多服务台等待制排队模型M_G_c_的蒙特卡洛模拟

多服务台等待制排队模型M_G_c_的蒙特卡洛模拟
多服务台等待制排队模型M_G_c_的蒙特卡洛模拟

蒙特卡洛(Monte Carlo)模拟法

当科学家们使用计算机来试图预测复杂的趋势和事件时, 他们通常应用一类需要长串的随机数的复杂计算。设计这种用来预测复杂趋势和事件的数字模型越来越依赖于一种称为蒙特卡罗模似的统计手段, 而这种模拟进一步又要取决于可靠的无穷尽的随机数目来源。 蒙特卡罗模拟因摩纳哥著名的赌场而得名。它能够帮助人们从数学上表述物理、化学、工程、经济学以及环境动力学中一些非常复杂的相互作用。数学家们称这种表述为“模式”, 而当一种模式足够精确时, 他能产生与实际操作中对同一条件相同的反应。但蒙特卡罗模拟有一个危险的缺陷: 如果必须输入一个模式中的随机数并不像设想的那样是随机数, 而却构成一些微妙的非随机模式, 那么整个的模拟(及其预测结果)都可能是错的。 最近, 由美国佐治亚大学的费伦博格博士作出的一分报告证明了最普遍用以产生随机数串 的计算机程序中有5个在用于一个简单的模拟磁性晶体中原子行为的数学模型时出现错误。科学家们发现, 出现这些错误的根源在于这5个程序产生的数串其实并不随机, 它们实际上隐藏了一些相互关系和样式, 这一点只是在这种微小的非随机性歪曲了晶体模型的已知特 性时才表露出来。贝尔实验室的里德博士告诫人们记住伟大的诺伊曼的忠告:“任何人如果相信计算机能够产生出真正的随机的数序组都是疯子。” 蒙特卡罗方法(MC) 蒙特卡罗(Monte Carlo)方法: 蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。这也是我们采用该方法的原因。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗解题三个主要步骤: 构造或描述概率过程: 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 实现从已知概率分布抽样: 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样

蒙特卡洛模拟方法作业及答案(附程序)

蒙特卡洛习题 1.利用蒙特卡洛计算数值积分 () ()() 1280ln 1tan x x x xe dx +++? clear all ;clc;close all ; n=1000; count=0; x=0:0.01:1; y=log((1+x).^2+(tan(x).^8)+x.*exp(x)); plot(x,y,'linewidth',2) hold on for i=1:n x1=rand; y1=rand*y(end); plot(x1,y1,'g*') pause(0.01) if y1

2.分别用理论计算和计算机模拟计算,求连续掷两颗骰子,点数之和大于6且第一次掷出的点数大于第二次掷出点数的概率。 clear all;clc;close all; count=0; n=100000; for i=1:n x=floor(rand*6+1); y=ceil(rand*6); if x+y>6&&x>y count=count+1; end end P=count/n 3.

clear all;clc;close all; count=0; n=2000; ezplot('x^2/9+y^2/36=1'); hold on ezplot('x^2/36+y^2=1'); hold on ezplot('(x-2)^2+(y+1)^2=9') for i=1:n x=rand*12-6; y=rand*12-6; plot(x,y,'gh','linewidth',2) pause(0.01) if x^2/9+y^2/36<1&&x^2/36+y^2<1&&(x-2)^2+(y+1)^2<9

