固体物理答案

固体物理答案
固体物理答案

这个不错~~~~

《固体物理学》习题解答

黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)

第一章 晶体结构

1.1、

解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc

nV

x = (1)对于简立方结构:(见教材P2图1-1)

a=2r , V=

3

r 3

4π,Vc=a 3,n=1 ∴52.06r 8r

34a r 34x 3

333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3

3

4a r 4a 3=?= n=2, Vc=a 3

∴68.083)r 3

34(r 342a r 342x 3

3

33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3

74.062)

r 22(r 344a r 344x 3

3

33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62

60sin a a 6S ABO ??=??=2

a 233 晶胞的体积:V=332r 224a 23a 3

8

a 233C S ==?=

? n=1232

1

26112+?+?

=6个

74.062r 224r 346x 3

3

≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3

r 8a r 24a 3=

??= n=8, Vc=a 3

34.063r 3

38r 348a r 348x 3

33

33≈π=π?=π?=

1.2、试证:六方密排堆积结构中

633.1)3

8(a c 2

/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.

即图中NABO 构成一个正四面体。…

1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ?=+??

?

=+??

?=+??

由倒格子基矢的定义:1232()b a a π

=

3

1230,

,22

(),

0,224

,,0

2

2a a

a

a a a a a a a Ω=??==,2

23,,,

0,()224,,0

2

2

i j k

a a a a a i j k a a ?==-++ 213422()()4a

b i j k i j k a a

π

π∴=??-++=-++

同理可得:232()2()

b i j k a

b i j k a

π

π=

-+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。

所以,面心立方的倒格子是体心立方。

(2)体心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a i j k a a i j k a a i j k ?=-++??

?

=-+??

?=+-??

由倒格子基矢的定义:1232()b a a π

=

3

123,,

222

(),,2222

,,222

a a a a a a a a a a a a a

-Ω=??=-=

-

,223,,,,()2222,,222i j k a a a a a a j k a a a ?=-=+- 213222()()2a b j k j k a a

π

π∴=??+=+

同理可得:232()2()

b i k a

b i j a

π

π=

+=+即体心立方的倒格子基矢与面心立方的正格基矢相同。

所以,体心立方的倒格子是面心立方。

1.5、证明倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。

证明:

因为33121323

,a a

a a CA CB h h h h =

-=-,112233G h b h b h b =++ 利用2i j ij a b πδ?=,容易证明

12312300

h h h h h h G CA G CB ?=?=

所以,倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。

1.6、对于简单立方晶格,证明密勒指数为(,,)h k l 的晶面系,面间距d 满足:2

2

2

2

2

()d a h k l =++,

其中a 为立方边长;并说明面指数简单的晶面,其面密度较大,容易解理。解:简单立方晶格:123a a a ⊥⊥,123,,a ai a aj a ak === 由倒格子基矢的定义:2311232a a b a a a π?=??,312123

2a a b a a a π?=??,12

31232a a b a a a π?=??

倒格子基矢:123222,,b i b j b k a a a

πππ

=

== 倒格子矢量:123G hb kb lb =++,222G h i k j l k a a a

πππ

=++

晶面族()hkl 的面间距:2d G

π

=

2221

()()()h k l a a a

=++

2

2

222()

a d h k l =++

面指数越简单的晶面,其晶面的间距越大,晶面上格点的密度越大,单位表面的能量越小,这样的晶面越容易解理。

1.9、画出立方晶格(111)面、(100)面、(110)面,并指出(111)面与(100)面、(111)面与(110)面的交线的晶向。

解:(111)

1、(111)面与(100)面的交线的AB ,AB 平移,A 与O 点重合,B 点位矢:B R aj ak =-+,

(111)面与(100)面的交线的晶向AB aj ak =-+,晶向指数[011]。

(111)

2、(111)面与(110)面的交线的AB ,将AB 平移,A 与原点O 重合,B 点位矢:B R ai aj =-+,(111)面与(110)面的交线的晶向AB ai aj =-+,晶向指数[110]。

第二章 固体结合

2.1、两种一价离子组成的一维晶格的马德隆常数(2ln 2=α)和库仑相互作用能,设离子的总数为2N 。

<解> 设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用r 表示相邻离子间的距离,于是有

(1)1111

2[ (234)

ij r

r r r r r

α

±'

==-+-+∑ 前边的因子2是因为存在着两个相等距离i r 的离子,一个在参考离子左面,一个在其右面,故对一边求

和后要乘2,马德隆常数为 2

34

(1) (34)

n x x x x x x +=-+-+ 当X=1时,有111

1 (2234)

n

-

+-+=

2.3、若一晶体的相互作用能可以表示为 ()m

n

u r r

r

α

β

=-

+

试求:(1)平衡间距0r ;

(2)结合能W (单个原子的);

(3)体弹性模量;

(4)若取02,10,3,4m n r A W eV ====,计算α及β的值。 解:(1)求平衡间距r 0

0)

(0

==r r dr

r du ,有:

m

n n

m n m m n n m r r n r m --++??

?

??=???

? ??=?=-1

101.0100αββαβ

α

结合能:设想把分散的原子(离子或分子)结合成为晶体,将有一定的能量释放出来,这个能量

称为结合能(用w 表示)

(2)求结合能w (单个原子的)

题中标明单个原子是为了使问题简化,说明组成晶体的基本单元是单个原子,而非原子团、离子基团,或其它复杂的基元。

显然结合能就是平衡时,晶体的势能,即U min

即:n

m

r r r U W 000)(β

α

-

+=-= (可代入r 0值,也可不代入)

(3)体弹性模量

由体弹性模量公式:0

220

2

09r r U V r k ???? ?

???=

(4)m = 2,n = 10,

A r 30=, w = 4eV ,求α、β

8

18

1

05210??

? ??=??

?

??=αβαβr ① )5(54)(802

010

.2

00代入α

β

αβ

α

=

-

=+

-

=r r r r r U

111

2[1...]

234α=-+-+22

n α∴=

eV r r U W 454)(2

0==

-=?α

② 将

A r 30=,J eV 19

10602.11-?=代入①②

2

1152

3810459.910209.7m

N m N ??=??=?--βα (1)平衡间距r 0的计算 晶体内能()()2m n N U r r r

αβ=

-+ 平衡条件

0r r dU

dr

==,11000m n m n r r αβ

++-+=,1

0(

)n m n r m βα

-= (2)单个原子的结合能

01()2W u r =-,0

0()()m n r r u r r r αβ

==-+,1

0()n m n r m βα-= 1(1)()2m

n m m n W n m βαα

--=-

(3)体弹性模量0

202(

)V U

K V V ?=?? 晶体的体积3

V NAr =,A 为常数,N 为原胞数目 晶体内能()()2m n N U r r r

αβ=

-+ U U r V r V ???=???112

1

()

23m n N m n r r NAr αβ++=- 22112

1

[()]23m n U N r m n V V r r r NAr αβ++???=-??? 0

2222

2

00000

1[]29m n m n V V U N m n m n V V r r r r αβαβ=?=-+-+? 由平衡条件

112

0001

()0

23m n V V U N m n V

r r NAr αβ++=?=

-=?,得00m n m n r r αβ= 0

22222

0001[]29m n V V U

N m n V V r r αβ=?=-+? 0

22

20001[]

29m n

V V U N m n m n V V r r αβ

=?=

-+?2000[]29m n N nm V r r αβ=--+

000

()2m n N U r r αβ=

-+ 0

202

2

0()9V V U mn

U V V =?=

-? 体弹性模量0

9mn

K U V = (4)若取02,10,3,4m n r A W eV ====

10()n m n r m βα-=,1(1)()2m

n m m n W n m βαα

--=-

10

02

W r β=

,20100[2]r W r βα=+

-95101.210eV m β=??,1929.010eV m α-=??

