小功率功放芯片XPT4871

小功率功放芯片XPT4871
小功率功放芯片XPT4871

D类数字功率放大器

3.3 D类数字功放 D类功放也叫丁类功放,是指功放管处于开关工作状态的功率放大器。早先在音响领域里人们一直坚守着A类功放的阵地,认为A类功放声音最为清新透明,具有很高的保真度。但A类功放的低效率和高损耗却是它无法克服的先天顽疾。后来效率较高的B类功放得到广泛的应用,然而,虽然效率比A类功放提高很多,但实际效率仍只有50%左右,这在小型便携式音响设备如汽车功放、笔记本电脑音频系统和专业超大功率功放场合,仍感效率偏低不能令人满意。所以,如今效率极高的D类功放,因其符合绿色革命的潮流正受着各方面的重视,并得到广泛的应用。 3.3.1 D类功放的特点与电路组成 1.D类功放的特点 (1)效率高。在理想情况下,D类功放的效率为100%(实际效率可达90%左右)。B类功放的效率为78.5%(实际效率约50%),A类功放的效率才50%或25%(按负载方式而定)。这是因为D类功放的放大元件是处于开关工作状态的一种放大模式。无信号输入时放大器处于截止状态,不耗电。工作时,靠输入信号让晶体管进入饱和状态,晶体管相当于一个接通的开关,把电源与负载直接接通。理想晶体管因为没有饱和压降而不耗电,实际上晶体管总会有很小的饱和压降而消耗部分电能。 (2)功率大。在D类功放中,功率管的耗电只与管子的特性有关,而与信号输出的大小无关,所以特别有利于超大功率的场合,输出功率可达数百瓦。 (3)失真低。D类功放因工作在开关状态,因而功放管的线性已没有太大意义。在D 类功放中,没有B类功放的交越失真,也不存在功率管放大区的线性问题,更无需电路的负反馈来改善线性,也不需要电路工作点的调试。 (4)体积小、重量轻。D类功放的管耗很小,小功率时的功放管无需加装体积庞大的散热片,大功率时所用的散热片也要比一般功放小得多。而且一般的D类功放现在都有多种专用的IC芯片,使得整个D类功放电路的结构很紧凑,外接元器件很少,成本也不高。 2.D类功放的组成与原理 D类功放的电路组成可以分为三个部分:PWM调制器、脉冲控制的大电流开关放大器、低通滤波器。电路结构组成如图3.22所示。

功率是音响系统中最重要的参数

功率是音响系统中最重要的参数,表示音响系统带负载的能力。这也是我们在购买时首先应注意的地方。但如果各个厂家都用各自不同的测定基准来标识产品性能,缺少足够的认识往往很难作出客观比较。功放亦是如此,在查看功放功率的标识时应注意以下三点: 其一,电池电压。 汽车电池的电压是经常变化的,对于两种常用标识:14.4V/100W、12V/100W的功放是完全不同的两种功率说明。由于汽车在行驶过程中的电压基本上在12V左右,因此在12V电压状态下所测得的功率值更为接近真实情况。而且以持续电压12V为基准标识功率的功放在达到12V以上时可以达到获得更大的功率。 其二,谐波失真率THD。 在比较功放的持续输出功率时,需在相同(或是较为接近)THD值下进行。不同的THD 值下测试出的音质差别是十分明显的,有的时候其标识的最大功率很高,但很有可能它的失真和噪音也同样很高。因此在检查最大功率的同时也应留意其所标识的THD值。 其三,频率范围。 功放的持续功率输出应在其实际使用的频率范围内进行检测。对于功放的功率,应要求标识完整的检测范围,仅标识某个频率时功率值没有任何意义。 在确定了同一基准后,我们就可以来比较功放功率了。通常,在选购音响系统时一般来说遵循大功率输出原则。功放的输出功率越大,表明它们驱动扬声器的能力也越强。功放的功率应大于喇叭的指示功率,如果选用的功率偏小,在长期使用大功率输出时,容易烧坏,还会导致音质差、失真等故障的出现。 优质功放应具备的因素 当然,只凭大功率的文字介绍是不能够较好地了解功放好坏。优质的功放还必须能迅速反应出音乐信号的峰值,同时能够对应强有力的重低音,并且在低失真/低噪音状态下能够提供平稳的输出。要满足以上这些要求,就必须具备如下几点: 首先,是性能优良的电源。这是左右功放音质的关键。其电源部与放大部应分离设计,可降低噪音。采用大型升压变压器提高供给稳定的电流,以及大型电容器,能更加迅速地做出反应,供给放大所需的电流。 其次,内置的参数等化器。车用音响与家用音响有很大的不同,扬声器的安装位置十分有限,声音的调节十分重要。此外,由于头枕和车窗的遮音效果以及低音扬声器的安装角度所导致的声波混乱,都会汽车音响系统的声音效果。这时起作用的就是参数等化器,它能够对上述原因造成的声波的波峰、波谷进行补偿,调节出平滑的声场。 再者,就是内置的分频器。无论功放自身的功能多么优秀,实际安装在车上时,也会因各种各样的音响问题、扬声器的配置问题而无法达到最佳效果。为了克服这些,除了参数等

几种常见的光放大器的比较

几种常见的光放大器的比较

————————————————————————————————作者: ————————————————————————————————日期:

对几类放大器的认识 在DWDM系统中,特别是超远距离的传输中,由于不可避免的存在光纤信号功率的损失和衰减,所以补偿是必要的。现在常用的放大器有掺铒光纤放大器(EDFA),拉曼放大器(FRA),半导体激光放大器(SOA),光纤参量放大器(OPA)。现就这几类放大器的工作原理和特殊情况做一下说明。 1)掺铒光纤放大器(EDFA) EDFA(Erbiur Doped Fiber Amplifer)是光纤放大器中具有代表性的一种。由于EDFA工作波长为1550nm,与光纤的低损耗波段一致且其技术已比较成熟,所以得到广泛应用。掺铒光纤是EDFA的核心原件,它以石英光纤作基质材料,并在其纤芯中掺入一定比例的稀土原素铒离子(Er3+)。当一定的泵浦光注入到掺铒光纤中时,Er3+从低能级被激发到高能级,由于Er3+在高能级上寿命很短,很快以非辐射跃迁形式到较高能级上,并在该能级和低能级间形成粒子数反转分布。由于这两个能级之间的能量差正好等于1550nm 光子的能量,所以只能发生1550nm光的受激辐射,也只能放大1550nm的光信号。 EDFA的组成: 工作原理图:

那么,EDFA的输出公路车是如何控制的呢? 一般来说,EDFA的输出功率与输入信号光强度,铒纤的长度以及泵浦光的强度。 在EDFA使用的过程中,一般要控制好EDFA的平坦增益,那么不平坦的增益和平坦增益有什么区别呢? 平坦的输出增益会使EDFA放大的输出功率得到一个稳定的信号增益。 如何控制增益?增益的控制室有2种选择的,一种是掺金属元素,另外一种是GFF定制,所谓的掺金属元素是值得是掺杂金属铝元素。

功率放大器的设计

课程设计任务书 学生姓名:专业班级:电子1003班 指导教师:葛华工作单位:信息工程学院 题目: 功率放大器的设计 初始条件: 计算机、Proteus软件、Cadence软件 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:2周 2、技术要求: (1)学习Proteus软件和Cadence软件。 (2)设计一个功率放大器电路。 (3)利用Cadence软件对该电路设计原理图并进行PCB制版,用Proteus软件对该电路进行仿真。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 2013.11.11做课设具体实施安排和课设报告格式要求说明。 2013.11.11-11.16学习Proteus软件和Cadence软件,查阅相关资料,复习所设计内容的基本理论知识。 2013.11.17-11.21对功率放大器进行设计仿真工作,完成课设报告的撰写。 2013.11.22 提交课程设计报告,进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要........................................................................ I Abstract ................................................................... II 1 功放的工作原理及分类 (1) 1.1功放的工作原理 (1) 1.2功放的分类 (1) 2 软件介绍 (2) 2.1 Proteus (2) 2.1.1 Proteus简介 (2) 2.1.2工作界面 (2) 2.1.3 对象的放置和编辑 (3) 2.1.4 连线 (4) 2.2Cadence软件 (4) 2.2.1 Cadence简介 (4) 2.2.2 Cadence软件的特点 (4) 2.2.3电路PCB的设计步骤 (4) 3 设计方案 (6) 3.1 运算放大电路的设计 (6) 3.2 功率放大电路的设计 (7) 3.3 音频功率放大电路 (9) 3.4方案总结及仿真 (10) 4 Candence软件操作 (11) 4.1 Cadence画电路原理图 (11) 4.2 布线及PCB图 (11) 4.2.1布线注意事项 (11) 4.2.2 PCB制作 (12) 5.心得体会 (14) 6.参考文献 (15)

常用大功率D类音频功放IC芯片选型说明

常用大功率D类音频功放IC芯片选型说明传统大功率功放芯片,一般都是模拟的功放芯片,象大家都熟悉的TDA2030、LM1875、TDA1521等。这些功放除了音质会好一点,其它的对于现在的D类功放来说,都是缺点。如今随着技术的进步,D类功放的音质技术早已突破,比传统功放芯片差不了多少。以HX8330为代表的D类功放,是替代这些优秀的前辈产品不二之选。 二、模拟功放的缺点: ●电源供电一般都要用正负双电源供电。 ●大部分都是插件式。 ●因本身发热严重,需要带一块沉重的铝片散热。 ●占用PCB板和机壳的空间很大。 ●外围元件多,特别是电解电容也用的多。 三、HX8330概述: HX8330是一款30W高效D类音频功率放大电路,主要应用于音响等消费类音频设备。此款电路可以驱动低至4Ω负载的立体声扬声器,功效高达90%,使得在播放音乐时不需要额外的散热器。其特点如下: ●15W功率输出(12V电压,4Ω负载,TND+N=10%); ●30W功率输出(16V电压,4Ω负载,TND+N=10%); ●效率高达90%,无需散热片; ●较大的电源电压范围8V~20V; ●免滤波功能,输出不需要电感进行滤波; ●输出管脚方便布线布局; ●良好短路保护和具备自动恢复功能的温度保护; ●良好的失真; ●增益36dB; ●差分输入; ●简单的外围设计;QQ:1207435600 ●封装形式:ESOP8。 四、应用领域: ●拉杆音箱: ●大功率喊话器: ●落地音箱: ●蓝牙音箱 ●扩音器

五、芯片对比分析: 六、 功能框图与引脚说明:

七、应用原理图: 如上图,可以很清晰的看出硬件的外围电路是极其简单的,bom成本低廉 八、HX8330优势说明: 1、外围元件少,电路简单, 2、效率高达90%,无需散热片 3、占用PCB板空间小 4、16V供电时,功率可以到达30W 九、总结: 我写这边文章的目的,并不是想要抵扉传统的模拟功放。只是想告诉各位同仁,在如今市场竞争激烈的环境下,一个成品的利润能多铮几毛钱,都是一件不容易的事。我们在选择功放的时候,如果不是做HIFI级别的音箱,音质要求不是很高的情况下。选择合适的D类功放也是一种有效降低生产成本的方法。 IPET

