IH型不锈钢化工离心泵概述、性能范围及结构特点

IH型不锈钢化工离心泵概述、性能范围及结构特点
IH型不锈钢化工离心泵概述、性能范围及结构特点

IH型不锈钢化工离心泵概述、性能范围及结构特点

一、IH型化工离心泵的概述:

IH型化工泵是单级单吸悬臂式离心泵,其标记额定性能点和尺寸等效采用国际标准ISO2858-1975(E),是一种用以取代F型耐腐蚀泵更新换代的节能产品,适用于化工、石油、冶金、电站、食品、制药、合成纤维等部门输送温度在-20℃~105℃的腐蚀性介质或物理、化学性能类似于水的介质。

二、IH型化工离心泵的性能范围(按设计点):

流量Q:6.3~400 m3/h

扬程H:5~125m

泵的最高工作设计压力为1.6MPa

IH型化工泵输送介质温度为-20℃~105℃,需要时采用双端面密封冷却装置,可输送介质温度为20℃~+280℃。适用于化工、石油、冶金、电力、造纸、食品、制药、环保、废水处理和合成纤维等行业用于输送各种腐蚀的或不允许污染的类似于水的介质。

三、IH型化工离心泵的性能范围:

流量Q:6.3~400m3/h 扬程H:5~132m

转速n:2900、1450r/min 配带功率:0.55~110KW

进口直径:50~200mm 最高工作压力:1.6Mpa

IH型系列泵有29个基本型,其中22个双速(2900、1450r/min)经过A、B两种型式的叶轮直径切割变型后,达112个规格。

泵的结构:

IH型泵是全国泵行业采用ISO国际标准联合设计的系列产品,其主要由泵体、叶传输线、密封环、叶

轮螺母、泵盖、密封部件、中间支架、轴、悬架部件等组成。

泵的结构特点:

泵盖通过止口固定在中间支架上,然后通过泵体与中间支架止口的联接把泵盖夹紧在中间,泵体是轴向吸入,径向排出,脚支承式,可直接固定在底座上。悬架部件通过止口固定固定在中间支架上,并用悬架支架支撑在底座上。为拆卸方便,设计了加长联轴器,检修时可以不拆卸进出口联接管路,泵体和电动机。只需拆下联轴器的中间联接件,即可退出转子部件进行检修。这是国际上通用的一种结构形式。

泵的旋转方向:

泵通过加长联轴器由电动机直接驱动,从电动机端看,按顺时针方向旋转。

泵的轴封型式:

填料密封:泵盖内设有填料函,采用软填料密封,填料函内可通入有一定压力的水,供密封冷却,润滑、清洗用。

机械密封:单端面机械密封和双端面机械密封两种型式,密封腔内通入一定压力的水,冲洗磨擦两端面,同时起冷却作用。

泵的密封型式采用填料密封或机械密封,由用户根据需要适用,同时根据需要允许采用适合于ISO3069规定的密封空腔尺寸和其他结构的轴封型式,如带波纹管的机械密封和付叶轮密封等等。

工作条件

流量Q:6.3-400m3/h 转数N:2900-1450r/min 口径DN:50-200mm

扬程H:5-125m 配带功率:0.55-90kw 工作压力P:1.6Mpa

型号意义

例如:IH50-32-160

IH-国际标准单级单吸化工离心泵

50-吸入口直径(mm)

32-排出口直径(mm)

160-叶轮名义直径(mm)

四、IH型化工离心泵的的结构特点:

泵盖通过止口固定在中间支架上,然后通过泵体与中间支架止口的联接把泵盖夹紧在中间,泵体是轴向吸入,径向排出,脚支承式,可直接固定在底座上。悬架部件通过止口固定固定在中间支架上,并用悬架支架支撑在底座上。为拆卸方便,设计了加长联轴器,检修时可以不拆卸进出口联接管路,泵体和电动机。只需拆下联轴器的中间联接件,即可退出转子部件进行检修。这是国际上通用的一种结构形式。

化工泵的旋转方向:

泵通过加长联轴器由电动机直接驱动,从电动机端看,按顺时针方向旋转。

泵的轴封型式:

填料密封:泵盖内设有填料函,采用软填料密封,填料函内可通入有一定压力的水,供密封冷却,润滑、清洗用。

机械密封:单端面机械密封和双端面机械密封两种型式,密封腔内通入一定压力的水,冲洗磨擦两端面,同时起冷却作用。

泵的密封型式采用填料密封或机械密封,由用户根据需要适用,同时根据需要允许采用适合于ISO3069规定的密封空腔尺寸和其他结构的轴封型式,如带波纹管的机械密封和付叶轮密封等等。

IH型化工泵输送介质温度为-20℃~105℃,需要时采用双端面密封冷却装置,可输送介质温度为20℃~+280℃。适用于化工、石油、冶金、电力、造纸、食品、制药、环保、废水处理和合成纤维等行业用于输

送各种腐蚀的或不允许污染的类似于水的介质。

拆卸与装配

拆卸:

由于采用了加长联轴器,拆卸泵时,不必拆卸进、出口管路,泵体和电机,只需拆下加长联轴器中的中间联轴器,即可拆出转子部件,进行维修、保养。

1、拆下泵体上的泄液管堵和悬架体上的放油管堵,放净泵内液体和悬架体内的润滑油。(注:如泵上还有另外附加管路亦应拆下)。

2、拆开泵体与中间支架的联结、并将中间支架、悬架部件和泵盖等全部转子部件从泵体中一起退出。

3、拆下,叶轮螺母、取下叶轮和键。

4、将泵盖连同轴套、机械密封端盖和稞械密封等部件一起从轴上退出。注意勿使轴套相对于泵盖等发生滑动,然后再拆下机械密封端盖,将机械密封连同轴套一起取下,再将轴套和机械密封拆开。

如果密封采用填料,则可从泵盖中直接拆下轴套,再顺次拆下填料压盖,填料和填料环等。

如果密封采用特殊结构,应注意不同的拆卸方法。

5、拆下中间支架与悬架支架。

6、拆下泵联轴器和键。

7、拆下悬架体两端的防尘盘和轴承的前、后盖,再将轴连同轴承一起从悬架体内取下。

8、从泵轴上拆下轴承。

装配

与拆卸程序相反进行。

起动、运行和停止

1. 起动前准备

1) 起动前要把泵和现场清理千净。

2) 检查托架内润滑油量是否适量〈油面在油位计中心线2mm左右)油位计是否完好。

3) 未接联轴器前检查原动机的转向,与泵的转向箭头一致后,接好联轴器。

4) 在装好机械密封或填料和联轴器后可方使地用手转动泵轴,应无碰擦现象,并将联轴器的防护罩安装好。

5) 泵在吸上情况下使用,起动前应灌泵或抽真空;泵在倒灌情况下使用,起动前应用所输送液体将泵灌满,驱除泵中的空气后,将吐出管的闸阀关闭。

6) 起动前检查基础螺检有无松动。压盖是否歪斜,以及润滑油和冷却水的供应情况。

2. 起动

1) 关闭进出口压力(或真空)计和出水阀门、(如有旁通管、此时也应关闭。〉起动电机(最好先点动、确认泵转向正确后,才开始正式运行。),然后打开进出口压力(或真空)计,当泵达到正常转速,且仪表指出相应压力时,再慢慢打开出水阀门,调节到需要的工况。在吐出管路关闭的情况下,泵连续工作的时间,不能超过3分钟。