蒙特卡洛模拟原理及步骤

二、蒙特卡洛模拟原理及步骤 (一)蒙特卡洛模拟原理:经济生活中存在大量的不确定与风险问题,很多确定性问题实际上是不确定与风险型问题的特例与简化,财务管理、管理会计中同样也存在大量的不确定与风险型问题,由于该问题比较复杂,一般教材对此问题涉及较少,但利用蒙特卡洛模拟可以揭示不确定与风险型问题的统计规律,还原一个真实的经济与管理客观面貌。 与常用确定性的数值计算方法不同,蒙特卡洛模拟是用来解决工程和经济中的非确定性问题,通过成千上万次的模拟,涵盖相应的可能概率分布空间,从而获得一定概率下的不同数据和频度分布,通过对大量样本值的统计分析,得到满足一定精度的结果,因此蒙特卡洛模拟是进行不确定与风险型问题的有力武器。 1、由于蒙特卡洛模拟是以实验为基础的,因此可以成为财务人员进行风险分析的“实验库”,获得大量有关财务风险等方面的信息,弥补确定型分析手段的不足,避免对不确定与风险决策问题的误导; 2、财务管理、管理会计中存在大量的不确定与风险型问题,目前大多数教材很少涉及这类问题,通过蒙特卡洛模拟,可以对其进行有效分析,解决常用决策方法所无法解决的难题,更加全面深入地分析不确定与风险型问题。 (二)蒙特卡洛模拟步骤以概率型量本利分析为例,蒙特卡洛模拟的分析步骤如下: 1、分析评价参数的特征,如企业经营中的销售数量、销售价格、产品生产的变动成本以及固定成本等,并根据历史资料或专家意见,确定随机变量的某些统计参数; 2、按照一定的参数分布规律,在计算机上产生随机数,如利用EXCEL提供的RAND函数,模拟量本利分析的概率分布,并利用VLOOKUP寻找对应概率分布下的销售数量、销售价格、产品生产的变动成本以及固定成本等参数; 3、建立管理会计的数学模型,对于概率型量本利分析有如下关系式,产品利润=产品销售数量×(产品单位销售价格-单位变动成本)-固定成本,这里需要说明的是以上分析参数不是确定型的,是依据某些概率分布存在的; 4、通过足够数量的计算机仿真,如文章利用RAND、VLOOKUP等函数进行30000次的模拟,得到30000组不同概率分布的各参数的排列与组合,由于模拟的数量比较大,所取得的实验数据具有一定的规律性; 5、根据计算机仿真的参数样本值,利用函数MAX、MIN、A VERAGE等,求出概率型量本利分析评价需要的指标值,通过对大量的评价指标值的样本分析,得到量本利分析中的利润点可能的概率分布,从而掌握企业经营与财务中的风险,为财务决策提供重要的参考。三、概率型量本利分析与比较 (一)期望值分析方法假设某企业为生产与销售单一产品的企业,经过全面分析与研究,预计未来年度的单位销售价格、销售数量、单位变动成本和固定成本的估计值及相应的概率如表1,其中销售数量单位为件,其余反映价值的指标单位为元,试计算该企业的生产利润。表1概率型量本利分析参数 项目概率数值 单位销售价格0.3 40 0.4 43 0.3 45 单位变动成本0.4 16 0.2 18 0.4 20 固定成本0.6 28000 0.4 30000

蒙特卡罗方法的解题过程可以归结为三个主要步骤

蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 (2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)建立各种估计量 一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 蒙特卡洛法模拟蒲丰(Buffon)投针实验-使用Matlab 2010年03月31日星期三8:47 蒲丰投针实验是一个著名的概率实验,其原理请参见此页: https://www.360docs.net/doc/b915225771.html,/reese/buffon/buffon.html 现在我们利用Matlab来做模拟,顺便说一下,这种随机模拟方法便是传说中的“蒙特-

(定价策略)期权定价中的蒙特卡洛模拟方法

期权定价中的蒙特卡洛模拟方法 期权作为最基础的金融衍生产品之一,为其定价一直是金融工程的重要研究领域,主要使用的定价方法有偏微分方程法、鞅方法和数值方法。而数值方法又包括了二叉树方法、有限差分法和蒙特卡洛模拟方法。 蒙特卡洛方法的理论基础是概率论与数理统计,其实质是通过模拟标的资产价格路径预测期权的平均回报并得到期权价格估计值。蒙特卡洛方法的最大优势是误差收敛率不依赖于问题的维数,从而非常适宜为高维期权定价。 §1. 预备知识 ◆两个重要的定理:柯尔莫哥洛夫(Kolmogorov)强大数定律和莱维一林德贝格(Levy-Lindeberg)中心极限定理。 大数定律是概率论中用以说明大量随机现象平均结果稳定性的一系列极限定律。在蒙特卡洛方法中用到的是随机变量序列同分布的Kolmogorov 强大数定律: 设12,,ξξL 为独立同分布的随机变量序列,若 [],1,2,k E k ξμ=<∞=L 则有1 1(lim )1n k n k p n ξμ→∞===∑ 显然,若12,,,n ξξξL 是由同一总体中得到的抽样,那么由 此大数定律可知样本均值1 1n k k n ξ=∑当 n 很大时以概率1收敛于

总体均值μ。 中心极限定理是研究随机变量之和的极限分布在何种情形下是正态的,并由此应用正态分布的良好性质解决实际问题。 设12,,ξξL 为独立同分布的随机变量序列,若 2 [],[],1,2,k k E D k ξμξσ=<∞=<∞=L (0,1)n k d n N ξ μ -??→∑ 其等价形式为2 1 1lim ()exp(),2n x k k n t n P x dt x ξμσ =→∞ -∞ -≤= --∞<<∞∑?。 ◆Black-Scholes 期权定价模型 模型的假设条件: 1、标的证券的价格遵循几何布朗运动 dS dt dW S μσ=+ 其中,标的资产的价格S 是时间t 的函数,μ为标的资产 的瞬时期望收益率,σ为标的资产的波动率,dW 是维纳过程。 2、证券允许卖空、证券交易连续和证券高度可分。 3、不考虑交易费用或税收等交易成本。 4、在衍生证券的存续期内不支付红利。 5、市场上不存在无风险的套利机会。 6、无风险利率r 为一个固定的常数。 下面,通过构造标的资产与期权的资产组合并根据无套利定价原理建立期权定价模型。首先,为了得到期权的微分形式,先介绍随机微积分中的最重要的伊藤公式。