功放与音箱的阻抗匹配

浅析功放与音箱匹配技巧与注意事项 6月2日报道对功放与音响之间的匹配问题,除了音色软搭配之外(音色搭配常说软硬之分,是根据设计者对音色走向的设计和用料,而具有的特征和个性)还有一些技术指标上的硬搭配。软搭配是经验积累和个人爱好以实际感受为主,硬搭配则以数据和基本技术常识来定夺,下列就来简述硬搭配有关方面的问题。 一、阻抗匹配 1、电子管功放(胆机)与音箱匹配时,放大器的输出阻抗应与音箱阻抗相等,否则会出现降低输出功率和增大失真等现象。好在大都胆机都有可变输出阻抗匹配接口如4-8-16欧,与音箱阻抗匹配已趋简单。 2、对于晶体管功放(石机)与音箱阻抗的匹配 ①音箱阻抗比功放输出阻抗高时,除了输出功率不同程度的降低外,无其它影响。 ②音箱阻抗比功放输出阻抗低时,输出功率相应成比例增加,失真度一般不会增加或增加一点点可忽略。但匹配时音箱阻抗不能太低,如低至2欧(指2只4欧音箱并联时),此时只有功放功率富裕量大,并使用性能良好的大功率管和多管并联推挽,一般对这样的功放无影响。反之,一般普通功放富裕量不大,而功放管的pcm、lcm不大,当音量又开得很大时,这时失真会明显增大,严重时机毁箱亡,切切注意。 二、功率匹配 1、从原则上来讲,音箱额定功率与功放额定功率不一致时,对于功放来说,它的功率大小只与音箱阻抗有关,而与音箱额定功率无关。无论音箱功率与功放功率是否相同,对功放工作无影响,只是对音箱本身安全有关。 2、如果音箱阻抗符合匹配要求,而承受功率比功放功率小,则推动功率充足,听起来很舒服。这就是常说的功放储备功率要大,才能充分地表现出音乐全部内涵,尤其是音乐中的低频部分,表现更为生动、有力。这是一种较好的匹配。 3、如果音箱的额定阻抗大于功放的额定功率,虽然二者都能安全的工作,但这时功率放大器推动功率显得不够,会觉得响度不足,往往出现已经开到饱和状态,失真加剧,仍感到力不从心。这是一种较差的匹配。 三、按阻尼系数匹配 对于选一对hi-fi音箱来讲,应有最佳的特定的电阻尼要求(负责任的音箱厂家应该提供此数据,指的是对功放阻尼系数的要求。说清楚点就是如要配此音箱,要求所配的功放阻尼系数要达到多少)。一般情况下,功放的阻尼系数高一点为好,低档功放阻尼系数小于10时,音箱的低频特征,输出特征,高次谐波特征等都会变坏。(家用功放的阻尼数一般在几十至几百之间。) 四、线材的匹配。 进口发烧线、神经线林林总总,贵至万余元,次之也要千元至数千元,(当然也有百元以下的),使用效果那是见仁见智的事。好的线材一般情况下都会改善音响器材中某系不足。它的传输理论说起来太复杂,只能简述了。传输线的材料与结构,决定了三个重要参数,即电阻、电容、电感(还有电磁效应、集肤效应、近接效应、电抗等)别看这些参数微小的差距,会直接影响到音响系统频率特征,阻尼特征,信号速率,相位精度,也及音色取向和声场定位等。它的主要作用是,高速传输(尽可能减小信号损失)、抗震动、防杂讯、抗干扰(主要是无线电波rf1射频干扰和em1电磁波干扰等) 音箱功放匹配原则(摘自网络) 功放与音箱配接四要素功放与音箱配接讲究冷暖相宜、软硬适中,以实现整套器材还原音色

简易音频功率放大器

闽南师范大学《模拟电子技术》课程设计 设计题目:简易音频功率放大器 姓名:庄伟彬 学号:1205000425 系别:物理与信息工程学院 专业电气工程及其自动化 年级:12级 指导教师:周锦荣老师 2014年 5月 1 日

目录 一系统设计┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 1.设计任务┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 2.设计要求┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 二电路设计原理┄┄┄┄┄┄┄┄┄┄┄┄ 3 1.系统原理┄┄┄┄┄┄┄┄┄┄┄┄┄ 3 2.方案比较┄┄┄┄┄┄┄┄┄┄┄┄┄ 3 3.芯片介绍┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 三PCB布板┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 10 四实物安装与调试┄┄┄┄┄┄┄┄┄┄┄┄ 11 1.实物图┄┄┄┄┄┄┄┄┄┄┄┄┄11 2.测试的波形┄┄┄┄┄┄┄┄┄┄┄12 3.实验结果分析及与理论对比┄┄┄┄┄ 15 五附录┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 15 1.设计总结┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 2. 原件清单┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 3.参考文献┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 16

摘要:本方案采用LM358,LM386集成运放芯片,外加电阻、电容等元器件调整、滤波,滑动变阻器实现音量可调,构成简易音频功率放大器,音频功率放大器主要用于推动扬声器发声。 关键词:LM358;LM386;音频放大 一系统设计 1 设计任务 利用集成运算放大器LM358,LM386设计一个简易音频功率放大器。 2 设计要求 设计一个简易的音频功率放大器,要求如下: (1)系统主要由前置放大电路和后级功率放大器电路构成,电路具有音量可调; (2)前置放大电路主要有集成芯片LM358构成;后级功率放大器电路主要由集成芯片LM386音频功率放大芯片构成; (3)要求输入音频信号在10mV/1kHz时,输出功率1 (负载:8Ω),输出音频信号无 Po W 明显失真,输出功率大小可调; (4)系统测试可以由函数信号发生器产生音频信号,系统所需电源可由实验室现有学生电源提供; (5)完成相应的电路原理图设计、硬件电路设计和调试及相关结果测试; (6)完成课程设计报告撰写。

