XMM-Newton observations of the Vela pulsar

XMM-Newton observations of the Vela pulsar
XMM-Newton observations of the Vela pulsar

a r X i v :a s t r o -p h /0306517v 1 24 J u n 2003XMM-NEWTON OBSERV ATIONS OF THE VELA PULSAR

K.Mori 1,C.J.Hailey 1,F.Paerels 1and S.Zane 2

1Columbia

Astrophysics Laboratory,550W 120th St.,New York,NY 10027,USA

2MSSL,University College London,Holmbury St.Mary,Dorking,Surrey,RH56NT,UK ABSTRACT We present spectral analysis from XMM-Newton observations of the Vela pulsar.We analyzed thermal emission from the pulsar dominating below ~1keV since extracted spectra are heavily contaminated by nebular emission at higher energy.Featureless high-resolution spectra of the Re?ection Grating Spectrometer aboard XMM-Newton suggest the presence of a hydrogen atmosphere,as previously indicated by Chandra results.Both the temperature and radius are consistent with those values deduced from Chandra .The derived Chandra and XMM-Newton temperature of T ∞?(6.4–7.1)×105K at its age of ~104years is below the standard cooling curve.INTRODUCTION The Vela pulsar is one of the best-studied pulsars in the radio band.It has an 89millisecond period and the spin-down parameters indicate that the Vela pulsar is about 104years old with magnetic ?eld 3×1012G.Nevertheless,multi-wavelength observations in the past two decades showed the Vela pulsar is a strong source at all wavelengths from the radio to the gamma-ray band.In the X-ray band,thermal emission was discovered by ROSAT (¨Ogelman et al.,1993).ROSAT observation also revealed a peculiar pulse pro?le with three peaks in the soft X-ray band.Non-thermal emission from its surrounding nebula is dominant at higher energies.Recent Chandra observations revealed even more complex properties of the Vela pulsar and its nebula.With its high angular resolution,a Chandra image showed detailed structure in the surrounding nebula (Helfand et al.,2001;Pavlov et al.,2001b).No spectral features were found in the high energy resolution Chandra LETGS spectra of the resolved pulsar emission.No detection of spectral features excludes the presence of heavy element atmospheres on

the surface (Pavlov et al.,2001a).

The Vela pulsar is also a strong source of non-thermal emission in the optical,X-ray and gamma-ray bands.The non-thermal component from the pulsar was resolved for the ?rst time by Chandra (Pavlov et al.,2001a).Recent RXTE observations revealed complex timing properties associated with non-thermal emission from the pulsar,show-ing energy-dependent multiple peaks in folded lightcurves (Strickman et al.,1999;Harding et al.,2002).However,the origin of the peaks in the soft X-ray band,whether thermal or non-thermal,has yet to be determined.

The XMM-Newton observation of the Vela pulsar was performed with a 90ksec exposure time on 1Dec 2000.XMM-Newton is sensitive to faint sources such as isolated neutron stars due to its large effective area.Since the nebula turned out to be compact ~10–20′′(Helfand et al.,2001),the imaging capability of XMM-Newton cannot resolve the pulsar from the nebula.Therefore,the thermal component dominates at E <~1keV and the nebula emission is dominant at E >~1keV in XMM-Newton spectra.We could not spatially resolve the non-thermal emission from the pulsar or study different components of the nebula.Instead,using the XMM-Newton data,we did the following:

(1)a spectral ?t to high sensitivity Europian Photon Imaging Camera (EPIC)(Str¨u der et al.,2001)data was used to determine thermal properties with high accuracy,(2)a search for spectral features in high resolution Re?ection Grating Spectrometer (RGS)(den Herder et al.,2001)data was performed.All the data were processed by version

5.3.3of the Scienti?c Analysis System (SAS)pipeline (Loiseau ,2003).

Fig. 1.XMM-Newton/EPIC-PN spectra?tted by Blackbody+Power-law(BB+PL)(top)and Hydrogen atmosphere+Power-law model(H+PL)(bottom).Residuals at~0.5keV are due to instrumental Oxygen edge.

