曲线的参数方程

曲线的参数方程
曲线的参数方程

教学目标

1、理解曲线参数方程的概念,能选取适当的参数建立参数方程;

2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义;

3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中,形成数学抽象思维能力,初步体验参数的基本思想。

教学重点

曲线参数方程的概念。

教学难点

曲线参数方程的探求。

教学过程

(一)曲线的参数方程概念的引入

引例:

2002年5月1日,中国第一座身高108米的摩天轮,在上海锦江乐园正式对外运营。并以此高度跻身世界三大摩天轮之列,居亚洲第一。

已知该摩天轮半径为51.5米,逆时针匀速旋转一周需时20分钟。如图所示,某游客现在点(其中点和转轴的连线与水平面平行)。问:经过秒,该游客的位置在何处?

引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决

(1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;

3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;

4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。)

(二)曲线的参数方程

1、圆的参数方程的推导

(1)一般的,设⊙的圆心为原点,半径为,所在直线为轴,如图,以为始边绕着点按逆时针方向绕原点以匀角速度作圆周运动,则质点的坐标与时刻的关系该如何建立呢?(其中与为常数,为变数)

结合图形,由任意角三角函数的定义可知:

为参数①

(2)点的角速度为,运动所用的时间为,则角位移,那么方程组①可以改写为何种形式?结合匀速圆周运动的物理意义可得:为参数②

(在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力)

(3)方程①、②是否是圆心在原点,半径为的圆方程?为什么?

由上述推导过程可知:对于⊙上的每一个点都存在变数(或)的值,使,(或,)都成立。

对于变数(或)的每一个允许值,由方程组所确定的点都在圆上;

(1、对曲线的方程以及方程的曲线的定义进行必要的复习;2、学生从曲线的方程以及方程的曲线的定义出发,可以说明以上由变数(或)建立起来的方程是圆的方程;)

(4)若要表示一个完整的圆,则与的最小的取值范围是什么呢?

 ,

(5)圆的参数方程及参数的定义

我们把方程①(或②)叫做⊙的参数方程,变数(或)叫做参数。

(6)圆的参数方程的理解与认识

(ⅰ)参数方程与是否表示同一曲线?为什么?

(ⅱ)根据下列要求,分别写出圆心在原点、半径为的圆的部分圆弧的参数方程:

①在轴左侧的半圆(不包括轴上的点);

②在第四象限的圆弧。

(通过具体问题的解决,加深对圆的参数方程的理解与认识,体会到参数的取值范围也是圆的参数方程的重要组成部分;并为曲线的参数方程的定义及其理解与认识作铺垫。)

(7)曲线的参数方程的定义

(ⅰ)一般地,在平面直角坐标系中,如果曲线上任意一点的坐标、都是某个变数的函数③,并且对于的每一个允许值,由方程组③所确定的点都在这条曲线上,那么方程组③就叫做这条曲线的参数方程。变数叫做参变量或参变数,简称参数。

(ⅱ)相对于参数方程来说,直接给出曲线上点的坐标、间关系的方程叫做曲线的普通方程。

(8)曲线的参数方程的理解与认识

(ⅰ)参数方程的形式;

(横、纵坐标、都是变量的函数,给出一个能唯一的求出对应的、的值,因而得出唯一的对应点;但横、纵坐标、之间的关系并不一定是函数关系。)

(ⅱ)参数的取值范围;

(在表述曲线的参数方程时,必须指明参数的取值范围;取值范围的不同,所表示的曲线也可能会有所不同。)

(ⅲ)参数方程与普通方程的统一性;

(普通方程是相对参数方程而言的,普通方程反映了坐标变量与之间的直接联系,而参数方程是通过变数反映坐标变量与之间的间接联系;普通方程和参数方程是同一曲线的两种不同表达形式;参数方程可以与普通方程进行互化。)

(ⅳ)参数的作用;

(参数作为间接地建立横、纵坐标、之间的关系的中间变量,起到了桥梁的作用。)(ⅴ)参数的意义。

(如果参数选择适当,参数在参数方程中可以有明确的几何意义,也可以有明确的物理意义,可以给问题的解决带来方便。即使是同一条曲线,也可以用不同的变数作为参数。)

(三)巩固曲线的参数方程的概念

例题1:

(1)质点开始位于坐标平面内的点处,沿某一方向作匀速直线运

动。水平分速度厘米/秒,铅锤分速度厘米/秒,

(ⅰ)求此质点的坐标与时刻(秒)的关系;

(ⅱ)问5秒时质点所处的位置。

(2)写出经过定点,且倾斜角为的直线的参数方程。

问题:作出例题1中两小题的直线图像,判断它们的位置关系;从中你能得到什么启示呢?(第一小题通过运动质点的位置与时间有关建立表现质点位置的参数方程;第二小题通过选取适当的参数建立直线的参数方程;从而使学生了解参数的选取有多种方法,同一曲线可以由不同的参数方程来表示。)

例题2:已知点在圆:上运动,求的最大值。

(通过普通方程化为参数方程求得函数的最值,使学生初步体验参数方程的作用与意义。)(四)课堂小结

1、知识内容:知道圆的参数方程以及曲线参数方程的概念;能选取适当的参数建立参数方程;

通过对圆和直线的参数方程的研究,理解其中参数的意义。

2、思想与方法:参数思想。

(引导学生回顾本节课的学习过程,小结与交流学习体会,包括数学知识的获得,数学思想方法的领悟。)

(五)作业

课本,练习17.1(1),第2、3题。

(六)思考

(1)若圆的一般方程为,你能写出它的一个参数方程吗?

