)(2))] ()())(()([(a W t W a W s W E ??, t s <令))]()()()())(()([(a W s W s W t W a W s W E ?+??=))] ()())(()([(s W t W a W s W E ??=))]()())(()([(a W s W a W s W E ??+).(2a s ?=σ

五.平稳过程 定义2.12,,,,,21T t t t N n n ∈∈L )) (,),(),((21n t X t X t X n L 变量维随机)) (,),(),((21h t X h t X h t X n +++L 和具有相同的分布函数, 则称随机过程}),({T t t X ∈具有平稳性, 并同时称此过程为严平稳随机过程,(或狭义平稳过程). 与 常数若对为随机过程设τ?∈,}),({T t t X ,,,,21时当T t t t n ∈+++τττL 严平稳过程的任意有限维概率分布不随时间的推移而改变.

应用随机过程复习资料

1 [()()][()()]()E X t X s D X t X s t s λ-=-=- 由于(0)0X =故 ()[()][()(0)]X m t E X t E X t X t λ==-= 2()[()][()(0)]X t D X t D X t X t σλ==-= 2 2 22(,)[()()]{()[()()()]}[()(0)][()()][()][()(0)][()()][()]{[()]}()()(1) X R s t E X s X t E X s X t X s X s E X s X X t X s E X s E X s X E X t X s D X s E X s s t s s s st s s t λλλλλλλλ==-+=--+=--++=-++=+=+ (,)(,)()()X X X X B s t R s t m s m t s λ=-= ()()[]exp{(1)}iuX t iu X g u E e t e λ==- 2 定理3.2 设{(),0}X t t ≥是具有参数λ的泊松分布, {,1}n T n ≥是对应的时间间隔序列,则随机变量n T 是独立同 分布的均值为1λ的指数分布 Proof:注意到1{}T t >发生当且仅当泊松过程在区间[0,]t 内没有事件发生,因而1{}{()0}t P T t P X t e λ->=== 即111(){}1{}1t T F t P T t P T t e λ-=≤=->=- 所以1T 是服从均值为1λ的指数分布.利用泊松过程的独立、 平稳增量性质,有 21{|}{()()0}{()(0)0}t P T t T s P X t s X s P X t X e λ->==+-==-== 即222(){}1{}1t T F t P T t P T t e λ-=≤=->=- 对任意的1n ≥和121,,,...,0n t s s s -≥有 21111{|,...,}{()(0)0}t n n P T t T s T s P X t X e λ--->===-== 即(){}1n t T n F t P T t e λ-=≤=- 所以对任一n T 其分布是均值为1 λ的指数分布. 所以1,0 (){}0,0n t T n e t F t P T t t λ-?-≥=≤=?

应用随机过程习题课二

习题 1. 设随机过程{(,),}X t t ω-∞<<+∞只有两条样本函数 12(,)2cos ,(,)2cos ,X t t X t t x ωω==--∞<<+∞ 且1221 (),()33P P ωω==,分别求: (1)一维分布函数(0,)F x 和(,)4F x π ; (2)二维分布函数(0,;,)4F x y π ; (3)均值函数()X m t ; (4)协方差函数(,)X C s t . 2. 利用抛掷一枚硬币一次的随机试验,定义随机过程 1 2 cos ()2t X t πωω?=??出现正面出现反面 且“出现正面”与“出现反面”的概率相等,各为1 2 ,求 1)画出{()}X t 的样本函数 2){()}X t 的一维概率分布,1 (;)2F x 和(1;)F x 3){()}X t 的二维概率分布121 (,1;,)2 F x x 3. 通过连续重复抛掷一枚硬币确定随机过程{()}X t cos ()2 t t X t t π?=? ?在时刻抛掷硬币出现正面 在时刻抛掷硬币出现反面 求:(1)1(,),(1,)2F x F x ; (2)121 (,1;,)2 F x x 4. 考虑正弦波过程{(),0}X t t ≥,()cos X t t ξω=,其中ω为正常数,~(0,1)U ξ. (1)分别求3,,,424t ππππωωωω = 时()X t 的概率密度(,)f t x . (2)求均值函数()m t ,方差函数()D t ,相关函数(,)R s t ,协方差函数(,)C s t . 5. 给定随机过程: ()X t t ξη=+ ()t -∞<<+∞ 其中r. v. (,)ξη的协方差矩阵为1334C ?? = ??? , 求随机过程{(),}X t t -∞<<+∞的协方差函数. 6. 考虑随机游动{(),0,1,2,}Y n n =