EPIC PHASE-A VERAGED SPECTRAL ANALYSIS

We analyzed EPIC-PN data to determine the global features of the X-ray spectrum.Source data were extracted from a circular region with radius r=1′and events with CCD pattern0were selected.Such a source area includes more than90%of the source counts at energies up to~5keV.However,the extracted spectra are heavily contaminated by nebular emission at E>~1keV.Unlike the recent Chandra results which resolved the pulsar emission from its nebula emission(Pavlov et al.,2001a),our analysis focuses on thermal emission from the pulsar at E<~1keV.Systematic errors from nebular contamination are discussed later in this section.Background spectra were reduced from an annulus region between r=1′and r=2′.Total EPIC-PN count rate from the r<1′region after subtracting background was27.0cts/sec.

We rebinned the data so that each spectral bin contained more than25counts.For the following spectral analysis, we used ready-made Response Matrix Files(RMFs)and Auxiliary Response Files(ARFs)generated by the SAS tool “arfgen”.For spectral?tting,we adopted a two-component model comprised of a thermal and non-thermal(power-law)spectrum.We applied two different thermal models to the data:a blackbody model(BB+PL model)and a magnetized hydrogen atmosphere model provided by V.Zavlin(Zavlin,2003)at B=1012G(H+PL model).When we?tted a hydrogen atmosphere model,we?xed the neutron star mass and radius to1.4M⊙and10km.Both thermal models?t the data well,yieldingχ2?1.1(Figure1and Table1).Figure2shows an N H–T∞contour plot with?xed power-law index and radius.Hydrogen atmospheres are in general harder than a blackbody since free-free absorption dominates in the X-ray band.Therefore,the temperature?tted by a magnetized hydrogen atmosphere model is lower than a blackbody?t(hence a larger radius for the hydrogen atmosphere?t).

The derived distance(d=256pc)is consistent with the distance from the parallax measurement(d=294+76

?50

Fig.2.Contour plot in N H–T∞plane.Blackbody(top)and hydrogen atmosphere at B=1012G(bottom). pc)(Caraveo et al.,2001).For hydrogen atmosphere models,T∞and R∞/d depend on other input parameters(e.g. M and R)weakly(Zavlin et al.,1998).The apparent radius corresponding to the measured distance is inferred to be km where d294is the distance in units of294pc.

R∞/d294=15.0+6.5

?5.1

We note that non-thermal spectra from the pulsar(obtained by Chandra observation)are about two orders of magnitude weaker than the nebular spectra,so the power-law component observed by XMM-Newton is dominated by the nebular contribution.The?tted power-law index(γ?1.6)probably represents a superposition of different nebular components,which were resolved by the Chandra observation(Pavlov et al.,2001b).The estimated luminosity of the power-law component in the EPIC-PN data is consistent with the Chandra result for the nebula(L neb=8.3×1032 ergs s?1for d=294pc)(Pavlov et al.,2001b).

The derived parameters from both the blackbody and magnetized hydrogen atmosphere?t are in good agreement with the Chandra results.However,since the angular resolution of XMM-Newton is poorer than that of Chandra,

Table1.Fitted parameters to XMM-Newton EPIC-PN

spectra(pulsar plus nebula)in comparison with Chan-

dra data(pulsar only).

Blackbody+Power-law

2.2±0.3

N H[1020cm?2]1.44+0.83

?0.85

1.50±0.05

T∞[106K]1.46+0.02

?0.02

2.5±0.2

R∞[km]a2.50+0.15

?0.14

L∞th[1032ergs s?1]a2.02+0.34

2.1±0.3

?0.33

2.7±0.4

γb1.64+0.08

?0.08

L pl[1032ergs s?1]a,b8.56+0.11

0.58±0.08

?0.14

χ2ν1.161.1

EPIC-PN Chandra

Errors for EPIC-PN data are1sigma level including both

statistical and systematic uncertainty.For luminosity of non-

thermal component in the range of2–10keV(L pl),the error

refers only to the statistical uncertainty since the smaller ex-

tracted region picks up less nebular emission.

a We assumed the distance is294pc from the latest parallax

measurement(Caraveo et al.,2001).We rescaled the Chan-

dra results in Table1in Pavlov et al.(2001a)to d=294pc.