(2)针对引例中的实际情况,游客总是从摩天轮的最低点登上转盘。若某游客登上转盘的时刻记为,则经过时间该游客的位置在何处?在引例所建立的坐标系下,你能否通过建立相对应的参数方程,并得到游客的具体位置呢?

教学设计说明

一、教材分析

本节课所用的教材是由上海教育出版社出版的上海市高中三年级(理科)数学课本,内容为第十七章第一节,第一课时。

“参数方程和极坐标方程”这一章节内容是在“圆锥曲线”这一章的基础上进一步展开研究曲线的方程。学习曲线的参数方程是为了进一步探讨直线、圆锥曲线的性质,也是进一步学习数学、运动学的基础,它在生产实践中有很多实际的应用。本章主要学习参数方程的基本概念、基本原理、基本方法,因此在教学中要求应适当,难度要控制,基本应以课本例题与习题为主。

通过本章节的教学应使学生感悟到现实世界的问题是多种多样的,仅用一种坐标系,一种方程来研究各种不同的问题是不适合的,有时难以获得满意的效果。参数方程有其自身的优越性,学习参数方程有其必要性。通过学习参数方程的有关概念,以及方程之间、坐标之间的互化,使学生感悟到坐标系及各种方程的表示方法是可以视实际需要,主观能动的加以选择的。

“曲线的参数方程”为本章节的第一部分。主要让学生了解参数方程的有关概念,通过探索圆锥曲线的参数方程初步掌握求曲线的参数方程的方法,并且在此基础上进行参数方程与普通方程的互化及其简单应用。

二、教学目标设计

根据以上分析,本节课设置的教学目标为:

1、理解曲线参数方程的概念,能选取适当的参数建立参数方程。

2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义。

3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中,培养数学抽象思维能力,初步体验参数的基本思想。

三、教学过程设计

我校是上海市示范型高中,我校的学生数学基础良好,思维活跃,具备一定的分析问题和自主探究能力。因此在教学设计中强调学生的自主探究,强调数学思想方法的渗透与运用,希望加深学生对知识本质的理解。

本课设置如下教学环节以体现重点,突破难点,实现教学目标。

1、作为曲线的参数方程的概念课,一味的灌输是不可取的。而是要让学生体会到为什么要建立曲线的参数方程,感受其产生的必要性、合理性以及可行性。因此,由“摩天轮”这一生活中的实例引入,一方面使学生了解参数方程是基于生产、生活发展的实际需要而产生的,在引发学生研究的兴趣时,通过对问题的解决,使学生体会到仅仅运用一种方程来研究不同

的问题不一定方便,往往难以获得满意的结果,从而了解研究曲线的参数方程的必要性;另一方面通过具体问题的解决,找到解决问题的途径,也为圆的参数方程的研究作必要的准备。

2、由特殊到一般,从具体到抽象。以“引导设问”为主线,学生通过对问题的思考和解答,体验学习过程,自主探索和获取知识,从而得到圆的参数方程。同时在探索的过程中也提高学生的数学抽象思维能力。

3、作为一堂概念课,学生对于概念的理解必须精确,深入,为后续课程打下扎实的基础,教师必须在这一环节进行深入的分析。

因此,在圆以及曲线的参数方程的概念引入之后,针对参数方程的形式、参数的取值范围、参数方程与普通方程的统一性、参数的作用以及参数的意义进行深入的理解与探讨。通过这一环节,学生活跃的思维逐步从感性上升到理性;同时,对于概念的理解得到巩固与深化。通过加强师生交流、关注学生思维,把握课堂教学重点,让学生体验知识产生的原因,发展的过程及其应用的价值。

4、在本节课中,设计了适当的练习与例题。一方面可以巩固学生对曲线的参数方程概念的理解认识;另一方面通过简单的应用,使学生体会曲线的参数方程的作用及意义。

教学中通过教师的适当引导、启发,同时大胆地放手由学生自主探究、及时激励学生以体验问题解决的成功喜悦。

5、本节课的小结并不是由教师代为整理归纳,而是引导学生自主回顾本节课的学习过程,交流学习体会,包括数学知识的获得,数学思想方法的领悟,对学会学习、学会思考的感想等。一方面可以在学生交流的过程中及时发现问题并加以纠正;另一方面也锻炼了学生对知识的梳理和概括能力。

