一维偏微分方程的pdepe(matlab)函数解法

一维偏微分方程的pdepe(matlab)函数解法
一维偏微分方程的pdepe(matlab)函数解法

本文根据matlab帮助进行加工,根据matlab帮助上的例子,帮助更好的理解一维偏微分方程的pdepe函数解法,主要加工在于程序的注释上。

Examples

Example 1.This example illustrates the straightforward formulation, computation, and plotting of the solution of a single PDE.

This equation holds on an interval for times .

The PDE satisfies the initial condition

and boundary conditions

It is convenient to use subfunctions to place all the functions required by pdepe in a single function.

function pdex1

m = 0;

x = linspace(0,1,20);

%linspace(x1,x2,N)linspace是Matlab中的一个指令,用于产生x1,x2之间的N点行矢量。

%其中x1、x2、N分别为起始值、终止值、元素个数。若缺省N,默认点数为100

t = linspace(0,2,5);

sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);

% Extract the first solution component as u.

u = sol(:,:,1);

% A surface plot is often a good way to study a solution.

surf(x,t,u)

title('Numerical solution computed with 20 mesh points.')

xlabel('Distance x')

ylabel('Time t')

% A solution profile can also be illuminating.

figure

plot(x,u(end,:))

title('Solution at t = 2')

xlabel('Distance x')

ylabel('u(x,2)')

% --------------------------------------------------------------function [c,f,s] = pdex1pde(x,t,u,DuDx)

c = pi^2;

f = DuDx;

s = 0;

% --------------------------------------------------------------function u0 = pdex1ic(x)

u0 = sin(pi*x);

% --------------------------------------------------------------function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)

pl = ul;

ql = 0;

pr = pi * exp(-t);

qr = 1;

In this example, the PDE, initial condition, and boundary conditions are coded in subfunctions pdex1pde, pdex1ic, and pdex1bc.

The surface plot shows the behavior of the solution.

The following plot shows the solution profile at the final value of t (i.e., t = 2).

我们再将该问题复杂化,比如在原方程右边加一项

2

)

(u

u

f=,

对于标准形式

2

u

s=,其余条件不变

function pdex1

m = 0;

x = linspace(0,1,20);

%linspace(x1,x2,N)linspace是Matlab中的一个指令,用于产生x1,x2之间的N点行矢量。

%其中x1、x2、N分别为起始值、终止值、元素个数。若缺省N,默认点数为100

t = linspace(0,2,5);

sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);

% Extract the first solution component as u.

u = sol(:,:,1);

% A surface plot is often a good way to study a solution.

surf(x,t,u)

title('Numerical solution computed with 20 mesh points.')

xlabel('Distance x')

ylabel('Time t')

% A solution profile can also be illuminating.

figure

plot(x,u(end,:))

title('Solution at t = 2')

xlabel('Distance x')

ylabel('u(x,2)')

% --------------------------------------------------------------function [c,f,s] = pdex1pde(x,t,u,DuDx)

c = pi^2;

f = DuDx;

s = u^2;

% --------------------------------------------------------------function u0 = pdex1ic(x)

u0 = sin(pi*x);

% --------------------------------------------------------------function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)

pl = ul;

ql = 0;

pr = pi * exp(-t);

qr = 1;

对比结果有差异,表示可行

Example 2.This example illustrates the solution of a system of PDEs. The problem has boundary layers at both ends of the interval. The solution changes rapidly for small .

The PDEs are

where .

This equation holds on an interval for times .

The PDE satisfies the initial conditions

and boundary conditions

In the form expected by pdepe, the equations are

The boundary conditions on the partial derivatives of have to be written in terms of the flux. In the form expected by pdepe, the left boundary condition is

and the right boundary condition is

The solution changes rapidly for small . The program selects the step size in

time to resolve this sharp change, but to see this behavior in the plots, the example must select the output times accordingly. There are boundary layers in the solution at both ends of [0,1], so the example places mesh points near 0 and 1 to resolve these sharp changes. Often some experimentation is needed to select a mesh that reveals the behavior of the solution.