2.6、bcc 和fcc Ne 的结合能,用林纳德—琼斯(Lennard —Jones)势计算Ne 在bcc 和fcc 结构中的结合能之比值.

<解>12

612

61()4()(),()(4)()()2n l u r u r N A A r r r r σ

σσ

σεε??

?

?

=-=-???????

?

2

6

6612006

12()102

2r A A du r r u N r A A σε??=?=?=- ???

220662

01212()12.25/9.11()/()0.957()14.45/12.13

bcc bcc fcc fcc u r A A u r A A ωω'===='

2.7、对于2H ,从气体的测量得到Lennard —Jones 参数为6

5010, 2.96.J A εσ-=?=计算fcc 结构的2H 的结合能[以KJ/mol 单位),每个氢分子可当做球形来处理.结合能的实验值为0.751kJ /mo1,试与计

算值比较.

<解> 以2H 为基团,组成fcc 结构的晶体,如略去动能,分子间按Lennard —Jones 势相互作用,则晶体的总相互作用能为:

126

1262.ij ij i j U N P P R R σσε--??????''=-?? ? ?????????

∑∑

61214.45392;

12.13188,ij

ij j

i

P P --''==∑

16235010, 2.96, 6.02210/.

erg A N mol εσ-=?==?()()12628

16

2.96 2.962602210/5010

12.1314.45 2.55/.

3.16 3.16U U mol erg KJ mol -??

????=?????-≈-?? ? ?????????

0将R 代入得到平衡时的晶体总能量为。因此,计算得到的2H 晶体的结合能为2.55KJ /mol ,远大于实验观察值0.75lKJ /mo1.对于2H 的晶体,量子修正是很重要的,我们计算中没有考虑零点能的量子修正,这正是造成理论和实验值之间巨大

差别的原因.

第三章 固格振动与晶体的热学性质

3.1、已知一维单原子链,其中第j 个格波,在第n 个格点引起的位移为,sin(_)nj j j j j a t naq μωσ=+,

j σ为任意个相位因子,并已知在较高温度下每个格波的平均能量为,具体计算每个原子的平方平均位

移。

<解>任意一个原子的位移是所有格波引起的位移的叠加,即

sin()n nj j j j j j

j

a t naq μμωσ==++∑∑ (1)

2*2*n nj nj nj nj nj j j j j j μμμμμμ''

≠????==+ ????

??

?

∑∑∑∑

由于nj nj μμ?数目非常大为数量级,而且取正或取负几率相等,因此上式得第2项与第一项相比是一小量,可以忽略不计。所以2

2

n nj

j

μμ

=

由于nj μ是时间t 的周期性函数,其长时间平均等于一个周期内的时间平均值为

222

11sin()2

T j

j j j j j a t naq dt a T μωσ=

++=

?

(2) 已知较高温度下的每个格波的能量为KT ,nj μ的动能时间平均值为

0222

220

00

0111sin()224L

T T nj j j nj j j j j j j d w a T dx dt L a t naq dt w La T dt T μρρωσρ????=

=++=?? ???????

?

?

? 其中L 是原子链的长度,ρ使质量密度,0T 为周期。 所以22

1142

nj j j T w La KT ρ=

= (3) 因此将此式代入(2)式有2

2nj j

KT

PL μω=

所以每个原子的平均位移为 2

2

22

1

n nj

j

j

j

j

j

KT KT

PL PL μμ

ωω

==

==∑∑

3.2、讨论N 个原胞的一维双原子链(相邻原子间距为a ),其2N 个格波解,当M = m 时与一维单原子链的结果一一对应。

解:质量为M 的原子位于2n-1, 2n+1, 2n+3 ……;质量为m 的原子位于2n , 2n+2, 2n+4 ……。

牛顿运动方程

2221212121222(2)(2)

n n n n n n n n m M μβμμμμβμμμ+-+++=---=---

N 个原胞,有2N 个独立的方程 设方程的解

[(2)]2[(21)]

21i t na q n i t n aq n Ae Be

ωωμμ--++==,代回方程中得到

2

2

(2)(2cos )0

(2cos )(2)0

m A aq B aq A M B βωβββω?--=??-+-=?? A 、B 有非零解,22

22cos 02cos 2m aq

aq M βωβββω

--=--,则 1

2

2

22

()4{1[1sin ]}()m M mM aq mM m M ωβ+=±-+ 两种不同的格波的色散关系

12

2

22

1

222

2

()4{1[1sin ]}()()4{1[1sin ]}()

m M mM aq mM m M m M mM

aq mM m M ωβωβ

+-+=+-++=--+

一个q 对应有两支格波:一支声学波和一支光学波.总的格波数目为2N.

当M m =

22

aq aq ωω+-=

=

两种色散关系如图所示: 长波极限情况下0q →,sin(

)22

qa qa

q ω-=与一维单原子晶格格波的色散关系一致.

3.3、考虑一双子链的晶格振动,链上最近邻原子间的力常数交错地为β和10β,两种原子质量相等,且最近邻原子间距为2a 。试求在0,q q a π==处的()q ω,并粗略画出色散关系曲线。此问题模拟如

2H 这样的双原子分子晶体。

答:(1)

浅色标记的原子位于2n-1, 2n+1, 2n+3 ……;深色标记原子位于2n , 2n+2, 2n+4 ……。 第2n 个原子和第2n +1个原子的运动方程:

212222112121122112222()()n n n n n n n n

m m μββμβμβμμββμβμβμ+-+++=-+++=-+++

体系N 个原胞,有2N 个独立的方程

方程的解:

1

[(2)]

221

[(21)]

2

21i t n aq n i t n aq n Ae

Be

ωωμμ--++==,令22

1122/,/m m ωβωβ==,将解代入上述方程得:

11222

222

2

1

2

1

2

112222

2221

2

12()()0

()()0

i aq i aq i aq i aq A e e

B e

e

A B ωωωωωωωωωω--+--+=+-+-=

A 、

B 有非零的解,系数行列式满足:

11222

222

2

12

1

2

112222

2221

2

12(),()

0(),()i aq i aq i aq i aq e

e

e

e

ωωωωωωωωωω--+--+=+-+-

11112

222

222222221212

1

2

()()()0i aq i aq i aq i aq e e e e ωωωωωωω--+--++= 11112222

22222

2

2

2

1

2

1

2

1

2

()()()0i aq i aq i aq i aq e

e

e

e

ωωωωωωω--+--++=

因为1ββ=、210ββ=,令22

22

0120

10,10c c m m

ωωωω====得到 2224

00(11)(10120cos )0aq ωωω--+=

两种色散关系:22

0(1120cos 101)qa ωω=±+

当0q =时,22

0(11121)ωω=±,

0220

ωωω+-==

当q a

π=

时,2

2

(1181)ωω=±,

00

202ωωωω+-==

(2)色散关系图:

3.7、设三维晶格的光学振动在q=0附近的长波极限有2

0()q Aq ωω=-

求证:()1/2

0023/2

1(),4V f A

ωωωωωπ=

-<;0()0,f ωωω=>.