数字功放的设计概要

本科生毕业论文(设计) 题目: 数字功放的设计 姓名: 江丹 学院: 专业: 班级: 学号: 指导教师: 2014 年5月 25 日

目录 引言 (2) 1功放简介与发展现状 (3) 1.1 功放的种类 (3) 1.1.1 A类功率放大器 (3) 1.1.2 B类功率放大器 (3) 1.1.3 AB 类功率放大器 (3) 1.1.4 D类功率放大器 (4) 1.2数字功放的发展现状 (4) 2 数字功放的基本原理及电路组成 (5) 2.1 数字功放的工作原理 (5) 2.2 数字功放的电路组成 (6) 3 各模块电路设计 (7) 3.1 前置放大电路 (7) 3.2 三角波产生电路 (8) 3.3 比较器电路 (9) 3.4 驱动电路 (10) 3.5 功放与低通滤波电路 (11) 3.6 直流稳压电源 (13) 4 功能仿真与数据分析 (12) 4.1各电路仿真结果 (12) 4.1.1前置放大信号 (12) 4.1.2 三角波信号 (13) 4.1.3 PWM码 (13) 4.1.4 经过功放管的PWM码 (13) 4.4.5还原出的音频信号 (14) 4.2 数据计算与分析 (14) 4.2.1 电压放大倍数 (14) 4.2.2 效率 (14) 4.2.3 通频带宽度 (15) 5数字功放干扰抑制 (15) 6 D类功放的发展与技术展望 (16) 6.1 D类功放的不足 (16) 6.2 D类功放的最新发展——T类功率放大器 (16) 结论 (17) 致谢 (18) 参考文献 (18) 附录 (19)

数字功放的设计 电子信息工程专业学生 摘要:在日常生活中,我们已经感受到了电子技术给我们带来的便捷。在我们使用的各类电子设备中,数字功放正发挥着其不可替代的作用。所以设计出功能优异的数字功放已经是各大电子器件制造商的迫切任务。本文从数字功放的基本原理出发,着重介绍了它的各个电路组成部分。利用Multisim软件对所设计的电路进行功能仿真,并且达到了预期的效果。在实际电路中,针对其产生的电磁干扰提出了一些抑制方法。最后数字功放的发展趋势进行了简要描述。 关键词:PWM码门驱动电路滤波电路电磁干扰 引言 随着科学技术的不断发展,各种各样的电子产品层出不穷,例如笔记本电脑、移动通信终端、音箱等。这些事物的出现极大的丰富了我的日常生活,给我们的工作带来了很多便捷。然而,要使这些产品正常工作,数字功放是不可或缺的。数字功放其功放管的工作在导通和截止状态,如果输入信号使功放管处在导通状态,此时在理想状态下晶体管的内阻近似为零,所以管子两端没有压降,自然就不会产生功率消耗;如果输入信号使晶体管处在截止状态,那么晶体管的内阻就为无穷大,流经管子的电流就为零,也没有功率消耗。所以,晶体管在控制电路工作时是不会消耗功率的,这正是功放管能够达到比较高的效率的原因之一。正是由于数字功放的优越性能,所以它被广泛应用于电子设备中。因此,设计出符合要求的数字功放就显得格外重要。 1功放简介与发展现状 1.1 功放的种类 1.1.1 A类功率放大器 A类功放又称为甲类功放,如图1.1(a),对于此放大器的功率输出管,必须将其Q值设置在直流负载线的中点部分,因为这部分的线性最佳。这样输人信号在正负两个半周期内都能够使放大管在线性放大状态下工作,这时其导通角为360°。随之带来的问题就是能量转换效率很低,电路的最高效率也只有25%,并且需要两种晶体管交替互补才能使整个周期都处在放大状态,也不可避免地产

音响系统中功放使用的几个问题

音响系统中功放使用的几个问题 2012年01月13日企业和产品https://www.360docs.net/doc/b313765753.html, 一个音响系统是离不开功放的,在平时人们对使用功放已是司空见惯了。但要合理、经济、安全地使用好功放,恐怕大多数都说不出来。为此笔者专门就功放使用的几个问题进行讨论。 一:功放的输出功率怎么选? 要选用一台功放,首先碰到的问题便是该选用输出多大功率的功放?在平时,大多数人只是毛估估、随便选一台功放就算了。比如400W的或55W的,殊不知这样的毛估估很可能会有两种不同的情况,要么选用功放的功率太小。这种情况正常人来看还有些支持的理由呢。比如音箱安全,不会烧喇叭,但是实际却恰恰相反,正是由于功放的输出功率太小,要达到一定的响度(声压级),一般会开大音量旋钮,结果使得给功放的信号过大,使功放严重过载,从而产生大量高次谐波,不但声音失真,而且大量的高频信号,使得音箱的高音单元过载烧毁。 另一种情况是,功放的输出功率选用过大。在工程设计或实际使用中,一般功放功率与音箱功率的配比为1:1到2:1之间,这主要是考虑晶体管功放管的输出特性较硬,一但过载,削波失真非常大,声音变得难听,同时高音单元极易损坏,但配比超过2:1,大功率的功放其造价迅速上升,经济性下降,造成不必要的浪费。 那一个场所,究竟选择多大功率的功放呢? 公式 可定量地告诉你,在一个厅堂内,距扬声器r处应达到多少声压级的情况下,所需要的功放输出功率。 上式中 Lp:厅堂内距扬声器r处的扬声器声压级(反映声音的响度) Ls:扬声器的灵敏度 W:扬声器所需的驱动功率,就是功放的输出功率

