AP1000与M310堆型的主要区别

气焊和气割主要工艺设计参数

在多层焊时,第一、二层应选用较细的焊丝,以后各层可采用较粗的焊丝。一般平焊应比其它焊接位置选用粗一号的焊丝,右焊法比左焊法选用的焊丝要适当粗一些。 2.火焰性质的选择 一般来说,需要尽量减少元素的烧损时,应选用中性焰;对需要增碳及还原气氛时,应选用碳化焰;当母材含有低沸点元素[如锡(Sn)、锌(Zn)等]时,需要生成覆盖在熔池表面的氧化物薄膜,以阻止低熔点元素蒸发,应选用氧化焰。总之,火焰性质选择应根据焊接材料的种类和性能。 由于气焊焊接质量和焊缝金属的强度与火焰种类有很大的关系,因而在整个焊接过程中应不断地调节火焰成分,保持火焰的性质,从而获得质量好的焊接接头。 不同金属材料的气焊所采用焊接火焰的性质参照表2—1。 3.火焰能率的选择 火焰能率指单位时间内可燃气体(乙炔)的消耗量,单位为L/h。火焰能率的物理意义是单位时间内可燃气体所提供的能量。 火焰能率的大小是由焊炬型号和焊嘴号码大小来决定的。焊嘴号越大火焰能率也越大。所以火焰能率的选择实际上是确定焊炬的型号和焊嘴的号码。火焰能率的大小主要取决于氧、乙炔混合气体中,

氧气的压力和流量(消耗量)及乙炔的压力和流量(消耗量)。流量的粗调通过更换焊炬型号和焊嘴号码实现;流量的细调通过调节焊炬上的氧气调节阀和乙炔调节阀来实现。 火焰能率应根据焊件的厚度、母材的熔点和导热性及焊缝的空间位置来选择。如焊接较厚的焊件、熔点较高的金属、导热性较好的铜、铝及其合金时,就要选用较大的火焰能率,才能保证焊件焊透;反之,在焊接薄板时,为防止焊件被烧穿,火焰能率应适当减小。平焊缝可比其它位置焊缝选用稍大的火焰能率。在实际生产中,在保证焊接质量的前提下,应尽量选择较大的火焰能率。 4.焊嘴倾斜角的选择 焊嘴的倾斜角是指焊嘴中心线与焊件平面之间的夹角。详见图2—4。焊嘴的倾斜角度的大小主要是根据焊嘴的大小、焊件的厚度、母材的熔点和导热性及焊缝空间位置等因素综合决定的。当焊嘴倾斜角大时,因热量散失少,焊件得到的热量多,升温就快;反之,热量散失多,焊件受热少,升温就慢。 一般低碳钢气焊时,焊嘴的倾斜角度与工件厚度的关系详见图2—4。一般说来,在焊接工件的厚度大、母材熔点较高或导热性较好的金属材料时,焊嘴的倾斜角要选得大一些;反之,焊嘴倾斜角可选得小一些。 图2-4焊嘴倾斜角与焊件厚度的关系

第四代核反应堆系统简介

第四代核反应堆系统简介 绪言 第四代核反应堆系统(Gen IV)是当前正在被研究的一组理论上的核反应堆,其概念最先是在1999年6月召开的美国核学会年会上提出的。美国、法国、日本、英国等核电发达国家在2000年组建了Gen-IV国际论坛(GIF),并完成制定Gen IV研发目标计划。预期在2030年之前,这些设计方案一般不可能投入商业运行。核工业界普遍认同将,目前世界上在运行中的反应堆为第二代或第三代反应堆系统,以区别已于不久前退役的第一代反应堆系统。在八项技术指标上,第四代核能系统国际论坛已开始正式研究这些反应堆类型。这项计划主要目标是改善核能安全,加强防止核扩散问题,减少核燃料浪费和自然资源的利用,并降低建造和运行这些核电站的成本。并在2030年左右,向商业市场提供能够很好解决核能经济性、安全性、废物处理和防止核扩散问题的第四代核反应堆。 图1 从第一代到第四代核能系统的时间跨越 第一代核反应堆产生于上个世纪70 年代前,其主要目的是生产用于军事目的的铀;第二代核反应堆出现于70 年代,是目前大部分核电站使用的堆型,其目的是降低对石油国家的能源供应依赖;第三代核反应堆是在1979 年美国长岛和1986 年乌克兰切尔诺贝利核电站事故后出现的,主要是增加了安全性,但它并不能很好地解决核废料问题;第四代核反应堆则可以同时很好地解决安全和废料问题。对于第四代核能系统标准且可靠的经济评价,一个完整的核能模式显得十分重要。对于采用新型核能系统的第四代核电站的经济评估,人们需要采用新的评价手段,因为它们的特性大大不同于目前的第二代和第三代核电站。目前的经济模式不适合于比较不同的核技术或核电站,而是用于比较核能和化石能源。 第四代核反应堆的堆型 最初,人们设想过多种反应堆类型。但是经过筛选后,重点选定了几个技术上很有前途且最有可能符合Gen IV的初衷目标的反应堆。它们为几个热中子核反应堆和三种快中子反应

关键质量属性和关键工艺设计参数

关键质量属性关和键工艺参数(CQA&CPP) 1、要求: 生产工艺风险评估的重点将由生产工艺的关键质量属性(CQA)和关键工艺参数(CPP)决定。 生产工艺风险评估需要保证能够对生产工艺中所有的关键质量属性(CQA)和关键工艺参数(CPP)进行充分的控制。 2、定义: CQA关键质量属性:物理、化学、生物学或微生物的性质或特征,其应在适当的限度、范围或分布内,以保证产品质量。 CPP关键工艺参数:此工艺参数的变化会影响关键质量属性,因此需要被监测及控制,确保产产品的质量。 3、谁来找CQA&CPP 3.1 Subject Matter Experts(SME)在某一特定领域或方面(例如,质量部门,工程学,自动化技术,研发,销售等等),个人拥有的资格和特殊技能。 3.2 SME小组成员:QRM负责/风险评估小组主导人、研发专家、技术转移人员(如适用)、生产操作人员、工程人员、项目人员、验证人员、QA、QC、供应商(如适用)等。 3.3 SME小组能力要求矩阵: 4、如何找CQA&CPP 4.1 在生产工艺中有很多影响产品关键质量属性的因素,每个因素都存在着不同的潜在的风险,必须对每个因素充分的进行识别分析、评估,从而来反映工艺的一些重要性质。