<解>()

112

2

22

00000()0,0Aq f Aq q A ωωωωωωωωωω>-=>=

依据()3

()2,()()

2q q V

ds

q Aq f q ωωωπ?=-=

??

,并带入上边结果有

()()()()()()()1/21/2

00331/22

23/201142()222q V

ds V A V f A A

q ωπωωωωωππωωπ=?=?-=?-?-

3.8、有N 个相同原子组成的面积为S 的二维晶格,在德拜近似下计算比热,并论述在低温极限比热正比与2T 。

证明:在k 到k dk +间的独立振动模式对应于平面中半径n 到n dn +间圆环的面积2ndn π,且

()22

532222L s ndn kdk kdk d v ρ

ω

πρωωπππ===即则 ()

()2

3

3220//2

22

22

333212121

m

D

D

B B x B B B B k T

k T x D

D

d s k T s k T k T k T s

d x dx

E E v e

v e v e ωωωωρρρωωωω

πππ????

? ?

????=

+==

---?

?

?

, 20,(

)v s E

T E T C T T

?→∝∴=∝?3时,

3.9、写出量子谐振子系统的自由能,证明在经典极限下,自由能为0q B n q

B F U k T

k T ω??

?+

???

证明:量子谐振子的自由能为112q

B q

k T

B n q B

F U k T e k T ωω

-

?????? ?=++

- ???????

∑ 经典极限意味着(温度较高)BT g k ω

应用21...x e x x =-++ 所以2

1...q B q

q k T

B B e

k T k T ωωω-

??

=-++ ???

因此01

112q q q B n B n q q

B B F U k T U k T k T k T ωωω?

???

?+

+-+?+

?

?????

∑∑ 其中01

2

q q U U ω?+∑

3.10、设晶体中每个振子的零点振动能为

1

2

ω,使用德拜模型求晶体的零点振动能。 证明:根据量子力学零点能是谐振子所固有的,与温度无关,故T=0K 时振动能0E 就是各振动模零点能

之和。()()()0000

1

2

m

E E g d E ωωωωωω=

=

?

将和()22332s V g v ωωπ=代入积分有

4

02339168m m s V E N v ωωπ=

=,由于0

98

m B D B D k E Nk ωθθ==得 一股晶体德拜温度为~2

10K ,可见零点振动能是相当大的,其量值可与温升数百度所需热能相比拟.

3.11、一维复式格子2415 1.6710,4, 1.510/M

m g N m m

β-=??==?4( 1.5110/),dyn cm ?即求(1)

,光学波0

max min ,ωω,声学波max A

ω。 (2)相应声子能量是多少电子伏。 (3)在300k 时的平均声子数。

(4)与0max ω相对应的电磁波波长在什么波段。 <解>(1)

,131m

a x 3.0010,A

s ω

-===?

131

max

6.7010o

s ω-===?

131

m a x

5.9910A

s ω

-===? (2)161312max 16

1312max 161312min 6.5810 5.9910 1.97106.5810

6.7010 4.41106.5810 3.0010 3.9510A o

o s eV s eV s eV

ωωω---------=???=?=???=?=???=?

(3)max max max

max

//110.873,0.2211

1

A O

B B A O

k T

k T

n

n

e

e

ωω=

==

=--

min

min /10.2761

O

B O

k T

n e

ω=

=-

(4)228.1c

m πλμω

==

第四章 能带理论

4.1、根据k a

π

状态简并微扰结果,求出与E -及E +相应的波函数ψ-及ψ+?,并说明它们的特性.说

明它们都代表驻波,并比较两个电子云分布2

ψ说明能隙的来源(假设n V =*

n V )。

<解>令k a

π

=+

,k a

π'=-

,简并微扰波函数为00()()k k A

x B x ψψψ=+

0*

()0n E k E A V B ??-+=??

()00n V A E k E B '??+-=?? 取E E +=

带入上式,其中0()n E E k V +=+

V(x)<0,0n V <,从上式得到B= -A,于是

0()()n n i x i x a a

k

k A x x e e ππψψψ-'

+????=-=-?

???

n x a π 取E E -=,0()n E E k V -=- ,n n V A V B A B =-=得到

0()()n n i x i x a a

k

k A x x e e ππψψψ-'

-????=-=-??

????

n x a π 由教材可知,+ψ及-ψ均为驻波. 在驻波状态下,电子的平均速度()k ν为零.产生驻波因为电子波矢n k a π=

时,电子波的波长22a

k n

πλ==,恰好满足布拉格发射条件,这时电子波发生全反射,

并与反射波形成驻波由于两驻波的电子分布不同,所以对应不同代入能量。

4.2、写出一维近自由电子近似,第n 个能带(n=1,2,3)中,简约波数2k a

π

=

的0级波函数。

<解>2221()*24

()i mx i x i mx i m x ikx ikx a a a a

k

x e e ππππψ+===?= 第一能带:*

20,0,()

2i x a k

m m x a ππ

ψ?=== 第二能带:23*222,,1,()x i x a a

k b b b b m m x a a πππππψ''=→?=-=-∴=i i 2a

则即(e =e ) 第三能带:25*

2222,,1,()i x i x i x a a a

k c c m m x e a a πππ

ππψ'→?===?=即

4.3、电子在周期场中的势能.

222

1(),2

m b x n a ω??--?? n a b x n a b -≤≤+当 ()V x = 0 , x n a b ≤≤-当(n-1)a+b

其中d =4b ,ω是常数.试画出此势能曲线,求其平均值及此晶体的第一个和第二个禁带度.

<解>(I)题设势能曲线如下图所示.

(2)势能的平均值:由图可见,()V x 是个以a 为周期的周期函数,所以

111()()()()a a b

L b b V x V x V x dx V x dx L a a

--=

==???

题设4a b =,故积分上限应为3a b b -=,但由于在[],3b b 区间内()0V x =,故只需在[],b b -区间内积分.这时,0n =,于是

2222

2

32

111()()223

6

b b b b b

b

b b m m V V x dx b x dx b x x m b a a a

ωωω----??==-=-=???

?

??。 (3),势能在[-2b,2b]区间是个偶函数,可以展开成傅立叶级数

200021()cos ,()cos ()cos 2222b b m m m m m m V x V V x V V x xdx V x xdx b b b b b

πππ

=-∞

'=+

==∑

??112

2210

2,1()cos

2b

g g m x

E V m E b x dx b

b

ωπ===

-?

第一个禁带宽度以代入上式,

利用积分公式()2

232

cos sin 2cos sin u u mudu mu mu mu mu m m =

+-???

??

得 2

23

16m b ωπ

=

1g E 第二个禁带宽度222,2g E V m ==以代入上式,代入上式

22

2

2

()cos

b

g m x

E b x dx b

b

ωπ=

-?

再次利用积分公式有2

22

2m b ωπ=

2g E

4.4、

解:我们求解面心立方,同学们做体心立方。

(1)如只计及最近邻的相互作用,按照紧束缚近似的结果,晶体中S 态电子的能量可表示成:

()0()()s ik R s s s Rs E k J J R e ε-?==--

近邻

在面心立方中,有12个最近邻,若取0m R =,则这12个最近邻的坐标是: ①

(1,1,0),(1,1,0),(1,1,0),(1,1,0)2222a a a a

(0,1,1),(0,1,1),(0,1,1),(0,1,1)2222a a a a

(1,0,1)(1,0,1),(1,0,1),(1,0,1)2222

a a a a

由于S 态波函数是球对称的,在各个方向重叠积分相同,因此()S J R 有相同的值,简单表示为J 1=()S J R 。又由于s 态波函数为偶宇称,即()()s s r r ??-=

∴在近邻重叠积分*

()()()()()s i s s i J R R U V R d ?ξξ?ξξ??-=--???