运用蒙特卡罗模拟进行风险分析

运用蒙特卡罗模拟进行风险分析 蒙特卡罗模拟由著名的摩纳哥赌城而得名,他是一种非常强有力的方法学。对专业人员来说,这种模拟为方便的解决困难而复杂的实际问题开启了一扇大门。估计蒙特卡罗模拟最著名的早期使用是诺贝尔奖物理学家Enrico Fermi(有时也说是原子弹之父)在1930年的应用,那时他用一种随机方法来计算刚发现的中子的性质。蒙特卡罗模拟是曼哈顿计划所用到的模拟的核心部分,在20世纪50年代蒙特卡罗模拟就用在Los Alamos国家实验室发展氢弹的早期工作中,并流行于物理学和运筹学研究领域。兰德公司和美国空军是这个时期主要的两个负责资助和传播蒙特卡罗方法的组织,今天蒙特卡罗模拟也被广泛应用于不同的领域,包括工程,物理学,研发,商业和金融。 简而言之,蒙特卡罗模拟创造了一种假设的未来,它是通过产生数以千计甚至成千上万的样本结果并分析他们的共性实现的。在实践中,蒙特卡罗模拟法用于风险分析,风险鉴定,敏感度分析和预测。模拟的一个替代方法是极其复杂的随机闭合数学模型。对一个公司的分析,使用研究生层次的高等数学和统计学显然不合逻辑和实际。一个出色的分析家会使用所有他或她可得的工具以最简单和最实际的方式去得到相同的结果。任何情况下,建模正确时,蒙特卡罗模拟可以提供与更完美的数学方法相似的答案。此外,有许多实际生活应用中不存在闭合模型并且唯一的途径就是应用模拟法。那么,到底什么是蒙特卡罗模拟以及它是怎么工作的? 什么是蒙特卡罗模拟? 今天,高速计算机使许多过去看来棘手的复杂计算成为可能。对科学家,工程师,统计学家,管理者,商业分析家和其他人来说,计算机使创建一个模拟现实的模型成为可能,这有助于做出预测,其中一种方法应用于模拟真实系统,它通过调查数以百计甚至数以千计的可能情况来解释随机性和未来不确定性。结果通过编译后用于决策。这就是蒙特卡罗模拟的全部内容。 形式最简单的蒙特卡罗模拟是一个随机数字生成器,它对预测,估计和风险分析都很有用。一个模拟计算模型的许多情况,这通过反复地从预先定义的特定变量概率分布中采集数据并将之应用于模型来实现。因为所有的情况都产生相应的结果,每种情况都可以蕴含一种预测。预测的是你定义为重要模型结果的事项(通常含有公式或函数)。 将蒙特卡罗模拟法想象为从一个大篮子里可放回的反复拿出高尔夫球。拦在的大小和形

蒙特卡洛模拟法

蒙特卡洛模拟法 蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法。具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值;随着模拟次数的增多,其预计精度也逐渐增高。由于涉及到时间序列的反复生成,蒙特卡洛模拟法是以高容量和高速度的计算机为前提条件的,因此只是在近些年才得到广泛推广。 这个术语是二战时期美国物理学家Metropolis执行曼哈顿计划的过程中提出来的。 蒙特卡洛模拟方法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。 蒙特卡洛模拟法的应用领域 蒙特卡洛模拟法的应用领域主要有: 1.直接应用蒙特卡洛模拟:应用大规模的随机数列来模拟复杂系统,得到某些参数或重要指标。 2.蒙特卡洛积分:利用随机数列计算积分,维数越高,积分效率越高。 3.MCMC:这是直接应用蒙特卡洛模拟方法的推广,该方法中随机数的产生是采用的马尔科夫链形式。 (也叫随机模拟法)当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用则可用随机模拟法近似计算出系统可靠性的预计值。随着模拟次数的增多,其预计精度也逐渐增高。由于需要大量反复的计算,一般均用计算机来完成。 应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。解题步骤如下: 1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致 2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。