程序在pdex4.m中

function pdex4 %pdex4为文件名

clc

m = 0;

x = [0 0.005 0.01 0.05 0.1 0.2 0.5 0.7 0.9 0.95 0.99 0.995 1];

t = [0 0.005 0.01 0.05 0.1 0.5 1 1.5 2];

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);

%pdepe函数,用于直接求解偏微分方程,其形式为sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)

%下面为作图步骤

u1 = sol(:,:,1);

% ui = sol(:,:,i) is an approximation to the ith component of the

solution vector u .

u2 = sol(:,:,2);

figure

surf(x,t,u1)

title('u1(x,t)')

xlabel('Distance x')

ylabel('Time t')

figure

surf(x,t,u2)

title('u2(x,t)')

xlabel('Distance x')

ylabel('Time t')

% --------------------------------------------------------------function [c,f,s] = pdex4pde(x,t,u,DuDx)

%被调用的函数,其作用是描述偏微分方程

c = [1; 1];

f = [0.024; 0.17] .* DuDx;

y = u(1) - u(2);

F = exp(5.73*y)-exp(-11.47*y);

s = [-F; F];

% --------------------------------------------------------------function u0 = pdex4ic(x);

%此函数是用来描述初值

u0 = [1; 0];

% --------------------------------------------------------------function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)

%此函数用来描述边界条件

pl = [0; ul(2)];

ql = [1; 0];

pr = [ur(1)-1; 0];

qr = [0; 1];

In this example, the PDEs, initial conditions, and boundary conditions are coded in subfunctions pdex4pde, pdex4ic, and pdex4bc.

The surface plots show the behavior of the solution components.

(完整版)偏微分方程的MATLAB解法

引言 偏微分方程定解问题有着广泛的应用背景。人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。 偏微分方程 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用 1.1 MATLAB简介 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 1.2 Matlab主要功能 数值分析 数值和符号计算 工程与科学绘图 控制系统的设计与仿真 数字图像处理 数字信号处理 通讯系统设计与仿真 财务与金融工程 1.3 优势特点 1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 2) 具有完备的图形处理功能,实现计算结果和编程的可视化; 3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,

(完整版)MATLAB常用函数大全

一、MATLAB常用的基本数学函数 abs(x):纯量的绝对值或向量的长度 angle(z):复数z的相角(Phase angle) sqrt(x):开平方 real(z):复数z的实部 imag(z):复数z的虚部 conj(z):复数z的共轭复数 round(x):四舍五入至最近整数 fix(x):无论正负,舍去小数至最近整数 floor(x):地板函数,即舍去正小数至最近整数ceil(x):天花板函数,即加入正小数至最近整数rat(x):将实数x化为分数表示 rats(x):将实数x化为多项分数展开 sign(x):符号函数(Signum function)。 当x<0时,sign(x)=-1; 当x=0时,sign(x)=0; 当x>0时,sign(x)=1。 rem(x,y):求x除以y的馀数 gcd(x,y):整数x和y的最大公因数 lcm(x,y):整数x和y的最小公倍数 exp(x):自然指数 pow2(x):2的指数 log(x):以e为底的对数,即自然对数或 log2(x):以2为底的对数 log10(x):以10为底的对数 二、MATLAB常用的三角函数 sin(x):正弦函数 cos(x):余弦函数

tan(x):正切函数 asin(x):反正弦函数 acos(x):反馀弦函数 atan(x):反正切函数 atan2(x,y):四象限的反正切函数 sinh(x):超越正弦函数 cosh(x):超越馀弦函数 tanh(x):超越正切函数 asinh(x):反超越正弦函数 acosh(x):反超越馀弦函数 atanh(x):反超越正切函数 三、适用於向量的常用函数有: min(x): 向量x的元素的最小值 max(x): 向量x的元素的最大值 mean(x): 向量x的元素的平均值 median(x): 向量x的元素的中位数 std(x): 向量x的元素的标准差 diff(x): 向量x的相邻元素的差 sort(x): 对向量x的元素进行排序(Sorting)length(x): 向量x的元素个数 norm(x): 向量x的欧氏(Euclidean)长度sum(x): 向量x的元素总和 prod(x): 向量x的元素总乘积 cumsum(x): 向量x的累计元素总和cumprod(x): 向量x的累计元素总乘积 dot(x, y): 向量x和y的内积 cross(x, y): 向量x和y的外积 四、MATLAB的永久常数