4.2 列出将要被评估的工序步骤。工艺流程图,SOP或批生产记录可以提供这些信息。评估小组应该确定上述信息的详细程度来支持风险评估。 例:

文件资源:保证在评估之前已经具备所有必要的文件。 良好培训:保证在开展任何工作之前所有必要的风险评估规程、模板和培训已经就位。 评估会议:管理并规划所有要求的风险评估会议。 例:资料需求单 ICH Q8(R2)‐ QbD‐系统化的方法、 ICHQ9‐质量风险管理流程图 CQA&CPP风险评估工具‐FMEA

核电汽轮机介绍-考试答案-82分

核电汽轮机介绍 1. 由上海电气供货的我国首台出口325MW 核电汽轮机用于哪个哪个国家? ( 3.0 分) A. 印度 B. 土耳其 C. 巴基斯坦 2. 上海电气百万等级核电机组26 平米的低压缸模块末级叶片长度为?( 3.0 分) A. 1420mm B. 1710mm C. 1905mm 我的答案: B √答对 3. 上海电气百万等级核电机组适用于AP1000 的高压缸模块型号为?( 3.0 分) A. IDN70 B. IDN80 C.IDN90 我的答 B √答对 4. 上海电气百万等级核电汽轮机组转速?( 3.0 分)

A. 1500RPM B. 3000RPM C.3600RPM 我的答 A √答对 5. 上海电气百万等级核电机组20 平米的低压缸模块末级叶片长度为?(3.0 分) A. 1420mm B. 1710mm C. 1905mm 我的答案: A √答对 6. 上海电气的山东石岛湾200MW 项目是什么堆型?(3.0 分) A. M310 B. 华龙一号 C. 高温气冷堆 我的答案: C √答对 7. 上海电气出口巴基斯坦的300MW 等级核电汽轮机共有几台?( 3.0 分) A. 2 台 B. 3 台 C. 4 台 我的答案: C √答对 8. 至2018 年 6 月,上海电气已投运核电汽轮机多少台?( 3.0 分)

A. 10 台 B. 11 台 C. 12 台我的答案: C √答对 9. 上海电气百万等级核电机组30 平米的低压缸模块末级叶片长度为?(3.0 分) A. 1420mm B. 1710mm C. 1905mm 我的答案: C √答对 10. 上海电气百万等级核电汽轮机高压缸模块运输方式为?(3.0 分) A. 整缸发运 B. 散件发运 C. 其他 我的答案: A √答对 1. 以下哪些为高温气冷堆堆核电汽轮机特点?( 4.0 分)) A. 进汽参数高 B. 无MSR C.低压缸加强除湿 我的答ABC √答对 2. 以下哪项说法是错误的?( 4.0 分)) A. 2008 年上海电气获得阳江和防城港CPR1000 核电汽轮机订单 6 台

AO工艺设计参数

污水处理A/O工艺设计参数 1.HRT水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 在 A/O工艺中,好氧池的作用是使有机物碳化和使氮硝化;缺氧池的作用是反硝 化脱氮,故两池的容积大小对总氮的去除率极为重要。A/O的容积比主要与该废 水的曝气分数有关。缺氧池的大小首先应满足NO3--N利用有机碳源作为电子供体,完成脱氮反应的需要,与废水的碳氮比,停留时间、回流比等因素相应存在一定的关系。借鉴于类似的废水以及正交试验,己内酷胺生产废水的A/0容积比确定在1:6左右,较为合适。 而本设计的A/ 0容积比为亚:2,缺氧池过大,导致缺氧池中的m(BOD)/m (NO3--N)比值下降,当比值低于1.0时,脱氮速率反趋变慢。另外,缺氧池过大,废水停留时间过长,污泥在缺氧池内沉积,造成反硝化严重,经常出现大块上浮死泥,影响后续好氧处理。后将A/O容积比按1:6改造,缺氧池运行平稳。 1.1、A/O除磷工艺的基本原理 A/O法除磷工艺是依靠聚磷菌的作用而实现的,这类细菌是指那些既能贮存聚磷(poly—p)又能以聚β—羟基丁酸(PHB)形式贮存碳源的细菌。在厌氧、好氧交替条 件下运行时,通过PHB与poly—p的转化,使其成为系统中的优势菌,并可以过 量去除系统中的磷。其中聚磷是若干个基团彼此以氧桥联结起来的五价磷化合物,亦被称为聚磷酸盐,其特点是:水解后生成溶解性正磷酸盐,可提供微生物生长繁殖所需的磷源;当积累大量聚磷酸盐的细菌处于不利环境时,聚磷酸盐可分解释放能量供细菌维持生命。聚β—羟基丁酸是由多个β—羟基丁酸聚合而成的大分子聚 合物,当环境中碳源物质缺乏时,它重新被微生物分解,产生能量和机体生长所需要的物质。这一作用可分为两个过程:厌氧条件下的磷释放过程和好氧条件下的磷吸收过程。 厌氧条件下,通过产酸菌的作用,污水中有机物质转化为低分子有机物(如醋酸等),聚磷菌则分解体内的聚磷酸盐释放出磷酸盐及能量,同时利用 水中的低分子有机物在体内合成PHB,以维持其生长繁殖的需要。研究发现,厌 氧状态时间越长,对磷的释放越彻底。 好氧条件下,聚磷菌利用体内的PHB及快速降解COD产生的能量,将污水中的磷 酸盐吸收到细胞内并转变成聚磷贮存能量。好氧状态时间越长,对磷的吸收越充分。由于好氧状态下微生物吸收的磷远大于厌氧状态下微生物释放出的磷,随着厌氧—好氧过程的交替进行,微生物可以在污泥中形成稳定的种类并占据一定的优势,磷就可以通过系统中剩余污泥的排放而去除(见图1)。