蒙特卡洛方法模拟小例子

例在我方某前沿防守地域,敌人以一个炮排(含两门火炮)为单位对我方进行干扰和破坏.为躲避我方打击,敌方对其阵地进行了伪装并经常变换射击地点. 经过长期观察发现,我方指挥所对敌方目标的指示有50%是准确的,而我方火力单位,在指示正确时,有1/3的射击效果能毁伤敌人一门火炮,有1/6的射击效果能全部毁伤敌人火炮. 现在希望能用某种方式把我方将要对敌人实施的20次打击结果显现出来,确定有效射击的比率及毁伤敌方火炮的平均值。 使用蒙特卡洛方法模拟50次打击结果: function [out1 out2 out3 out4]=Msc(N) % N开炮次数 % out1射中概率 % out2平均每次击中次数 % out3击中敌人一门火炮的射击总数 % out4击中敌人2门火炮的射击总数 k1=0; k2=0; k3=0; for i=1:N x0=randperm(2)-1; y0=x0(1); if y0==1 fprintf('第%d次:指示正确||',i); x1=randperm(6); y1=x1(1); if y1==1|y1==2|y1==3 fprintf('第%d次:击中0炮||',i); k1=k1+1; elseif y1==4|y1==5 fprintf('第%d次:击中1炮||',i); k2=k2+1; else

fprintf('第%d次:击中2炮||',i); k3=k3+1; end else fprintf('第%d次:指示错误,击中0炮||',i); k1+1; end fprintf('\n'); end out1=(k2+k3)/N; out2=(0*k1+k2+2*k3)/20; out3=k2/N; out4=k3/N; 运行: 1.[out1 out2 out3 out4]=Msc(50) 结果: 1.第1次:指示正确||第1次:击中2炮|| 2.第2次:指示错误,击中0炮|| 3.第3次:指示错误,击中0炮|| 4.第4次:指示正确||第4次:击中0炮|| 5.第5次:指示错误,击中0炮|| 6.第6次:指示正确||第6次:击中1炮|| 7.第7次:指示正确||第7次:击中0炮|| 8.第8次:指示错误,击中0炮|| 9.第9次:指示正确||第9次:击中2炮|| 10.第10次:指示正确||第10次:击中1炮|| 11.第11次:指示正确||第11次:击中1炮|| 12.第12次:指示正确||第12次:击中2炮|| 13.第13次:指示错误,击中0炮|| 14.第14次:指示正确||第14次:击中1炮|| 15.第15次:指示错误,击中0炮|| 16.第16次:指示错误,击中0炮|| 17.第17次:指示正确||第17次:击中0炮|| 18.第18次:指示错误,击中0炮||

数学建模论文(蒙特卡罗的多服务台和单服务台排队系统)

课程名称:数学建模与数学实验学院: 专业: 姓名: 学号: 指导老师:

利用Monte Carlo方法模拟单服务台排队系统和多服务台排队系统 摘要 蒙特卡罗方法(Monte Carlo)又称统计模拟法随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解。本文通过两个具体的服务机构为例,分别说明如何利用蒙特卡洛方法模拟单服务台排队系统和多服务台排队系统。 单服务台排队系统(排队模型之港口系统):通过排队论和蒙特卡洛方法解决了生产系统的效率问题,通过对工具到达时间和服务时间的计算机拟合,将基本模型确定在//1 M M排队模型,通过对此基本模型的分析和改进,在概率论相关理论的基础之上使用计算机模拟仿真(蒙特卡洛法)对生产系统的整个运行过程进行模拟,得出最后的结论。 多服务台排队系统(开水供应模型):为了解决水房打水时的拥挤问题。根据相关数据和假设推导,最终建立了多服务窗排队M/G/n模型,用极大似然估计和排队论等方法对其进行了求解,并用Matlab软件对数据进行了处理和绘图。用灵敏度分析对结果进行了验证。本模型比较完美地解决了水房排队拥挤问题,而且经过简单的修改,它可以用于很多类似的排队问题。 关键词:蒙特卡洛方法,排队论,拟合优度,泊松流,灵敏度分析。

一、问题重述 港口排队系统:一个带有船只卸货设备的小港口,任何时间仅能为一艘船只卸货。船只进港是为了卸货,响铃两艘船到达的时间间隔在15分钟到145分钟变化。一艘船只卸货的时间有所卸货物的类型决定,在15分钟到90分钟之间变化。 开水供应系统:学院开水房的供水时间有限,水房面积有限,水管易受水垢堵塞。根据调查数据可知:通畅时几乎无人排队,堵塞时水房十分拥挤。由此可以看出水房设计存在问题,我们可以把开水房看成是一个随即服务系统,应用排队论的方法对系统运行状态做定量的描述。 二、基本假设 港口排队系统:通过对问题的重述,那么,每艘船只在港口的平均时间和最长时间是多少? 若一艘船只的等待时间是从到达到开始卸货的时间,每艘船只的平均等待时间和最长等待时间是多少? 卸货设备空闲时间的百分比是多少? 船只排队最长的长度是多少? 开水供应系统: 假设Ⅰ、顾客流满足参数为λ的Poisson分布,其中λ为单位时间到达的顾客平均数。每个顾客所需的服务时间相互独立,顾客流是无限的,在观测期间平稳。 假设Ⅱ、排队方式为单一队列的等候制,先到先服务。虽然水房内有多个服务台,每个服务台都有自己的队列,但同时顾客总是自由转移到最短的队列上,不可能出现有顾客排队而服务器空闲的情况。本文最后对两种排队方式的比较也表明这一假设是合理的。 假设Ⅲ、水房共有20个并联的服务台(水龙头),设每个服务台的服务时间服从某个相同的分布,t和σ分别是服务时间的均值和均方差,γ=σ/ t为偏离系数。由于锅炉及输水管容量的限制,使t依赖于正在进行服务的水龙头个数m,设此时平均服务时间t(m)。且存在一临界值当m<= m0 时,t(m)为常数

