Vitamin D Is Required for IFN-γ–Mediated Antimicrobial Activity of Human Macrophages

Vitamin D Is Required for IFN-γ–Mediated Antimicrobial Activity of Human Macrophages
Vitamin D Is Required for IFN-γ–Mediated Antimicrobial Activity of Human Macrophages

8UCLA/Orthopaedic Hospital Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.

9Global Drug Discovery, Lead Generation and Optimization, Medicinal Chemistry, Bayer Schering Pharma AG, 13342 Berlin, Germany.10Global Drug Discovery, Therapeutic Research Group Women’s Health, Bayer Schering Pharma AG, 13342 Berlin, Germany.11Harvard School of Public Health, Boston, MA 02115, USA.Abstract Control of tuberculosis worldwide depends on our understanding of human immune mechanisms,which combat the infection. Acquired T cell responses are critical for host defense against microbial pathogens, yet the mechanisms by which they act in humans remain unclear. We report that T cells, by the release of interferon-γ (IFN-γ), induce autophagy, phagosomal maturation, the production of antimicrobial peptides such as cathelicidin, and antimicrobial activity against Mycobacterium tuberculosis in human macrophages via a vitamin D–dependent pathway. IFN-γinduced the antimicrobial pathway in human macrophages cultured in vitamin D–sufficient sera,but not in sera from African-Americans that have lower amounts of vitamin D and who are more susceptible to tuberculosis. In vitro supplementation of vitamin D–deficient serum with 25-hydroxyvitamin D3 restored IFN-γ–induced antimicrobial peptide expression, autophagy,phagosome-lysosome fusion, and antimicrobial activity. These results suggest a mechanism in which vitamin D is required for acquired immunity to overcome the ability of intracellular pathogens to evade macrophage-mediated antimicrobial responses. The present findings underscore the importance of adequate amounts of vitamin D in all human populations for sustaining both innate and acquired immunity against infection.INTRODUCTION

The acquired T cell–mediated immune response is essential for host defense against

intracellular pathogens, including Mycobacterium tuberculosis , which is estimated by the

World Health Organization to cause 9.3 million new infections and 1.8 million deaths

annually (1). HIV-infected individuals with reduced numbers of CD4+ T cells have

markedly increased susceptibility to tuberculosis, and those individuals with the lowest

CD4+ T cell counts have the highest frequency of disseminated disease (2). Furthermore, a

key role for interferon-γ (IFN-γ) in the immune response to M. tuberculosis infection is

corroborated by studies indicating that humans with genetic disorders leading to the

decreased production of, or response to, IFN-γ are highly susceptible to tuberculosis and

other mycobacterial diseases (3–5). Yet, it has been a matter of faith that IFN-γ can activate

human monocytes or macrophages to kill intracellular M. tuberculosis .

Indeed, multiple studies of IFN-γ treatment of human macrophages have consistently failed

to demonstrate antimicrobial activity against intracellular M. tuberculosis (6–16). In vitro,

IFN-γ is unable to activate human macrophages to restrict or kill virulent M. tuberculosis

(17), and human macrophages infected with M. tuberculosis are desensitized to this cytokine

(17). However, the discovery that the innate immune response, activated by Toll-like

receptors (TLRs) on human monocytes and macrophages, triggers an antimicrobial response

against M. tuberculosis that is vitamin D–dependent (18, 19) provided a new opportunity to

investigate this phenomenon. We found that the acquired T cell response could activate

antimicrobial activity in human cells of the monocyte/macrophage lineage.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