6、作为课堂教学的延续,两道思考题可让学生在课后进行自主探究,同时也为后续的参数方程与普通方程的互化以及参数方程的应用作准备。

曲线的参数方程(教案)

曲线的参数方程 教材 上海教育出版社高中二年级(理科)第十七章第一节 教学目标 1、理解曲线参数方程的概念,能选取适当的参数建立参数方程; 2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义; 3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中, 形成数学抽象思维能力,初步体验参数的基本思想。 教学重点 曲线参数方程的概念。 教学难点 曲线参数方程的探求。 教学过程 (一)曲线的参数方程概念的引入 引例: 2002年5月1日,中国第一座身高108米的摩天轮,在上海锦江乐园正式对外运营。并以此高度跻身世界三大摩天轮之列,居亚洲第一。 已知该摩天轮半径为51.5米,逆时针匀速旋转一周需时20分钟。如图所示,某游客现在点(其中点和转轴的连线与水平面平行)。问:经过秒,该游客的位置在何处? 引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决 (1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。) (二)曲线的参数方程 1、圆的参数方程的推导 (1)一般的,设⊙的圆心为原点,半径为,0OP 所在直线 为轴,如图,以0OP 为始边绕着点按逆时针方向绕原点以匀角 速度作圆周运动,则质点的坐标与时刻的关系该如何建立呢? (其中与为常数,为变数) 结合图形,由任意角三角函数的定义可知: ),0[sin cos +∞∈???==t t r y t r x ωω 为参数 ① (2)点的角速度为,运动所用的时间为,则角位移t ωθ=,那么方程组①可以改写为何种形式? 结合匀速圆周运动的物理意义可得:),0[sin cos +∞∈???==θθ θr y r x 为参数 ② (在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力)

2.2常见曲线的参数方程

2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程 一椭圆的参数方程 1、中心在坐标原点,焦点在x 轴上,标准方程是22 221(0)x y a b a b +=>>的椭圆的参数方程 为cos (sin x a y b ? ??=??=? 为参数) 同样,中心在坐标原点,焦点在y 轴上,标准方程是22 221(0)y x a b a b +=>>的椭圆的参 数方程为cos (sin x b y a ? ??=??=? 为参数) 2、椭圆参数方程的推导 如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,和小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。 设以Ox 为始边,OA 为终边的角为?,点M 的坐标是(,)x y 。那么点A 的横坐标为x ,点B 的纵坐标为y 。由于点,A B 都在角?的终边上,由三角函数的定义有 cos cos ,sin sin x OA a y OB b ????==== 3 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ? ?? =??=?为 参数) 这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。 3、椭圆的参数方程中参数?的意义 圆的参数方程cos (sin x r y r θ θθ =?? =?为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆 的参数方程cos (sin x a y b ? ?? =?? =?为参数)中的参数?不是动点(,)M x y 的旋转角,它是动点 (,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋 转角,通常规定[)0,2?π∈ 4、椭圆参数方程和普通方程的互化

参数方程题型大全

参数方程 1.直线、圆、椭圆的参数方程 (1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为????? x =x 0+t cos α, y =y 0+t sin α(t 为参数). (2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为????? x =x 0+r cos θ, y =y 0+r sin θ(θ为参数). (3)椭圆x 2a 2+y 2 b 2=1(a >b >0)的参数方程为? ???? x =a cos φ,y =b sin φ (φ为参数). (4)双曲线x 2 a 2-y 2 b 2=1(a >0,b >0)的参数方程为????? x =a 1cos θ,y =b tan θ (θ为参数). (5)抛物线px y 22 =的参数方程可表示为)(. 2, 22为参数t pt y pt x ?? ?==. 基础练习 1.在平面直角坐标系中,若曲线C 的参数方程为?? ? x =2+22t , y =1+2 2 t (t 为参数),则其普通方程为 ____________. 2.椭圆C 的参数方程为? ???? x =5cos φ, y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点, 则|AB |min =________. 3.曲线C 的参数方程为? ???? x =sin θ, y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________. 4.在平面直角坐标系xOy 中,已知直线l 的参数方程为??? x =1+1 2t , y =3 2t (t 为参数),椭圆C 的方程 为x 2 +y 2 4 =1,设直线l 与椭圆C 相交于A ,B 两点,则线段AB 的长为_______________