b Note that these parameters are different from the Chandra

results in comparison.However,the?tted parameters to the

XMM-Newton data is dominated by the nebular component,

while Pavlov et al.(2001a)extracted spectra from the pul-

sar.

c We?xe

d th

e neutron star mass to1.4M

and the radius to

10km for spectral?tting.Here B=1012G.

our?tting parameters can be affected by systematic errors due the the nebular contamination.These errors are,in general,larger than the statistical ones.In order to estimate such errors,we examined the variations in the hydrogen atmosphere and blackbody parameters by using as extraction regions annuli of various radii;the errors reported in Table1re?ect both statistical and systematic uncertainties.We can see that,when considering the effect on the nebular contamination,Chandra and XMM-Newton temperatures are in agreement at1-sigma level.

SEARCH FOR SPECTRAL FEATURES IN RGS DATA

Re?ection Grating Spectrometer data were taken in“spectroscopy”mode in order to take full advantage of the high spectral resolution.First,we extracted the95%Point Spread Function(PSF)of the source region for both RGS1 and2data.The background spectrum was reduced from outside the98%PSF region.We generated responses by the SAS command“rgsrmfgen”.Total count rate was1.0cts/sec for both RGS1and2data.We extracted smaller regions of the source(50%and70%PSF region)to maximize the number of thermal photons compared to nebular emission

Fig.3.XMM-Newton/RGS spectra?t by Hydrogen+Power-law model.The spectra were extracted from the 70%Point Spread Function(PSF)region.

photons.Figure3shows RGS spectra extracted from the70%PSF region and?tted by the H+PL model.The data are plotted in the RGS bandpass(λ=6–38?A)after rebinning wavelength grids toλ~0.1?A.

The spectral?t by both the BB+PL and the H+PL model yieldχ2ν?1.2for both RGS1and2data.The?tted parameters were similar to the EPIC-PN results in Table1.Several deviations from the continuum?t with less than2 sigma signi?cance are seen,but none of these wiggles were found in both RGS1and2data simultaneously.Therefore, we conclude that the RGS spectra are featureless.

SUMMARY

The results obtained with XMM-Newton for the Vela pulsar are in agreement with previous?ndings by Chandra (Pavlov et al.,2001a,b).The RGS data indicate that the thermal spectrum is featureless,and the EPIC-PN spectrum is well?tted by a magnetized hydrogen atmosphere model with B=1012G.As it has been found with Chandra, with respect to a?t with the simple blackbody,the atmospheric model has the advantage that it gives a radius for the emitting region compatible with neutron star equations of state.Also,when Chandra data are?tted with an atmospheric model,the index of the power-law component above~1keV is remarkably consistent with that of the PL observed at optical and hard X-ray wavelengths.The power-law component observed with XMM-Newton is

dominated by the nebular emission and the value of L pl~8×1032erg s?1is again consistent with that observed by

Chandra(Pavlov et al.,2001b).

The presence of hydrogen is not surprising since a tiny amount of hydrogen constitutes an optically-thick layer in the atmosphere(Zavlin&Pavlov,2002).Hydrogen could be accumulated on the surface by accretion or generated by spallation of fallback material(Bildsten et al.,1992).The derived large radius from the H+PL model implies that the thermal emission originates from the whole surface.

There is an important implication for the neutron star physics which is consistent with the Chandra and XMM-Newton results.Surface temperature for a given age re?ects cooling processes via neutrino emission in the core. Recent studies show that neutron star cooling curves are dependent on various factors such as proton-to-neutron ratio,neutron star mass,magnetic?eld strength,neutron super?uidity and presence of exotic matter.Among various proposed models,a model which assumes normal composition(n,p and e)and the indirect URCA process was often quoted as the standard cooling model.The standard cooling model?ts most cooling neutron stars,although recent X-ray observations found several neutron stars have surface temperatures below the standard cooling curve(Slane et al., 2002).For the Vela pulsar,the derived Chandra and XMM-Newton temperature of T∞?(6.4–7.1)×105K at its age ~104years is below the standard cooling curve(Tsuruta et al.,2002).