RESULTS

T cells activate a vitamin D antimicrobial pathway via secretion of IFN-γ

Within the acquired immune response, the balance of T helper 1 (T H 1) and T H 2 T cell cytokine patterns is pivotal to the ability of humans to defend against mycobacterial infection (20, 21). We therefore derived a panel of M. tuberculosis –reactive human T H 1 and T H 2 T cell clones (21) that were activated via their T cell receptor (TCR) by immobilized antibodies to CD3 and collected the supernatants. These supernatants were tested for their ability to induce in monocytes, primary cells of the monocyte/macrophage lineage,expression of the mRNAs encoding the antimicrobial peptides cathelicidin and β-defensin 2(DEFB4). Previously, both cathelicidin and DEFB4 have been demonstrated to be part of the vitamin D–dependent antimicrobial pathway of the innate immune response against intracellular M. tuberculosis (18, 19). The T H 1 cell supernatants, containing IFN-γ, were able to induce cathelicidin and DEFB4 mRNAs in monocytes (Fig. 1A). In contrast, the T H 2cell supernatants, containing interleukin-4 (IL-4), did not induce cathelicidin or DEFB4. The capacity of supernatants from T cell clones to induce monocyte production of cathelicidin and DEFB4 correlated with the amounts of IFN-γ (Fig. 1B, P = 0.0004 and P = 0.0002,respectively) and inversely correlated with the amount of IL-4, reaching statistical significance for cathelicidin (Fig. 1B, P = 0.03). The T cell clones also secreted GM-CSF (granulocyte-macrophage colony-stimulating factor) (Fig. 1B), IL-10, and IL-17 (fig. S1);however, their production failed to show significant correlation with the induction of antimicrobial peptide gene expression.To determine whether IFN-γ was responsible for antimicrobial peptide expression, we cultured human monocytes with T cell supernatants in the presence of IFN-γ–neutralizing antibodies or isotype controls. The addition of monoclonal antibodies (mAbs) to IFN-γreduced the ability of the T cell supernatants to trigger the expression of cathelicidin and DEFB4 by about 65 and 70%, respectively, compared with cultures without antibody (Fig.

1C, P < 0.05). However, because of variability in the isotype controls, the relative blocking

effect of inhibitory antibodies to IFN-γ failed to reach statistical significance. These data

suggest that the acquired T cell response, through the production of IFN-γ, can induce

antimicrobial peptide gene expression in human cells of the monocyte/macrophage lineage.

IFN-γ is sufficient to activate a vitamin D–dependent antimicrobial pathway

In monocytes and macrophages, IFN-γ can induce CYP27B1-hydroxylase (22), which

converts 25-hydroxyvitamin D (25D) to the bioactive 1,25-dihydroxyvitamin D (1,25D).

Furthermore, IFN-γ up-regulates TLR2/1 ligand (TLR2/1L)–induced antimicrobial peptide

expression by enhancing CYP27B1 activity (23). To examine the role of IFN-γ in triggering

the vitamin D–dependent induction of antimicrobial peptides, we treated primary human

monocytes with recombinant human IFN-γ (rIFN-γ) or a TLR2/1L, the M. tuberculosis –

derived 19-kD triacylated lipopeptide (24), as a control. Both rIFN-γ and TLR2/1L induced

cathelicidin and DEFB4 (25) mRNAs to a similar degree (Fig. 2A, P < 0.05). In addition,

IFN-γ and TLR2/1L equally induced CYP27B1-hydroxylase, as well as vitamin D receptor

(VDR), mRNA (Fig. 2B, P ≤ 0.05) (18). Notably, although nitric oxide is a key effector

molecule in activated mouse macrophages (26–28), neither inducible nitric oxide synthase

mRNA as measured by quantitative polymerase chain reaction (qPCR) nor nitric oxide as

measured by the Griess reaction (28) was detected in IFN-γ–treated human monocytes/

macrophages.