2) 起动过程中要时时注意原动机的功率读数及泵的振动情况,振动数不应超过0.06毫米,测定部位是轴承座。

3) 密封情况:机械密封应无泄漏、发热现象、填料密封^I呈连续滴流状态。

3. 运行

1) 经常检查泵和电机的发热情况(轴承的温升不应超过75℃〉及油位计供油情况。〈一般每运行1500小时后,要全部更换润滑油一次〉。

2) 不能用吸入阀来调节流量,避免产生汽蚀。

3) 泵不宜在低于30%殳计流量下连续运转,如果必须在该条件下连续运转,则应在出口处安装旁通管,排放多余的流量。

4) 注意泵运转有无杂音,如发现异常状态时,应及时消除或停车检查。

4. 停止

1) 慢关闭吐出口管路闸阀〈如果泵在倒灌情况下使用,还要关闭吸入管路的闸阀)、并关闭各种仪表的开关。

2) 切断电源

3) 如果密封采用外部引液时,还要关闭外引液阀门。

4) 如果环境温度低于液体凝固点时,要放净泵内的液体,以防冻裂。

5) 如果长时间停车不用,除将泵内的腐蚀性液体放净外,各零部件应拆卸清洗干净,尤其是密封腔。最好是将泵拆下清洗后重新装好,除涂油防锈处理和封闭泵进、出口外,还应定期检I

五、IH型系列化工泵的性能范围:

流量Q:6.3~400m3/h 扬程H:5~132m

转速n:2900、1450r/min 配带功率:0.55~110KW

进口直径:50~200mm 最高工作压力:1.6Mpa

IH型系列泵有29个基本型,其中22个双速(2900、1450r/min)经过A、B两种型式的叶轮直径切割变型后,达112个规格。

六、IH型系列化工泵结构图纸:

1 泵体

2 叶轮

3 密封环

4 叶轮螺母

5 泵盖

6 密封部件

7 中间支架

8 轴

9 悬架部件

离心泵的性能参数与特性曲线

离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。离心泵的主要性能参数有流量、压头、效率、轴功率等。它们之间的关系常用特性曲线来表示。特性曲线是在一定转速下,用20℃清水在常压下实验测得的。 (一)离心泵的性能参数 1、流量 离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。离心泵的流量与泵的结构、尺寸和转速有关。 2、压头(扬程) 离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。压头的影响因素在前节已作过介绍。 3、效率 离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。反映能量损失大小的参数称为效率。 离心泵的能量损失包括以下三项,即 (1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。闭式叶轮的容积效率值在0.85~0.95。 (2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。这种损失可用水力效率ηh来反映。额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。 (3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。离心泵的总效率由上述三部分构成,即 η=ηvηhηm(2-14) 离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。通常,小泵效率为50~70%,而大型泵可达90%。 4、轴功率N 由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有 Ne = HgQρ(2-15) 式中 Ne------离心泵的有效功率,W; Q--------离心泵的实际流量,m3/s; H--------离心泵的有效压头,m。 由于泵内存在上述的三项能量损失,轴功率必大于有效功率,即 (2-16) 式中 N ----轴功率,kW。 (二)离心泵的特性曲线 离心泵压头H、轴功率N及效率η均随流量Q而变,它们之间的关系可用泵的特性曲线或离心泵工作性能曲线表示。在离心泵出厂前由泵的制造厂测定出H-Q、N-Q、η-Q

不锈钢材料的基础知识概述

不锈钢材料基础知识 1、不锈钢的定义: 在空气中或化学腐蚀介质中能够抵抗腐蚀的一种高合金钢,通俗地说,不锈钢就是不容易生锈的钢,实际上一部分不锈钢,既有不锈性,又有耐酸性(耐蚀性)。不锈钢的不锈性和耐蚀性是由于其表面上富铬氧化膜(钝化膜)的形成。不锈钢是具有美观的表面和耐腐蚀性能好,不必经过镀色等表面处理,而发挥不锈钢所固有的表面性能, 使用于多方面的钢铁的一种,通常称为不锈钢。 代表性能的有13 铬钢,18-铬镍钢等高合金钢。从金相学角度分析,因为不锈钢含有铬而使表面形成很薄的铬膜,这个膜隔离开与钢内侵入的氧气起耐腐蚀的作用。为了保持不锈钢所固有的耐腐蚀性,钢必须含有12%以上的铬,当铬含量达到一定的百分比时,钢的耐蚀性发生突变,即从易生锈到不易生锈,从不耐蚀到耐腐蚀。 2、不锈钢的种类 不锈钢可以按用途、化学成分及金相组织来大体分类。 以奥氏体系类的钢由18%铬-8%镍为基本组成,各元素的加入量变化的不同,而开发各种用途的钢种。以化学成分分类:① Cr 系列:铁素体系列、马氏体系列② Cr-Ni 系列:奥氏体系列,异常系列,析出硬化系列。 以金相组织的分类:①奥氏体不锈钢,②铁素体不锈钢,③马氏体不锈钢,④双相不锈钢,⑤沉淀硬化不锈钢。 3、不锈钢的标识方法 1.钢的编号和表示方法 ①用国际化学元素符号和本国的符号来表示化学成份,用阿拉伯字母来表示成份含量:如:中国、俄罗斯, 12CrNi3A ②用固定位数数字来表示钢类系列或数字;如:美国、日本、300 系、400系、200 系; ③用拉丁字母和顺序组成序号,只表示用途。 2.国际不锈钢标识方法 ①奥氏体型不锈钢用200和300系列的数字标示,例如,某些较普通的奥氏体不锈钢是以201、304 、 316 以及310 为标记。 ②铁素体和马氏体型不锈钢用400 系列的数字表示。 ③铁素体不锈钢是以430和446为标记,马氏体不锈钢是以410、420以及440C为标记,双相(奥氏体 -铁素体)。 ④不锈钢、沉淀硬化不锈钢以及含铁量低于50%的高合金通常是采用专利名称或商标命名。 4、不锈钢钢种的发展 从1910 年诞生的三大系列分别为奥氏体、铁素体和马氏体的不锈钢,从化学成分来看,主要属Fe-Cr 和 Fe-Cr-Ni 两大体系。目前,已投入市场的不锈钢的品种已达到230 种以上,其中约有80%是奥氏体不 锈钢(18铬--8 镍)的衍生物,而其余20%则是由13铬钢演变而成的不锈钢的品质特性