MATLAB常用函数

MATLAB包括拥有数百个内部函数的主包和三十几种工具包。工具包又可以分为功能性工具包和学科工具包。功能工具包用来扩充MATLAB的符号计算,可视化建模仿真,文字处理及实时控制等功能。学科工具包是专业性比较强的工具包,控制工具包,信号处理工具包,通信工具包等都属于此类。 开放性使MATLAB广受用户欢迎。除内部函数外,所有MATLAB主包文件和各种工具包都是可读可修改的文件,用户通过对源程序的修改或加入自己编写程序构造新的专用工具包。 Matlab Main Toolbox——matlab主工具箱 Control System Toolbox——控制系统工具箱 Communication Toolbox——通讯工具箱 Financial Toolbox——财政金融工具箱 System Identification Toolbox——系统辨识工具箱 Fuzzy Logic Toolbox——模糊逻辑工具箱 Higher-Order Spectral Analysis Toolbox——高阶谱分析工具箱 Image Processing Toolbox——图象处理工具箱 LMI Control Toolbox——线性矩阵不等式工具箱 Model predictive Control Toolbox——模型预测控制工具箱 μ-Analysis and Synthesis Toolbox——μ分析工具箱 Neural Network Toolbox——神经网络工具箱 Optimization Toolbox——优化工具箱 Partial Differential Toolbox——偏微分方程工具箱 Robust Control Toolbox——鲁棒控制工具箱 Signal Processing Toolbox——信号处理工具箱 Spline Toolbox——样条工具箱 Statistics Toolbox——统计工具箱 Symbolic Math Toolbox——符号数学工具箱 Simulink Toolbox——动态仿真工具箱 Wavele Toolbox——小波工具箱

有限差分法求解偏微分方程MATLAB教学教材

有限差分法求解偏微分方程M A T L A B

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程姓名:罗晨 学号: 115104000545 成绩: 有限差分法求解偏微分方程

一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程: 22(,)()u u f x t t x αα??-=??其中为常数 具体求解的偏微分方程如下: 22001 (,0)sin()(0,)(1,)00 u u x t x u x x u t u t t π???-=≤≤?????? =??? ==≥??? 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析; 4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2 100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1) 求解区域的网格划分步长参数如下:

Matlab求解微分方程(组)及偏微分方程(组)

第四讲 Matlab 求解微分方程(组) 理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介 1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解. 注意,系统缺省的自变量为t 2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一. (2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t

Matlab求解微分方程(组)及偏微分方程(组)

第四讲Matlab求解微分方程(组) 理论介绍:Matlab求解微分方程(组)命令 求解实例:Matlab求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到得方程,绝大多数都就是微分方程,真正能得到代数方程得机会很少、另一方面,能够求解得微分方程也就是十分有限得,特别就是高阶方程与偏微分方程(组)、这就要求我们必须研究微分方程(组)得解法:解析解法与数值解法、 一.相关函数、命令及简介 1、在Matlab中,用大写字母D表示导数,Dy表示y关于自变量得一阶导数,D2y 表示y关于自变量得二阶导数,依此类推、函数dsolve用来解决常微分方程(组)得求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解、 注意,系统缺省得自变量为t 2、函数dsolve求解得就是常微分方程得精确解法,也称为常微分方程得符号解、但就是,有大量得常微分方程虽然从理论上讲,其解就是存在得,但我们却无法求出其解析解,此时,我们需要寻求方程得数值解,在求常微分方程数值解方 面,MATLAB具有丰富得函数,我们将其统称为solver,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver为命令ode45、ode23、ode113、ode15s、ode23s、ode23t、ode23tb、ode15i之一、 (2)odefun就是显示微分方程在积分区间tspan上从到用初始条件求解、 (3)如果要获得微分方程问题在其她指定时间点上得解,则令tspan(要求就是单调得)、 (4)因为没有一种算法可以有效得解决所有得ODE问题,为此,Matlab提供了多种求解器solver,对于不同得ODE问题,采用不同得solver、 表1 Matlab中文本文件读写函数

MatlabPDE工具箱有限元法求解偏微分方程

在科学技术各领域中,有很多问题都可以归结为偏微分方程问题。在物理专业的力学、热学、电学、光学、近代物理课程中都可遇见偏微分方程。 偏微分方程,再加上边界条件、初始条件构成的数学模型,只有在很特殊情况下才可求得解析解。随着计算机技术的发展,采用数值计算方法,可以得到其数值解。 偏微分方程基本形式 而以上的偏微分方程都能利用PDE工具箱求解。 PDE工具箱 PDE工具箱的使用步骤体现了有限元法求解问题的基本思路,包括如下基本步骤: 1) 建立几何模型 2) 定义边界条件 3) 定义PDE类型和PDE系数 4) 三角形网格划分