中,波函数的贡献为正 ∴J 1>0。

于是,把近邻格矢S R 代入()s

S E R 表达式得到:

01

()s ik R s S Rs E k J J e ε-?==--∑

近邻

=()()()()2222

01x y x y x y x y a

a a a

i k k i k k i k k i k k S J J e e e e ε-+----+---?--+++??

()()()()2

2

2

2

y z y z y z y z a

a

a

a

i k k i k k i k k i k k e

e

e

e

-+----+---+++++()()()()2

2

2

2

x z x z x z x z a

a

a

a

i k k i k k i k k i k k e

e

e

e

-+----+---?+++??

=012cos ()cos ()cos ()cos ()2222S

x y x y y z y z a a a a J J k k k k k k k k ε?????

--++-+++-????????

??

cos ()cos()2z x z x a k k k k ?

??+++-??????

cos()cos()2cos cos αβαβαβ↓++-=

=014cos

cos cos cos cos cos 222222s x y y z z x a a a a a a J J k k k k k k ε?

?--++????

(2)对于体心立方:有8个最近邻,这8个最近邻的坐标是:

(1,1,1),(1,1,1),(1,1,1),(1,1,1)2222a a a a

(1,1,1),(1,1,1,),(1,1,1),(1,1,1)2222a a a a

01()8(cos cos cos )222

s s x y z a a a E k J J k k k ε=--

4.7、有一一维单原子链,间距为a ,总长度为N a 。求(1)用紧束缚近似求出原子s 态能级对应的能带E(k)函数。(2)求出其能态密度函数的表达式。(3)如果每个原子s 态只有一个电子,求等于T=0K 的费米能级0

F E 及0

F E 处的能态密度。 <解>010101(1),()()2cos 2cos ika

ika s s E k J J e

e J J ka E J ka εε-=--+=--=-

0()()s ik R s E k E J J p e -???=--????

∑ (2) ,1121()2222sin sin L dk Na N

N E dE J a ka J ka

πππ=?

?=?=

(3), 00

00

22()22222F

k F F F Nak Na N k dk k k a

πρππ=

?=??=∴=?

00

11

1()2cos

,()2sin

2F F s F N

N

E E k E J a E N E a

J J a

a

π

π

ππ==-?==

=?

4.8、证明一个自由简单晶格在第一布里渊区顶角上的一个自由电子动能比该区一边中点大2倍.(b)对于一个简单立力晶格在第一布里渊区顶角上的一个自由电子动能比该区面心上大多少?(c)(b)的结果对于二价金属的电导率可能会产生什么影响7

<解>(a )二维简单正方晶格的晶格常数为a ,倒格子晶格基矢22??,A i B j a a

ππ== 第一布里渊区如图所示

()2

222???,.,

2B x

y z i B K i j a a a K

K K m

πππε????=

=+ ? ?????

=

++A 区边中点的波矢为K 角顶点的波矢为自由电子能量2

2

2

2

2

2,222A x K m

m a m a ππε????

=

=

= ? ?????

A 点能量

()2222

2

222

2,222B x y K K m m a a m a πππε??????????=+=+=???? ? ? ???????????????

B 点能量所以/2B A εε=

b)简单立方晶格的晶格常数为a ,倒格子基矢为222?

??,,,A i B j C k a a a

π

ππ??????=== ? ? ???????

第一布里渊区如图7—2所示.

2

2

;

2A m a πε??

== ???

A 点能量()22222

2

2222

3,222B x y z K K K m m a a a m a ππππε????????????=++=++=

???? ? ? ? ?????????????????

B 点能量 所以/3B A εε=

(c)如果二价金属具有简单立方品格结构,布里渊区如图7—2所示.根据自由电子理论,自由电子的能量为()2

2

222x

y z K K K m

ε=

++,FerM 面应为球面.由(b)可知,内切于4点的内切球的体

343

a π

π??

?

??

,于是在K 空间中,内切球内能容纳的电子数为()

3

3

42 1.04733

2V

N N a ππππ??=

= ???

其中3V Na =

二价金属每个原子可以提供2个自由电子,内切球内只能装下每原子1.047个电子,余下的0.953

个电子可填入其它状态中.如果布里渊区边界上存在大的能量间隙,则余下的电子只能填满第一区内余下的所有状态(包括B 点).这样,晶体将只有绝缘体性质.然而由(b)可知,B 点的能员比A 点高很多,从能量上看,这种电子排列是不利的.事实上,对于二价金属,布里渊区边界上的能隙很小,对于三维晶体,可出现一区、二区能带重迭.这样,处于第一区角顶附近的高能态的电子可以“流向”第二区中的能量较低的状态,并形成横跨一、二区的球形Ferm 面.因此,一区中有空态存在,而二区中有电子存在,从而具有导电功能.实际上,多数的二价金届具有六角密堆和面心立方结构,能带出现重达,所以可以导电.

4.10、

解:设晶体中有N 个Cu 原子,向其中掺入x 个锌原子。则晶体中电子的总数为: (N-x)+2x=N+x

由于Cu 是面心立方,每一个原胞中含4个电子。因此:晶体中包含的原胞数为:

4

N

其倒格子为体心立方,倒格子的边长为:

4a

π

固体物理基础课后1到10题答案

一.本章习题 P272习题 1.试证理想六方密堆结构中c/a=. 一. 说明: C 是上下底面距离,a 是六边形边长。 二. 分析: 首先看是怎样密堆的。 如图(书图(a),P8),六方密堆结构每个格点有12个近邻。 (同一面上有6个,上下各有3个) 上下底面中间各有一个球,共有六个球与之相切,每个球直径为a 。 中间层的三个球相切,又分别与上下底面的各七个球相切。球心之间距离为a 。 所以球心之间即格点之间距离均为a (不管是同层还是上下层之间)。 三. 证明: 如图OA=a ,OO ’=C/2(中间层是上下面层的一半),AB=a O ’是ΔABC 的三垂线交点 3 3 'a AB AO = = ∴ (由余弦定理 ) 330cos 2,30cos 230cos 2222a a x x a ax x a x ===-+=οο ο 633.13 22384132)2()2()3 ()2(2 22 222 22 2 2' '≈===∴+=+=+ =a c c a a c a a c OA AO OO

2.若晶胞基矢c b a ρ ρρ,,互相垂直,试求晶面族(hkl )的面间距。 一、分析: 我们想到倒格矢与面间距的关系G d ρπ 2=。 倒格矢与晶面族 (hkl )的关系321b l b k b h G ρρρρ ++= 写出)(321b b b ρρρ与正格子基矢 )(c b a ρ ρρ的关系。即可得与晶面族(hkl ) 垂直的倒格矢G ρ。进而求 得此面间距d 。 二、解: c b a ρρρΘ,,互相垂直,可令k c c j b b i a a ρρρρρρ ===,, 晶胞体积abc c b a v =??=)(ρ ρρ 倒格子基矢: k c j b i a abc b a v b j b i a k c abc a c v b i a k c j b ab c c b v b ρρρρρρρρρρρρρρρρρρπππππππππ2)(2)(22)(2)(22)(2)(2321=?=?==?=?==?=?= 而与 (hkl )晶面族垂直的倒格矢 2 22321)()()(2) (2c l b k a h G k c l j b k i a h b l b k b h G ++=∴++=++=ππρρρρρρρρ 故(hkl ) 晶面族的面间距 2222 22)()()(1)()()(222c l b k a h c l b k a h G d ++= ++= =ππ π ρ