不锈钢、不锈钢制品加工工艺性能图解与冶炼、生产、加工新工艺新

不锈钢、不锈钢制品加工工艺性能图解与冶炼、生产、加工新工艺新 定价980元优惠价490 作者王新铭 册数规格全四卷+1CD 16开精装 出版社北方工业出版社2007年9月出版不锈钢、不锈钢制品加工工艺性能图解与冶炼、生产、加工新工艺新技术和质量控制及技术标准规范实用手册 不锈钢、不锈钢制品加工工艺性能图解与冶炼、生产、加工新工艺新技术和质量控制及技术标准规范实用手册 详细目录 第一篇不锈钢概论 第一章不锈钢的定义和分类及命名 第二章不锈钢代表性牌号 第三章合金元素对不锈钢组织和性能的影响 第四章不锈钢耐腐蚀机理 第五章不锈钢的化学成分和组织特征 第六章常用不锈钢的化学成分和性能 第七章不锈钢产品和生产工艺的发展 第二篇不锈钢、不锈钢制品加工工艺性能、特点图解 第一章奥氏体不锈钢加工工艺性能图解 第一节铬一镍奥氏体不锈钢 第二节铬一镍一锰一氮奥氏体不锈钢 第二章铁素体不锈钢加工工艺性能图解 第一节低铬铁素体不锈钢 第二节中铬铁素体不锈钢 第三节高铬铁素体不锈钢 第三章马氏体不锈钢加工工艺性能图解 第一节马氏体铬不锈钢 第二节铬一镍马氏体不锈钢 第四章双相不锈钢加工工艺性能图解 第一节低合金型双相不锈钢 第二节中合金型双相不锈钢 第三节高合金型双相不锈钢 第四节超级双相不锈钢 第五章沉淀硬化不锈钢加工工艺性能图解 第一节马氏体型沉淀硬化不锈钢 第二节半奥氏体沉淀硬化不锈钢 第三节奥氏体沉淀硬化不锈钢 第三篇不锈钢冶炼与浇铸、连铸新工艺新技术 第一章不锈钢冶炼工艺的特点 第二章三步法中复吹转炉的吹炼工艺

第三章 AOD炉的精炼工艺 第四章 VOD炉的精炼工艺 第五章 AOD炉与VOD炉主要工艺参数的比较 第六章不锈钢的浇铸工艺 第七章不锈钢的连铸工艺 第四篇不锈钢精炼新工艺新技术 第一章概述 第二章不锈钢精炼的物理化学基础 第三章不锈钢返回吹氧精炼法 第四章不锈钢氩氧脱碳精炼法 第五章不锈钢真空吹氧精炼法 第六章 cLu法精炼不锈钢 第五篇不锈钢板带轧制与退火与精整新工艺新技术 第一章不锈钢板带的热轧工艺 第二章不锈钢板带的冷轧工艺 第三章不锈钢板带的退火工艺 第四章不锈钢的精整工艺 第六篇不锈钢线材生产新工艺新技术 第一章不锈钢线材生产工艺特点和流程 第二章钢坯的准备和加热 第三章轧制 第四章热处理和酸洗 第七篇不锈钢管材生产新工艺新技术 第一章不锈钢管材生产工艺流程 第二章挤压管的生产工艺 第三章顶管的生产工艺 第四章三辊轧管工艺 第五章冷拔和冷轧管生产工艺 第八篇不锈钢焊接管生产新工艺新技术 第一章概述 第二章不锈钢焊管原料及焊接材料 第三章不锈钢焊管成型及规格尺寸 第四章不锈钢焊管的焊接工艺 第五章不锈钢焊管机组 第六章不锈钢焊管的热处理工艺 第七章不锈钢焊管的矫直和平头 第八章不锈钢焊管的其他形式及不锈钢管件 第九章不锈钢焊管的质量检验 第九篇不锈钢、不锈钢制品的焊接、切割新工艺新技术第一章不锈钢的焊接工艺 第二章不锈钢钎焊 第三章异型钢的焊接工艺及压力容器堆焊 第四章不锈钢焊接材料 第五章不锈钢焊接和切割工艺

《材料结构与性能》习题

《材料结构与性能》习题 第一章 1、一 25cm长的圆杆,直径 2.5mm,承受的轴向拉力4500N。如直径拉细成 2.4mm,问: 1)设拉伸变形后,圆杆的体积维持不变,求拉伸后的长度; 2)在此拉力下的真应力和真应变; 3)在此拉力下的名义应力和名义应变。 比较以上计算结果并讨论之。 2、举一晶系,存在S14。 3、求图 1.27 所示一均一材料试样上的 A 点处的应力场和应变场。 4、一陶瓷含体积百分比为95%的 Al 2O(3 E=380GPa)和 5%的玻璃相( E=84GPa),计算上限及下限弹性模量。如该陶瓷含有5%的气孔,估算其上限及下限弹性模量。 5、画两个曲线图,分别表示出应力弛豫与时间的关系和应变弛豫和时间的 关系。并注出: t=0,t= ∞以及 t= τε(或τσ)时的纵坐标。 6、一 Al 2O3晶体圆柱(图1.28 ),直径 3mm,受轴向拉力 F ,如临界抗剪强度τ c=130MPa,求沿图中所示之一固定滑移系统时,所需之必要的拉力值。同时 计算在滑移面上的法向应力。

第二章 1、求融熔石英的结合强度,设估计的表面能为 1.75J/m 2;Si-O 的平衡原子间距为 1.6 ×10-8 cm;弹性模量值从60 到 75GPa。 2、融熔石英玻璃的性能参数为:E=73GPa;γ =1.56J/m 2;理论强度。如材料中存在最大长度为的内裂,且此内裂垂直于作用力的方向,计算由此而导致的强度折减系数。 3、证明材料断裂韧性的单边切口、三点弯曲梁法的计算公式: 与 是一回事。

4、一陶瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口如图 2.41所示。如果 E=380GPa,μ =0.24 ,求 KⅠc值,设极限载荷达50 ㎏。计算此材料的断裂表面能。 5、一钢板受有长向拉应力350 MPa,如在材料中有一垂直于拉应力方向的 中心穿透缺陷,长 8mm(=2c)。此钢材的屈服强度为 1400MPa,计算塑性区尺 寸 r 0及其与裂缝半长 c 的比值。讨论用此试件来求 KⅠc值的可能性。 6、一陶瓷零件上有以垂直于拉应力的边裂,如边裂长度为:①2mm;②0.049mm;③ 2μ m,分别求上述三种情况下的临界应力。设此材料的断裂韧性为 2 1.62 MPa〃m。讨论诸结果。 7、画出作用力与预期寿命之间的关系曲线。材料系ZTA陶瓷零件,温度在 2 ,慢裂纹扩展指数-40 ,Y 取π 。设保 900℃, KⅠc为 10MPa〃m N=40,常数 A=10 证实验应力取作用力的两倍。 8、按照本章图 2.28 所示透明氧化铝陶瓷的强度与气孔率的关系图,求出经验公式。 9、弯曲强度数据为: 782,784,866,884,884,890,915,922,922,927,942, 944,1012 以及 1023MPa。求两参数韦伯模量数和求三参数韦伯模量数。 第三章 1、计算室温( 298K)及高温( 1273K)时莫来石瓷的摩尔热容值,并请和安杜龙—伯蒂规律计算的结果比较。 2、请证明固体材料的热膨胀系数不因内含均匀分散的气孔而改变。