5) 有限元求解 6) 解的图形表达 以上步骤充分体现在PDE工具箱的菜单栏和工具栏顺序上,如下 具体实现如下。 打开工具箱 输入pdetool可以打开偏微分方程求解工具箱,如下 首先需要选择应用模式,工具箱根据实际问题的不同提供了很多应用模式,用户可以基于适

当的模式进行建模和分析。 在Options菜单的Application菜单项下可以做选择,如下 或者直接在工具栏上选择,如下 列表框中各应用模式的意义为: ① Generic Scalar:一般标量模式(为默认选项)。 ② Generic System:一般系统模式。 ③ Structural Mech.,Plane Stress:结构力学平面应力。

④ Structural Mech.,Plane Strain:结构力学平面应变。 ⑤ Electrostatics:静电学。 ⑥ Magnetostatics:电磁学。 ⑦ Ac Power Electromagnetics:交流电电磁学。 ⑧ Conductive Media DC:直流导电介质。 ⑨ Heat Tranfer:热传导。 ⑩ Diffusion:扩散。 可以根据自己的具体问题做相应的选择,这里要求解偏微分方程,故使用默认值。此外,对于其他具体的工程应用模式,此工具箱已经发展到了Comsol Multiphysics软件,它提供了更强大的建模、求解功能。 另外,可以在菜单Options下做一些全局的设置,如下 l Grid:显示网格 l Grid Spacing…:控制网格的显示位置 l Snap:建模时捕捉网格节点,建模时可以打开 l Axes Limits…:设置坐标系范围 l Axes Equal:同Matlab的命令axes equal命令

matlab最常用函数

1、 基本形式 >> y=[0 0.58 0.70 0.95 0.83 0.25]; >> plot(y) 生成的图形是以序号为横坐标、数组y的数值为纵坐标画出的折线。 >> x=linspace(0,2*pi,30); % 生成一组线性等距的数值 >> y=sin(x); >> plot(x,y) 生成的图形是上30个点连成的光滑的正弦曲线。 多重线 在同一个画面上可以画许多条曲线,只需多给出几个数组,例如 >> x=0:pi/15:2*pi; >> y1=sin(x); >> y2=cos(x); >> plot(x,y1,x,y2) 则可以画出多重线。另一种画法是利用hold命令。在已经画好的图形上,若设置hold on,MATLA将把新的plot命令产生的图形画在原来的图形上。而命令hold off 将结束这个过程。例如: >> x=linspace(0,2*pi,30); y=sin(x); plot(x,y) >> hold on >> z=cos(x); plot(x,z) >> hold off 线型和颜色 MATLAB对曲线的线型和颜色有许多选择,标注的方法是在每一对数组后加一个字符串参数,说明如下: 线型线方式:- 实线:点线-. 虚点线- - 波折线。 线型点方式: . 圆点+加号* 星号x x形o 小圆

颜色:y黄;r红;g绿;b蓝;w白;k黑;m紫;c青. 以下面的例子说明用法: >> x=0:pi/15:2*pi; >> y1=sin(x); y2=cos(x); >> plot(x,y1,’b:+’,x,y2,’g-.*’) 网格和标记 在一个图形上可以加网格、标题、x轴标记、y轴标记,用下列命令完成这些工作。 >> x=linspace(0,2*pi,30); y=sin(x); z=cos(x); >> plot(x,y,x,z) >> grid >> xlabel(‘Independent Variable X’) >> ylabel(‘Dependent Variables Y and Z’) >> title(‘Sine and Cosine Curves’) 也可以在图形的任何位置加上一个字符串,如用: >> text(2.5,0.7,’sinx’) 表示在坐标x=2.5, y=0.7处加上字符串sinx。更方便的是用鼠标来确定字符串的位置,方法是输入命令: >> gtext(‘sinx’) 在图形窗口十字线的交点是字符串的位置,用鼠标点一下就可以将字符串放在那里。 坐标系的控制 在缺省情况下MATLAB自动选择图形的横、纵坐标的比例,如果你对这个比例不满意,可以用axis命令控制,常用的有: axis([xmin xmax ymin ymax]) [ ]中分别给出x轴和y轴的最大值、最小值 axis equal 或axis(‘equal’) x轴和y轴的单位长度相同 axis square 或axis(‘square’) 图框呈方形