——学学期应用随机过程试卷(修正版)

安徽大学2010—2011学年第二学期 《 应用随机过程 》考试试卷(A 卷) (闭卷 时间120分钟) 一、填空题(每小题4分,共24分) 1、设X 是概率空间() ,,F P Ω上的一个随机变量,且EX 存在, C 是F 的子σ-域,定义()E X C 如下:()1 ________________ ; ()2 ________________________________________ ; 2、 在全数学期望公式()EX E E X C ??=??中,取X =____,C = ____,即得连续型(广义)全概率公式___________________; 3、设(){},0N t t ≥是强度为λ的Poisson 过程,则()N t 具有_____、 _____增量,且0t ?>,0h >充分小,有:()(){}()0P N t h N t +-== ________,()(){}()1P N t h N t +-==_____________; 4、设(){},0N t t ≥是强度为λ的Poisson 过程,{},1n X n ≥、{},1n S n ≥分别为其时间间隔序列和等待时间序列,则12,,,,n X X X 独立同参数为λ的指数分布, n S ~ ______, ()11N t X =~ _______, ()()12,,,n N t n S S S d =_____________________________________; 5、设(){},0W t t ≥为一维标准Brown 运动,则0t ?>,()W t ~____, 且与Brown 运动有关的三个随机过程____________、_____ ______________、______________都是鞅(过程); 6、倒向随机微分方程(BSDE )典型的数学结构为__________ ______________________________,其处理问题的实质在于 __________________________________________________. 二、证明分析题(共15分,选做一题) 1、设X 是概率空间(),,F P Ω度函数()f x 满足:(),0x R f x ?∈>.设g 是严格递增的可微函数, 并满足:()lim y g y →-∞=-∞,()lim y g y →∞ =∞,定义随机变量()Y g X =;设()h y 是满足()1h y dy +∞-∞=?的任一非负函数.我们希望改变概率测

应用随机过程学习汇总

应用随机过程学习汇总

————————————————————————————————作者:————————————————————————————————日期:

应用随机过程学习总结 一、预备知识:概率论 随机过程属于概率论的动态部分,即随机变量随时间不断发展变化的过程,它以概率论作为主要的基础知识。 1、概率空间方面,主要掌握sigma代数和可测空间,在随机过程中由总体样本空间所构成的集合族。符号解释: sup表示上确界, inf表示下确界。 本帖隐藏的内容 2、数字特征、矩母函数与特征函数:随机变量完全由其概率分布来描述。其中由于概率分布较难确定,因此通常计算随机变量的数字特征来估算分布总体,而矩母函数和特征函数便用于随机变量的N阶矩计算,同时唯一的决定概率分布。 3、独立性和条件期望:独立随机变量和的分布通常由卷积来表示,对于同为分布函数的两个函数,卷积可以交换顺序,同时满足结合律和分配率。条件期望中,最重要的是理解并记忆E(X) = E[E(X|Y)] = intergral(E(X|Y=y))dFY(y)。 二、随机过程基本概念和类型 随机过程是概率空间上的一族随机变量。因为研究随机过程主要是研究其统计规律性,由Kolmogorov定理可知,随机过程的有限维分布族是随机过程概率特征的完整描述。同样,随机过程的有限维分布也通过某些数值特征来描述。 1、平稳过程,通常研究宽平稳过程:如果X(t1)和X(t2)的自协方差函数 r(t1,t2)=r(0,t-s)均成立,即随机过程X(t)的协方差函数r(t,s)只与时间差 t-s有关,r(t) = r(-t)记为宽平稳随机过程。 因为一条随机序列仅仅是随机过程的一次观察,那么遍历性问题便是希望将随即过程的均值和自协方差从这一条样本路径中估计出来,因此宽平稳序列只需满足其均值遍历性原理和协方差遍历性原理即可。 2、独立增量过程:若X[Tn]– X[T(n-1)]对任意n均相互独立,则称X(t)是独立增量过程。若独立增量过程的特征函数具有可乘性,则其必为平稳增量过程。 兼有独立增量和平稳增量的过程称为平稳独立增量过程,其均值函数一定是时间t的线性函数。