未来十年核电先进堆型介绍

未来十年核电先进堆型介绍 未来十年核电先进堆型介绍IntroductionofAdvancedNuclearReactorsintheDecade 杨孟嘉1任俊生1周志伟2 (1.中国广东核电集团公司技术中心,广东深圳,518124; 2.清华大学核能技术设计研究院,北京,100084) 摘要根据世界核电工业的发展现状,系统讨论了面向2010年核电市场的各种先进核电堆型、设计特点以及主要核电供应商为获得潜在用户进行的商业计划。综述了这些先进核电堆型近期投放市场的技术和商务准备情况。研究工作对近期中国核电工业选择先进核电堆型、确立商用核电技术的主导发展方向和健全完善核电站安全管理法规体系具有一定的参考价值。 关键词先进反应堆核电商业计划 Abstract:Varioustypesofadvancednuclearreactoraimingatnuclearelectricpowermarketaroundtheyear2010,the irdesignfeaturesandthecorrespondingcommercialplansinitiatedbyworldmajorsuppliersofnuclearpo werplantsforobtainingpotentialcustomersaresystematicallydiscussedbytakingintoaccountthecurrent statusofthedevelopmentofnuclearelectricpowerindustryworldwide.Thetechnicalandcommercialpre parednessfordeployingtheseadvancednuclearreactorsinneartermhasbeensummarized.Asareference,t hepresentresearchisofconsiderableforChinesenuclearpowerindustrytoselectadvancedreactortypesan dtodeterminethemaintechnologicaldevelopmentroadmap,andtoestablisheffectivesafetyregulatorygu idelinesinnearfuture. Keywords:AdvancedreactorCommercialplanofnuclearpower 在无温室气体排放的条件下,全球400多座核电站正安全可靠地为人类提供17的电力,这是源于20世纪中叶的核能技术在其沧桑的发展进程中所创造的成就。随着上个世纪六、七十年代投入运行的核电站逐渐达到其40年的运行寿期,核能界一方面向核安全当局提出申请,要求延长运营期限;另一方面在对已有的核电机组实施渐进性设计和运行改进的基础上,面向2010年前后的核电市场,推出第三代(80年代开始发展、90年代末开始投入市场)先进轻水堆核电站和在第一代至第三代核电堆型的基础上经过渐进性设计改进的核电堆型。 本文简略介绍这两类核电堆型。 1ABWR 先进沸水堆(ABWR)是在世界范围内沸水堆(BWR)设计和多年运行经验的基础上发展起来的第三代先进堆型,它基本符合国际上通行的核安全管理规定,基本满足美国用户要求文件(URD)对第三代先进轻水堆安全性、先进性、可靠性和经济性的要求。ABWR 也是一个完成了全部工程设计、并且有实际建造和运行经验的反应堆。

污水处理AO工艺主要设计参数

污水处理中A/O工艺主要设计参数经验总结加简单计算 ①HRT水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:30~100%,具体根据污泥生长所处阶段确定,保证污泥浓度在设计浓度左右 ③混合液回流比:300~400%,混合液回流主要目的是将硝化作用下产生的氨氮送到A段进行反硝化,生成氮气,从而降低总排水氨氮浓度。所以回流比除要调节平衡污泥浓度外,还有促进反硝化反应顺利进行的目的。 ④反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮): <0.05KgTKN/KgMLSS·d ⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD5/KgMLSS·d ⑦混合液浓度x=3000~4000mg/L(MLSS)普通生活废水取高值,部分生化性能较差工业废水,MLSS取值3000以下 ⑧溶解氧(重点项目):A段DO<0.2~0.5mg/L ???? O段DO>2~4mg/L ⑨pH值:A段pH =6.5~7.5 ?????O段pH =7.0~8.0 ⑩水温:硝化20~30℃ ????????????????? 反硝化20~30℃ ⑾碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。???????????????? 反硝化反应还原1gNO3--N将放出2.6g氧,生成3.75g碱度(以CaCO3计)

⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。 ??????????????????????? Ro=a’QSr+b’VX+4.6Nr ?????????????????????????? a’─平均转化1Kg的BOD的需氧量KgO2/KgBOD ????????????????????????? b’─微生物(以VSS计)自身氧化(代谢)所需氧量KgO2/KgVSS·d。 ??????? 上式也可变换为: ???????????????????? Ro/VX=a’·QSr/VX+b’ 或Ro/QSr=a’+b’·VX/QS r ???????????????????? Sr─所去除BOD的量(Kg) ???????????????????? Ro/VX─氧的比耗速度,即每公斤活性污泥(VSS)平均每天的耗氧量KgO2/KgVSS·d ??????????????????? Ro/QSr─比需氧量,即去除1KgBOD的需氧量KgO2/KgBOD 由此可用以上两方程运用图解法求得a’ b’ Nr—被硝化的氨量kd/d???????? 4.6—1kgNH3-N转化成NO3-所需的氧量(KgO2) 几种类型污水的a’ b’值 ⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。