蒙特卡洛模拟原理及步骤

二、蒙特卡洛模拟原理及步骤 (一)蒙特卡洛模拟原理:经济生活中存在大量的不确定与风险问题,很多确定性问题实际上就是不确定与风险型问题的特例与简化,财务管理、管理会计中同样也存在大量的不确定与风险型问题,由于该问题比较复杂,一般教材对此问题涉及较少,但利用蒙特卡洛模拟可以揭示不确定与风险型问题的统计规律,还原一个真实的经济与管理客观面貌。 与常用确定性的数值计算方法不同,蒙特卡洛模拟就是用来解决工程与经济中的非确定性问题,通过成千上万次的模拟,涵盖相应的可能概率分布空间,从而获得一定概率下的不同数据与频度分布,通过对大量样本值的统计分析,得到满足一定精度的结果,因此蒙特卡洛模拟就是进行不确定与风险型问题的有力武器。 1、由于蒙特卡洛模拟就是以实验为基础的,因此可以成为财务人员进行风险分析的“实验库”,获得大量有关财务风险等方面的信息,弥补确定型分析手段的不足,避免对不确定与风险决策问题的误导; 2、财务管理、管理会计中存在大量的不确定与风险型问题,目前大多数教材很少涉及这类问题,通过蒙特卡洛模拟,可以对其进行有效分析,解决常用决策方法所无法解决的难题,更加全面深入地分析不确定与风险型问题。 (二)蒙特卡洛模拟步骤以概率型量本利分析为例,蒙特卡洛模拟的分析步骤如下: 1、分析评价参数的特征,如企业经营中的销售数量、销售价格、产品生产的变动成本以及固定成本等,并根据历史资料或专家意见,确定随机变量的某些统计参数; 2、按照一定的参数分布规律,在计算机上产生随机数,如利用EXCEL提供的RAND函数,模拟量本利分析的概率分布,并利用VLOOKUP寻找对应概率分布下的销售数量、销售价格、产品生产的变动成本以及固定成本等参数; 3、建立管理会计的数学模型,对于概率型量本利分析有如下关系式,产品利润=产品销售数量×(产品单位销售价格-单位变动成本)-固定成本,这里需要说明的就是以上分析参数不就是确定型的,就是依据某些概率分布存在的; 4、通过足够数量的计算机仿真,如文章利用RAND、VLOOKUP等函数进行30000次的模拟,得到30000组不同概率分布的各参数的排列与组合,由于模拟的数量比较大,所取得的实验数据具有一定的规律性; 5、根据计算机仿真的参数样本值,利用函数MAX、MIN、A VERAGE等,求出概率型量本利分析评价需要的指标值,通过对大量的评价指标值的样本分析,得到量本利分析中的利润点可能的概率分布,从而掌握企业经营与财务中的风险,为财务决策提供重要的参考。 三、概率型量本利分析与比较 (一)期望值分析方法假设某企业为生产与销售单一产品的企业,经过全面分析与研究,预计未来年度的单位销售价格、销售数量、单位变动成本与固定成本的估计值及相应的概率如表1,其中销售数量单位为件,其余反映价值的指标单位为元,试计算该企业的生产利润。 表1概率型量本利分析参数 项目概率数值 单位销售价格0、3 40 0、4 43 0、3 45 单位变动成本0、4 16 0、2 18 0、4 20 固定成本0、6 28000 0、4 30000

蒙特卡洛模拟法简介

蒙特卡洛模拟法简介 蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法。具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值;随着模拟次数的增多,其预计精度也逐渐增高。由于涉及到时间序列的反复生成,蒙特卡洛模拟法是以高容量和高速度的计算机为前提条件的,因此只是在近些年才得到广泛推广。 这个术语是二战时期美国物理学家Metropolis执行曼哈顿计划的过程中提出来的。 蒙特卡洛模拟方法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。 蒙特卡洛模拟法的应用领域 蒙特卡洛模拟法的应用领域主要有: 1.直接应用蒙特卡洛模拟:应用大规模的随机数列来模拟复杂系统,得到某些参数或重要指标。 2.蒙特卡洛积分:利用随机数列计算积分,维数越高,积分效率越高。 3.MCMC:这是直接应用蒙特卡洛模拟方法的推广,该方法中随机数的产生是采用的马尔科夫链形式。 蒙特卡洛模拟法的概念 (也叫随机模拟法)当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用则可用随机模拟法近似计算出系统可靠性的预计值。随着模拟次数的增多,其预计精度也逐渐增高。由于需要大量反复的计算,一般均用计算机来完成。