空间曲线的参数化

一、 空间曲线的参数化 若积分曲线Γ的参数方程 ],[)(),(),(βα∈===t t z z t y y t x x Γ,:,则曲线积分的计算公式为 ??'=++β α)())(),(),(({d d d t x t z t y t x P z R y Q x P Γ }d )())(),(),(()())(),(),((t z t z t y t x R t y t z t y t x Q '+'+ ],[d )()()())()()((d )(222βαβ α ∈'+'+'=?? t t t z t y t x t ,z t ,y t x f s x,y,z f Γ , 曲线积分计算的关键是如何将积分曲线Γ参数化。下面将给出积分曲线参数化的某些常用方法。 1. 设积分曲线???==0 ),,(0),,(z y x G z y x F Γ:,从中消去某个自变量,例如z ,得到Γ在 xoy 平面的投影曲线,这些投影曲线常常是园或是椭圆,先将它们表示成参数方程),(),(t y y t x x ==然后将它们代入0),,(0),,(==z y x G z y x F 或中,解出)(t z z =由此得到Γ的参数方程:],[)(),(),(βα∈===t t z z t y y t x x ,。 例1将曲线???==++y x a z y x Γ2222:,(其中0>a )用参数方程表示。 解:从Γ的方程中消去y ,得到xoz 平面上的投影曲线2 222a z x =+,这是椭圆, 它的参数方程为]2,0[,sin ,cos 2 π∈== t t a z t a x ,将其代入Γ的方程,得到第七讲 曲线积分与曲面积分

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人教B版选修44

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人 教B 版选修44 学习目标:1.了解圆的渐开线和摆线的参数方程.(重点)2.了解渐开线与摆线的参数方程的推导过程.(难点) 1.摆线 (1)定义 一圆周沿一直线作无滑动滚动时,圆周上的一定点M 的轨迹称为摆线. (2)参数方程 ????? x =a (t -sin t )y =a (1-cos t ) (t 是参数). 2.圆的渐开线 (1)定义 把一条没有弹性的细绳绕在一个固定不动的圆盘的侧面上,把绳拉紧逐渐展开,绳的外端点随之移动,且绳的拉直部分始终和圆相切.绳的端点移动的轨迹就是一条圆的渐开线,固定的圆称为渐开线的基圆. (2)参数方程 ? ?? ?? x =a (cos t +t sin t )y =a (sin t -t cos t )(t 是参数). 思考:圆的渐开线和摆线的参数方程中,参数t 的几何意义是什么? [提示] 根据渐开线的定义和求解参数方程的过程,可知其中的字母a 是指基圆的半径,而参数t 是指绳子外端运动时绳子与基圆的切点B 转过的角度,如图,其中的∠AOB 即是角 t .显然点M 由参数t 惟一确定.在我们解决有关问题时可以适当利用其几何意义,把点的坐 标转化为与三角函数有关的问题,使求解过程更加简单. 同样,根据圆的摆线的定义和建立参数方程的过程,可知其中的字母a 是指定圆的半径,参数t 是指圆上定点相对于定直线与圆的切点所张开的角度.参数的几何意义可以在解决问题中加以引用,简化运算过程.当然这个几何意义还不是很明显,直接使用还要注意其取值的具体情况.

1.关于渐开线和摆线的叙述,正确的是( ) A .只有圆才有渐开线 B .渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图形 C .正方形也可以有渐开线 D .对于同一个圆,如果建立的平面直角坐标系的位置不同,画出的渐开线形状就不同 [解析] 不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开线和摆线的实质是完全不一样的,因此得出的图形也不相同;对于同一个圆不论在什么地方建立平面直角坐标系,画出的图形的大小和形状都是一样的,只是方程的形式及图形在坐标系中的位置可能不同. [答案] C 2.半径为3的圆的摆线上某点的纵坐标为0,那么其横坐标可能是( ) A .π B .2π C .12π D .14π [解析] 根据条件可知圆的摆线的参数方程为? ?? ?? x =3t -3sin t y =3-3cos t (t 为参数),把y =0代 入可得cos t =1,所以t =2k π(k ∈Z ).而x =3t -3sin t =6k π(k ∈Z ).根据选项可知应选C. [答案] C 3.半径为4的圆的渐开线的参数方程是________. [解析] 将a =4代入圆的渐开线方程即可. [答案] ? ?? ?? x =4(cos t +t sin t ) y =4(sin t -t cos t ) 4.给出某渐开线的参数方程? ?? ?? x =3cos t +3t sin t y =3sin t -3t cos t (t 为参数),根据参数方程可以看 出该渐开线的基圆半径是______,当参数t 取π 2 时,对应的曲线上的点的坐标是________. [解析] 与渐开线的参数方程进行对照可知,a =3,即基圆半径是3,然后把t =π 2代入, 可得????? x =3π2,y =3. [答案] (3π 2 ,3)