注塑材料特性

ABC是什么ABS树脂吧! 一、PBT:聚对苯二甲酸丁二醇酯 聚对苯二甲酸丁二醇酯,英文名polybutylece terephthalate(简称PBT),属于聚酯系列,是由丁二醇glycol)与对苯二甲酸(PTA)或者对苯二甲酸酯(DMT)聚缩合而成,并经由混炼程序制成的乳白色半透明到不透明、结晶型热塑性聚酯树脂。与PET一起统称为热塑性聚酯,或饱和聚酯。 PBT理化特性 PBT为乳白色半透明到不透明、结晶型热塑性聚酯。具有高耐热性、韧性、耐疲劳性,自润滑、低摩擦系数,耐候性、吸水率低,仅为%,在潮湿环境中仍保持各种物性(包括电性能),电绝缘性,但体积电阻、介电损耗大。耐热水、碱类、酸类、油类、但易受卤化烃侵蚀,耐水解性差,低温下可迅速结晶,成型性良好。缺点是缺口冲击强度低,成型收缩率大。故大部分采用玻璃纤维增强或无机填充改性,其拉伸强度、弯曲强度可提高一倍以上,热变形温度也大幅提高。可以在140℃下长期工作,玻纤增强后制品纵、横向收缩率不一致,易使制品发生翘曲。 PBT加工工艺 PBT又可称为热塑性聚酯塑料,为适用于不同加工业者使用,一般多少会加入添加剂,或与其它塑料掺混,随着添加物比例不同,可制造不同规格的产品。由于PBT具有耐热性、耐候性、耐药品性、电气特性佳、吸水性小、光泽良好,广泛应用于电子电器、汽车零件、机械、家用品等,而PBT产品又与PPE、PC、POM、PA等共称为五大泛用工程塑料。 PBT 结晶速度快,最适宜加工方法为注塑,其他方法还有挤出、吹塑、涂覆和各种二次加工成型,成型前需预干燥,水分含量要降至%。 PBT的注塑工艺特性与工艺参数的设定: PBT的聚合工艺成熟、成本较低,成型加工容易。未改性PBT性能不佳,实际应用要对PBT进行改性,其中,玻璃纤维增强改性牌号占PBT的70%以上。 1 PBT的工艺特性 PBT具有明显的熔点,熔点为225~235℃,是结晶型材料,结晶度可达40%。 PBT熔体的粘度受温度的影响不如剪切应力那么大,因此,在注塑中,注射压力对PBT熔体流动性影响是明显。 PBT在熔融状态下流动性好,粘度低,仅次于尼龙,在成型易发生“流延”现象。 PBT成型制品各向异性。PBT在高温下遇水易降解。 2 注塑机 选用螺杆式注塑机时。应考虑如下几点。 ①制品的用料量应控制在注塑机额定最大注射量的30%~80%。不宜用大注塑机生产小制品。 ②应选用渐变型三段螺杆,长径比为15~20,压缩比为~。 ③应选用自锁式喷嘴,并带有加热控温装置。 ④在成型阻燃级PBT时,注塑机的有关部件应经防腐处理。 3 制品与模具设计 ①制品的厚度不宜太厚,PBT对缺口很敏感,因此,制品的直角等过渡处应采用圆弧连接。 ②未改性PBT的成型收缩率较大,在%~%,模具要有一定的脱模斜度。 ③模具需要设排气孔或排气槽。

904L不锈钢概述

904L不锈钢概述 904L不锈钢的牌号为00Cr20Ni25Mo4.5Cu,是一种含碳量很低的高合金化的超级奥氏体不锈钢。在稀硫酸中有很好的抗腐蚀性,铜的加人使它具有很强的抗酸能力,专为腐蚀条件苛刻的环境而设计。因此这种不锈钢主要用于抗腐蚀压力容器的制造。904L的成分以Cr、Ni等元素为主,属于难加工材料,切削加工性较差,主要原因如下。 1)904L不锈钢较之其他种类不锈钢,切削力更大。因为904L硬度虽然不高(70—90HRB),但塑性较好,延伸率≥40%,断面收缩率≥50%,抗拉强度σb≥490MP a,屈服强度σ0.2≥216MPa,因而在切削过程中塑性变形大,使切削力增加。 2)导热系数低。904L不锈钢的热导率(20℃时)为12.9W/(m·K),导热系数低,只有45钢的1/4左右(45钢的热导率为47.5W/(m·K))。导热性是影响切削热传导的主要因素之一,被加工材料的导热性越低,由切屑和工件带走的热量就愈少,而刀具上积聚的热量就越多,使刀具极易磨损。 3)易生成积屑瘤。由于904L不锈钢韧性大,所以在切削过程中与刀具材料的亲和力强,切削时刀具的前刀面与切屑底层金属发生强烈摩擦,在高温高压的作用下会产生粘附现象,生成积屑瘤,不易获得表面粗糙度要求高的加工表面。 4)切屑不易弯曲折断。904L不锈钢的材料延伸率高,所以在切削过程中切屑不易弯曲而折断。如果不采取适当措施,会影响切削过程的正常进行,而且容易划伤已加工表面,甚至还会使刀具崩刃和损坏。 由于904L不锈钢的以上特点,在用常规刀具和传统方法对其进行切削时,即使选择非常小的切削用量,刀具仍然极易磨损,加工效率低,且工件很难达到图样所要求的表面粗糙度和加工精度。在这种背景下,笔者尝试借鉴先进的高速切削理念,进行904L不锈钢的铣削加工。从理论上分析,在高速切削加工范围,随切削速度提高,切削力随之减少,有利于奥氏体不锈钢零件的切削加工。高速切削加工时,切屑以很高的速度排出,带走大量的切削热,切削速度提高愈大,带走的热量愈多,传给工件的热量大幅度减少,有利于降低切削刀具上积聚的热量。高速切削加工时,转速的提高,使切削系统的工作频率远离机床的低阶固有频率,而工件的加工表面粗糙度对低阶固有频率最敏感,因此高速切削加工可大大降低加工表面粗糙度。 2 高速切削刀具系统设计 要实施高速切削,刀具是最活跃的因素,加工表面的形成主要依赖刀具的切削作用。常规刀具无法进行904L的高速切削加工,必须选择与高速切削相适应的刀具材料、刀具结构和刀柄系统,并应考虑高速切削刀具的动平衡问题。 2.1 刀具材料 根据904L不锈钢的切削加工特点,在进行切削时应选择硬度高、耐磨性好、导热好、耐用度高、与不锈钢粘附性小的刀具。而且刀具在高速切削时,要承受比常规切削更高的温度和压力,更剧烈的摩擦、冲击和振动作用,会加速刀具磨损。因此高速切削刀具材料的选择除了要具备切削不锈钢材料的基本性能外,还要求刀具材料具备更高的可靠性、更高的耐热性、抗热冲击性及良好的高温力学性能。 用高速钢刀具切削904L不锈钢时,宜采用粉末冶金高速钢、含钴高速钢或含铝超硬高速钢,但只适用低速切削;用硬质合金刀具切削904L时,普通牌号例如YG6、YG8,只能用于常规低速加工。904L的高速切削加工必须采用特殊材质的刀具,才能保证零件最终的加工精度和表面质量。可用于904L不锈钢高速切削的刀具材料主要有涂层硬质合金、超细晶粒硬质合金及金属陶瓷刀具等。下面简要介绍三种牌号刀具,并将在下文铣削试验中对各自的切削性能进行比较。 2.1.1 T1200A

双相不锈钢性能特点-力学性能特点

与不锈钢中其他四类相比,由于双相不锈钢具有α+γ双相组织结构,因此,其性能特点兼有奥氏体不锈钢和铁素体不锈钢的特性,是一类高强度与高耐蚀性最佳匹配的不锈钢。 与铁素体不锈钢相比,α+γ双相不锈钢的脆性转变温度低,室温韧性高,耐晶间腐蚀和焊接性能显著改善,同时仍保留铁素体不锈钢的一些特点,如457℃脆性,中温脆性和高温脆性及热导率高、线胀系数小何具有超塑性等。 与奥氏体不锈钢相比,双相不锈钢的强度,特别是屈服强度显著提高,耐晶间腐蚀、应力腐蚀、疲劳腐蚀及磨蚀等性能明显改善,但有磁性。 上述双相不锈钢的特性,随两相比例的不同而有所改变。例如,当铁素体相的比例较大时,则更易显示铁素体不锈钢的性能特点;反之,则更易显示奥氏体不锈钢的性能特点。