有限差分法求解偏微分方程MATLAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程

一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程: 22(,)()u u f x t t x αα??-=??其中为常数 具体求解的偏微分方程如下: 22001 (,0)sin()(0,)(1,)00 u u x t x u x x u t u t t π???-=≤≤?????? =??? ==≥??? 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析; 4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1) 求解区域的网格划分步长参数如下:

matlab 常用函数汇总

matlab 常用函数汇总 编程2008-07-10 21:45:20 阅读46 评论0 字号:大中小订阅matlab常用函数 图形注释 Title 图形标题 Xlabel X轴标记 Ylabel Y轴标记 Text 文本注释 Gtext 用鼠标放置文本 Grid 网格线 MATLAB编程语言 Function 增加新的函数 Eval 执行由MA TLAB表达式构成的字串 Feval 执行由字串指定的函数 Global 定义全局变量 程序控制流 If 条件执行语句 Else 与if命令配合使用 Elseif 与if命令配合使用 End For,while和if语句的结束 For 重复执行指定次数(循环) While 重复执行不定次数(循环) Break 终止循环的执行 Return 返回引用的函数 Error 显示信息并终止函数的执行 交互输入 Input 提示用户输入 Keyboard 像底稿文件一样使用键盘输入 Menu 产生由用户输入选择的菜单 Pause 等待用户响应 Uimenu 建立用户界面菜单 Uicontrol 建立用户界面控制 一般字符串函数 Strings MATLAB中有关字符串函数的说明 Abs 变字符串为数值 Setstr 变数值为字符串 Isstr 当变量为字符串时其值为真 Blanks 空串 Deblank 删除尾部的空串 Str2mat 从各个字符串中形成文本矩阵 Eval 执行由MA TLAB表达式组成的串 字符串比较 Strcmp , , , 比较字符串 Findstr 在一字符串中查找另一个子串

Upper 变字符串为大写 Lower 变字符串为小写 Isletter 当变量为字母时,其值为真 Isspace 当变量为空白字符时,其值为真 字符串与数值之间变换 Num2str 变数值为字符串 Int2str 变整数为字符串 Str2num 变字符串为数值 Sprintf 变数值为格式控制下的字符串 Sscanf 变字符串为格式控制下的数值 十进制与十六进制数之间变换 Hex2num 变十六进制为IEEE标准下的浮点数Hex2dec 变十六制数为十进制数 Dec2hex 变十进制数为十六进制数 建模 Append 追加系统动态特性 Augstate 变量状态作为输出 Blkbuild 从方框图中构造状态空间系统Cloop 系统的闭环 Connect 方框图建模 Conv 两个多项式的卷积 Destim 从增益矩阵中形成离散状态估计器Dreg 从增益矩阵中形成离散控制器和估计器Drmodel 产生随机离散模型 Estim 从增益矩阵中形成连续状态估计器Feedback 反馈系统连接 Ord2 产生二阶系统的A、B、C、D Pade 时延的Pade近似 Parallel 并行系统连接 Reg 从增益矩阵中形成连续控制器和估计器Rmodel 产生随机连续模型 Series 串行系统连接 Ssdelete 从模型中删除输入、输出或状态ssselect 从大系统中选择子系统 模型变换 C2d 变连续系统为离散系统 C2dm 利用指定方法变连续为离散系统 C2dt 带一延时变连续为离散系统 D2c 变离散为连续系统 D2cm 利用指定方法变离散为连续系统 Poly 变根值表示为多项式表示 Residue 部分分式展开 Ss2tf 变状态空间表示为传递函数表示 Ss2zp 变状态空间表示为零极点表示

一维抛物线偏微分方程数值解法(附图及matlab程序)

一维抛物线偏微分方程数值解法(4) 上一篇参看一维抛物线偏微分方程数值解法(3)(附图及matlab程序) 解一维抛物线型方程(理论书籍可以参看孙志忠:偏微分方程数值解法) Ut-Uxx=0, 00) U(x,0)=e^x, 0<=x<=1, U(0,t)=e^t,U(1,t)=e^(1+t), 0

一维抛物线偏微分方程数值解法(3)(附图及matlab程序)

一维抛物线偏微分方程数值解法(3) 上一篇参看一维抛物线偏微分方程数值解法(2)(附图及matlab程序) 解一维抛物线型方程(理论书籍可以参看孙志忠:偏微分方程数值解法) Ut-Uxx=0, 00) U(x,0)=e^x, 0<=x<=1, U(0,t)=e^t,U(1,t)=e^(1+t), 0

Matlab求解微分方程(组)及偏微分方程(组)