空间曲线方程不同形式间的转化技巧

空间曲线方程不同形式间的转化技巧 李晶晶 摘要:空间曲线的参数方程和一般方程是空间曲线方程的两种非常重要的形式, 它们表示同一条曲线,因此可以相互转化.两种形式相互转化的方法有很多,本文主 要介绍了常用的几种.在转化的过程中要保证方程的等价性和同解性. 关键词:一般方程;参数方程;互化;等价性;同解性 Transformation Techniques for Different Forms of Inter-space Curve Equation Li Jingjing (20102112052, Class 4 Grade 2010, Mathematics & Applied Mathematics ,School of Mathematics & Statistics) Abstract:Space curve parameter equation and general equation are two very important form of the equation of space curve.They represent the same curve, so they can be transformed into each other.There are many methods for the conversion between these two kinds of forms.This paper mainly introduces several methods commonly used.During the transformation process to ensure that equation equivalence and the same solution. Key words: The general equation; parameter equation; interaction; equivalence; the same solution 1引言 空间解析几何的首要问题是空间曲线的方程的求解.空间曲线方程主要包含两种形式,即一般方程(普通方程)与参数方程.空间曲线的一般方程反映的是空间曲线上点的坐标x,y,z之间的直接关系.空间曲线的参数方程是通过参数反应坐标变量之间的间接关系.在求空间曲线的弧长以及空间曲线上的第一类与第二类曲线积分等方面都用到了空间曲线的参数方程.由于任何一种曲线方程的求解方法都不能适用于所有方程的求解,因此如何完成空间曲线方程不同形式的互化便成了一个基本问题.[1] 空间曲线的方程是建立在平面曲线方程的基础之上的,研究空间曲线方程不同形式之间的转化依赖于平面曲线不同形式之间的转化.我们首先回顾之前所学的平面曲线方程的形式以及不同形式间的相互转化.

【原创教案】二、《曲线的参数方程》教案

二、《曲线的参数方程》教案 时间:2 授课班级:高二(8)班 一、教学目标: 理解参数方程的概念;掌握参数方程化为普通方程的几种常见 的方法;会选取适当的参数化普通方程为参数方程。 二、重点、难点:能选择适当的参数写出曲线的参数方程,参数方程与普通方程 的互化和互化的等价性。 三、课时安排:1课时 四、教学过程 (一)创设情境 一架救援飞机在离灾区地面500m 高处以100m/s 的速度作水平直线飞行.为使投放的救援物资准确落于灾区指定的地面(不计空气阻 力),飞行员应如何确定投放时机呢? 即求飞行员在离救援点的水平距离多远时,开始投放物 资? (二)探索研究导出新概念 1、参数方程的定义: 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的 函数② ???==) ()(t g y t f x , 并且对于t 的每一个允许值,由方程组②所确定的点),(y x M 都在这条曲线上,那么方程②就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。 例1 已知曲线C 的参数方程是???+==1 232t y t x (t 为参数). (1)判断点)1,0(1M ,)4,5(2M 与曲线C 的位置关系; (2)已知点),6(3a M 在曲线C 上,求a 的值; (3)将参数方程化为普通方程,并判断曲线C 表示什么图形。 2、参数方程和普通方程的互化: (1)参数方程通过消元法消去参数化为普通方程 例2 把下列参数方程化为普通方程,并说明它们各表示什么曲线:

空间曲线参数方程(第五讲)

第五讲 空间曲线参数方程 一、求空间曲线(,,)0(,)0 F x y z G x y =ìG í=?:的参数方程 方法1;若把(,)0G x y =看做xoy 平面上的曲线方程,其参数方程已知,再将他们代入方程(,,)0F x y z =中,解出z ,就可以得到空间曲线G 的参数方程. 例1.设空间曲线2222 222x y z a x y b ì++=G í+=?:,()0a b 3>,求其参数方程. 解:空间曲线是球面2222x y z a ++=与圆柱222x y b +=的交线,由圆周222x y b +=的参数方程得到 cos sin x b t y b t =ìí=?,(02)t p ££ 将222x y b +=代入球面方程得到222z a b =-, 于是交线方程为 cos sin x b t y b t z =ì?=í?=?. 方法2:把变量x ,y 之一看作参数,如另x t =,由(,)0G x y =解出y ,再将它们代入方程(,,)0F x y z =,解出z 即可得到空间曲线G 的参数方程. 例2.设空间曲线2222259 x y z x y ì++=G í+=?:,求其参数方程. 解:空间曲线是球面2225x y z ++=与平面429x y +=的交线,它是空间平面429x y +=上的一个圆周. 以t 为参数,令x t =,则由平面方程得到 922y t =-, 将x ,y 代入球面方程得 22229615(2)18524 z t t t t =---=--, 即 z =U n R e i s t e r e d

由26118504t t --3,得到 18181010 t +££, 因此空间曲线参数方程为922x t y t z ì?=??=-í??=?? . 例3.设空间曲线2229x y z y z ì++=G í=? :,求其参数方程. 解:将y z =代入方程222 9x y z ++=中,得 2229x z += 该椭圆参数方程为 x t =,3sin z t =,(02)t p ££ 于是空间曲线的参数方程为 3sin x t y t z t ì=???=í??=??, (02)t p ££. 例4. 设空间曲线222(1)(1)40x y z z ì+++-=G í=?:,求其参数方程. 解:因为0z =,则22(1)3x y ++=, 令1x t =- ,y t =,于是得参数方程为 10x t y t z ì=-+??=í?=?? (02)t p ££, 例5.设空间曲线22290 x y z x y z ì++=G í++=?:,求其参数方程. U n R e g i s t e r e d