1.力学性能 高强度,存在脆性转变温度和三个脆性区。 由于双相不锈钢具有微细的显微组织以及钼、氮等的强化作用,双相不锈钢的强度远远高于铁素体不锈钢和奥氏体不锈钢,一些试验结果见表1和图2。 表1.铁素体(430)、奥氏体(304)和双相不锈钢代表性牌号室温力学性能的对比 图2.分别为超级铁素体不锈钢、超级双相不锈钢、超级奥氏体不锈钢的力学性能对比 但是,双相不锈钢中含高铬、钼的大量铁素体相的存在,使得铁素体不锈钢中所具有的脆性 转变温度和457℃脆性、中温脆性以及高温脆性三个脆性区的特征,在双相不锈钢中先也显 现了出来(图3~5)。但是由于双相不锈钢的晶粒细化且又存在大量奥氏体,所以双相不锈 钢的脆性转变温度明显低于普通铁素体不锈钢,一般均在-40℃或-50℃以下,而且室温冲击 韧性也足够高(表1),因此不影响双相不锈钢的工程应用。至于457℃脆性和中温脆性只 要不高于260℃,长期使用就不会有任何危险。

沉淀硬化不锈钢发展及五大不锈钢性能特点简单汇总

沉淀硬化不锈钢发展及五大不锈钢性能特点简单汇总 前面已经述及,沉淀硬化不锈钢在室温下,钢的基体组织可以是马氏体、奥氏体以及铁素体,经过事宜热处理,在基体上沉淀(析出)金属间化合物以及碳化物、氮化物等而使不锈钢强化的一类不锈钢。 目前获得广泛应用的沉淀硬化不锈钢主要分为三类,即马氏体沉淀硬化不锈钢、半奥氏体沉淀硬化不锈钢和奥氏体沉淀硬化不锈钢。此外,人们常把超低碳马氏体时效不锈钢也列入其中。 发展简况 虽然早在20世纪30年代人们就已了解不锈钢沉淀硬化的原理,但自从出现第一个沉淀硬化不锈钢牌号Stainless w:0Cr17Ni7AlTi后,一直到1946年也并未获得应用。此后,由于航

空、航天以及原子能和化工等对既耐腐蚀又具有高强度/重量比的钢的需求,一些新的沉淀硬化不锈钢开始陆续问世。美国将此类不锈钢列为600系列。超低碳马氏体时效不锈钢出现于20世纪60年代。它是在马氏体时效钢基础上添加铬,使钢具有不锈性而发展起来的。一般也将它列入马氏体沉淀硬化不锈钢类中。 马氏体沉淀硬化不锈钢具有不稳定的奥氏体组织,固溶处理后产生马氏体相变。通过时效处理,在马氏体基体上析出第二相而使钢强化。 超低碳马氏体时效不锈钢具有不锈性,在经固溶并时效后,在超低碳、高镍马氏体的基础上析出第二相而使钢强化。 半奥氏体沉淀硬化不锈钢也是一种奥氏体不稳定的不锈钢,但奥氏体的稳定性要比马氏体沉淀硬化不锈钢为高。半奥氏体沉淀硬化不锈钢固溶态在室温下为奥氏体,经过冷加工过、超低温冷处理加热到750℃左右进行调整处理后,可使奥氏体转变为马氏体,然后在经过时效处理,在马氏体基体上析出第二相而钢强化。 奥氏体沉淀硬化不锈钢具有温度奥氏体组织,经固溶处理后再经时效,从奥氏体基体上析出第二相而使钢强化。 表7.1列出了沉淀硬化不锈钢的一些牌号和它们的化学成分标号。(转自不锈钢概论)

常用塑胶材料特性大全世界通用版

常用塑胶材料特性 一、丙烯腈-丁二烯-苯乙烯(ABS)(乳白色半透明) 优点: 1.力学性能和热性能均好,乳白色半透明,硬度高,表面易镀金属 2.耐疲劳和抗应力开裂、冲击强度高 3.耐酸碱等化学性腐蚀 4.加工成型、修饰容易 缺点: 1.耐候性差 2.耐热性不够理想, 3.拉伸率底 主要应用范围:机器盖、罩,仪表壳、手电钻壳、风扇叶轮,收音机、电话和电视机等壳体,部分电器零件、汽车零件、机械及常规武器的零部件 改性的ABS共聚物: 将ABS加入PVC中,可提高其冲击韧性、耐燃性、抗老化和抗寒能力,并改善其加工性能; 将ABS与PC共混,可提高抗冲击强度和耐热性;以甲基丙烯酸甲酯替代ABS中丙烯腈组分,可制得MBS塑料,即通常所说的透明ABS。 ABS/NYLON 耐热及抗化学性、流动性佳、低温冲击性、低成本 主要用于汽车车身护板、引擎室零组件、连接器、动力工具外壳 ABS/PVC PVC增加防火性、降低成本ABS提供耐冲击性 主要用于家电用品零组件、事务机器零组件 ABS/PC 增加ABS耐热尺寸安定性、改善PC低温、后壁耐冲性、降低成本 主要用于打字机外壳、文字处理器、计算机设备之外壳、医疗设备零组件、小家电零组件、电子

器材零组件、汽车头灯框、尾灯外罩、食物餐盘 ABS/SMA 增加耐热性、流动性、涂装性佳 主要用于电子零组件、罩子、家电器材零组件 模具设计 1.排气 为防止在充模时出现排气不良、灼伤、熔接缝等缺陷,要求开设深度不大于0.04mm 的排气槽。 壁厚 0.8 mm至3.2 mm之间,典型的壁厚约在2.5mm左右,3.8以上需要结构性发泡。圆角 最小在厚度的25%,最适当半径在厚度的60%。 收缩率:0.4%-0.7%一般取0.5% 加强筋:高<3T 宽度0.5T 筋间距>2T 脱模角:0.5°-1.5° 支柱加强筋高度4T,可达支柱高度的90%,宽度0.5T,长度2T, 支柱:外经是内径2倍 具体公司和型号: 日本油墨化学工业公司 ABS\MBS TI-500A 透明级价格较高,主要用于要求流动性好、小而透明、性能和ABS一样的零件台达化学工业股份有限公司 ABS 8540T 阻燃级,耐冲击强度、射出成型用、高流动性、难燃性可达UL94 1/16“V-0 主要用于商用机器、信息产品、肉薄或形状复杂产品。 余姚四塑阻燃塑料厂