固体物理课后答案

1.1 如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈0.52体心立方3π/ 8 ≈0.68面心立方2π/ 6 ≈0.74六方密 排2π/ 6 ≈0.74金刚石3π/16 ≈0.34 解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r 金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有 1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。 证明:体心立方格子的基矢可以写为

面心立方格子的基矢可以写为 根据定义,体心立方晶格的倒格子基矢为 同理 与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。根据定义,面心立方的倒格子基矢为 同理 而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。 证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为 即为平面的法线

根据定义,倒格子基矢为 则倒格子原胞的体积为 1.6 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足 其中a 为立方边长。 解:根据倒格子的特点,倒格子 与晶面族(h, k,l)的面间距有如下关系 因此只要先求出倒格,求出其大小即可。 因为倒格子基矢互相正交,因此其大小为 则带入前边的关系式,即得晶面族的面间距。 1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。若立方边长为a ,写出最近邻和次近邻的原子间距。 答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于 次近邻原子数为6,次近邻原子间距为a ;

固体物理基础解答吴代鸣

固体物理基础解答吴代鸣

————————————————————————————————作者: ————————————————————————————————日期:

1.试证理想六方密堆结构中c/a =1.633. 证明: 如图所示,六方密堆结构的两个晶格常数为a 和c 。右边为底面的俯视图。而三个正三角形构成的立体结构,其高度为 2.若晶胞基矢c b a ,,互相垂直,试求晶面族(hkl )的面间距。 解: c b a ,,互相垂直,可令k c c j b b i a a ===,, 晶胞体积abc c b a v =??=)( 倒格子基矢: k c j b i a abc b a v b j b i a k c abc a c v b i a k c j b ab c c b v b πππππππππ2)(2)(22)(2)(22)(2)(2321=?=?==?=?==?=?= 而与 (h kl )晶面族垂直的倒格矢 2 22321)()()(2) (2c l b k a h G k c l j b k i a h b l b k b h G ++=∴++=++=ππ 故(hkl ) 晶面族的面间距 2222 22)()()(1)()()(222c l b k a h c l b k a h G d ++= ++= =ππ π

3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子? 答: 通过分析我们知道,原胞可选为简单立方,每个原胞中含有5个原子。 体心,八个顶点中取一个,对面面心各取一个原子(即三个)作为基元。布拉菲晶格是简单立方格子。 4.试求面心立方结构的(111)和(110)面的原子面密度。 解: (111)面 平均每个(111)面有22 1 3613=?+?个原子。 (111)面面积 ()222232 322)2 2( )2(22 1 a a a a a a =?= -? 所以原子面密度2 2)111(34 2 32a a = = σ (110)面 平均每个(110)面有22 1 2414=?+? 个原子。 (110)面面积2 22a a a =? 所以(110)面原子面密度22 )110(2 22a a ==σ 5.设二维矩形格子的基矢为j a a i a a 2,21==,试画出第一、二、三、布里渊区。 解: 倒格子基矢: j b j a j a j ax x a a a a v b k x a i a x i a x a a a a v b 113233212 12212222)(2) (2222)(2===??=?===??=?=πππππππ 所以倒格子也是二维矩形格子。2b 方向短一半。 最近邻;,22b b - 次近邻;2,2,,2211b b b b -- 再次近邻;,,,12122121b b b b b b b b ---+- 再再次近邻;3,322b b - 做所有这些点与原点间连线的垂直平分线,围成布里渊区。再按各布里渊区的判断原则进行判断,得: 第一布里渊区是一个扁长方形; 第二布里渊区是2块梯形和2块三角形组成; 第三布里渊区是2对对角三角和4个小三角以及2个等腰梯形组成。

固体物理基础答案解析吴代鸣

1.试证理想六方密堆结构中c/a=1.633. 证明: 如图所示,六方密堆结构的两个晶格常数为a 和c 。右边为底面的俯视图。而三个正三角形构成的立体结构,其高度为 2.若晶胞基矢c b a ,,互相垂直,试求晶面族(hkl )的面间距。 解: c b a ,,互相垂直,可令k c c j b b i a a ,, 晶胞体积abc c b a v )( 倒格子基矢: k c j b i a abc b a v b j b i a k c abc a c v b i a k c j b ab c c b v b 2)(2)(22)(2)(22)(2)(2321 而与 (hkl )晶面族垂直的倒格矢 2 22321)()()(2) (2c l b k a h G k c l j b k i a h b l b k b h G 故(hkl ) 晶面族的面间距 2222 22)()()(1)()()(222c l b k a h c l b k a h G d 3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子? 答: 通过分析我们知道,原胞可选为简单立方,每个原胞中含有5个原子。 体心,八个顶点中取一个,对面面心各取一个原子(即三个)作为基元。布拉菲晶格是简单立

方格子。 4.试求面心立方结构的(111)和(110)面的原子面密度。 解: (111)面 平均每个(111)面有22 1 3613 个原子。 (111)面面积 222232 322)2 2( )2(22 1 a a a a a a 所以原子面密度2 2)111(34 2 32a a (110)面 平均每个(110)面有22 1 2414 个原子。 (110)面面积2 22a a a 所以(110)面原子面密度22 )110(2 22a a 5.设二维矩形格子的基矢为j a a i a a 2,21 ,试画出第一、二、三、布里渊区。 解: 倒格子基矢: j b j a j a j ax x a a a a v b k x a i a x i a x a a a a v b 113233212 12212222)(2) (2222)(2 所以倒格子也是二维矩形格子。2b 方向短一半。 最近邻;,22b b 次近邻;2,2,,2211b b b b 再次近邻;,,,12122121b b b b b b b b 再再次近邻;3,322b b 做所有这些点与原点间连线的垂直平分线,围成布里渊区。再按各布里渊区的判断原则进行判断,得: 第一布里渊区是一个扁长方形; 第二布里渊区是2块梯形和2块三角形组成; 第三布里渊区是2对对角三角和4个小三角以及2个等腰梯形组成。 6.六方密堆结构的原胞基矢为:

固体物理答案

(1) 共价键结合的特点?共价结合为什么有“饱和性”和“方向性”? 饱和性和方向性 饱和性:由于共价键只能由为配对的电子形成,故一个原子能与其他原子形成共价键的数目是有限制的。N<4,有n 个共价键;n>=4,有(8-n )个共价键。其中n 为电子数目。方向性:一个院子与其他原子形成的各个共价键之间有确定的相对取向。 (2) 如何理解电负性可用电离能加亲和能来表征? 电离能:使原子失去一个电子所必须的能量其中A 为第一电离能,电离能可表征原子对价电子束缚的强弱;亲和势能:中性原子获得电子成为-1价离子时放出的能量,其中B 为释放的能量,也可以表明原子束缚价电子的能力,而电负性是用来表示原子得失电子能力的物理量。故电负性可用电离能加亲和势能来表征。 (3) 引入玻恩-卡门条件的理由是什么? 在求解原子运动方程是,将一维单原子晶格看做无限长来处理的。这样所有的原子的位置都是等价的,每个原子的振动形式都是一样的。而实际的晶体都是有限的,形成的键不是无穷长的,这样的链两头原子就不能用中间的原子的运动方程来描述。波恩—卡门条件解决上述困难。 (4) 温度一定,一个光学波的声子数目多呢,还是一个声学波的声子数目多? 对同一振动模式,温度高时的声子数目多呢,还是温度低的声子数目多? 温度一定,一个声学波的声子数目多。 对于同一个振动模式,温度高的声子数目多。 (5) 长声学格波能否导致离子晶体的宏观极化? 不能。长声学波代表的是原胞的运动,正负离子相对位移为零。 (6)晶格比热理论中德拜(Debye )模型在低温下与实验符合的很好,物理原因 是什么?爱因斯坦模型在低温下与实验存在偏差的根源是什么? 在甚低温下,不仅光学波得不到激发,而且声子能量较大的短声学波也未被激发,得到激发的只是声子能量较小的长声学格波。长声学格波即弹性波。德拜模型只考虑弹性波对热容德贡献。因此,在甚低温下,德拜模型与事实相符,自然与实验相符。 爱因斯坦模型过于简单,假设晶体中各原子都以相同的频率做振动,忽略了各格波对热容贡献的差异,按照爱因斯坦温度的定义可估计出爱因斯坦频率为光学支格波。在低温主要对热容贡献的是长声学支格波。 (7)试解释在晶体中的电子等效为经典粒子时,它的有效质量为什么有正、有负、无穷大值?带顶和带底的电子与晶格的作用各有什么特点? m F m m l +=* m F m v F m v F l ?+?=??* ])()[(1 ])()[(1电子给予晶格德外力给予电子德晶格给予电子德外力给予电子德-=+p p m p p m m p ????=?* 当电子从外场获得的动量大于电子传递给晶格的动量时,有效质量为正; 当电子从外场获得的动量小于电子传递给晶格的动量时,有效质量为负; 当电子从外场获得的动量等于电子传递给晶格的动量时,有效质量为无穷。 (8)为什么温度升高,费米能级反而降低?体积膨胀时,费米能级的变化? 在温度升高时,费米面以内能量离约范围的能级上的电子被激发到之上约范围的能级。故费米球体积V 增大,又电子总数N 不变,则电子浓度减小,又,则费米半径变小,费米能级也减小。当体积膨胀时,V 增大,同理费米能级减小。 (9)什么是p 型、N 型半导体?试用能带结构解释。

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3 r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

固体物理试题(A) 附答案

宝鸡文理学院试题 课程名称 固体物理 适 用 时 间 2010年1月12日 试卷类别 A 适用专业、年级、班06级物理教育1-3班 一、简要回答以下问题:(每小题6分,共30分) 1、试述晶态、非晶态、准晶、多晶和单晶的特征性质。 2、试述离子键、共价键、金属键、范德瓦尔斯和氢键的基本特征。 3、什么叫声子?对于一给定的晶体,它是否拥有一定种类和一定数目的声子? 4、周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大, q 的取值将会怎样? 5、金属自由电子论作了哪些假设?得到了哪些结果? 二、证明题(1、3题各20分;第2题10分,共50分) 1、试证明体心立方格子和面心立方格子互为正倒格子。(20分) 2、已知由N 个相同原子组成的一维单原子晶格格波的态密度可表示为(10) 2122)(2)(--= ωωπωρm N 。 式中m ω是格波的最高频率。求证它的振动模总数恰好等于N 。 3、利用刚球密堆模型,求证球可能占据的最大体积与总体积之比为(20分) (1)简单立方π / 6;(2 / 6; (3 / 6(4 / 6;(5 / 16。 三、计算题 (每小题10分,2×10=20分) 用钯靶K α X 射线投射到NaCl 晶体上,测得其一级反射的掠射角为5.9°,已知NaCl 晶胞中Na +与Cl -的距离为2.82×10-10m ,晶体密度为2.16g/cm 3。 求: (1)、X 射线的波长; (2)、阿伏加德罗常数。

宝鸡文理学院试题参考答案与评分标准 课程名称 固体物理学 适 用 时 间 2010年1月 12日 试卷类别 A 适用专业、年级、班 06物理教育1、2、3班 注意事项 一、简要回答以下问题(每小题6分,5×6=30分) 1.试述晶态、非晶态、准晶、多晶和单晶的特征性质。 解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。 另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。 2.试述离子键、共价键、金属键、范德瓦尔斯和氢键的基本特征。 解:(1)离子键:无方向性,键能相当强;(2)共价键:饱和性和方向性,其键能也非常强;(3)金属键:有一定的方向性和饱和性,其价电子不定域于2个原子实之间,而是在整个晶体中巡游,处于非定域状态,为所有原子所“共有”;(4)范德瓦尔斯键:依靠瞬时偶极距或固有偶极距而形成,其结合力一般与 成反比函数关系,该键结合能较弱;(5)氢键:依靠氢原子与2个电负性较大而原子半径较小的原子(如O ,F ,N 等)相结合形成的。该键也既有方向性,也有饱和性,并且是一种较弱的键,其结合能约为50kJ/mol 。 3. 什么叫声子?对于一给定的晶体,它是否拥有一定种类和一定数目的声子? 解:声子就是晶格振动中的简谐振子的能量量子,它是一种玻色子,服从玻色-爱因斯坦统计,即具有能量为 的声子平均数为11 )()/()(-=T k q w j B j e q n 对于一给定的晶体,它所对应的声子种类和数目不是固定不变的,而是在一定的条件下发生变化。 4. 周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大, 的取值将会怎样? 解:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部原子有所差别。考虑到边界对内部原子振动状态的影响,波恩和卡门引入了周期性边界条件。其具体含义是设想在一长为 的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第 个原子和第 个原子的运动情况一样,其中 =1,2,3…。 引入这个条件后,导致描写晶格振动状态的波矢 只能取一些分立的不同值。 如果晶体是无限大,波矢 的取值将趋于连续。 5. 金属自由电子论作了哪些假设?得到了哪些结果? 解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而