2知识讲解 曲线的参数方程

曲线的参数方程 【学习目标】 1. 了解参数方程,了解参数的意义。 2. 能利用参数法求简单曲线的参数方程。 3. 掌握参数方程与普通方程的互化。 4. 能选择适当的参数写出圆和圆锥曲线的参数方程 【要点梳理】 要点一、参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标y x,都是某个变数t的函数, 即 () ........... () x f t y g t = ? ? = ? ①, 并且对于t的每一个允许值,方程组①所确定的点(,) M x y都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,联系y x,间的关系的变数t叫做参变数(简称参数). 相对于参数方程来说,直接给出曲线上点的坐标关系的方程(,)0 F x y=,叫做曲线的普通方程。 要点诠释: (1)参数是联系变数x,y的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数. (2)一条曲线是用直角坐标方程还是用参数方程来表示,要根据具体情况确定. (3)曲线的普通方程直接地反映了一条曲线上的点的横、纵坐标之间的关系,而参数方程是通过参数反映坐标变量x、y间的间接联系。 要点二、求曲线的参数方程 求曲线参数方程的主要步骤: 第一步,画出轨迹草图,设M(x,y)是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以便于发现变量之间的关系. 第二步,选择适当的参数.参数的选择要考虑以下两点: 一是曲线上每一点的坐标(x,y)都能由参数取某一值唯一地确定出来; 例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定点的有向距离、直线的倾斜角、斜率、截距等也常常被选为参数. 有时为了便于列出方程,也可以选两个以上的参数,再设法消去其中的参数得到普通方程,或剩下一个参数得到参数方程,但这样做往往增加了变形与计算的麻烦,所以参数个数一般应尽量少.二是曲线上每一点的坐标x,y与参数的关系比较明显,容易列出方程; 第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略. 要点诠释: 普通方程化为参数方程时,(1)选取参数后,要特别注意参数的取值范围,它将决定参数方程是否与

参数方程的概念

参数方程的概念 参数方程的概念: 一般地,在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t 的函数且对于t的每一个允许值,由这个方程组所确定的点M(x,y)都在这条曲线上,那么这个方程组称为这条曲线的参数方程,联系x、y之间关系的变数t称为参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 参数方程和普通方程的互化: 在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.否则,互化就是不等价的。 (1)参数方程化为普通方程的过程就是消参过程,常见方法有三种: ①代入法:利用解方程的技巧求出参数t,然后代入消去参数; ②三角法:利用三角恒等式消去参数; ③整体消元法:根据参数方程本身的结构特征,从整体上消去. (2)普通方程化为参数方程需要引入参数. 如:①直线的普通方程是2x-y+2=0,可以化为参数方程 ②在普通方程xy=1中,令可以化为参数方程 关于参数的几点说明: (1)参数是联系变数x,y的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数. (2)同一曲线选取参数不同,曲线参数方程形式也不同. (3)在实际问题中要确定参数的取值范围. 参数方程的几种常用方法:

方法1参数方程与普通方程的互化:将曲线的参数方程化为普通方程的方法应视题目的特点而定,要选择恰当的方法消参,并要注意由于消参后引起的范围限制消失而造成的增解问题.常用的消参技巧有加减消参,代人消参,平方消参等. 方法2求曲线的参数方程:求曲线的参数方程或应用曲线的参数方程,要熟记曲线参数方程的形式及参数的意义. 方法3参数方程问题的解决方法:解决参数方程的一个基本思路是将其转化为普通方程,然后利用在直角坐标系下解决问题的方式进行解题. 方法4利用圆的渐开线的参数方程求点:利用参数方程求解点时只需将参数代入方程就可求得。 方法5求圆的摆线的参数方程:根据圆的摆线的参数方程的表达式 ,可知只需求出其中的r,也就是说,摆线的参数方程由圆的半径唯一确定,因此只需把点代人参数方程求出r值再代人参数方程的表达式. 柱坐标系与球坐标系 柱坐标系的定义: 建立空间直角坐标系Oxyz,设P(x,y,z)是空间任意一点,它在Oxy平面上的射影为Q,Q点的极坐标为(ρ,θ),则P的位置可用有序数组(ρ,θ,z)表示,(ρ,θ,z)叫做点P的柱坐标。 (1)柱坐标转化为直角坐标: (2)直角坐标转化为柱坐标:。 球坐标系的定义: 建立空间直角坐标系Oxyz,设P(x,y,z)是空间任意一点,记|OP|=r,OP与Oz轴正向所夹的角为j,点P在Oxy平面上的射影为Q,Ox轴按逆时针方向旋转到OQ时所转过的最小正角为θ,则P的位置可用有序数组(r,j,θ)表示,(r,j,θ)叫做点P的球坐标。