r:某点与扬声器的距离 R:房间常数(声音的指向性因数,查表或音箱指标给出) N:扬声器的数量 由上式苟化,并移项,反求W值,得到下式: W=10(Lg-Ls+20lgr-10lgn)/10 从上式可见: 所需求的电功率(既功放的输出功率)W是与厅堂距离r处的声压级有关,与音箱的灵敏度有关,还与音箱的数量有关,r在一般厅堂的情况下,取厅堂长度的三分之二。 以上的得到的W值可以为配比为1:1,如达到1.5:1或2:1,即可适当地增大W值。 有人说,这么复杂的计算,多麻烦啊。这里笔者告诉你一个简单易记的经验公式,即厅堂的容积按每立方米配置2~5W的功放输出功率,并按照每个音箱平均负担。 比如有一个100平方的会议室,高度3米,其容积为300立方。按2W~5W/M3配置,所需功率为600~1500W,若配置两个主音箱,即可选用300W左右的音箱2只,功放的输出功率可在300~600W×2选取1台。如采用4只音箱,那么音箱的功率可减小,选用150W左右的。此时功放可选用150~300W功率的2台。厅堂中的超低音箱不算,返听则按50%选取。超过上述数值的,已无必要,属于浪费。 二、怎样对待功放的失真度? 人们在选用功放时,往往比较关注其失真度。那么这个失真度表示的是什么意思呢?其实,功放指标中给出的失真度是非级性失真度,简单地说,其表征的只是输出信号波形与输入信号波形的不一致程度,数值一般为1%~0.001%之间。 那我们人耳究竟能听出多大的非线性失真呢?研究表明,大多数人只能听出5%以上的非线性失真,听音师大约能听出1%以上的失真,低于以上数值,我们并没什么感觉。

功率放大器基本电路特点

一、功率放大器基本电路特点 互补对称式OTL功率放大器基本电路如图①所示。其中: C1为信号输入偶合元件,须注意极性应于实际电路中的电位状况保持一致。R1和R2组成BG1的偏置电路,给BG1提供静态工作点,同时也在整个电路中起到直流负反馈作用。要求通过R1的电流大于BG1的基极电流至少5倍,按照β为100、Ic1为2mA计算,R1应不大于6k,故给定为5.1k;C1因此也相应给定为22μ,它对20Hz信号的阻抗为362Ω;R2需根据电源采用的具体电压确定,约为R1(E/2-0.6)/0.6,按照32V电压值应取为约120K,确切值通过实际调试使BG1集电极电压为15.4V来得到。 C2与R3构成自举电路,要求R3×C2>1/10、(R3+R4)×Ic1=E/2-1.2,因R4是BG1 的交流负载电阻,应尽可能取大一点,R3一般取在1k之内。按照32V电源电压值和Ic1为2mA进行计算,R3与R4之和为7.2k,实际将R3给为820Ω、R4给为6.8k,Ic1则为1.94mA;C2因此可取给为220μ。 R5和D是BG2、BG3互补管的偏置电路元件,给BG2、BG3共同提供一个适当静态工作点,在能够消除交越失真情况下尽量取小值,根据实验结果一般取在3mA~4mA;改变R5阻值可使BG2与BG3的基极间电压降改变而实现对其静态工作的调整,与R5串联的D是为了补偿BG2、BG3发射结门坎电压随温度发生的变化,最好采用两只二极管串联起来补偿互补管发射结门坎电压随温度发生的变化,使互补管静态工作点稳定。简化电路中省略使用一只二极管。并联在BG2、BG3基极间的C4,可使动态工作时的ΔUAB减小,一般取为47μ;C3是防止BG1产生高频自激的交流负反馈电容,一般取为47P~200P。 BG1起电压放大作用,在该电路中被称为激励级,要求Buceo>E、Iceo≤Ic1/400=5μA、β=100~200,所以应选用小功率低噪声三极管。BG2和BG3是互补电流放大极,分别与BG4、BG5构成复合管对输出电流进行放大,要求Buceo>E、Iceo≤Ic2/100=30μA、β=100~200。在BG4、BG5使用普通大功率三级管而不是内部已经做成复合式大功率三级管的情况下,BG2与BG3需要提供给后级大功率三级管超过100mA的峰值驱动电流,因此应使用中功率三级管。BG4和BG5是负责放大输出电流的大功率管,静态工作电流可取在10mA~30mA,要求Buceo>E、Iceo≤Ic4/100=0.1mA、β=50~100。BG4和BG5的最大极限电流Imax应该比输出电流最大幅值大1倍,方能保证输出电流最大幅值时β>10。 R6和R7分别是BG4和BG5静态工作点调整分流电阻,动态工作时的分流作用可以忽略不计。在Ube4和Ube5都等于0.6V标准参数时,由互补电流放大级的静态工作电流取在3mA~4mA,可计算出R6和R7应取为220Ω。实际上,大功率三级管Ube可能相差较大,BG4和BG5的Ube需通过实测进行配对使用,借助自举电路工作的半边复合管的总电流放大率应应比不借