化工泵参数及型号定义

化工泵参数及型号定义 上海阳光泵业作为国内一家著名的集研制、开发、生产、销售、服务于一体的大型多元化企业,上海阳光泵业制造有限公司一直坚持“以质量求生存、以品质求发展”的宗旨为广大客户提供优质服务!同时,上海阳光泵业一直专注于自身实力的提升以及对产品质量的严格把关,为此,目前不但拥有国内最高水准的水泵性能测试中心、完善的一体化服务体系、经验丰富的水泵专家,同时经过多年的发展,产品以优越的性能、精良的品质、良好的服务口碑获得各项专业认证证书和客户认可。经过团队的不懈努力,上海阳光泵业在国内水泵行业已经取得了很大成就。这样一家诚信为本、责任重于天的水泵行业佼佼者,对于水泵的维修、保养等各大方面都有自己独特的方法,下面就一起来看看吧! 一、ZX系列卧式自吸化工泵产品概述: ZX系列型泵是卧式自吸离心泵。耐腐蚀化工泵该型式泵与其它型式的自吸离心泵比较,因为泵本身没有逆止阀,结构最为简单;工作最为可靠;无故障工作时间长,维护、使用方便、体积小、重量轻、效率高、在设计上做了特别的考虑与相同口径的泵比较,排量大、性能高。 ZX型自吸泵在工农业生产、抢险救助,如排涝、救火中作为应急泵使用效能更为突出。氟塑料化工泵 ZX型泵广泛适用石油、化工、冶金、机械、化纤、食品、能源、交通等工业部门城市给水、亦可用于农业排灌、喷灌。供输送清水或粘度小于5°E,温度低于80℃物理及化学性质类似清水的其它液体。二、ZX系列卧式自吸化工泵技术参数: 流量:6.3~400m3/h; 扬程:5~132m; 转速:2900、1450r/min; 功率:0.55~110KW; 进口直径:50~200mm; 最高工作压力:1.6Mpa。 三、ZX系列卧式自吸化工泵维护和拆装:

304不锈钢及其衍生牌号的标准化学成分

304不锈钢及其衍生牌号的标准化学成分 不锈钢牌号“304'’(S30400)是美国不锈钢标准(如ASTM标准)中的牌号名称,它是18―8型Cr-Ni 奥式体不锈钢的典型牌号,由于其具有优良的综合性能,用途十分广泛,其产销量占到奥式体不锈钢的80%左右。对304及其衍生牌号,美国材料和试验协会不锈钢牌号标准ASTMA959-04和日本JIS、我国GB、国际ISO、欧洲EN等不锈钢标准中都有明确的规定。但是,近期我国国内市场上出现了没有列入国内外标准的304衍生牌号(如304J5,含镍量只有4.3%),或者与日本JIS 中的304J1、304J2名称相同但成分有出入的产品。 对此,我们专门约请冶金材料标准专家伍千思写了这篇“不锈钢‘304’及其衍生牌号的标准化学成分”文章,详细介绍了国内外关于304及其衍生牌号的标准化学成分。我们希望,企业如果生产日本JIS板材标准中的304J1、304J2,成分、性能必须符合其标准要求;生产者和经销商必须向用户指明这些产品的特定用途(如适用于作一般耐蚀条件下用的通过冷加工成型的部件或制品),我们不主张生产和销售没有列入国内外标准的304衍生牌号产品,以避免给消费者带来误解和损失。 不锈钢牌号“304”(S30400)是美国不锈钢标准(如ASTM标准)中的牌号名称。在我国新制定的不锈钢牌号标准GB/T20878―2007中,与之对应的牌号是06Crl9Nil0(旧牌号为OCrl8Ni9)。这个牌号是著名的18―8型Cr-Ni奥氏体不锈钢的典型牌号。由于它具有优良的综合性能,用途十分广泛,因而其产量和消费量约占到了奥氏体不锈钢总量的80%左右。 304(06Crl9Nil0)钢的主要特性是: 具有优良的不锈耐腐蚀性能和较好的抗晶间腐蚀性能。对氧化性酸,如在浓度≤65%的沸腾温度以下的硝酸中,具有很强的抗腐蚀性。对碱溶液及大部分有机酸和无机酸亦具有良好的耐腐蚀能力。 具有优良的冷热加工和成型性能。可以加工生产板、管、丝、带、型各种产品,适用于制造冷镦、深冲、深拉伸成型的零件。 低温性能较好。在-180℃条件下,强度、伸长率、断面收缩率都很好。由于没有脆性转变温度,常在低温下使用。具有良好的焊接性能。可采用通常的焊接方法焊接,焊前焊后均不需热处理。 304钢也有性能上的不足之处:大截面尺寸钢件焊接后对晶间腐蚀敏感;在含c1―水中(包括湿态大气)对应力腐蚀非常敏感;力学强度偏低,切削性能较差等。 由于304钢有性能上的不足,人们在生产和使用中想办法扬长避短,尽量发挥发展它的优良性能,克服它的不足之处。于是,通过研究开发,根据不同使用环境或条件的特定要求,对其化学成分进行调整,发展出了满足某些特性使用要求的304衍生牌号。 表1列出了美国材料和试验协会不锈钢牌号标准ASTMA959―04中的牌号304及其衍生牌号与日本JIS、我国GB、国际ISO、欧洲EN等不锈钢标准中相应牌号的对照。表2一表6分别列出了相应标准中各牌号的化学成分。

IHF化工离心泵品牌及参数

IHF化工离心泵品牌及参数 一、IHF系列氟塑料合金化工离心泵产品特点: IHF为单级单吸式氟塑料合金化工离心泵,该泵是按照国际标准并结合非金属泵的加工工艺设计生产。泵体采用金属外壳内衬聚全氟乙丙烯(F46),泵盖、叶轮和轴套均用金属嵌件外包氟塑料整体烧结压制成型,轴封采用四氟填充材料,进出口均采用铸钢体加固。 该化工泵具有耐腐、耐磨、耐高温、不老化、机械强度高、运转平稳、结构先进合理、密封性能严格可靠、拆卸检修方便、使用寿命长等优点,广泛适用于化工、制药、石油、冶金、冶炼、电力、电镀、染料、农药、造纸、食品、纺织等行业,在-85℃~200℃温度条件下长期输送任意浓度的硫酸、盐酸、氢氟酸、硝酸、王水、强碱、强氧化剂、有机溶剂、还原剂等强腐蚀介质,是目前世界是最耐腐蚀设备之一。 本司化工泵全部采用计算机设计和优化处理,公司拥有雄厚的技术力量、丰富的生产经验和完善的检测手段,从而保证产品质量的稳定可靠。 二、IHF系列氟塑料合金化工离心泵产品用途: 广泛适用于化工、制药、石油、冶金、电力、电镀、酸洗、农药、造纸等行业中液体输送、废水处理和加酸等工艺流程。本泵可输送任何浓度的硫酸、盐酸、硝酸、醋酸、氢氟酸、王水、强碱、强氧化剂、有机溶剂等强腐蚀性介质的使用,耐腐蚀化工泵是目前最先进的耐腐蚀装备之一。

三、IHF系列氟塑料合金化工离心泵技术参数:流量:6.3~400m3/h; 扬程:5~132m; 转速:2900、1450r/min; 功率:0.55~110KW; 进口直径:50~200mm; 最高工作压力:1.6Mpa。 四、IHF系列氟塑料合金化工离心泵结构图:

材料结构与性能(珍藏版)