曲线的参数方程知识讲解

曲线的参数方程 编稿:赵雷审稿:李霞 【学习目标】 1. 了解参数方程,了解参数的意义。 2. 能利用参数法求简单曲线的参数方程。 3. 掌握参数方程与普通方程的互化。 4. 能选择适当的参数写出圆和圆锥曲线的参数方程 【要点梳理】 要点一、参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标y x,都是某个变数t的函数, 即 () ........... () x f t y g t = ? ? = ? ①, 并且对于t的每一个允许值,方程组①所确定的点(,) M x y都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,联系y x,间的关系的变数t叫做参变数(简称参数). 相对于参数方程来说,直接给出曲线上点的坐标关系的方程(,)0 F x y=,叫做曲线的普通方程。 要点诠释: (1)参数是联系变数x,y的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数. (2)一条曲线是用直角坐标方程还是用参数方程来表示,要根据具体情况确定. (3)曲线的普通方程直接地反映了一条曲线上的点的横、纵坐标之间的关系,而参数方程是通过参数反映坐标变量x、y间的间接联系。 要点二、求曲线的参数方程 求曲线参数方程的主要步骤: 第一步,画出轨迹草图,设M(x,y)是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以便于发现变量之间的关系. 第二步,选择适当的参数.参数的选择要考虑以下两点: 一是曲线上每一点的坐标(x,y)都能由参数取某一值唯一地确定出来; 例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定点的有向距离、直线的倾斜角、斜率、截距等也常常被选为参数. 有时为了便于列出方程,也可以选两个以上的参数,再设法消去其中的参数得到普通方程,或剩下一个参数得到参数方程,但这样做往往增加了变形与计算的麻烦,所以参数个数一般应尽量少.二是曲线上每一点的坐标x,y与参数的关系比较明显,容易列出方程; 第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略. 要点诠释: 普通方程化为参数方程时,(1)选取参数后,要特别注意参数的取值范围,它将决定参数方程是否与

高中数学参数方程大题(带答案)

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. 考点:参数方程化成普通方程;直线与圆锥曲线的关系. 专题:坐标系和参数方程. 分析:(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程; (Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以 sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值. 解答: 解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ, 故曲线C的参数方程为,(θ为参数). 对于直线l:, 由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0; (Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ). P到直线l的距离为. 则,其中α为锐角. 当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为. 当sin(θ+α)=1时,|PA|取得最小值,最小值为. 点评:本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题. 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 考点:参数方程化成普通方程. 专题:坐标系和参数方程. 分析:(1)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可; (2)首先,化简曲线C的参数方程,然后,根据直线与圆的位置关系进行转化求解. 解答: 解:(1)∵直线l的极坐标方程为:, ∴ρ(sinθ﹣cosθ)=,

高中数学学案:常见曲线的参数方程

高中数学学案:常见曲线的参数方程 基础诊断 1. 方程 ???x = t ,y = 3t 3 (t 为 参 数 ) 表 示 的 曲 线 是 ________________________________________________________________________. 2. 直线???x =2t ,y =t (t 为参数)与曲线???x =2+cos θ,y =sin θ(θ为参数)的公共点的个数为________. 3. 参数方程???x =3t 2+2, y =t 2 -1 (t 为参数),且0≤t ≤5表示的曲线是________.(填序号)

①线段;②双曲线;③圆弧;④射线. 4. 直线?????x =1+1 2t ,y =-33+3 2t (t 为参数)和圆x 2+y 2=16交于A 、B 两点,则AB 的中点坐标为 ________. 范例导航 考向 例1 (1) 将参数方程??? ??x =2? ?? ??t +1t ,y =4? ?? ??t -1t (t 为参数)化为普通方程; (2) 将参数方程???x =2sin θ, y =1+2cos 2 θ(θ为参数)化为普通方程. 在曲线C 1:???x =1+cos θ, y =sin θ (θ为参数)上求一点,使它到直线C 2:?????x =-22+1 2t ,y =1-12t (t 为参数)

的距离最小,并求出该点的坐标和最小距离. 考向 例2已知直线l经过点P(1,1),倾斜角α=6. (1) 写出直线l的参数方程; (2) 设直线l与圆x2+y2=4相交于A、B两点,求点P到A、B两点的距离之积. 点P(x,y)是椭圆2x2+3y2=12上的一个动点,求x+2y的最大值.