数字功放、D类功放、模拟功放区别

一、数字功放与D类功放的区别 常见D类功放(PWM功放)的工作原理:PWM功放只能接受模拟音频信号,用内部三角波发生器产生的三角波和它进行比较,其结果就是一个脉宽调制信号(PWM),然后将PWM信号放大并还原成模拟音频信号。因此,PWM功放是用脉冲宽度对模拟音频幅度进行模拟的,其信息的传递过程是模拟的、非量化的、非代码性的。并且由于目前器件性能的限制,PWM功放不可能采用太高的采样频率,在性能指标上尚达不到Hi-Fi级的水平。而数字功放采用一些宽度固定的脉冲来数字地量化、编码模拟音频信号,使音频信号的还原更为真实。 二、数字功放和模拟功放的区别 数字功放由于工作方式与传统模拟功放完全不同,因此克服了模拟功放固有的一些缺点,并且具备了一些独有的特点。 1. 过载能力与功率储备 数字功放电路的过载能力远远高于模拟功放。模拟功放电路分为A类、B类或AB类功率放大电路,正常工作时功放管工作在线性区;当过载后,功放管工作在饱和区,出现谐波失真,失真程度呈指数级增加,音质迅速变坏。而数字功放在功率放大时一直处于饱和区和截止区,只要功放管不损坏,失真度不会迅速增加,如图1所示。 图1 全数字功放与普通功放过载失真度比较 由于数字功放采用开关放大电路,效率极高,可达75%"90%(模拟功放效率仅为30%"50%),在工作时基本不发热。因此它没有模拟功放的静态电流消耗,所有能量几乎都是为音频输出而储备,加之前后无模拟放大、无负反馈的牵制,故具有更好的“动力”特性,瞬态响应好,“爆棚感”极强。 2. 交越失真和失配失真 模拟B类功放在过零失真,这是由于晶体管在小电流时的非线性特性而引起的在输出波形正负交叉处的失真(小信号时晶体管会工作在截止区,无电流通过,导致输出严重失真)。而数字功放只工作在开关状态,不会产生交越失真。

浅谈功放与音箱的匹配问题

浅谈功放与音箱的匹配问题 在专业扩声领域里,功放与音箱配置所涉及的方面很多,例如功率匹配、功率储备量匹配、阻抗匹配、阻尼系数的匹配等。在配接时认识到上述几点,可使所用器材的性能得到充分的发挥,达到理想的效果。 1 功率匹配 为了达到高保真聆听的要求,额定功率应根据最佳聆听声压来确定。大家都有这样的感觉:音量小时声音无力、单薄、动态较小、无光泽、低频显著缺少、丰满度差;音量合适时声音自然、清晰、圆润、柔和丰满、有力、动态较大;音量过大时,声音生硬不柔和、毛糙、有刺耳的感觉。因此重放声压级与声音质量有较大关系,规定听音区的声压级最好为80~85 dB(A计权)。可以从听音区到音箱的距离与音箱的特性灵敏度来计算音箱的额定功率与功放的额定功率。 大家都知道,在进行厅堂声学设计时,需要根据一系列计算确定音箱功率,然后再由音箱功率确定功放功率。首先,通常在人耳听域的20 Hz—20 kHz内,集中大量能量的音乐信号一般在中、低频段,高频段能量仅相当于中、低频段能量的1/10,一般音箱高音损失的功率比低音低得多。而功放好比一个电流调制器,它在输入音频信号的控制下,输出大小不同的电流给音箱,使之发生大小不同的声音,在一定阻抗下,可以实现标称功率200W的功放达到400W或几倍的输出,但是功放的失真(THD)将会大大增加,这种失真主要产生在中、低频信号中的高频谐波,其失真越大,高频谐波能量就越大,这些高频失真信号都将随高频音乐信号一同进入高音头,这就是为什么小功率功放推大音箱会发生烧高音头的原因。其次,功放与音箱的功率配置与目标响度以及所使用场合也有一定的关系。在一定目标响度下,应该让音乐信号的动态在每件器材上都能得到充分地保证,如果功放功率太大,其增益设置很小时,响度已达到要求,但这时功放的增益就限制了信号的动态范围。所以,功放功率不能太大,否则,既浪费开支,又会带来响度和音乐动态无法兼顾以及音箱负荷过重的麻烦。 总之,功放的选定必须由音箱决定,在一定的目标响度下,音箱可以比设计值大一些,以备不同用途,而功放的功率应该严格由音箱决定,没有太大的灵活性。功放与音箱功率配