第四讲 Matlab 求解微分方程(组) 理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介 1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解. 注意,系统缺省的自变量为t 2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一. (2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解. (3)如果要获得微分方程问题在其他指定时间点012,,, ,f t t t t 上的解,则令 tspan 012[,,,]f t t t t =(要求是单调的). (4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供

matlab function非常全的 matlab 函数

一、常用对象操作:除了一般windows窗口的常用功能键外。 1、!dir 可以查看当前工作目录的文件。!dir&可以在dos状态下查看。 2、who 可以查看当前工作空间变量名,whos 可以查看变量名细节。 3、功能键: 功能键快捷键说明 方向上键Ctrl+P 返回前一行输入 方向下键Ctrl+N 返回下一行输入 方向左键Ctrl+B 光标向后移一个字符 方向右键Ctrl+F 光标向前移一个字符 Ctrl+方向右键Ctrl+R 光标向右移一个字符 Ctrl+方向左键Ctrl+L 光标向左移一个字符 home Ctrl+A 光标移到行首 End Ctrl+E 光标移到行尾 Esc Ctrl+U 清除一行 Del Ctrl+D 清除光标所在的字符 Backspace Ctrl+H 删除光标前一个字符 Ctrl+K 删除到行尾 Ctrl+C 中断正在执行的命令 4、clc可以命令窗口显示的内容,但并不清除工作空间。 二、函数及运算 1、运算符: +:加,-:减,*:乘,/:除,\:左除^:幂,‘:复数的共轭转置,():制定运算顺序。 2、常用函数表: sin( ) 正弦(变量为弧度) Cot( ) 余切(变量为弧度) sind( ) 正弦(变量为度数) Cotd( ) 余切(变量为度数) asin( ) 反正弦(返回弧度) acot( ) 反余切(返回弧度) Asind( ) 反正弦(返回度数) acotd( ) 反余切(返回度数) cos( ) 余弦(变量为弧度) exp( ) 指数 cosd( ) 余弦(变量为度数) log( ) 对数 acos( ) 余正弦(返回弧度) log10( ) 以10为底对数 acosd( ) 余正弦(返回度数) sqrt( ) 开方 tan( ) 正切(变量为弧度) realsqrt( ) 返回非负根 tand( ) 正切(变量为度数) abs( ) 取绝对值

《偏微分方程概述及运用matlab求解偏微分方程常见问题》要点

北京航空航天大学 偏微分方程概述及运用matlab求解微分方 程求解常见问题 姓名徐敏 学号57000211 班级380911班 2011年6月

偏微分方程概述及运用matlab求解偏微分 方程常见问题 徐敏 摘要偏微分方程简介,matlab偏微分方程工具箱应用简介,用这个工具箱解方程的过程是:确定待解的偏微分方程;确定边界条件;确定方程所在域的几何形状;划分有限元;解方程 关键词MATLAB 偏微分方程程序 如果一个微分方程中出现的未知函数只含有一个自变量,这个方程叫做常微分方程,也简称微分方程:如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 一,偏微分方程概述 偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。许多领域中的数学模型都可以用偏微分方程来描述,很多重要的物理、力学等学科的基本方程本身就是偏微分方程。早在微积分理论刚形成后不久,人们就开始用偏微分方程来描述、解释或预见各种自然现象,并将所得到的研究方法和研究成果运用于各门科学和工程技术中,不断地取得了显著的成效,显示了偏微分方程对于人类认识自然界基本规律的重要性。逐渐地,以物

理、力学等各门科学中的实际问题为背景的偏微分方程的研究成为传统应用数学中的一个最主要的内容,它直接联系着众多自然现象和实际问题,不断地提出和产生出需要解决的新课题和新方法,不断地促进着许多相关数学分支(如泛函分析、微分几何、计算数学等)的发展,并从它们之中引进许多有力的解决问题的工具。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。 在国外,对偏微分方程的应用发展是相当重视的。很多大学和研究单位都有应用偏微分方程的研究集体,并得到国家工业、科学部门及军方、航空航天等方面的大力资助。比如在国际上有重大影响的美国的Courant研究所、法国的信息与自动化国立研究所等都集中了相当多的偏微分方程的研究人员,并把数学模型、数学方法、应用软件及实际应用融为一体,在解决实际课题、推动学科发展及加速培养人才等方面都起了很大的作用。 在我国,偏微分方程的研究起步较晚。但解放后,在党和国家的大力号召和积极支持下,我国偏微分方程的研究工作发展比较迅速,涌现出一批在这一领域中做出杰出工作的数学家,如谷超豪院士、李大潜院士等,并在一些研究方向上达到了国际先进水平。但总体来说,偏微分方程的研究队伍的组织和水平、研究工作的广度和深度与世界先进水平相比还有很大的差距。因此,我们必须继续努力,大力加强应用偏微分方程的研究,逐步缩小与世界先进水平的差距 二,偏微分方程的内容