第四代核电站与中国核电的未来

第四代核电站与中国核电的未来 核电是世界三大支柱能源之一,具有清洁、安全、高效的特性。在20世纪末21世纪初的几年里,发生了对世界核电发展产生深远影响的三件大事:美国政府发起了第四代核电站的技术政策研究;俄罗斯总统普京在世界新千年峰会上,发出了推动世界核电发展的倡议;美国总统布什颁布了美国新的能源政策,把扩大核能作为国家能源政策的主要组成部分。 1999年6月,美国能源部(Department of Energy, DOE)核能、科学与技术办公室首次提出了第四代核电站(以下简称第四代核电)的倡议。2000年1月,DOE又发起、组织了由阿根廷、巴西、加拿大、法国、日本、韩国、南非、英国和美国等九个国家参加的高级政府代表会议,就开发第四代核电的国际合作问题进行了讨论,并在发展核电方面达成了十点共识,其基本思想是:全世界(特别是发展中国家)为社会发展和改善全球生态环境需要发展核电;第三代核电还需改进;发展核电必须提高其经济性和安全性,并且必须减少废物,防止核扩散;核电技术要同核燃料循环统一考虑。会议决定成立高级技术专家组,对细节问题作进一步研究,并提出推荐性意见。 同年5月,DOE又组织了近百名国内外专家就第四代核电的一般目标问题进行研讨,目的是选出一个或几个第四代核电的概念,以便进一步开展工作。2001年7月,上述九国成立了第四代核能系统国际论坛(Generation IV International Forum, GIF)并签署了协议。2002年9月19日至20日,GIF在东京召开了会议,参加国家除上述九国外,还增加了瑞士(2002年2月加盟)。会上10国对第四代核电站堆型的技术方向形成共识,即在2030年以前开发六种第四代核电站的新堆型。核电站的分代标志 第一代(GEN-I)核电站是早期的原型堆电站,即1950年至1960年前期开发的轻水堆(light water reactors, LWR)核电站,如美国的希平港(Shipping Port)压水堆(pressurized-water reactor, PWR)、德累斯顿(Dresden)沸水堆(boiling water reactor, BWR)以及英国的镁诺克斯(Magnox)石墨气冷堆等。

核电EPR技术简介

核电EPR技术简介 2010-01-09 10:21 前几天看到台山核电开工的新闻,了解到台山核电使用的是EPR技术,单机容量竟然达到了175万千瓦,为目前世界上单机容量最搜集了一些资料如下。 欧洲先进压水堆EPR技术 1. 欧洲先进压水堆发展情况简介 1993年5月,法国和德国的核安全当局提出在未来压水堆设计中采用共同的安全方法,通过降低堆芯熔化和严重事故概率和提高安全废物处理、维修改进、减少人为失误等方面根本改善运行条件。1998年,完成了EPR基本设计。2000年3月,法国和德国的核安全成了EPR基本设计的评审工作,并于2000年11月颁发了一套适用于未来核电站设计建造的详细技术导则。 EPR是法马通和西门子联合开发的反应堆。2001年1月,法马通公司与西门子核电部合并,组成法马通先进核能公司(Framatome 力公司和德国各主要电力公司参加了项目的设计。法德两国核安全当局协调了EPR的核安全标准,统一了技术规范。新一代核反应堆现已进入建设阶段。 截止2009年1月,世界上尚无已投产发电的EPR堆型商业核电站,在建的EPR堆型核电站有法国的弗拉芒维尔核电站,芬兰的奥尔位于中国广东江门的台山核电站。台山核电站目前处于施工准备阶段,核岛主体土建工程将于2009年夏天正式开始。 2.欧洲先进压水堆EPR设计特点 EPR为单堆布置四环路机组,电功率1525MWe,设计寿命60年,双层安全壳设计,外层采用加强型的混凝土壳抵御外部灾害,内层包括: (1)安全性和经济性高 EPR通过主要安全系统4列布置,分别位于安全厂房4个隔开的区域,简化系统设计,扩大主回路设备储水能力,改进人机接口,系设计安全水平。设计了严重事故的应对措施,保证安全壳短期和长期功能,将堆芯熔融物稳定在安全壳内,避免放射性释放。 EPR考虑内部事件的堆芯熔化概率6.3×10-7/堆年,在电站寿期内可用率平均达到90%,正常停堆换料和检修时间16天,运行维护成建造EPR的投资费用低于1300欧元/千瓦,发电成本低于3欧分/kWh。 (2)严重事故预防与缓解措施 EPR设计中考虑了以下几类严重事故: 高压熔堆;氢气燃烧和爆炸;蒸汽爆炸;堆芯熔融物;安全壳内热量排出。 为避免高压熔堆事故发生,在为对付设计基准事故设置3个安全阀(3×300t/h)的基础上,EPR专门设置了针对严重事故工况的卸压过卸压箱排到安全壳内。当堆芯温度大于650℃时,操纵员启动专设卸压装置,可以有效避免压力容器超压失效,并防止压力容器失针对氢气燃烧和爆炸的危险,EPR在设计中采用大容积安全壳(80000m3)。在设备间布置了40台大型氢复合器,在反应堆厂房升降算分析氢气产生量、氢气分布和燃烧导致的压力载荷,结果表明采取上述措施后氢气产生的危险不会威胁安全壳的完整性。 对于蒸汽爆炸事故,EPR在RPV设计中没有设置特殊的装置。通过选择相关事故和边界条件,计算判断RPV封头允许承受的载荷能力容器内蒸汽爆炸已基本消除,不需要设置特殊的装置对付蒸汽爆炸事故。已做的试验显示熔融物不会像以前假设的那样爆炸(极低在进行中。 对于堆芯熔融物,在EPR设计中,RPV失效前堆坑内保持干燥,RPV失效后堆芯熔融物暂时滞留在堆坑内,然后进入专用的展开隔料,保护熔融物中残余的锆,降低了氧化物的密度和温度,改善了展开条件。在展开区域设有氧化锆防护层,防护层底下设有冷却管线并淹没熔融物,从两边对熔融物进行冷却,避免底板熔穿和安全壳失效。 对于安全壳内热量排出,EPR设计有带外部循环的安全壳喷淋系统,2个系列,可以在较短的时间内降低安全壳温度和压力。该系统物的工作模式,并能长时间防止蒸汽产生,长期地将熔融物和安全壳中的热量导出。 (3)仪控系统和主控室设计 EPR的仪控系统和主控室采用成熟的设计,充分吸取已运行电站数字化仪控系统、人机接口等经验反馈,吸取先进技术设备的优点。的不同区域,避免发生共模失效。主控室与N4机组的高度计算机化控制室相同,专门设有用于维护和诊断工作的人机接口。 EPR是法马通和西门子联合开发的反应堆。2001年1月,法马通公司与西门子核电部合并,组成法马通先进核能公司(Framatome