功率放大器(功放)知识讲解

功放基本知识:功放俗称“扩音机”他的作用就是把来自音源或前级放大器的弱信号放大,推动音箱放声。一套良好的音响系统功放的作用功不可没。 功放是音响系统中最基本的设备,它的任务是把来自信号源(专业音响系统中则是来自调音台)的微弱电信号进行放大以驱动扬声器发出声音。 功率放大器简称功放,可以说是各类音响器材中最大的一个家族了,其作用主要是将音源器材输入的较微弱信号进行放大后,产生足够大的电流去推动扬声器进行声音的重放。由于考虑功率、阻抗、失真、动态以及不同的使用范围和控制调节功能,不同的功放在内部的信号处理、线路设计和生产工艺上也各不相同。 分类:按功放中功放管的导电方式不同,可以分为甲类功放(又称A类)、乙类功放(又称B类)、甲乙类功放(又称AB类)和丁类 .功放(又称D类)。 甲类功放是指在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出元件都不会出现电流截止(即停止输出)的一类放大器。甲类放大器工作时会产生高热,效率很低,但固有的优点是不存在交越失真。单端放大器都是甲类工作方式,推挽放大器可以是甲类,也可以是乙类或甲乙类。 乙类功放是指正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类放大器,每一“臂”的导电时间为信号的半个周期。乙类放大器的优点是效率高,缺点是会产生交越失真。 甲乙类功放界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。 丁类功放也称数字式放大器,利用极高频率的转换开关电路来放大音频信号,具有效率高,体积小的优点。许多功率高达1000W的丁类放大器,体积只不过像VHS录像带那么大。这类放大器不适宜于用作宽频带的放大器,但在有源超低音音箱中有较多的应用。 按功放输出级放大元件的数量,可以分为单端放大器和推挽放大器。 单端放大器的输出级由一只放大元件(或多只元件但并联成一组)完成对信号正负两个半周的放大。单端放大机器只能采取甲类工作状态。 推挽放大器的输出级有两个“臂”(两组放大元件),一个“臂”的电流增加时,另一个“臂”的电流则减小,二者的状态轮流转换。对负载而言,好像是一个“臂”在推,一个“臂”在拉,共同完成电流输出任务。尽管甲类放大器可以采用推挽式放大,但更常见的是用推挽放大构成乙类或甲乙类放大器。 按功放中功放管的类型不同,可以分为胆机和石机。 胆机是使用电子管的功放。 石机是使用晶体管的功放。 按功能不同,可以前置放大器(又称前级)、功率放大器(又称后级)与合并式放大器。 功率放大器简称功放,用于增强信号功率以驱动音箱发声的一种电子装置。不带信号源选择、音量控制等附属功能的功率放大器称为后级。

数字功放和模拟功放优缺点对比

数字功放和模拟功放优缺点对比 数字功放的根本电路是早已存在的D类放大器(国内称丁类放大器)。以前,由于价钱和技术上的缘由,这种放大电路只是在实验室或高价位的测试仪器中应用。这几年的技术开展使数字功放的元件集成到一两块芯片中,价钱也在不时降落。理论证明,D类放大器的效率可到达100%。但是,迄今还没有找到理想的开关元件,难免会产生一局部功率损耗,假如运用的器件不良,损耗就会更大些。但是不论怎样,它的放大效率还是到达90%以上。 由于功耗和体积的优势,数字功放首先在能源有限的汽车声响和请求较高的重低音有源音箱中得到应用。随着DVD家庭影院、迷你声响系统、机顶盒、个人电脑、LCD电视、平板显现器和挪动电话等消费类产品一日千里的开展,特别是SACD、DVDAudio等一些高采样频率的新音源规格的呈现,以及声响系统从平面声到多声道环绕系统的进化,都加速了数字功放的开展。近年来,数字功放的价钱呈不时降落的趋向,有关这方面的专利也层出不穷。 一、D类输出功率和耗费功率与AB类功率放大器耗费比例 采用低频音频信号调制一个固定高频频率的脉宽的一种放大器被人们称为D类放大器又有人称为数字音频放大器,他最大的特性是效率特别高(理论上能够到达100%,实践在85%以上),采用十分小的电子器件就能够制造出很大功率的音频放大器。 小功率,即1W-3W的功率放大器而言,在相同播放内容的情况下,AB类功率放大器与D类功率放大器的功率效率各约为AB=15%及D=75%。在播放1W音乐的情况下,AB类功率放大器需求耗费6.7W的功率,但D 类功率放大器在同样的播放条件下只耗费1.33W。因而,运用D类功率放大器可延长电池的运用时间达5倍(6.7W/1.33W)。低功率的运用除了手机,DVD、MP3及PMP之外还有一些盛行产品如iPod、手机、及数字相框。那么中功率的状况下,即10W-30W的功率放大器而言在相同播放内容以语音为主的情况下,AB类功率放大器与D类功率放大器的功率效率分别为AB=25%及D=80%。 在播放10W语音的情况下,AB类功率放大器需求损耗40W的功率,但D类功率放大器在同样的条件下播放只损耗12.5Watts。因而运用D类功率放大器可降低电源的本钱将近3倍(40W/12.5W),而且D类功率放大器所产生的2.5W的热可由普通功率封装及PCB设计即可处置不用额外的散热器。在大功率输出的状况下,即100W-200W的D类数字功率放大器在汽车声响亦将占有一席之地,在此高功率之下D类功率放大器仍免不了运用散热片,但散热面积与散热量比AB类功率放大器所需的要小,由于高效率的缘由,D类功率放大器能够在不启动汽车引擎的情况下有较长的运用时间而不耗费太多电瓶的电量,D类功率放大器成为如今汽车声响的主要应用产品。 二、数字功放和数字化功放、数码功放的区别 所谓的数字化功放只是在前置级上采用数字信号处置的方式,在模仿音频信号或数字音频信号输入后,采用现有的数字音频处置集成电路,完成一些比方声场处置、数字延时、混响等功用,最后再经过模仿功率放大模块停止音频放大。 固然目前各集成电路厂家都推出了数字声场处置、数字卡拉OK和数字杜比解码集成电路。 但是由于目前功放大都只能接纳模仿音频信号,所以各集成电路的接口也大多是模仿的,这就需求重复地停止模/数、数/模转换,由此会引入量化噪声,使音质恶化。全数字功放除了针对扬声器的接口以外(这