(完整版)东南大学固体物理基础考试样卷

东南大学考试卷(A 卷) 固体物理基础 课程名称 适用专业电子科学与技术(类) 考试形式 考试学期 得分 闭卷 考试时间长度 120分钟 一.填空题(41分) 1 ?波函数的统计解释是波函数在空间某一点的强度(波函数绝对值的平方) _______ 。 氢原子”模型均属束缚态问题,它们的定态薛定谔方程的解 。 :2 ?无限深势阱”谐振子”和 其能量特性具有这样一些共性: 自 觉 遵 守 考 场 纪 律 如 考 试 作 弊 此 答 卷 无 效 3.质量为m 的粒子处于能量为 势场为 。 I --------------------------------------------------------------------- 4?固体物理学原胞体积相同的简立方、体心立方和面心立方其晶格常数之比 为 ;第一布里渊区的体积之比为 ________________ ;第二布里渊区的体积之 比又为 。 i| ------------------------------------------------------------- 5 ?按三种统计法,现将两个粒子分配在三个不同格子中。对于麦克斯韦 -玻尔兹曼分布有 线 线 ______ 种安排方法;对于费米-狄拉克分布有 ___________ 种安排方法;对于玻色-爱因斯坦分布有 ______ 种安排方法。 E 的本征态,波函数为 6 ?在一维双原子晶格中,两种原子的质量分别为 为a ,那么色散关系曲线中,格波波矢 q 封 ;又格波波矢q ,那么粒子所处的 g 和口 2 (口 m 2),若同种原子间的间距 时,光学波频率取最大值,且 时,声学波频率取最大值,且 A m ax o m ax : 3 7 ?在晶格常数为a 的一维单原子晶格中,波长为 a ; 4 长为 __________________ 的格波,它们的振动状态相同。 密&对晶体热阻起主要作用的声子碰撞过程是 ___________________ ________________________________ ,动量守衡条件为 _ 的格波与处于第一布里渊区的波 过程,该过程能量守衡条件为 9 ?氢原子中的电子运动状态用四个量子数来描述,其波函数记为 子的运动状态用四个量子数来描述,其波函数可记为 个,它们分别记为 nlmg s (r,,),其氢原 nlm l m s , 若 n 2,对应的运动状态有 (用 nlm i m s 形式表示出来)。 10?限制在一个长度为L 的一维金属线中的N 个自由电子。电子能量E (k )上,那么 2m 电子的状态密度(考虑自旋)为 ;一维系统在绝对零度的费米能量

固体物理学概念和习题答案

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么? 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)? 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。

东南大学固体物理基础课后习题解答

《电子工程物理基础》课后习题参考答案 第一章 微观粒子的状态 1-一维运动的粒子处在下面状态 (0,0)() (0) x Axe x x x λλψ-?≥>=? =??==?

固体物理学答案详细版

《固体物理学》部分习题参考解答 第一章 1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少? 答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a : 对于面心立方,处于面心的原子与顶角原子的距离为:R f = 2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b a 那么, Rf Rb 31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1, a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何? 答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。 答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。分别如图所示: 1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100) (010)(213) 答:证明 设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此 123o o o a n hd a n kd a n id === ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°

固体物理概念答案

1. 基元,点阵,原胞,晶胞,布拉菲格子,简单格子,复式格子。 基元:在具体的晶体中,每个粒子都是在空间重复排列的最小单元; 点阵:晶体结构的显著特征就是粒子排列的周期性,这种周期性的阵列称为点阵; 原胞:只考虑点阵周期性的最小重复性单元; 晶胞:同时计及周期性与对称性的尽可能小的重复单元; 布拉菲格子:是矢量Rn=mA1+nA2+lA3全部端点的集合,A1,A2,A3分别为格点到邻近三个不共面格点的矢量; 简单格子:每个基元中只有一个原子或离子的晶体; 复式格子:每个基元中包含一个以上的原子或离子的晶体; 2. 晶体的宏观基本对称操作,点群,螺旋轴,滑移面,空间群。 宏观基本对称操作:1、2、3、4、6、i 、m 、4, 点群:元素为宏观对称操作的群 螺旋轴:n 度螺旋轴是绕轴旋转2/n π与沿转轴方向平移T t j n =的复合操作 滑移面:对某一平面作镜像反映后再沿平行于镜面的某方向平移该方向周期的一半的复合操作 空间群:保持晶体不变的所有对称操作 3. 晶向指数,晶面指数,密勒指数,面间距,配位数,密堆积。 晶向(列)指数:布拉菲格子中所有格点均可看作分列在一系列平行直线族上,取一个格点沿晶向到邻近格点的位移基失由互质的(l1/l2/l3)表示; 晶面指数:布拉菲格子中所有格点均可看作分列在一系列平行平面族上,取原胞基失为坐标轴取离原点最近晶面与三个基失上的截距的倒数由互质的(h1/h2/h3)表示; 密勒指数:晶胞基失的坐标系下的晶面指数; 配位数:晶体中每个原子(离子)周围的最近邻离子数称之为该晶体的配位数; 面间距:晶面族中相邻平面的间距; 密堆积:空间内最大密度将原子球堆砌起来仍有周期性的堆砌结构; 4. 倒易点阵,倒格子原胞,布里渊区。 倒易点阵:有一系列在倒空间周期性排列的点-倒格点构成。倒格点的位置可由倒格子基矢表示,倒格子基矢由…确定 倒格子原胞:倒空间的周期性重复单元(区域),每个单元包含一个倒格点 布里渊区:在倒格子中如以某个倒格点作为原点,画出所有倒格矢的垂直平分面,可得到倒格子的魏格纳塞茨原胞,即第一布里渊区 5. 布拉格方程,劳厄方程,几何结构因子。 劳厄方程0(s s )m m R S λ?-= 布拉格方程2sin hkl d m θλ=

固体物理答案

3.1 已知一维单原子链,其中第j 个格波,在第n 个格点引起的位移nj μ为: sin() nj j j j j a t naq μωδ=++ j δ为任意相位因子。并已知在较高温度下每个格波的平均能量为B k T 。具体计算每 个原子的平方平均位移。 解:(1)根据2011 sin ()2 T j j j t naq dt T ωδ?++= 其中2j T π ω= 为振动周期, 所以222 21 sin ()2 nj j j j j j a t naq a μωδ=++= (2) 第j 个格波的平均动能 (3) 经典的简谐运动有: 每个格波的平均动能=平均势能=1 2格波平均能量=12 B k T 振幅222B j j k T a Nm ω= , 所以 2 22 12B nj j j k T a Nm μω==。 而每个原子的平方平均位移为:222221 ()2 B n nj nj j j j j j j k T a Nm μμμω====∑∑∑∑ 。 3.2讨论N 个原胞的一维双原子链(相邻原子间距为a ),其2N 个格波的解。当m M =时与一维单原子链一一对应。 解:(1)一维双原子链: 22q a a π π - ≤< 声学波:1 222 2 411sin ()m M mM aq mM m M ωβ-????+??=--????+???? ?? 当m M =时,有 2 224(1cos )sin 2 aq aq m m ββω-= -= 。

光学波:1 222 2 411sin ()m M mM aq mM m M ωβ+????+??=+-????+???? ?? 当m M =时,有 2 2 24(1cos )cos 2 aq aq m m ββω+= += 。 (2)一维双原子链在m M =时的解 22224sin 2422cos 2aq m q aq a a m βωπ π βω-+?=??- ≤< ? ?=?? 与一维单原子链的解 224sin 2 aq q m a a βπ π ω=- ≤< 是一一对应的。 3.5已知NaCl 晶体平均每对离子的相互作用能为: 其中马德隆常数 1.75,9a n ==,平衡离子间距0 2.82r =。 (1) 试求离子在平衡位置附近的振动频率。 (2) 计算与该频率相当的电磁波的波长,并与NaCl 红外吸收频率的测量只值 61μ进行比较。 解:(1)处理小振动问题,一般可采用简谐近似,在平衡位置附近,可将互作用能展开至偏差0r r δ=-的二次方项。 224 00002 00 ()()1()()()2U r U r U r U r O δδδδδδδδδδ==?+?++=+?+?+?? (1) 其中 00 () 0U r δδδ=?+=? 为平衡条件。 由0r 已知可确定β: 2 10n q r n αβ-= 。 (2) 根据(1)式,离子偏离平衡位置δ所受的恢复力为: 2' 002 ()()U r U r F δδδδβδδδ=?+?+=-=-?=-?? (3)