Matlab中常见数学函数的使用

给自己看的----Matlab的内部常数(转) 2008/06/19 14:01[Ctrl C/V--学校 ] MATLAB基本知识 Matlab的内部常数 pi 圆周率 exp(1) 自然对数的底数e i 或j 虚数单位 Inf或inf 无穷大 Matlab的常用内部数学函数

我们也可在matlab中调用maple的命令进行多项式的运算,调用格式如下: maple(’maple中多项式的运算命令’) 如何用matlab进行分式运算 发现matlab只有一条处理分式问题的命令,其使用格式如下: [n,d]=numden(f)把符号表达式f化简为有理形式,其中分子和分母的系数为整数且分子分母不含公约项,返回结果n为分子,d为分母。注意:f必须为符号表达式 不过我们可以调用maple的命令,调用方法如下: maple(’denom(f)’)提取分式f的分母 maple(’numer(f)’)提取分式f的分子 maple(’normal(f)’ ) 把分式f的分子与分母约分成最简形式 maple(’expand(f)’) 把分式f的分子展开,分母不变且被看成单项。 maple(’factor(f)’) 把分式f的分母和分子因式分解,并进行约分。 如何用Matlab进行因式分解 syms 表达式中包含的变量factor(表达式) 如何用Matlab展开 syms 表达式中包含的变量expand(表达式) 如何用Matlab进行化简 syms 表达式中包含的变量simplify(表达式) 如何用Matlab合并同类项 syms 表达式中包含的变量collect(表达式,指定的变量) 如何用Matlab进行数学式的转换 调用Maple中数学式的转换命令,调用格式如下: maple(‘Maple的数学式转换命令’) 即:maple(‘convert(表达式,form)’)将表达式转换成form的表示方式 maple(‘convert(表达式,form, x)’)指定变量为x,将依赖于变量x的函数转换成form的表示方式(此指令仅对form为exp与sincos的转换式有用) 如何用Matlab进行变量替换 syms 表达式和代换式中包含的所有变量subs(表达式,要替换的变量或式子,代换式) 如何用matlab进行复数运算 a+b*i 或 a +b*j表示复数a+bi 或a+bj real(z)求复数z的实部 imag(z)求复数z的虚部 abs(z)求复数z的模 angle(z)求复数z的辐角, conj(z)求复数z的共轭复数 exp(z)复数的指数函数,表示e^z 如何在matlab中表示集合 [a, b, c,…] 表示由a, b, c,…组成的集合(注意:元素之间也可用空格隔开) unique(A) 表示集合A的最小等效集合(每个元素只出现一次) 也可调用maple的命令,格式如下: maple('{a, b, c,…}')表示由a, b, c,…组成的集合 下列命令可以生成特殊的集合: maple(‘{seq(f(i),i=n..m)}’)生成集合{f(n), f(n+1), f(n+2), … , f(m)} 如何用Matlab求集合的交集、并集、差集和补集

Matlab中常用的函数集

sort (排序) xlsread ( exl文件导入) load (txt 文件,mat文件等导入) 附录Ⅰ工具箱函数汇总 Ⅰ.1 统计工具箱函数 表Ⅰ-1 概率密度函数 函数名对应分布的概率密度函数 betapdf 贝塔分布的概率密度函数 binopdf 二项分布的概率密度函数 chi2pdf 卡方分布的概率密度函数 exppdf 指数分布的概率密度函数 fpdf f分布的概率密度函数 gampdf 伽玛分布的概率密度函数 geopdf 几何分布的概率密度函数 hygepdf 超几何分布的概率密度函数normpdf 正态(高斯)分布的概率密度函数lognpdf 对数正态分布的概率密度函数nbinpdf 负二项分布的概率密度函数 ncfpdf 非中心f分布的概率密度函数nctpdf 非中心t分布的概率密度函数 ncx2pdf 非中心卡方分布的概率密度函数poisspdf 泊松分布的概率密度函数 raylpdf 雷利分布的概率密度函数 tpdf 学生氏t分布的概率密度函数unidpdf 离散均匀分布的概率密度函数unifpdf 连续均匀分布的概率密度函数weibpdf 威布尔分布的概率密度函数 表Ⅰ-2 累加分布函数 函数名对应分布的累加函数 betacdf 贝塔分布的累加函数 binocdf 二项分布的累加函数 chi2cdf 卡方分布的累加函数 expcdf 指数分布的累加函数 fcdf f分布的累加函数 gamcdf 伽玛分布的累加函数 geocdf 几何分布的累加函数 hygecdf 超几何分布的累加函数