蒙特卡洛模拟法求解步骤 应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。解题步骤如下: 1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致 2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。 3. 根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。 4.按照所建立的模型进行仿真试验、计算,求出问题的随机解。 5. 统计分析模拟试验结果,给出问题的概率解以及解的精度估计。 在可靠性分析和设计中,用蒙特卡洛模拟法可以确定复杂随机变量的概率分布和数字特征,可以通过随机模拟估算系统和零件的可靠度,也可以模拟随机过程、寻求系统最优参数等。 蒙特卡洛模拟法的实例 资产组合模拟: 假设有五种资产,其日收益率(%)分别为 0.02460.0189 0.0273 0.0141 0.0311 标准差分别为 0.95091.4259, 1.5227, 1.1062, 1.0877 相关系数矩阵为 1.0000 0.4403 0.4735 0.4334 0.6855 0.4403 1.00000.7597 0.7809 0.4343 0.4735 0.75971.0000 0.6978 0.4926 0.4334 0.78090.6978 1.0000 0.4289 0.6855 0.43430.4926 0.4289 1.0000 假设初始价格都为100,模拟天数为504天,模拟线程为2,程序如下%run.m

实验2 单服务台单队列排队系统仿真

实验2排队系统仿真 一、学习目的 1.了解仿真的特点 2.学习如何建构模型 3.熟悉eM-Plant基本的对象和操作 4.掌握排队系统的特点与仿真的实现方法 二、问题描述 该银行服务窗口为每个到达的顾客服务的时间是随机的,表2.4是顾客服务时间纪录的统计结果 表2.4 每个顾客服务时间的概率分布 对于上述这样一个单服务待排队系统,仿真分析30天,分析该系统中顾客的到

达、等待和被服务情况,以及银行工作人员的服务和空闲情况。 三、系统建模 3.1 仿真目标 通过对银行排队系统的仿真,研究银行系统的服务水平和改善银行服务水平的方法,为银行提高顾客满意度,优化顾客服务流程服务。 3.2.系统建模 3.2.1 系统调研 1. 系统结构: 银行服务大厅的布局, 涉及的服务设备 2. 系统的工艺参数: 到达-取号-等待-服务-离开 3. 系统的动态参数: 顾客的到达时间间隔, 工作人员的服务时间 4. 逻辑参数: 排队规则, 先到先服务 5. 系统的状态参数: 排队队列是否为空, 如果不为空队长是多少, 服务台是否为空 6. 系统的输入输出变量:输入变量确定其分布和特征值,顾客的到达时间间隔的概率分布表和每个顾客被服务时间的概率分布. 输出变量根据仿真目标设定. 包括队列的平均队长、最大队长、仿真结束时队长、总服务人员、每个顾客的平均服务时间、顾客平均排队等待服务时间、业务员利用率等。 3.2.2系统假设 1.取号机前无排队,取号时间为0 2.顾客排队符合先进先出的排队规则 3.一个服务台一次只能对一个顾客服务 4.所有顾客只有一种单一服务 5.仿真时间为1个工作日(8小时) 6.等候区的长度为无限长 3.2.3系统建模 系统模型: 3.2.4 仿真模型 1.实体:银行系统中的实体是人(主动体)

蒙特卡洛模拟在财务管理方面的应用-正略咨询

蒙特卡洛模拟在财务管理方面的应用 蒙特卡洛模拟的简介 蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法。具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值;随着模拟次数的增多,其预计精度也逐渐增高。由于涉及到时间序列的反复生成,蒙特卡洛模拟法是以高容量和高速度的计算机为前提条件的,因此只是在近些年才得到广泛推广。 这个术语是二战时期美国物理学家Metropolis执行曼哈顿计划的过程中提出来的。 蒙特卡洛模拟方法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。 一、蒙特卡洛模拟在财务管理方面的应用 在现代财务管理实务中,衡量项目的特有风险的方法主要有三种:敏感性分析、情景分析和模拟分析。其中模拟分析也称为蒙特卡洛模拟。它是从敏感分析和概略分布原理结合的产物。蒙特卡洛模拟分析使用计算机输入影响项目现金流量的基本变量,然后模拟项目运作的过程,最终的得出项目净现值的概率分布。 蒙特卡洛模拟过程通常包括如下步骤: (1)对投资项目建立一个模型,即确定项目净现值与基本变量之间的关系。基本变量包括收入、单价、单位变动成本等。有时使用更 为基本的变量,如人工成本。材料价格,材料消耗量等。