年产5万吨木薯酒精工艺设计主要参数

年产5万吨木薯酒精工艺设计主要参数 一、物料、热能衡算 1 鲜木薯1085吨/日(淀粉含量按29%) 2 干木薯450吨/日(淀粉含量按68%) 3 硫酸2000公斤/日(浓度为98%) 4 淀粉酶250公斤/日(酶活力为2万单位) 5 糖化酶500公斤/日(酶活力为10万单位) 6 烧碱250公斤/日(固体) 7 水20000M3/日回收利用按50%计算10000M3/日 8 蒸汽670吨/日 9电33200千瓦/日 二、主要设备 1 干式粉碎机25~30吨/小时110千瓦电动机(二台) 2 风机90千瓦电动机(一台) 3螺旋输送机Ф1.2米一个 4旋风分离器Ф1.4米一个 5洗涤塔 4.5M3 Ф1500×2500 一个 6预煮锅35M3/个二个Ф3000×5000 7搅拌器3档Ф1米轴功率11千瓦2套 8料泵流量100M3/小时不锈钢(2台) (型号100IND-30 )

9 蒸煮锅40M3/个4个Ф1300×10000 10 液化喷射器(智能型) 1台45M3/小时 11汽液分离器30M3/个1个Ф2000×10000 12 真空罐1个Ф3500×4500 13 膜冷 1个Ф1400×4500 14 水力喷射器 1台 3000升/小时 13糖化锅40M3/个Ф3200×48002个 14搅拌器3档Ф1米轴功11千瓦 15料泵流量100M3/小时2台(型号:100IND-30 )16螺旋板冷却器150㎡ 1台 17酒母罐 50M3/个 1个 18 蛇管冷却 30㎡/组 19 发酵罐 500M3/个 14个 20螺旋板冷却器 100㎡/个 2台 80㎡/个 4台 60㎡/个 2台 21发酵料泵流量 50M3/小时 24台(型号:80IND-30) 22 成熟醪泵流量 100M3/小时 2台(型号:100IND-40) 23 硫酸贮罐 20M3/个 2个 24硫酸计量罐 2M3/个 1个 25 耐酸泵功率 2~3千瓦 2台(型号:25FB-25 ) 26粗馏塔Ф2.8米 24~26层塔板板距 450~500㎜

垃圾焚烧发电工艺设计参数的计算方法

垃圾焚烧发电工艺设计参数的计算方法 浙江旺能环保股份有限公司作者:周玉彩 摘要:本文介绍了垃圾焚烧发电炉排炉、汽轮机组工艺设计的参数计算方法。 关键词:参数、垃圾、焚烧、炉排、汽轮机组。 前言: 生活垃圾焚烧发电应用于环境保护领域,实现城市生活垃圾的无害化、减量化、减容化和资源化、智能化处理,达到节能减排之目的。在生活垃圾焚烧发电工艺设计流程中首先进行垃圾焚烧发电炉排炉工艺设计参数的计算,为后续设计提供参数依据。 一、生活垃圾焚烧炉排炉工艺设计参数的计算 1、待处理生活垃圾的性质 1.1待处理生活垃圾主要组成成分 表1:待处理生活垃圾的性质 表2:待处理生活垃圾可燃物的元素分析(应用基)% 表3:要求设计主要参数 1.2 根据垃圾元素成分计算垃圾低位热值: LHV=81C+246H+26S-26O-6W (Kcal/Kg) =81*20.6+246*0.9+26*0.12-26*0.12-6*47.4=1388(Kcal/Kg)*4.18=5800(KJ/Kg)。 1.3根据垃圾元素成分计算垃圾高位热值: HHV={LHV+600*(W+9H)}*4.18={1388+600(0.474+9*0.009)}*4.18=7193.78(KJ/Kg)。 2、处理垃圾的规模及能力 焚烧炉3台: 每台炉日处理垃圾350t;

处理垃圾量: 1000t/24h=41.67(t/h); 炉系数:(8760-8000)/8000=0.095; 实际每小时处理生产能力:41.67*(1+0.095)=45.6(t/h); 全年处理量: 45.6*8000=36.5*104t; 故:每台炉每小时处理垃圾量:350/24*1.05=15.3(t/h)。 3、设计参数计算: 3.1垃圾仓的设计和布置 已知设计中焚烧炉长度L=75.5米,宽D=18.5米,取垃圾仓内壁与炉长度对齐,T=5d,垃圾的堆积密度取0.35t/m3 求:垃圾的容积工程公式:V=a*T 式中: V----垃圾仓容积m3; a--- 容量系数,一般为 1.2~1.5,考虑到由于垃圾仓存在孔角,吊车性能和翻 仓程度以及有效量的缺陷,导致垃圾仓可利用的有效容积小于几何容积; T--- 存放时间,d;根据经验得出适合燃烧存放天数,它随地区及季节稍有变化; V=a*T=1.2*5*1000/0.35=17142.86(m3 )。 故:垃圾仓的容积设计取18000(m3)。 垃圾仓的深度为Hm Hm=L*D/V=18000/75.5*18.5=12.88(m)。 故:垃圾池全封闭结构,长75.5米,宽18.5米,总深度以6米卸料平台为基准负13米。 3.2焚烧炉的选择与计算 (1)焚烧炉的加料漏斗 焚烧炉的加料漏斗挂在加料漏斗层,通过垃圾吊车将间接垃圾供料变为均匀加料,漏斗的容积要能满足“1h”内最大焚烧量。 垃圾通过竖溜槽送到给料机,垃圾竖溜槽可通过液压传动闸板关闭,竖溜槽的尺寸选择要满足溜槽中火焰密封闭合,给料机根据要求向焚烧炉配送垃圾,每台炉安装配合给料机传动用液压汽缸,液压设备由每台炉生产线控制中心控制。 料斗的容积V D V D=G/24*Kx/ρL 式中: V D---料斗的容积(m3); G--- 每台炉日处理垃圾的量,(t/h);