logncdf 对数正态分布的累加函数 nbincdf 负二项分布的累加函数 ncfcdf 非中心f分布的累加函数 nctcdf 非中心t分布的累加函数 ncx2cdf 非中心卡方分布的累加函数 normcdf 正态(高斯)分布的累加函数 poisscdf 泊松分布的累加函数 raylcdf 雷利分布的累加函数 tcdf 学生氏t分布的累加函数 unidcdf 离散均匀分布的累加函数 unifcdf 连续均匀分布的累加函数 weibcdf 威布尔分布的累加函数 表Ⅰ-3 累加分布函数的逆函数 函数名对应分布的累加分布函数逆函数 betainv 贝塔分布的累加分布函数逆函数 binoinv 二项分布的累加分布函数逆函数 chi2inv 卡方分布的累加分布函数逆函数 expinv 指数分布的累加分布函数逆函数 finv f分布的累加分布函数逆函数 gaminv 伽玛分布的累加分布函数逆函数 geoinv 几何分布的累加分布函数逆函数hygeinv 超几何分布的累加分布函数逆函数logninv 对数正态分布的累加分布函数逆函数nbininv 负二项分布的累加分布函数逆函数ncfinv 非中心f分布的累加分布函数逆函数nctinv 非中心t分布的累加分布函数逆函数 ncx2inv 非中心卡方分布的累加分布函数逆函数icdf norminv 正态(高斯)分布的累加分布函数逆函数poissinv 泊松分布的累加分布函数逆函数 raylinv 雷利分布的累加分布函数逆函数 tinv 学生氏t分布的累加分布函数逆函数unidinv 离散均匀分布的累加分布函数逆函数unifinv 连续均匀分布的累加分布函数逆函数weibinv 威布尔分布的累加分布函数逆函数 表Ⅰ-4 随机数生成器函数

MatLab常用函数大全

1、求组合数 C,则输入: 求k n nchoosek(n,k) 例:nchoosek(4,2) = 6. 2、求阶乘 求n!.则输入: Factorial(n). 例:factorial(5) = 120. 3、求全排列 perms(x). 例:求x = [1,2,3]; Perms(x),输出结果为: ans = 3 2 1 3 1 2 2 3 1 2 1 3 1 2 3 1 3 2 4、求指数 求a^b:Power(a,b) ; 例:求2^3 ; Ans = pow(2,3) ; 5、求行列式 求矩阵A的行列式:det(A); 例:A=[1 2;3 4] ; 则det(A) = -2 ; 6、求矩阵的转置 求矩阵A的转置矩阵:A’ 转置符号为单引号. 7、求向量的指数 求向量p=[1 2 3 4]'的三次方:p.^3 例: p=[1 2 3 4]' A=[p,p.^2,p.^3,p.^4] 结果为:

注意:在p 与符号”^”之间的”.”不可少. 8、求自然对数 求ln(x):Log(x) 例:log(2) = 0.6931 9、求矩阵的逆矩阵 求矩阵A 的逆矩阵:inv(A) 例:a= [1 2;3 4]; 则 10、多项式的乘法运算 函数conv(p1,p2)用于求多项式p1和p2的乘积。这里,p1、p2是两个多项式系数向量。 例2-2 求多项式43810x x +-和223x x -+的乘积。 命令如下: p1=[1,8,0,0,-10]; p2=[2,-1,3]; c=conv(p1,p2) 11、多项式除法 函数[q ,r]=deconv(p1,p2)用于多项式p1和p2作除法运算,其中q 返回多项式p1除以p2的商式,r 返回p1除以p2的余式。这里,q 和r 仍是多项式系数向量。 例2-3 求多项式43810x x +-除以多项式223x x -+的结果。 命令如下: p1=[1,8,0,0,-10]; p2=[2,-1,3]; [q,r]=deconv(p1,p2) 12、求一个向量的最大值 求一个向量x 的最大值的函数有两种调用格式,分别是:

相关文档
最新文档