《随机过程及其在金融领域中的应用》习题一答案

习题一 1、设人民币存款利率为5%,每年计息一次,那么大约要多少年时间才能使存款额变为原来的4倍?如果利率变为4%,又要多少年? 解:设初始投入资金为Q 元,大约需要n 年,其中的利率为r 。 依题意,可得: 公式计算法:Q ?5%?n =Q 1?Q 【PS: Q 1为存款后的利息+本金,Q 为本金】 1) 当r=5%的时候:Q ?5%?n =4Q ?Q 所以:n =35%=60 2) 当r=4%的时候:Q ?5%?n =4Q ?Q 3) 所以:n =34%=75 答:当利率为5%的时候,大约60年可以达到4倍。 利率为4%的时候,大约75年可以达到4倍。 2、如果利率为年复合利率r ,请给出一个公式,用它来估计要多少年才能使存款额变为原来的3倍。 解:【推导过程】当利率为r ,则一年之后存放余额为Q+rQ=(1+r)Q 之后连本带息存款,二年之后存放余额 Q (1+r )+Q (1+r )r =Q(1+r)2 ······ 依次类推n 年后存款达到Q(1+r)n 依据上述公式和P3的(1—4),可以得到: Q(1+r)n =3Q 且(1+r)n =e nr =>(1+r)n =3且(1+r)n =e nr 且当n 充分大时=>(1+r)n ≈e nr ,则由题意得到Q(1+r)n =3Q =>(1+r )n =3且(1+r )n ≈e nr ,近似e nr ≈3 n ≈ln3r =ln3r 3、考虑期权定价C 问题,设利率为r ,在t=0时刻,某股票价格为100元,在t =1时刻,该股票的价格为200或50,即 100(t =0)↗↘20050 (t =1) 试证明:若C ≠100?50(1+r )?13,则存在一个购买组合,使得在任何情况下都能 带来正的利润现值,即套利发生。【本题默认执行价格为150】

华工应用随机过程试卷及参考答案

华南理工大学2011—2012 学年第一学期 《应用随机过程》考试试卷(A 卷) (闭卷时间 120 分钟) 院/系年级 __专业姓名学号 1、设X 是概率空间(Ω,F ,P )且 EX 存在, C 是 F 的子σ-域,定义E (XC )如下:(1)_______________ ; (2)_____________________________________________ ; 2、设{N (t ),t ≥ 0}是强度为 λ 的 Poisson 过程,则 N (t )具有_____、 _____增量,且?t >0,h >0充分小,有:P ({N (t + h )? N (t ) = 0})= ________,P ({N (t + h )? N (t ) =1})=_____________; 3、设{W (t ),t ≥ 0}为一维标准 Brown 运动,则?t >0,W (t ) ~____,且与 Brown 运动有关的三个随机过程____________、________ ______________、______________都是鞅(过程); 4、倒向随机微分方程(BSDE )典型的数学结构为__________ ______________________________,其处理问题的实质在于 ______________________________________________________。 二、证明分析题(共 12 分,选做一题) 1、设X 是定义于概率空间(Ω,F ,P )上的非负随机变量,并且具有

指数分布,即:P({X ≤ a}) =1?e?λa ,a >0,其中λ是正常数。设λ是 另一个正常数,定义:Z = λλe?(λ?λ)X ,由下式定义:P(A)=∫A ZdP,?A∈F ;(1)证明:P(Ω) =1;(2)在概率测度P 下计算的分布函 数:P({X ≤ a}),a>0; 2、设X0~U (0,1),X n+1~U (1?X n,1),n≥1,域流{F n,n≥ 0}满足: F n =σ(X k,0 ≤k≤n),n≥ 0 ;又设Y0 = X0 ,Y n = 2n ?∏ k n=1 1 X?k X ?1 k ,n ≥1, 试证:{Y n ,n ≥ 0}关于域流{F n,n ≥ 0}是鞅! 三、计算证明题(共60 分) 1、(12 分)假设X~E(λ),给定c >0,试分别由指数分布的无记