第四代核能系统介绍

目前世界大多数国家电力市场上的竞争日趋激烈,迫使电力生产商和它们的供应商更加关注它们的运行成本和投资的盈利能力。现有的核电系统在这样的市场上显得初投资太高、建设期太长和项目规模太大。核工业要生存下去并保持繁荣,就需要执行商业化的、以利润为导向的方针。从总体上看,核动力在中期和远期的市场中都具有竞争潜力。但是,要使这种潜力变为现实,还要在许多方面付出极大的努力,包括必须能在不危及安全的前提下大幅度降低成本,包括运行和维护费用,并使电厂的可利用率达到较高水平。面对上述挑战,国际核能界正在进行多方面的研究和调整,其中一项举措就是对第四代核能系统的研发。包括有关国家政府、工业界、电力公司、大学、实验室、研究院所都不同程度地关注或参与这个研发。每年的研发费用超过20亿美元。按广泛被接受的观点,已有的核能系统分为三代:(1)上个世纪50年代末至60年代初建造的第一批原型核电站;(2)60年代至70年代大批建造的单机容量在600~1400 MW的标准型核电站,它们是目前世界上正在运行的439座核电站(2002年6月统计数)的主体;(3)80年代开始发展、在90年代末开始投入市场的先进轻水堆(AL WR)核电站。 Gen-IV的概念最先是在1999年6月召开的美国核学会年会上提出的。在当年11月该学会冬季年会上,进一步明确了发展Gen-IV的设想。美国、法国、日本、英国等核电发达国家在2000年组建了Gen-IV国际论坛,拟用2~3年的时间完成制定Gen-IV研发目标计划。这项计划总的目标是在2030年左右,向市场上提供能够很好解决核能经济性、安全性、废物处理和防止核扩散问题的Gen-IV。 2 Gen-IV的研发目标目前Gen-IV先进核能系统的概念还比较模糊,国际上也没有一个确切的定义。但是,这里已经明确的是"先进核能系统",而非"先进反应堆"。其应满足安全、经济、可持续发展、极少的废物生成、燃料增殖的风险低等基本标准。具体来说,研发Gen-IV的目标有三类: 2.1 可持续能力目标按照比较权威的定义,可持续能力的本质是如何维系地球生存支持系统去满足人类基本需求的能力。对一个特定系统而言,是其在规定目标和预设阶段

超高温气冷堆介绍

超高温气冷堆(VHTR)调研报告

目录 0.引言 (3) 1.发展历史 (3) 1.1 高温气冷堆—实验堆 (3) 1.2 高温气冷堆—原型堆 (3) 1.3 高温气冷堆-模块式 (4) 2.目前各个国家的发展状况 (4) 3.VHTR反应堆结构 (5) 4.VHTR堆型的优缺点 (8) 5.VHTR发展趋势 (9) 5.1 前景展望 (9) 5.2 VHTR需要填补的技术缺口 (10) 6.总结 (11) 参考文献 (12)

0.引言 未来十几年,全世界都需要能源和优化能源基础建设来满足日益增长的电力和运输用燃料的需要。第四代国际核能论坛(GIF)确定的6种核能系统概念具有满足良好的经济性、安全性、可持续性、防核扩散和防恐怖袭击等目标的绝对优势。 在第四代核能系统概念中,超高温气冷反应堆VHTR(Very High Temperature Reactor)作为高温气冷反应堆渐进式开发过程中下一阶段的重点对象,第四代国际核能论坛(GIF)已将VHTR列入研发计划。VHTR将反应堆出口温度比HTGR提高100℃,达到1000℃或以上,对所用燃料和材料提出了更高要求,实现制氢的工艺设计也需要研发创新。目前,多个国家和组织投入力量,正给予重点研发。我国也将高温气玲堆电站列入中长期科学和技术发展重大专项规划,希望近期取得重大技术突破。 1.发展历史 VHTR(Very High Temperature Reactor)是高温气冷反应堆渐进式开发过程中下一阶段的重点对象,而高温气冷堆的发展主要经历了以下阶段[1]。 1.1 高温气冷堆—实验堆 英国1960年建造20MW实验堆“龙堆”(Dragon)。 美国1967年建成40MW的桃花谷(Peach Bottom)实验堆。 德国1967年建成15MW的球床高温气冷堆(A VR),并发展了具有自己特色的球形燃料元件和球床高温堆。 这三座实验堆的成功运行,证明了高温气冷堆在技术上是可行的。 1.2 高温气冷堆—原型堆 美国1968年建造330MW圣·符伦堡(Fort Stvrain)电站,1976年并网发电。 德国1971年建造300MW钍高温球床堆THTR-300,1985年并网发电。 高温气冷堆在设计、燃料和材料的发展、建造和运行方面都积累了成功的经验,开始进入发电应用的商用化阶段。