材料结构与性能(珍藏版) 一、何为金属键?金属的性能与金属键有何关系? 二、试说明金属结晶时,为什么会产生过冷? 三、结合相关工艺或技术说明快速凝固的组织结构特点。 四、画出铁碳合金相图,并指出有几个基本的相和组织?说明它们的结构和 性能特点。 五、说明珠光体和马氏体的形成条件、组织形态特征和性能特点。 六、试分析材料导热机理。金属、陶瓷和玻璃导热机制有何区别?将铬、 银、Ni-Cr合金、石英、铁等物质按热导率大小排序,并说明理由。 七、从结构上解释,为什么含碱土金属的玻璃适用于介电绝缘? 八、列举一些典型的非线性光学材料,并说明其优缺点。 九、什么是超疏水、超亲水?超疏水薄膜对结构与表面能有什么要求? 十、导致铁磁性和亚铁磁性物质的离子结构有什么特征? 答案自测 特别重要的名词解释 原子半径:按照量子力学的观点,电子在核外运动没有固定的轨道,只是概率分布不同,因此对原子来说不存在固定的半径。根据原子间作用力的不同,原子半径一般可分为三种:共价半径、金属半径和范德瓦尔斯半径。通常把统和双原子分子中相邻两原子的核间距的一半,即共价键键长的一半,称作该原子的共价半径(r c);金属单质晶体中相邻原子核间距的一半称为金属半径 (r M);范德瓦尔斯半径(r V)是晶体中靠范德瓦尔斯力吸引的两相邻原子核间距的一半,如稀有气体。

电负性:Parr等人精确理论定义电负性为化学势的负值,是体系外势场不变的条件下电子的总能量对总电子数的变化率。 相变增韧:相变增韧是由含ZrO2的陶瓷通过应力诱发四方相(t相)向单斜相(m相)转变而引起的韧性增加。当裂纹受到外力作用而扩展时,裂纹尖端形成的较大应力场将会诱发其周围亚稳t-ZrO2向稳定m-ZrO2转变,这种转变为马氏体转变,将产生近4%的体积膨胀和1%-7%的剪切应变,对裂纹周围的基体产生压应力,阻碍裂纹扩展。而且相变过程中也消耗能量,抑制裂纹扩展,提高材料断裂韧性。 Suzuki气团:晶体中的扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用的结果使溶质原子富集于层错区内,造成层错区内的溶质原子浓度与在基体中的浓度存在差别。这种不均匀分布的溶质原子具有阻碍位错运动的作用,也成为Suzuki气团。

化工离心泵条件及参数

化工离心泵条件及参数 一、化工离心泵的概述: 化工离心泵是单级单吸悬臂式离心泵,其标记性能点和尺寸等效采用国际标准 ISO2858-1975(E),是一种用以取代F型耐腐蚀泵更新换代的节能产品,适用于化工、石油、冶金、电站、食品、制药、合成纤维等部门输送温度在-20℃~105℃的腐蚀性介质或物理、氟塑料化工泵化学性能类似于水的介质。 二、化工离心泵的性能范围(按设计点): 流量Q:6.3~400m3/h 扬程H:5~125m 泵的最高工作设计压力为1.6MPa 化工泵输送介质温度为-20℃~105℃,需要时采用双端面密封冷却装置,可输送介质温度为20℃~+280℃。耐腐蚀化工泵适用于化工、石油、冶金、电力、造纸、食品、制药、环保、废水处理和合成纤维等行业用于输送各种腐蚀的或不允许污染的类似于水的介质。 三、化工离心泵的性能范围: 流量Q:6.3~400m3/h扬程H:5~132m 转速n:2900、1450r/min配带功率:0.55~110KW 进口直径:50~200mm最高工作压力:1.6Mpa 系列泵有29个基本型,其中22个双速(2900、1450r/min)经过A、B两种型式的叶轮直径切割变型后,达112个规格。 泵的结构:

泵是全国泵行业采用ISO国际标准联合设计的系列产品,其主要由泵体、叶传输线、密封环、叶轮螺母、泵盖、密封部件、中间支架、轴、悬架部件等组成。 泵的结构特点: 化工泵盖通过止口固定在中间支架上,然后通过泵体与中间支架止口的联接把泵盖夹紧在中间,泵体是轴向吸入,径向排出,脚支承式,可直接固定在底座上。悬架部件通过止口固定固定在中间支架上,并用悬架支架支撑在底座上。为拆卸方便,设计了加长联轴器,检修时可以不拆卸进出口联接管路,泵体和电动机。只需拆下联轴器的中间联接件,即可退出转子部件进行检修。这是国际上通用的一种结构形式。 泵的旋转方向: 泵通过加长联轴器由电动机直接驱动,从电动机端看,按顺时针方向旋转。 泵的轴封型式:

中国不锈钢腐蚀手册

《中国不锈钢腐蚀手册》 本文由430不锈钢公司/王宗超整理 一、基本信息 书名:中国不锈钢腐蚀手册 作者:冈毅民主编 出版社:冶金工业出版社 ISBN:7502410384 页码:911 出版日期:1992年6月 二、内容简介 本书介绍了我国不锈钢、430不锈钢和耐蚀合金的发展概况、分类方法、钢种特性及我国现行的不锈钢耐腐蚀试验的标准方法等。 三、本书编委会 主编:冈毅民 编委: 王在恩;李慧玲;陈秀英。 参加编写的人员: 王在恩;冈毅民;李慧玲;吴凤珍;陈秀英;张瑄;张玉蕙。 四、图书目录 第一篇中国不锈钢概况 第一章中国不锈钢的发展 1 历史回顾 1.1 1949年以前 1.2 50年代

1.3 60~70年代 1.4 80年代 第二章不锈钢概论 1 中国不锈钢的定义和分类 1.1 不锈钢定义 1.2 不锈钢和耐热钢的区别 1.3 不锈钢的分类方法 1.4 430不锈钢种类 第三章中国不锈钢标准牌号 1 牌号概况 2 中国牌号表示方法标准的制定过程 3 中国不锈钢牌号表示方法 4 存在问题 5 中国国家标准不锈钢牌号 第二篇不锈钢的腐蚀及其形貌图谱 第一章不锈钢的点蚀及其形貌图谱 1 概论 2 影响不锈钢点蚀的因素和防止点蚀的途径 2.1 影响点蚀的因素§2.2 防止点蚀的途径 第二章不锈钢的缝隙腐蚀及其形貌图谱 1 概论 2 影响不锈钢缝隙腐蚀的因素和防止缝隙腐蚀的途径2.1 影响缝隙腐蚀的因素 2.2 防止缝隙腐蚀的途径 第三章不锈钢的应力腐蚀及其形貌图谱 1 概论 2 影响不锈钢应力腐蚀的因素和防止应力腐蚀的途径2.1 影响应力腐蚀的因素 2.2 防止应力腐蚀的途径 第四章不锈钢的腐蚀疲劳及其形貌图谱

《材料结构与性能》课程论文

《材料结构与性能》课程论文 刚玉-尖晶石浇注料微结构参数控制及其强度、热震稳定性和抗渣性能研究 学生姓名:周文英 学生学号:201502703043 撰写日期:2015年11月

摘要 本文通过使用环境对耐火材料的要求,耐火材料与结构参数的分析,耐火材 料结构控制措施进展分析等方面总结了耐火材料的使用现状,并提出了下一步耐 火材料的改进措施。分别是:在基质中加入一定量的硅微粉,改变液相的粘度, 提高抗渣性;控制铝镁浇注料基质的粒径分布,使大颗粒含量一定保证其高温强度;使用球形轻骨料代替原来的致密骨料,提高气孔率,降低体积密度,提高能 源利用率,降低能耗。 关键词:铝镁浇注料;高温强度;抗渣性;热震稳定性 Abstract Requirements of the apply for fire resistance, analysis of refractory materials and structure parameters, current application and the promotion about the refractory are introduced in this paper. It included that: add some sillicon power into matrix in order to improve the viscosity of the liquid for abtaining better slag resistance; control the distribution of the particle in the matrix to ensure the high temperature strength; use spherical light aggregate instead of the original density aggregate to improve porosity and the rate of energy. Keywords:Alumina-Magnesia castable; high temperature strength; slag resistance; themal shock resistance.