ACKNOWLEDGEMENTS

We are grateful to V.Zavlin for providing us with the magnetized hydrogen atmosphere model. REFERENCES

Bildsten,L.and Salpeter,E.E.&Wasserman,I.,The fate of accreted CNO elements in neutron star atmospheres-X-ray bursts and gamma-ray lines,Astrophys.J.,384,143-176,1992.

Caraveo,P.A.,De Luca,A.,Mignani,R.P.et al.,The distance to the Vela pulsar gauged with Hubble Space Telescope parallax observations,Astrophys.J.,561,930-937,2001.

den Herder,J.W.,Brinkman,A.C.,Kahn,S.M.et al,The Re?ection Grating Spectrometer on board XMM-Newton, Astron.Astrophys.,365,L7-L17,2001.

Harding,A.K.,Strickman,M.S.,Gwinn,C.et al.,The multicomponent nature of the Vela pulsar non-thermal X-Ray spectrum,Astrophys.J.,576,376-380,2002.

Helfand,D.J.,Gotthelf,E.V.,&Halpern,J.P.,Vela pulsar and its synchrotron nebula,Astrophys.J.,556,380-391, 2001.

Loiseau,N.,Users’Guide to the XMM-Newton Science Analysis System,http://xmm.vilspa.esa.es/external/ xmm support/documentation/index.shtml,2003.

¨Ogelman,H.,Finley,J.P.,&Zimmerman,H.U.,Pulsed X-rays from the Vela pulsar,Nature,361,136-138,1993. Pavlov,G.G.,Zavlin,V.E.,Sanwal,D.et al.,The X-ray spectrum of the Vela pulsar resolved with Chandra,Astro-phys.J.,552,L129-L133,2001a.

Pavlov,G.G.,Kargaltsev,O.Y.,Sanwal,D.et al.,Variability of the Vela pulsar wind nebula observed with Chandra, Astrophys.J.,554,L189-L192,2001b.

Slane,P.O.,Helfand,D.J.,&Murray,S.S.,New constraints on neutron star cooling from Chandra observations of 3C58Astrophys.J.,571,L45-L49,2002.

Strickman,M.S.,Harding,A.K.,&de Jager,O.C.,A Rossi X-Ray timing explorer observation of the Vela pulsar:?lling in the X-Ray gap,Astrophys.J.,524,373-378,1999.

Str¨u der,L.,Briel,U.,Dennerl,K.et al.,The European Photon Imaging Camera on XMM-Newton:The pn-CCD camera Astron.Astrophys.,L18-L26,2001.

Tsuruta,S.,Teter,M.A.,Takatsuka,T.et al.,Confronting neutron star cooling theories with new observations, Astrophys.J.,571,L143-L146,2002.

Zavlin,V.E.,Pavlov,G.G.,&Trumper,J.,The neutron star in the supernova remnant PKS1209-52,Astron.Astro-phys.,331,821-828,1998.

Zavlin,V.E.&Pavlov,G.G.,Modeling neutron star atmospheres,proceedings of the270.WE-Heraeus Seminar on Neutron Stars,Pulsars and Supernova Remnants,MPE-Report278(astro-ph/0206025),263-272,2002. Zavlin,V.E.,private communication,2003.

威乐水泵样本

热水循环泵: 品牌简介: WILO(威乐)作为百年的德国品牌,创建于1872年,总部设在德国多特蒙德市。2000年,WILO 收购了韩国LG集团的水泵业务。 型号: RS25/8 (3档调速) 功率:151W/113W/81W 全扬程:8m/ 7m/5.6m 最大排水量:6吨/小时 管径:40mm 重量:4.5kg 尺寸:接口长130mm*泵宽120mm*泵体长:120.5m

产品用途: 太阳能、热水器增压用;公寓解决低水压问题,地暖循环,家用锅炉水循环热水供暖系统;工业循环系统(燃气、电锅炉);空调和制冷循环系统 产品特点: 低噪音: 屏蔽式水泵(自冷、自润滑) 环保型:泵体经防腐处理 高性能:

转速范围1100-2200rpm 3档调速 介质温度范围-10摄氏度---- +110摄氏度 电源线可以从线盒左右连接 提示: a、正在装修的家庭,严禁水泵与水管一同试压。 b、家用无噪音循环泵通常需要维修的几率不是很高,如果出现故障,通常为管道里面有杂质卡住水泵叶轮,造成水泵无法正常运转,甚至更大故障。最好的解决办法就是在水泵的进水口安装过滤器。这样会好很多。 品牌简介: WILO(威乐)作为百年的德国品牌,创建于1872年,总部设在德国多特蒙德市。2000年,WILO 收购了韩国LG集团的水泵业务。 产品型号:PH-101E 非自动 产品功率:200W 最大扬程:5m 最大流量:7.8吨/小时 水泵管径:40mm 产品重量:11kg

产品用途: 太阳能、热水器增压用;公寓解决低水压问题,地暖循环,家用锅炉水循环热水供暖系统;工业循环系统(燃气、电锅炉);空调和制冷循环系统 产品特点: 先进的结构设计,效率高 采用高效叶轮,噪音更小 采用高级的密封件,不漏水,寿命长

水泵十大品牌

中国水泵行业十大著名品牌 ① 连成 (中国驰名商标,上海市名牌产品,在市政、建筑、暖通、电厂等领域业绩不错,上海连成(集 团)有限公司) ② 凯泉 (中国驰名商标,上海市著名商标,在市政、建筑、暖通、电厂等领域业绩不错,上海凯泉泵 业(集团)有限公司) ③ 南方 (中国驰名商标,浙江省著名商标,特泵、不锈钢多级泵做的很不错,南方泵业股份有限公司) ④ 东方 (上海市著名商标,在建筑领域近两年销量很大,上海东方泵业(集团)有限公司) ⑤ 博山 (驰名商标,山东省著名商标,在钢铁、电力、煤炭等领域业绩不错,山东博泵科技股份有限公司) ⑥ 新界 (中国驰名商标,浙江名牌,农用水泵行业龙头企业,浙江新界泵业股份有限公司) ⑦ 熊猫 (上海市著名商标,在建筑领域近两年销量很大,上海熊猫机械(集团)有限公司) ⑧ 双轮 (中国驰名商标,山东省著名商标,在油田、石化、矿山、热电等领域业绩不错,上山东双轮 股份有限公司) ⑨ 肯富来 (广东省著名商标,广东省名牌,液环真空泵的始创者,广东省佛山水泵厂有限公司) ⑩ 中成 (中国水泵行业十大著名品牌后起之秀,不锈钢泵品质好,可以代替进口,在化工、钢铁、食品、水电等领域业绩不俗,上海中成泵业制造有限公司) 国产泵业其它品牌:广一、沈阳水泵厂、重庆水泵厂、湘电长沙水泵厂、利欧、化成HCH、凌霄、深蓝、开利、亚梅、安波、兴齐、奥利、石家庄泵业、大耐泵业、三鱼 世界十大水泵品牌排行榜 1、美国FLOWSERVE

2、德国威乐 3、美国滨特尔 4、德国凯士比(KSB) 5、日本荏原 6、德国普罗名特 7、美国ITT 8、意大利艾格尔集团 9、丹麦格兰富 10、德国耐驰集团

威乐泵说明

德国威乐水泵详细资料 W I L O 客 服 部

专 用 2007-11-24 德国威乐热水循环泵 【产品名称】德国威乐热水循环泵 【产品型号】PH-123E/PH-251E/PH-101E 【单位】件 【所属类别】威乐热水循环泵 产品介绍 德国威乐循环水泵、可供热水泵、消防泵、深井泵及污水泵,全自动供水设备、水泵调速设备等系列。涉及领域到工业,民用,建筑等...