核电站简介

核电站简介 核电站是利用核裂变或核聚变反应所释放的能量产生电能的发电厂。目前商业运转中的核能发电厂都是利用核裂变反应而发电。核电站一般分为两部分:利用原子核裂变生产蒸汽的核岛(包括反应堆装置和一回路系统)和利用蒸汽发电的常规岛(包括汽轮发电机系统),使用的燃料一般是放射性重金属:铀、钚。 1、简介: 核电站又称核电厂,它指用铀、钚等作核燃料,将它在裂变反应中产生的能量转变为电能的发电厂。核电厂主要以反应堆的种类相区别,有压水堆核电厂、沸水堆核电厂、重水堆核电厂、石墨水冷堆核电厂、石墨气冷堆核电厂、高温气冷堆核电厂和快中子增殖堆核电厂等。核电厂由核岛(主要是核蒸汽供应系统)、常规岛(主要是汽轮发电机组)和电厂配套设施三大部分组成。核燃料在反应堆内产生的裂变能,主要以热能的形式出现。它经过冷却剂的载带和转换,最终用蒸汽或气体驱动涡轮发电机组发电。核电厂所有带强放射性的关键设备都安装在反应堆安全壳厂房内,以便在失水事故或其他严重事故下限制放射性物质外溢。为了保证堆芯核燃料在任何情况下等到冷却而免于烧毁熔化,核电厂设置有多项安全系统。 火力发电站利用煤和石油发电,水力发电站利用水力发电,而核电站是利用原子核内部蕴藏的能量产生电能的新型发电站。核电站大体可分为两部分:一部分是利用核能产生蒸汽的核岛,包括反应堆装置和一回路系统;另一部分是利用蒸汽发电的常规岛,包括汽轮发电机系统。 核电站用的燃料是铀。铀是一种很重的金属。用铀制成的核燃料在一种叫“反应堆”的设备内发生裂变而产生大量热能,再用处于高压力下的水把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动气轮机带着发电机一起旋转,就会产生电,这些电能通过电网送到四面八方。这就是最普通的压水反应堆核电站的工作原理。 2、工作原理: 核电站以核反应堆来代替火电站的锅炉,以核燃料在核反应堆中发生特殊形式的“燃烧”产生热量,使核能转变成热能来加热水产生蒸汽。利用蒸汽通过管路进入汽轮机,推动汽轮发电机发电,使机械能转变成电能。一般说来,核电站的汽轮发电机及电器设备与普通火电站大同小异,其奥妙主要在于核反应堆。核反应堆,又称为原子反应堆或反应堆,是装配了核燃料以实现大规模可控制裂变链式反应的装置。原子由原子核与核外电子组成。原子核由

核电厂主要生产系统要点

核电厂主要生产系统 核电厂的分类的主要依据是反应堆堆型,按堆型分类世界上已投入运行的核电厂有以下几种: 1)压水堆核电厂 这种核电厂的优点是:反应堆的结构简单,功率密度高;汽轮机不带放射性,勿需采取防护措施。 这种核电厂的缺点是:系统复杂,设备多;为得到较高的蒸汽参数,反应堆及一回路设备都要在很高的压力下工作,使其设计、制造困难。 1950年美国海军把推进动力研究集中在压水型反应堆上,1954年魟鱼号核潜艇下水。随后,美国压水型反应堆由于陆上核电厂的建设,并得到了迅猛发展。 2)沸水堆核电厂 这种核电厂的优点是:系统简单(只有一个回路,设备少。无蒸汽发生器、稳压器、主泵及一回路主管道等);在反应堆压力低的情况下可获得相对高的蒸汽参数。 这种核电厂的缺点是:反应堆结构复杂,功率密度低;汽轮机带有放射性,要采取防护措施。 沸水堆核电厂发展的很快,1960年美国第一座示范性沸水堆核电厂投入运行以后,目前单机最大功率已达1300MW。 3)重水反应堆核电厂 这种核电厂的优点是:用天然铀作燃料,提高了铀资源的利用率,降低了燃料的成本;采用压力管,省去技术复杂、制造困难、价格昂贵的压力壳;能不停堆换料。 这种核电厂的缺点是重水昂贵,发电成本高。 1956年,加拿大建成了实验性的重水堆核电厂,后来又建造了电功率为540MW和750MW的重水堆核电机组。 4)石墨气冷堆核电厂 这种核电厂的优点是:用天然铀作燃料成本低;获得的蒸汽参数高,且为过热蒸汽。

这种核电厂的缺点是:功率密度小,反应堆体积庞大;燃料装量大,燃耗浅,自耗功大,发电成本高。 前苏联自第一座核电厂开始,一直在设计、建造石墨水冷堆核电厂,并在国内建造了一批功率为1000MW的这种核电机组。 5)快中子堆核电厂 这种核电厂的优点是:可使对轻水堆来说是核废料的U238,变成可用的核燃料,大大提高铀资源的利用率。 这种核电厂的缺点是:钠的腐蚀性强,对设备、管道的材料要求高;钠在空气中会燃烧,在水中会爆炸-钠水反应,故危险性大。 快中子堆是最有发展前途的核电厂。因为它是一种增殖堆,能大量利用“核废料”。1951年美国实验快堆首次从核反应堆发电点亮4个灯泡。虽然世界上发达的国家已建成10多座快中子堆核电机组,但均为实验性的原型堆,尚有许多技术问题有待解决。 到2008年7月份,我国有9台压水堆核电机组、2台重水堆核电机组在商业运行,有16台压水堆核电机组、1台高温气冷堆核电机组以及一座实验快堆正在建设中。目前世界上最先进的第三代压水堆是美国AP1000和法国与德国联合开发的欧洲先进堆EPR,我国将分别在山东海阳、浙江三门和广东台山建设这两种机组。 1压水堆核电厂系统构成 压水堆核电厂是以压水反应堆将裂变能转换为热能发电的,是目前世界上选用最多的堆型。压水堆核电厂是以高压欠热水作为慢化剂和冷却剂,一回路高压高温水通过蒸汽发生器使二回路水生成蒸汽送到汽轮发电机进行发电。图1.2-1为压水堆核电厂系统原理图。