(2)给出基本变量的概率分布。 (3)从关键变量的概率分布中随机选取变量的数值,并计算不同情境下的净现值。 (4)重复多次步骤3,如1000次,直至得到项目净现值具有代表性的概率分布为止。 (5)评估项目净现值的概率分布,它反映了项目的特有风险。 蒙特卡洛模拟方法比情景分析是一个进步。它不是考虑有限的几种结果,而是考虑了无限多的情景。 蒙特卡洛模拟方法的主要局限性在于基本变量的概率信息难以取得。由于分析人员很难挑选到合适的分布来描述摸个变量,也很难选择改分布的各种参数。当这种选择进行的很随意时,我们所得到的模拟结果尽管很吸引人,但实际上用处有限。(财务成本管理,中国注册会计师协会,2011,中国财政出版社) 三、蒙特卡洛模拟在EXCEL上的实现 我们举一个最简单的例子,来说明如何在Excel中构造随机函数。假如有这样一个游戏:首先付14块钱取得投掷一次骰子的权利,如果你投掷骰子的点数为1,你将获得1块钱;点数为2,你将获得4块钱,即你获得的金额是你投掷点数的平方。你是否愿意去玩这样一个游戏? 为了回答这个问题,我们要去算一下期望收益。一个简单的方法是多次模拟这个游戏,然后求每次结果的平均值。 在Excel中模拟,首先你需要使用Rand()函数生成[0,1)之间的随机数。由于骰子每个点数的概率相同,是均匀分布,所以可以使用Rand()函数来产生随机数。

5蒙特卡洛方法模拟期权定价

材料五:蒙特卡洛方法模拟期权定价 1.蒙特卡洛方法模拟欧式期权定价 利用风险中性的方法计算期权定价: ?()rt T f e E f -= 其中,f 是期权价格,T f 是到期日T 的现金流,?E 是风险中性测度 如果标的资产服从几何布朗运动: dS Sdt sdW μσ=+ 则在风险中性测度下,标的资产运动方程为: 2 0exp[()]2T S S r T σ=-+ 对于欧式看涨期权,到期日欧式看涨期权现金流如下: 2 (/2)max{0,(0)}r T S e K σ-+- 其中,K 是执行价,r 是无风险利率,σ是标准差, ε是正态分布的随机变量。 对到期日的现金流用无风险利率贴现,就可知道期权价格。 例1 假设股票价格服从几何布朗运动,股票现在价格为50,欧式期权执行价格为52,无风险利率为0.1,股票波动标准差为0.4,期权的到期日为5个月,试用蒙特卡洛模拟方法计算该期权价格。 下面用MATLAB 编写一个子程序进行计算: function eucall=blsmc(s0,K,r,T,sigma,Nu) %蒙特卡洛方法计算欧式看涨期权的价格 %输入参数 %s0 股票价格 %K 执行价 %r 无风险利率 %T 期权的到期日 %sigma 股票波动标准差 %Nu 模拟的次数 %输出参数 %eucall 欧式看涨期权价格 %varprice 模拟期权价格的方差 %ci 95%概率保证的期权价格区间

randn('seed',0); %定义随机数发生器种子是0, %这样保证每次模拟的结果相同 nuT=(r-0.5*sigma^2)*T sit=sigma*sqrt(T) discpayoff=exp(-r*T)*max(0,s0*exp(nuT+sit*randn(Nu,1))-K) %期权到期时的现金流 [eucall,varprice,ci]=normfit(discpayoff) %在命令窗口输入:blsmc(50,52,0.1,12/5,0.4,1000) 2. 蒙特卡洛方法模拟障碍期权定价 障碍期权,就是确定一个障碍值b S ,在期权的存续期有可能超过该价格,也可能低于该价格,对于敲出期权而言,如果在期权的存续期标的资产价格触及障碍值时,期权合同可以提前终止执行;相反,对于敲入价格,如果标的资产价格触及障碍值时,期权合同开始生效。 当障碍值b S 高于现在资产价格0S ,称上涨期权,反之称下跌期权。 对于下跌敲出看跌期权,该期权首先是看跌期权,股票价格是0S ,执行价格是K ,买入看跌期权就首先保证以执行价K 卖掉股票,下跌敲出障碍期权相当于在看跌期权的基础上附加提前终止执行的条款,容是当股票价格触及障碍值b S 时看跌期权就提前终止执行。因为该期权对于卖方有利,所以其价格应低于看跌期权的价格。 对于下跌敲出看跌期权,该期权首先是看跌期权,股票价格是0S ,执行价格是K ,买入看跌期权就首先保证以执行价K 卖掉股票,下跌敲出障碍期权相当于在看跌期权的基础上附加提前终止执行的条款,容是当股票价格触及障碍值b S 时看跌期权就提前终止执行。因为该期权对于卖方有利,所以其价格应低于看跌期权的价格。 对于下跌敲入看跌期权,该期权首先是看跌期权,下跌敲出障碍期权相当于在看跌期权的基础上附加提前何时生效的条款,容是当股票价格触及障碍值b S 时看跌期权开始生效。 当障碍值b S 确定时,障碍期权存在解: 4275{()()[()()]}rT P Ke N d N d a N d N d -=--- 03186{()()[()()]}S N d N d b N d N d ---- 其中 212/0()r b S a S σ-+=, 212/0 ()r b S b S σ+=, 2 1d =