人教课标版高中数学选修4-4《曲线的参数方程》教案-新版

第二讲 参数方程 2.1 曲线的参数方程 一、教学目标 (一)核心素养 通过这节课学习,了解参数方程的概念、体会参数的意义,会进行参数方程和普通方程的互化,在直观想象、数学抽象中感受不同参数方程的特点. (二)学习目标 1.通过实例,了解参数方程的含义,体会参数的意义. 2.能求解圆的参数方程并用圆的参数解决有关问题,了解圆的参数方程中参数的意义. 3.掌握基本的参数方程与普通方程的互化,,感受集合语言的意义和作用. (三)学习重点 1.参数方程的概念. 2.圆的参数方程及其应用. 3.参数方程与普通方程的互化. (四)学习难点 1.参数方程与普通方程的互化的等价转化. 2.根据几何性质选取恰当的参数,建立曲线的参数方程. 二、教学设计 (一)课前设计 1.预习任务 (1)读一读:阅读教材第21页至第26页,填空: 一般的,在平面直角坐标系中,如果曲线上的任意一点的坐标y x ,都是某个变数t 的函数: ???==) ()(t g y t f x ① 且对于t 的每一个允许值,由方程组①确定的点)(y x M ,都在这条曲线上,那么方程组①叫做这条曲线的参数方程,联系变数y x ,的变数t 叫参变数,简称参数.相对于参数方程而言,直接给出点坐标y x ,之间关系的方程0)(=y x f ,叫普通方程.

(2)想一想:参数方程与普通方程如何转化? 一般地,可以通过消去参数而从参数方程得到普通方程.反之,如果知道变数y x ,中的一 个与参数t 的关系,例如)(t f x =,把它代入普通方程,求出另一个变数与参数的关系)(x g y =,那么就是曲线的参数方程. (3)写一写:圆的一般参数方程是什么? ①圆心在原点,半径为r 的圆的参数方程为(θ为参数); ②圆心在),(b a ,半径为r 的圆的参数方程为(θ为参数). 2.预习自测 (1)方程??? x =1+sin θ y =sin 2θ(θ是参数)所表示曲线经过下列点中的( ) A.(1,1) B.)2 1,23( C.)2 3,23( D.)2 1 ,232( -+ 【知识点】参数方程的定义 【解题过程】将选项中的点一一代入曲线的参数方程中,显然选项C 满足题意 【思路点拨】根据参数方程的定义求解 【答案】C . (2)下列方程:①??? x =m ,y =m .(m 为参数) ②??? x =m ,y =n .(m ,n 为参数) ③??? x =1, y =2.④x +y = 0中,参数方程的个数为( ) A .1 B .2 C .3 D .4 【知识点】参数方程的定义 【解题过程】根据参数方程的定义,只有①是参数方程 【思路点拨】由参数方程的定义求解 【答案】A (3)参数方程??? x =cos α, y =1+sin α (α为参数)化成普通方程为_______________.

最新21《参数方程的概念--曲线的参数方程》教案(新人教选修4-4汇总

21《参数方程的概念--曲线的参数方程》教案(新人教选修4-4

曲线的参数方程 教学目标 1.通过圆及弹道曲线的参数方程的建立,使学生理解参数方程的概念,初步掌握求曲线的参数方程的思路. 2.通过弹道曲线的参数方程的建立及选取不同参数建立圆的参数方程,培养学生探索发现能力以及解决实际问题的能力. 3.从弹道曲线的方程的建立,对学生进行数学的返璞归真教育,使学生体会数学来源于实践的真谛,帮助学生树立空间和时间是运动物体的形式这一辩证唯物主义观点. 教学重点与难点 曲线参数方程的探求及其有关概念是本节课的重点;难点是弹道曲线参数方程的建立. 教学过程 师:满足什么条件时,一个方程才能称作曲线的方程,而这条曲线才能够称作方程的曲线? 生:1.必须同时满足两个条件:(1)曲线上任一点的坐标都是这个方程的解;(2)同时以这个方程的第一组解作为坐标的点都在曲线上.那么,这个方程就称作曲线的方程,而这条曲线就称作这个方程的曲线. 师:请写出圆心在原点,半径为r的圆O的方程,并说明求解方法. (师板书——⊙O:) 师:求圆的方程事实上是探求圆上任一点M(x,y)的横、纵坐标之间的关系式.能用别的方法来探x、y之间的关系吗? 生:…… 师:(诱导一下)不用刚才的方法给我们直接求x、y的关系带来了困难,能否考虑用间接的方法来求?即在x、y之间是否能建立一座桥梁,使之联系起来? (计算机演示动画,如图3-1)

师:驱使M运动的因素是什么? 生:旋转角θ. 师:当我们把x轴作为θ角始边,并使OM绕O点逆时针旋转,请考虑θ在什么范围内取值就可以形成整个圆了? 生: 师:至此x、y之间的关系已通过θ联系起来了,谁能具体地说说它们之间的关系? 生3:(c∈[0,2π],θ为变量,r为常数) (生3叙述,师板书) 师:①式是⊙O的方程吗? 生4:①式是⊙O的方程. 师:请说明理由. 生4:(生4叙述,师板书)(1)任取⊙O上一点,总存在,由三角函数定义知,显然满足方程①; (2)任取, 由①得即M(). 所以.

相关文档
最新文档