V型滤池工艺的介绍与设计参数

(1)过滤过程: 待滤水由进水总渠经进水阀和方孔后,溢过堰口再经侧孔进入被待滤水淹沿的V型槽,分别经槽底均匀的配水孔和V型槽堰进入滤池。被均质滤料滤层过滤的滤后水经长柄滤头流入底部空间,由方孔汇入气水分配管渠,在经管廊中的水封井、出水堰、清水渠流入清水池。 (2)反冲洗过程: 关闭进水阀,但有一部分进水仍从两侧常开的方孔流入滤池,由V型槽一侧流向排水渠一侧,形成表面扫洗。而后开启排水阀将池面水从排水槽中排出直至滤池水面与V型槽顶相平。反冲洗过程常采用“气冲→气水同时反冲→水冲”三步。 气冲打开进气阀,开启供气设备,空气经气水分配渠的上部小孔均匀进入滤池底部,由长柄滤头喷出,将滤料表面杂质擦洗下来并悬浮于水中,被表面扫洗水冲入排水槽。 气水同时反冲洗在气冲的同时启动冲洗水泵,打开冲洗水阀,反冲洗水也进入气水分配渠,气、水分别经小孔和方孔流入滤池底部配水区,经长柄滤头均匀进入滤池,滤料得到进一步冲洗,表扫仍继续进行。 停止气冲,单独水冲表扫仍继续,最后将水中杂质全部冲入排水槽。

V型滤池的工艺设计、施工安装和自动控制

滤池有多种型式,以石英砂作为滤料的普通快滤池使用历史悠久。在此基础上,人们从不同的工艺角度发展了其它型式的快滤池。V型滤池就是在此基础上由法国德利满公司在70年代发展起来的。V型滤池采用了较粗、较厚的均匀颗粒的石英砂滤层;采用了不使滤层膨胀的气、水同时反冲洗兼有待滤水的表面扫洗;采用了气垫分布空气和专用的长柄滤头进行气、水分配等工艺。它具有出水水质好、滤速高、运行周期长、反冲洗效果好、节能和便于自动化管理等特点。因此70年代已在欧洲大陆广泛使用。80年代后期,我国南京、西安、重庆等地开始引进使用。90年代以来,我国新建的大、中型净水厂差不多都采用了V型滤池这种滤水工艺,特别是广东省新建的净水厂几乎都采用了V型滤池。91年至94年我公司在沙口水厂(50万m3/d)的建设中,首次自行设计、施工安装了V型滤池。此后我们就开展了V型滤池的设计与安装这项工作。我们先后帮高明、中山小榄、中山东凤、顺德龙江、三水、广宁、汕头、惠州等兄弟自来水公司设计和安装了V 型滤池。在近十年来的V型滤池的设计、施工安装以及自动控制过程中,我们取得了一定的实践经验,有以下几点工作体会: 一、研究掌握V型滤池结构、工作原理、工艺特点 滤池是水厂净水工艺中的重要环节,而滤池过滤能力的再生,是滤池稳定高效运行的关键。若采用较好的反冲洗技术,使滤池经常处于最优条件下工作,不仅可以节水、节能,还能提高水质,增大滤层的截污能力,延长工作周期,提高产水量。而V型滤池过滤能力的再生,就采用了先进的气、水反冲洗兼表面扫洗这一技术。因此滤池的过滤周期比单纯水冲洗的滤池延长了75%左右,截污水量可提高118%,而反冲洗水的耗量比单纯水冲洗的滤池可减少40%以上。滤池在气冲洗时,由于用鼓风机将空气压入滤层,因而从以下几方面

中国实验快堆-第四代堆型-未来核电的主要方向

中国实验快堆工程 ——核燃料越烧越多,核废料越烧越少 工程总投资:13.88亿元 工程期限:1995年——2010年 北京房山区中国原子能科学研究院内建设的中国第一座钠冷池式快中子增殖反应堆。 长久以来,核电一直被认为是人类在和平利用核能方面的伟大创举,目前全世界已有核电站400多座,占全世界发电总量的17%。核电凭借其安全、高效、清洁的诸多特性,开始为越来越多的国家重视。美国和欧洲许

多国家经历了20世纪80年代初到90年代末的反核浪潮之后,又开始大力发展核电,可以预见在未来的20年内,世界范围内将掀起新一轮发展核电的热潮。亚洲则以中国庞大的核电建设计划震撼世界,按照规划中国将在2020年前新建58座百万千瓦核电机组,这相当于目前日本核电机组的总数。 但是大规模的核电建设计划,对于日益枯竭的铀矿资源而言,是个矛盾日深的关系。其关键症结在于目前国际上使用的压水堆核电站存在核燃料利用率低的问题,铀矿资源中只有占蕴藏量0.66%的铀-235能够在提纯处理后作为核电站燃料,而其余占天然铀99.2%以上的铀—238则只能做核废料处理。预计到2030年,世界上易开采的低成本铀资源的80%都将被消耗掉。而那时,正是我国核电事业大发展时期,核电站可能出现无米下锅的尴尬局面。 而快中子增殖反应堆则完全能够解决这一问题,它可以将带有放射性的铀—238从核废料变成核燃料,使铀矿资源利用率从1%提高到70%以上。一举解决铀矿资源枯竭,核材料利用率低,和核废料难以处理等三大棘手问题。因此开发快中子增殖反应堆,对于充分利用我国铀资源、持续稳定地发展核电、解决后续能源供应等问题具有重大的战略意义。

相关文档
最新文档