实验2-单服务台单队列排队系统仿真

实验2排队系统仿真 一、学习目的 1.了解仿真的特点 2.学习如何建构模型 3.熟悉eM-Plant基本的对象和操作 4.掌握排队系统的特点与仿真的实现方法 二、问题描述 该银行服务窗口为每个到达的顾客服务的时间是随机的,表2.4是顾客服务时间纪录的统计结果 表2.4 每个顾客服务时间的概率分布 服务时间(min)概率密度累计概率 1 0.1 0.1 2 0.2 0.3 3 0.30.6 4 0.2 5 0.85 5 0.10.95 60.05 1.0 对于上述这样一个单服务待排队系统,仿真分析30天,分析该系统中顾客的到

达、等待和被服务情况,以及银行工作人员的服务和空闲情况。 三、系统建模 3.1仿真目标 通过对银行排队系统的仿真,研究银行系统的服务水平和改善银行服务水平的方法,为银行提高顾客满意度,优化顾客服务流程服务。 3.2.系统建模 3.2.1系统调研 1. 系统结构: 银行服务大厅的布局, 涉及的服务设备 2.系统的工艺参数: 到达-取号-等待-服务-离开 3. 系统的动态参数: 顾客的到达时间间隔,工作人员的服务时间 4.逻辑参数: 排队规则, 先到先服务 5. 系统的状态参数: 排队队列是否为空,如果不为空队长是多少, 服务台是否为空 6.系统的输入输出变量:输入变量确定其分布和特征值,顾客的到达时间间隔的概率分布表和每个顾客被服务时间的概率分布. 输出变量根据仿真目标设定.包括队列的平均队长、最大队长、仿真结束时队长、总服务人员、每个顾客的平均服务时间、顾客平均排队等待服务时间、业务员利用率等。 3.2.2系统假设 1.取号机前无排队,取号时间为0 2. 顾客排队符合先进先出的排队规则 3.一个服务台一次只能对一个顾客服务 4.所有顾客只有一种单一服务 5.仿真时间为1个工作日(8小时) 6.等候区的长度为无限长 3.2.3系统建模 系统模型: 3.2.4 仿真模型 1.实体:银行系统中的实体是人(主动体)

蒙特卡洛方法及其应用

【最新资料,WORD文档,可编辑修改】 蒙特卡洛方法及其应用 1风险评估及蒙特卡洛方法概述 1.1蒙特卡洛方法。 蒙特卡洛方法,又称随机模拟方法或统计模拟方法,是在20世纪40年代随着电子计算机的发明而提出的。它是以统计抽样理论为基础,利用随机数,经过对随机变量已有数据的统计进行抽样实验或随机模拟,以求得统计量的某个数字特征并将其作为待解决问题的数值解。 蒙特卡洛模拟方法的基本原理是:假定随机变量X1、X2、X3……X n、Y,其中X1、X2、X3……X n 的概率分布已知,且X1、X2、X3……X n、Y有函数关系:Y=F(X1、X2、X3……X n),希望求得随机变量Y的近似分布情况及数字特征。通过抽取符合其概率分布的随机数列X1、X2、X3……X n带入其函数关系式计算获得Y的值。当模拟的次数足够多的时候,我们就可以得到与实际情况相近的函数Y的概率分布和数字特征。 蒙特卡洛法的特点是预测结果给出了预测值的最大值,最小值和最可能值,给出了预测值的区间范围及分布规律。 1.2风险评估概述。 风险表现为损损益的不确定性,说明风险产生的结果可能带来损失、获利或是无损失也无获利,属于广义风险。正是因为未来的不确定性使得每一个项目都存在风险。对于一个公司而言,各种投资项目通常会具有不同程度的风险,这些风险对于一个公司的影响不可小视,小到一个项目投资资本的按时回收,大到公司的总风险、公司正常运营。因此,对于风险的测量以及控制是非常重要的一个环节。 风险评估就是量化测评某一事件或事物带来的影响的可能程度。根据“经济人”假设,收益最大化是投资者的主要追求目标,面对不可避免的风险时,降低风险,防止或减少损失,以实现预期最佳是投资的目标。 当评价风险大小时,常有两种评价方式:定性分析与定量分析法。定性分析一般是根据风险度或风险大小等指标对风险因素进行优先级排序,为进一步分析或处理风险提供参考。这种方法适用于对比不同项目的风险程度,但这种方法最大的缺陷是在于,在多个项目中风险最小者也有可能亏损。而定量分析法则是将一些风险指标量化得到一系列的量化指标。通过这些简单易懂的指标,才能使公司

相关文档
最新文档