山大复合材料结构与性能复习题参考答案.doc

1、简述构成复合材料的元素及其作用 复合材料由两种以上组分以及他们之间的界面组成。即构成复合材料的元素包括基体相、增强相、界面相。 基体相作用:具有支撑和保护增强相的作用。在复合材料受外加载荷时,基体相一剪切变形的方式起向增强相分配和传递载荷的作用,提高塑性变 形能力。 增强和作用:能够强化基体和的材料称为增强体,增强体在复合材料中是分散相, 在复合材料承受外加载荷时增强相主要起到承载载荷的作用。 界面相作用:界面相是使基体相和增强相彼此相连的过渡层。界面相具有一定厚度,在化学成分和力学性质上与基体相和增强相有明显区别。在复 合材料受外加载荷时能够起到传递载荷的作用。 2、简述复合材料的基本特点 (1)复合材料的性能具有可设计性 材料性能的可设计性是指通过改变材料的组分、结构、工艺方法和工艺参数来调节材料的性能。显然,复合材料中包含了诸多影响最终性能、可调节的因素,赋予了复合材料的性能可设计性以极大的自由度。 ⑵ 材料与构件制造的一致性 制造复合材料与制造构件往往是同步的,即复合材料与复合材料构架同时成型,在采用某种方法把增强体掺入基体成型复合材料的同时?,通常也就形成了复合材料的构件。 (3)叠加效应 叠加效应指的是依靠增强体与基体性能的登加,使复合材料获得一?种新的、独特而又优于个单元组分的性能,以实现预期的性能指标。 (4)复合材料的不足 复合材料的增强体和基体可供选择地范围有限;制备工艺复杂,性能存在波动、离散性;复合材料制品成本较高。

3、说明增强体在结构复合材料中的作用能够强化基体的材料称为增强体。增强体在复合材料中是分散相。复合材料中的增强体,按几何形状可分为颗 粒状、纤维状、薄片状和由纤维编制的三维立体结构。喑属性可分为有机增强体 和无机增强体。复合材料中最主要的增强体是纤维状的。对于结构复合材料,纤 维的主要作用是承载,纤维承受载荷的比例远大于基体;对于多功能复合材料, 纤维的主要作用是吸波、隐身、防热、耐磨、耐腐蚀和抗震等其中一种或多种, 同时为材料提供基本的结构性能;对于结构陶瓷复合材料,纤维的主要作用是增 加韧性。 4、说明纤维增强复合材料为何有最小纤维含量和最大纤维含量 在复合材料中,纤维体积含量是一个很重要的参数。纤维强度高,基体韧性好,若加入少量纤维,不仅起不到强化作用反而弱化,因为纤维在基体内相当于裂纹。所以存在最小纤维含量,即临界纤维含量。若纤维含量小于临界纤维量,则在受外载荷作用时,纤维首先断裂,同时基体会承受载荷,产生较大变形,是否断裂取决于基体强度。纤维量增加,强度下降。当纤维量大于临界纤维量时,纤维主要承受载荷。纤维量增加强度增加。总之,含量过低,不能充分发挥复合材料中增强材料的作用;含量过高,由于纤维和基体间不能形成一定厚度的界面过渡层, 无法承担基体对纤维的力传递,也不利于复合材料抗拉强度的提高。 5、如何设才计复合材料 材料设计是指根据对?材料性能的要求而进行的材料获得方法与工程途径的规划。复合材料设计是通过改变原材料体系、比例、配置和复合工艺类型及参数,来改变复合材料的性能,特别是是器有各向异性,从而适应在不同位置、不同方位和不同环境条件下的使用要求。复合材料的可设计性赋予了结构设计者更大的自由度,从而有可能设计出能够充分发掘与应用材料潜力的优化结构。复合材料制品的设计与研制步骤可以归纳如下: 1)通过论证明确对于材料的使用性能要求,确定设计目标 2)选择材料体系(增强体、基体) 3)确定组分比例、几何形态及增强体的配置 4)确定制备工艺方法及工艺参数

化工离心泵结构及参数

化工离心泵结构及参数 一、化工离心泵的结构特点: 泵盖通过止口固定在中间支架上,然后通过泵体与中间支架止口的联接把泵盖夹紧在中间,泵体是轴向吸入,径向排出,脚支承式,可直接固定在底座上。悬架部件通过止口固定固定在中间支架上,并用悬架支架支撑在底座上。为拆卸方便,设计了加长联轴器,检修时可以不拆卸进出口联接管路,泵体和电动机。只需拆下联轴器的中间联接件,即可退出转子部件进行检修。这是国际上通用的一种结构形式。 化工离心泵的旋转方向: 泵通过加长联轴器由电动机直接驱动,从电动机端看,按顺时针方向旋转。 化工离心泵的轴封型式: 填料密封:泵盖内设有填料函,采用软填料密封,填料函内可通入有一定压力的水,供密封冷却,润滑、清洗用。 机械密封:单端面机械密封和双端面机械密封两种型式,密封腔内通入一定压力的水,冲洗磨擦两端面,同时起冷却作用。 泵的密封型式采用填料密封或机械密封,由用户根据需要适用,同时根据需要允许采用适合于ISO3069规定的密封空腔尺寸和其他结构的轴封型式,如带波纹管的机械密封和付叶轮密封等等。 化工泵输送介质温度为-20℃~105℃,需要时采用双端面密封冷却装置,可输送介质温度为20℃~+280℃。适用于化工、石油、冶金、电力、造纸、食品、制药、环保、废水处理和合成纤维等行业用于输送各种腐蚀的或不允许污染的类似于水的介质。 二、化工离心泵拆卸与装配

拆卸: 由于采用了加长联轴器,拆卸泵时,不必拆卸进、出口管路,泵体和电机,只需拆下加长联轴器中的中间联轴器,即可拆出转子部件,进行维修、保养。 1、拆下泵体上的泄液管堵和悬架体上的放油管堵,放净泵内液体和悬架体内的润滑油。(注:如泵上还有另外附加管路亦应拆下)。 2、拆开泵体与中间支架的联结、并将中间支架、悬架部件和泵盖等全部转子部件从泵体中一起退出。 3、拆下,叶轮螺母、取下叶轮和键。 4、将泵盖连同轴套、机械密封端盖和稞械密封等部件一起从轴上退出。注意勿使轴套相对于泵盖等发生滑动,然后再拆下机械密封端盖,将机械密封连同轴套一起取下,再将轴套和机械密封拆开。 如果密封采用填料,则可从泵盖中直接拆下轴套,再顺次拆下填料压盖,填料和填料环等。 如果密封采用特殊结构,应注意不同的拆卸方法。 5、拆下中间支架与悬架支架。 6、拆下泵联轴器和键。 7、拆下悬架体两端的防尘盘和轴承的前、后盖,再将轴连同轴承一起从悬架体内取下。 8、从泵轴上拆下轴承。 装配 与拆卸程序相反进行。 起动、运行和停止

相关文档
最新文档