随机过程习题答案

随机过程习题解答(一) 第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a)分别写出随机变量和的分布密度 (b)试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a)试求和的相关系数; (b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。 解:(a)利用的独立性,由计算有: (b)当的时候,和线性相关,即 3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为 ,且是一个周期为T的函数,即,试求方差 函数。 解:由定义,有: 4、考察两个谐波随机信号和,其中:

式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a)求的均值、方差和相关函数; (b)若与独立,求与Y的互相关函数。 解:(a) (b) 第二讲作业: P33/2.解: 其中为整数,为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数,因此有一维分布: P35/4. 解:(1) 其中 由题意可知,的联合概率密度为:

利用变换:,及雅克比行列式: 我们有的联合分布密度为: 因此有: 且V和相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且 所以。 (4)由于: 所以因此 当时, 当时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有:

P37/10. 解:(1) 当i =j 时;否则 令 ,则有 第三讲作业: P111/7.解: (1 )是齐次马氏链。经过 次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。 (2)由题意,我们有一步转移矩阵: P111/8.解:(1)由马氏链的马氏性,我们有: (2)由齐次马氏链的性质,有: (2)

(完整版)随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为: 试求:在时,求。 解: 当时,= = 1.2 设离散型随机变量X服从几何分布: 试求的特征函数,并以此求其期望与方差。解:

所以: 2.1 袋中 红球,每隔单位时间从 袋中有一个白球,两个任取一球后放回,对每对应随机变量 一个确定的t ?? ? ? ? = 时取得白球 如果对 时取得红球 如果对 t e t t t X t 3 )( . 维分布函数族 试求这个随机过程的一 2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为 试证明为宽平稳过程。 解:(1) 与无关

(2) , 所以 (3) 只与时间间隔有关,所以 为宽平稳过程。 2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E .321)方差函数)协方差函数;()均值函数;(( 2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且 数。试求它们的互协方差函 2.5, 试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立 为多少?

3.1一队学生顺次等候体检。设每人体检所需的时间服从均值为2分 钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲) 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的 poisson 过程。以小时为单位。 则((1))30E N =。 40 300 (30)((1)40)!k k P N e k -=≤=∑。 3.2在某公共汽车起点站有两路公共汽车。乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。 解: 法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。1 N T 表示1()N t =1N 的发生时 刻,2 N T 表示2()N t =2N 的发生时刻。 1 11 1111111()exp()(1)! N N N T f t t t N λλ-= -- 2 22 1222222()exp()(1)! N N N T f t t t N λλ-= -- 1 2 121 2 1 2 2 1 112,12|1221 1122212(,)(|)()exp() exp() (1)! (1)! N N N N N N N N N T T T T T f t t f t t f t t t t t N N λλλλ--== ----