功放与喇叭的搭配原则

构建优秀汽车音响系统功放与喇叭的搭配原则 构建一套优秀的汽车音响系统,器材合理的搭配往往可以取得事半功倍的效果。我们在选购功放和喇叭的时候,面对复杂的技术指标,时常感到一头雾水。不知应该如何组合搭配才能取得好的效果,这要求我们需要具备一些的搭配技巧。从技术方面考虑有功率匹配、阻抗匹配、阻尼系数匹配和灵敏度匹配等。另外,音色的匹配也是搭配中必不可少的。 功率匹配 如果功放的功率与喇叭额定功率相当,就要非常注意保持声音不失真,过小的功率配置看起来不会损坏喇叭单元,其实不然,过小的功率极易发生过载削波,产生大量谐波,烧坏高音单元。一般建议功放的功率是喇叭的1.5倍,而低音部份最好超过1.5倍,这样才能获得足够的力量感。而对于要求较高的播放环境,功放的功率起码达到喇叭的2倍。 为了达到高保真聆听的要求,额定功率应根据最佳聆听声压来确定。我们时常有这样的感觉:音量小时、声音乏力、单薄、动态出不来,无润泽、低频显得缺少、丰满度差,声音好像缩在里面出不来。音量合适时,声音自然、清晰、圆润、柔和丰满、有力、动态感很好。但音量过大时,声音尖刺不柔和、粗糙、有扎耳根的感觉。因此重放声压级与声音质量有较大关系,规定听音区的声压级最好为80-85dB(A计权),我们可以从听音区到喇叭的距离与喇叭的特性灵敏度来计算喇叭的额定功率与功放的额定功率。 通常,在选购音响系统时一般来说遵循大功率输出原则。功放的输出功率越大,表明它

们驱动扬声器的能力也越强。功放的功率应大于喇叭的指示功率,如果选用的功率偏小,在长期使用大功率输出时,容易烧坏,还会导致音质差、失真等情况的出现。 对于系统的平均声压级与最大声压级应留有多少余量,应视播放内容和环境而定。这个冗余量最低10dB,对于现代的流行音乐、摇滚等音乐,则需要留有20-25dB冗余量,这样就可使得音响系统安全,稳定地工作。 阻抗匹配 功放与喇叭要适配,阻抗匹配是非常重要的一环。喇叭是功放的负载主体,喇叭的额定阻抗应与功放的额定输出阻抗相等或相近。功放电路应当配接多少额定负载阻抗值,这是生产厂家设计功放的一项基本参数。 当功放的额定输出阻抗与喇叭的额定阻抗相一致时,功放处于最佳设计负载线状态,因此可以给出最大不失真功率,如果喇叭的额定阻抗大于功放的额定输出阻抗,功放的实际输出功率将会小于额定输出功率。如果喇叭的额定阻抗小于功放的额定输出阻抗,音响系统能工作,但功放有过载的危险,要求功放有完善的过流保护措施来解决。 当功放接入过低阻抗的喇叭时,瞬态特性变坏,失真程度将增加本应有更大的功率输出,却造成功率值上不去。当功放连接高于其额定负载阻抗的喇叭时,额定输出功率下降,对其它性能指标影响不大;但若电源电压裕量不大时,可能尚未达到额定功率时,已经发生过载失真。要清楚,当阻抗不匹配时,可能引起功放的阻尼系数变动。功放的阻尼系数是功放负载阻值(主要是喇叭阻抗值)与功放输出内阻之比。当喇叭阻抗值变动时,可引起功放的阻 尼系数变动。

几种常见的光放大器的比较

对几类放大器的认识 在DWDM系统中,特别是超远距离的传输中,由于不可避免的存在光纤信号功率的损失和衰减,所以补偿是必要的。现在常用的放大器有掺铒光纤放大器(EDFA),拉曼放大器(FRA),半导体激光放大器(SOA),光纤参量放大器(OPA)。现就这几类放大器的工作原理和特殊情况做一下说明。 1)掺铒光纤放大器(EDFA) EDFA(Erbiur Doped Fiber Amplifer)是光纤放大器中具有代表性的一种。由于EDFA 工作波长为1550nm,与光纤的低损耗波段一致且其技术已比较成熟,所以得到广泛应用。掺铒光纤是EDFA的核心原件,它以石英光纤作基质材料,并在其纤芯中掺入一定比例的稀土原素铒离子(Er3+)。当一定的泵浦光注入到掺铒光纤中时,Er3+从低能级被激发到高能级,由于Er3+在高能级上寿命很短,很快以非辐射跃迁形式到较高能级上,并在该能级和低能级间形成粒子数反转分布。由于这两个能级之间的能量差正好等于1550nm光子的能量,所以只能发生1550nm光的受激辐射,也只能放大1550nm的光信号。 EDFA的组成: 工作原理图: 那么,EDFA的输出公路车是如何控制的呢? 一般来说,EDFA的输出功率与输入信号光强度,铒纤的长度以及泵浦光的强度。 在EDFA使用的过程中,一般要控制好EDFA的平坦增益,那么不平坦的增益和平坦增益

有什么区别呢? 平坦的输出增益会使EDFA放大的输出功率得到一个稳定的信号增益。 如何控制增益?增益的控制室有2种选择的,一种是掺金属元素,另外一种是GFF定制,所谓的掺金属元素是值得是掺杂金属铝元素。 有上图可以知道,掺铝的金属元素的EDFA在增益的控制上明显要比不掺铝的EDFA平坦的多。 需要注意的是:EDFA在放大信号的同时也放大了噪声,而噪声主要来自EDFA的自身受激辐射,是主要的噪声源,也是系统OSNR劣化的主要原因。 放大器产生的自发辐射噪声功率为:PASE = -58 + NF + G (dBm) 其中NF为光放大器噪声系数(dB)、G为光放大器的增益(dB)

音频功率放大器设计说明

一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节围,高音 10kHz处有±12dB的调节围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源

的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪

相关文档
最新文档