固体物理基础答案解析吴代鸣复习课程

固体物理基础答案解 析吴代鸣

1.试证理想六方密堆结构中c/a=1.633. 证明: 如图所示,六方密堆结构的两个晶格常数为a 和c 。右边为底面的俯视图。而三个正三角形构成的立体结构,其高度为 2.若晶胞基矢c b a ,,互相垂直,试求晶面族(hkl )的面间距。 解: c b a ,,互相垂直,可令k c c j b b i a a ===,, 晶胞体积abc c b a v =??=)( 倒格子基矢: k c j b i a abc b a v b j b i a k c abc a c v b i a k c j b ab c c b v b πππππππππ2)(2)(22)(2)(22)(2)(2321=?=?==?=?==?=?= 而与 (hkl )晶面族垂直的倒格矢 2 22321)()()(2) (2c l b k a h G k c l j b k i a h b l b k b h G ++=∴++=++=ππ 故(hkl ) 晶面族的面间距

2222 22)()()(1)()()(222c l b k a h c l b k a h G d ++= ++= =ππ π 3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子? 答: 通过分析我们知道,原胞可选为简单立方,每个原胞中含有5个原子。 体心,八个顶点中取一个,对面面心各取一个原子(即三个)作为基元。布拉菲晶格是简单立方格子。 4.试求面心立方结构的(111)和(110)面的原子面密度。 解: (111)面 平均每个(111)面有22 1 3613=?+?个原子。 (111)面面积( )222232 322)2 2( )2(221 a a a a a a =?= -? 所以原子面密度2 2)111(34 2 32a a = = σ (110)面 平均每个(110)面有22 1 2414=?+? 个原子。 (110)面面积222a a a =? 所以(110)面原子面密度2 2 )110(222a a = = σ 5.设二维矩形格子的基矢为j a a i a a 2,21==,试画出第一、二、三、布里渊区。 解: 倒格子基矢: j b j a j a j ax x a a a a v b k x a i a x i a x a a a a v b 113233212 12212222)(2) (2222)(2===??=?===??=?=πππ ππππ 所以倒格子也是二维矩形格子。2b 方向短一半。

(完整版)固体物理答案2

固体物理部分题目答案 注:这些题目可能与课本上有出入,大家抄题时以课本为主。还有其它题目请大家自己解决。 (本题可能与5.3题有关)6.3若将银看成具有球形费米面的单价金属,计算以下各量 1)费密能量和费密温度 2)费米球半径 3)费米速度 4) 费米球面的横截面积 5) 在室温以及低温时电子的平均自由程 解 1)费密能量2 022/3(3)2F E n m π=h 210/3(3)F k n π= 6293 313410.5100.58610/107.87 9.11101.0510A n N m m kg J s --=??=?=?=??h 0198.8210 5.5F E J eV -=?= 费密温度046.410F F B E T K k ==? 2) 费密球半径 020()2F F k E m =h 0F k =0198.8210F E J -=? 01011.210F k m -=? 3) 费密速度0F F k v m =h 61.3810F v m s =? 4) 费密球面的横截面积02022(sin )sin F F S k k πθπθ== ――θ是F k u u r 与z 轴间夹角 21/3(3)F k n π= 2223 (3)sin S n ππθ= 5) 在室温以及低温时电子的平均自由程 电导率1σρ = 20()1 F nq E m τρ= 驰豫时间02()F m E nq τρ=平均自由程0()F F l v E τ= 2F mv l nq ρ=2F k nq ρ =h 0 K 到室温之间的费密半径变化很小01011.210F F k k m -==? 平均自由程02F k l nq ρ=h 将 19293 34010162956201.6100.58610/1.05101.2101.61100.03810F T K T K q C n m J s k m cm cm ρρ----=-==?=?=??=?=?Ω?=?Ω?h 代入 8295 5.241052.4T K l m nm -==?= 6320 2.210 2.210T K l m nm -==?=? 6.2已知一维晶体的电子能带可写成)2cos cos ()(818722 ka ka ma k E +-=η式中a 为晶格常数, 试求:(i)能带宽度 )2cos cos ()(818722 ka ka ma k E +-=η (ii)电子在波矢k 时的速度 (iii)能带底和顶的有效质量 解:(i) 0=dk dE 可解得:

固体物理学概念和习题答案

固体物理学概念和习题 答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面为什么 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式) 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

固体物理经典复习题及答案(供参考)

一、简答题 1.理想晶体 答:内在结构完全规则的固体是理想晶体,它是由全同的结构单元在空间 无限重复排列而构成的。 2.晶体的解理性 答:晶体常具有沿某些确定方位的晶面劈裂的性质,这称为晶体的解理性。 3.配位数 答: 晶体中和某一粒子最近邻的原子数。 4.致密度 答:晶胞内原子所占的体积和晶胞体积之比。 5.空间点阵(布喇菲点阵) 答:空间点阵(布喇菲点阵):晶体的内部结构可以概括为是由一些相同的 点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵(布喇菲点阵),即平移矢量123d 、d 、h h h d 中123,,n n n 取整数时所对应的点的排列。空间点阵是晶体结构周期性的数学抽象。 6.基元 答:组成晶体的最小基本单元,它可以由几个原子(离子)组成,整个晶体 可以看成是基元的周期性重复排列而构成。 7.格点(结点) 答: 空间点阵中的点子代表着结构中相同的位置,称为结点。 8.固体物理学原胞 答:固体物理学原胞是晶格中的最小重复单元,它反映了晶格的周期性。 取一结点为顶点,由此点向最近邻的三个结点作三个不共面的矢量,以此三个矢量为边作的平行六面体即固体物理学原胞。固体物理学原胞的结点都处在顶角位置上,原胞内部及面上都没有结点,每个固体物理学原胞平均含有一个结点。 9.结晶学原胞 答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为 边作的平行六面体称为结晶学原胞,结晶学原胞反映了晶体的对称性,

它的体积是固体物理学原胞体积的整数倍,V=n Ω,其中n 是结晶学原胞所包含的结点数, Ω是固体物理学原胞的体积。 10.布喇菲原胞 答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为 边作的平行六面体称为布喇菲原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n Ω,其中n 是结晶学原胞所包含的结点数, Ω是固体物理学原胞的体积 11.维格纳-赛兹原胞(W-S 原胞) 答:以某一阵点为原点,原点与其它阵点连线的中垂面(或中垂线) 将空间 划分成各个区域。围绕原点的最小闭合区域为维格纳-赛兹原胞。 一个维格纳-赛兹原胞平均包含一个结点,其体积等于固体物理学原胞的体积。 12. 简单晶格 答:当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表 该原子,这种晶体结构就称为简单格子或Bravais 格子。 13.复式格子 答:当基元包含2 个或2 个以上的原子时,各基元中相应的原子组成与格 点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。显然,复式格子是由若干相同结构的子晶格相互位移套构而成。 14.晶面指数 答:描写晶面方位的一组数称为晶面指数。设基矢123,,a a a r u u r u u r ,末端分别落 在离原点距离为123d 、d 、h h h d 的晶面上,123、、h h h 为整数,d 为晶面间距,可以证明123、、h h h 必是互质的整数,称123、、h h h 3为晶面指数,记为()123h h h 。用结晶学原胞基矢坐标系表示的晶面指数称为密勒指数。 15.倒格子(倒易点阵)

相关文档
最新文档