循环泵 用途: .用于家庭、公寓、宾馆、学校等锅炉的热水取暖循环, 经有力推动使得整个房间温暖舒适。 规格: 型号 电源 输出功率(w) 吸程(w) 全扬程(m) 最大排水量(吨/小时) 管径(mm) 重量(kg) PH-045E 220V/50Hz 40 - 3.5 3.6 25 4 PH-041E 220V/50Hz 40 - 3.5 3.6 25 5 PH-042E 220V/50Hz 40 - 3.5 3.6 32 5 PH-101E 220V/50Hz 100 - 5 7.8 40 11 PH-123E 220V/50Hz 125 - 5 11.4 50 15 PH-251E 220V/50Hz 250 - 7.5 19.2 65 20 PH-252E 220V/50Hz 250 - 7.5 19.2 80 20 PH-400E 220V/50Hz 400 - 15.5 19.8 80 30 PH-401E 220V/50Hz 400 - 19.5 17.4 50 30 PH-401Q 380V/50Hz 三相 400 - 19.5 17.4 50 30 PH-2200Q 380V/50Hz 三相 2200 - 30 30 40 35

威乐泵参数

德国威乐PH系列热水循环泵具体型号参数如下: 应用领域:太阳能热水器增压;锅炉热水增压;公寓楼热水增压;大厦、公寓楼的热水循环。 技术特点:先进的结构设计,效率高;采用高效叶轮,噪音更小;采用高级的密封件,不漏水,寿命长。 德国威乐PH系列热水循环泵具体型号参数如下: 型号:PH-401Q 电源(V/HZ):220/50 输入功率(W):900 输出功率(W):400 最大扬程(W):19 额定扬程(W):15 最大流量(m3/h):15

额定流量(m3/h):6.6 管径(mm):50 应用领域:适合学校、医院、工厂、公寓等热水循环及大型锅炉热水系统循环用。 技术特点:高扬程,大流量,适合大型锅炉热水循环用;节能,高效率;采用耐高温,高压,抗磨损的高强度机械密封;电机内安装热保护器,防止电机烧毁。 型号:PH-1500Q 电源(V/HZ):380/50 输入功率(W):1800 输出功率(W):1500 最大扬程(W):25 额定扬程(W):20 最大流量(m3/h):24。9 额定流量(m3/h):12 管径(mm):40 应用领域:太阳能热水器增压;锅炉热水增压;公寓楼热水增压;大厦、公寓楼的热水循环。 技术特点:先进的结构设计,效率高;采用高效叶轮,噪音更小;采用高级的密封件,不漏水,寿命长。 德国威乐PH系列热水循环泵具体型号参数如下: 型号:PH-401E 电源(V/HZ):220/50 输入功率(W):900 输出功率(W):400 最大扬程(W):19 额定扬程(W):15 最大流量(m3/h):15 额定流量(m3/h):6.6 管径(mm):50

威乐热水循环泵-德国威乐热水循环泵

威乐热水循环泵-德国威乐热水循环泵IRG150-125-250A型立式热水循环管道泵IRG150-125-250A型立式热水循环管道泵 IRG150-125-250A型立式热水循环管道泵工作条件: 1、热水循环泵系统最高工作压力?1.6Mpa,泵静压试验压力为2.5Mpa,订货时请注明系统工作压力。泵系统工作压力大于1.6Mpa时应在订货时另行提出,以便在制造时泵过流部分和联接部分采用铸钢材料。 2、热水循环泵环境温度40?,相对湿度95%。 3、热水循环泵所输送介质中固体颗粒体积含量不超过单位体积的0.1%,粒度0.2mm。注:如使用介质为带有细小颗粒,请在订货时说明,以便厂家采用耐磨式机械密封。 IRG150-125-250A型立式热水循环管道泵特点: 1、热水循环泵为立式结构,进出口口径相同,且位于同一中心线上,可象阀门一样安装于管路之中,外形紧凑美观,占地面积小,建筑投入低,如加上防护罩则可置于户外使用。 2、热水循环泵叶轮直接安装在电机的加长轴上,轴向尺寸短,结构紧凑,泵与电机轴承配置合理,能有效地平稳泵运转产生的径向和轴向负荷,从而保证了泵的运行平稳,振动小、噪音低。 3、热水循环泵轴封采用碳化钨对石墨、硬质合金等材料,有效地延长机械密封的使用寿命。 4、热水循环泵安装检修方便,无需拆动管路系统,只要卸下泵联体座螺母即可抽出全部转子部件。 5、可根据使用要求即流量和扬程的需要采用泵的串、并联运行方式。 6、可根据管路布置的要求采用泵的坚式的或横式的安装。 IRG150-125-250A型立式热水循环管道泵用途:

热水循环泵属高温泵系列产品广泛适用于:能源、冶金、化工、纺织、造纸,以及宾馆饭店等锅炉高温热水增压循环输送及城市采暖系统循环泵,使用温度 T120?。GRG型热水高温泵使用温度T240?。 IRG150-125-250A型立式热水循环管道泵型号意义: IRG150-125-250A型立式热水循环管道泵结构图: 其它同类循环泵用途: ISG型管道离心泵供输送清水及物理化学性质类似于清水的其他液体之用,适用于工业和城市给排水、高层建筑增压送水、园林喷灌、消防增压、远距离输送、暖通制冷循环、浴室等冷暖水循环增压及设备配套,使用温度T80?。 IHG立式化工泵,供输送不含固体颗粒,具有腐蚀性,粘度类似于水的液体,适用于石油、化工、冶金、电力、造纸、食品制药和合成纤维等部门,使用温度为-20? ~ 120?。 YG型防爆离心泵、立式离心油泵,供输送汽油、煤油、柴油等石油产品, 被输送介质温度为-20? ~ + 120?。 IRG150-125-250A型立式热水循环管道泵性能曲线图: IRG150-125-250A型立式热水循环管道泵安装方式: IRG150-125-250A型立式热水循环管道泵使用说明: 一、起动前准备: 1、试验电机转向是否正确,从电机顶部往泵看为顺时针旋转,试验时间要短,以免使机械密封干磨损。 2、打开排气阀使液体充满整个泵体,待满后关闭排气阀。 3、ISG型立式离心泵启动前检查各部位是否正常。 4、用手盘动泵以使润滑液进入机械密封端面。 5、高温型应先进行预热,升温速度50?/小时,以保证各部受热均匀。

水泵十大品牌

中国水泵行业十大著名品牌 ① 连成(中国驰名商标,上海市名牌产品,在市政、建筑、暖通、电厂等领域业绩不错,上海连成(集团)有限公司) ② 凯泉(中国驰名商标,上海市著名商标,在市政、建筑、暖通、电厂等领域业绩不错,上海凯泉泵业(集团)有限公司) ③ 南方(中国驰名商标,浙江省著名商标,特泵、不锈钢多级泵做的很不错,南方泵业股份有限公司) ④ 东方(上海市著名商标,在建筑领域近两年销量很大,上海东方泵业(集团)有限公司) ⑤ 博山(驰名商标,山东省著名商标,在钢铁、电力、煤炭等领域业绩不错,山东博泵科技股份有限公司) ⑥ 新界(中国驰名商标,浙江名牌,农用水泵行业龙头企业,浙江新界泵业股份有限公司) ⑦ 熊猫(上海市著名商标,在建筑领域近两年销量很大,上海熊猫机械(集团)

有限公司) ⑧ 双轮(中国驰名商标,山东省著名商标,在油田、石化、矿山、热电等领域业绩不错,上山东双轮股份有限公司) ⑨ 肯富来(广东省著名商标,广东省名牌,液环真空泵的始创者,广东省佛山水泵厂有限公司) ⑩ 中成(中国水泵行业十大著名品牌后起之秀,不锈钢泵品质好,可以代替进口,在化工、钢铁、食品、水电等领域业绩不俗,上海中成泵业制造有限公司) 国产泵业其它品牌:广一、沈阳水泵厂、重庆水泵厂、湘电长沙水泵厂、利欧、化成HCH、凌霄、深蓝、开利、亚梅、安波、兴齐、奥利、石家庄泵业、大耐泵业、三鱼 世界十大水泵品牌排行榜 1、美国FLOWSERVE 2、德国威乐 3、美国滨特尔

4、德国凯士比(KSB) 5、日本荏原 6、德国普罗名特 7、美国ITT 8、意大利艾格尔集团 9、丹麦格兰富 10、德国耐驰集团

相关主题
相关文档
最新文档