应用随机过程期末复习资料

第一章随机过程的基本概念 、随机过程的定义 例1:医院登记新生儿性别,0表示男,1表示女,X n表示第n次登记的数字,得到一个序 列X i,X2,…,记为{X n, n=1,2,…},则X n是随机变量,而{X n, n=1,2,…}是随 机过程。 例2:在地震预报中,若每半年统计一次发生在某区域的地震的最大震级。令X n表示第n 次统计所得的值,则X n是随机变量。为了预测该区域未来地震的强度,我们就要研究随机过程{X n, n=1,2,…}的统计规律性。 例3: —个醉汉在路上行走,以概率p前进一步,以概率1-p后退一步(假设步长相同)。以X(t)记他t时刻在路上的位置,则{X(t), t _0}就是(直线上的)随机游动。 例4:乘客到火车站买票,当所有售票窗口都在忙碌时,来到的乘客就要排队等候。乘客的 到来和每个乘客所需的服务时间都是随机的,所以如果用X(t)表示t时刻的队长,用Y(t)表 示t时刻到来的顾客所需等待的时间,则{X(t), t ? T}和{Y(t), t ? T}都是随机过程。定义:设给定参数集合T,若对每个b T, X(t)是概率空间CS , P)上的随机变量,贝U称{X(t), r T}为随机过程,其中T为指标集或参数集。 X tCJ:门>E , E称为状态空间,即X(t)的所有可能状态构成的集合。 例1: E 为{0,1} 例2: E 为[0, 10] 例3: E 为{0,1, -1, 2, -2/ } 例4: E 都为[0, ?::) 注:(1)根据状态空间E的不同,过程可分为连续状态和离散状态,例1 ,例3为离散状态, 其他为连续状态。 (2)参数集T通常代表时间,当T取R, R+, [a,b]时,称{X(t), t T}为连续参数的随机过程;当T取Z, Z +时,称{X(t), t - T}为离散参数的随机过程。 (3 )例1为离散状态离散参数的随机过程,例2为连续状态离散参数的随机过程,例3为离散状态连续参数的随机过程,例4为连续状态连续参数的随机过程。 二、有限维分布与Kolmogorov定理 随机过程的一维分布: F (t, x)二P{ X (t)乞x } 随机过程的二维分布: Fg (x i , x2 ) = P{ X (t i ) - X1 , X (t2 ) - x2}, t1 , t^ T

随机过程试题及答案

一.填空题(每空2分,共20分) 1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为it (e -1) e λ。 2.设随机过程X(t)=Acos( t+),-

随机过程习题及答案

第二章随机过程分析 1.1学习指导 1.1.1要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1.随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2.随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ξ(t 1)≤x 1],随机过程ξ(t )的一维分布函数为 F 1(x 1,t 1)=P [ξ(t 1)≤x 1](2-1) 如果F 1(x 1,t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 对于任意时刻t 1和t 2,把ξ(t 1)≤x 1和ξ(t 2)≤x 2同时成立的概率 称为随机过程?(t )的二维分布函数。如果 存在,则称f 2(x 1,x 2;t 1,t 2)为随机过程?(t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(), ,() (2 - 5)=≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程?(t )的n 维分布函数。如果 存在,则称f n (x 1,x 2,…,x n ;t 1,t 2,…,t n )为随机过程?(t )的n 维概率密度函数。 3.随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程?(t )在任意给定时刻t 的取值?(t )是一个随机变量,其均值为 其中,f 1(x ,t )为?(t )的概率密度函数。随机过程?(t )的均值是时间的确定函数,记作a (t ),它表示随机过程?(t )的n 个样本函数曲线的摆动中心。 随机过程?(t )的方差的定义如下: 随机过程?(t )的方差常记作σ2(t )。随机过程?(t )的方差的另一个常用的公式为 也就是说,方差等于均方值与均值平方之差,它表示随机过程在时刻t ,对于均值a (t )的偏离程度。 随机过程?(t )的相关函数的定义如下: 式中,?(t 1)和?(t 2)分别是在t 1和t 2时刻观测得到的随机变量。R (t 1,t 2)是两个变量t 1和t 2的确定函数。随机过程?(t )的相关函数表示在任意两个时刻上获得的随机变量之间的关联程度。 随机过程?(t )的协方差函数的定义如下: 式中,a (t 1)、a (t 2)分别是在t 1和t 2时刻得到的?(t )的均值;f 2(x 1,x 2;t 1,t 2)是?(t )的二维概率密度函数。 B (t 1,t 2)与R (t 1,t 2)之间有如下关系式: 若a (t 1)=a (t 2)=0,则B(t 1,t 2)=R(t 1,t 2)。 随机过程?(t )和η(t )的互相关函数的定义如下: 4.平稳过程及其性质 平稳过程包括严平稳过程(强平稳过程或狭义平稳过程)和广义平稳过程。如果随机过程?(t )的任意有限维分布函数与时间起点无关,也就是说,对于任意的正整数n 和所有实数?,有 则称该随机过程是严格意义下的平稳随机过程,简称严平稳随机过程。

相关文档
最新文档