Next, we investigated the functional roles of CYP27b1 and the VDR in this system. IFN-γ

treatment of human monocytes resulted in enhanced conversion of 25D to 1,25D, indicating

increased CYP27b1 enzymatic activity (Fig. 2C, P < 0.05). To determine whether CYP27B1

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

and VDR induction was required for IFN-γ–mediated expression of antimicrobial peptides,

we performed small interfering RNA (siRNA) knockdown of each gene on primary

monocytes. Both siVDR and siCYP27B1 knocked down the IFN-γ–induced expression of

their respective targets by about 50% as measured by qPCR. Transfection of siRNA oligos

targeting CYP27B1 and VDR, but not the non-specific control oligo, significantly reduced

IFN-γ–induced expression of both cathelicidin and DEFB4 (Fig. 2D, P < 0.05). In contrast,

knockdown of CYP27B1 and VDR did not inhibit IFN-γ–induced CD64, but instead may

have increased CD64 expression, consistent with the ability of 1,25D to inhibit CD64

expression (29). Furthermore, the VDR antagonist VAZ, shown to inhibit 1,25D induction

of cathelicidin (30), blocked induction of antimicrobial peptides (Fig. 2E, P < 0.05), but not

CD64, which was again slightly increased (Fig. 2E). Finally, IFN-γ also induced the VDR

downstream gene CYP24, providing evidence for activation of the VDR (fig. S2). These

data indicate that IFN-γ induction of cathelicidin and DEFB4 mRNAs is dependent on both

CYP27b1 and the VDR.

A key early event in the TLR2/1L induction of the vitamin D antimicrobial pathway is the

induction of IL-15, which initiates a macrophage differentiation program (31, 32). Because

IFN-γ has been reported to induce IL-15 in monocytes (33), we measured IL-15 expression

after stimulation with either rIFN-γ or TLR2/1L and found that IL-15 surface expression and

mRNA were similarly up-regulated in both cases (Fig. 3A, P < 0.05, and fig. S3, A and B).

The mechanism of IL-15 induction was investigated in the context of the known signaling

pathways for TLR2/1 and IFN-γ. IFN-γ induction of IL-15 was STAT1 (signal transducer

and activator of transcription 1)–dependent, whereas TLR2/1L induction of IL-15 was

STAT1-independent (Fig. 3B). Conversely, TLR-induced, but not IFN-γ–induced, IL-15

was MyD88-dependent. The addition of anti–IL-15–neutralizing antibodies significantly

reduced IFN-γ–induced expression of CYP27B1 by ~60%, cathelicidin by ~90%, and

DEFB4 by ~50% (Fig. 3, C and D, P < 0.05), demonstrating that IL-15 is a critical cytokine

for activating the antimicrobial program in human macrophages. Together, these data show

that both the innate and the acquired immune responses converge on a common

antimicrobial pathway by inducing IL-15, which is required for up-regulation of CYP27b1

and the subsequent induction of cathelicidin and DEFB4. These data also indicate that the

proximal pathways for activation of the antimicrobial response in innate and acquired

responses are distinct.

IFN-γ–induced autophagy and autophagolysosomal fusion are vitamin D–dependent

One well-established mechanism by which M. tuberculosis evades the macrophage

antimicrobial response is by blocking phagosome maturation and phagolysosomal fusion,

preventing lysosomal acidification and delivery of lysosomal products into the compartment

in which it resides (34–36). A possible host defense mechanism to overcome this blockade is

autophagy, which results in the creation of autophagosomes and their subsequent fusion with

lysosomes (37–40). Autophagosomes were detected using an anti–microtubule-associated

protein 1 light chain 3 (LC3) mAb with confocal laser microscopy. The induction of

autophagy is associated with a shift from a homogeneous distribution of LC3 throughout the

cytoplasm to aggregation into characteristic puncta (41). Treatment of primary human

monocytes with rIFN-γ induced autophagy, as evidenced by an increase in the percentage of

cells with LC3-positive vesicles (41) (Fig. 4, A and B, P < 0.01). The ability of IFN-γ to

induce autophagy inmonocytes was inhibited by 3-methyladenine (3-MA) and wortmannin

(WM), both of which block the phosphatidylinositol 3-kinase (PI3K) activity known to be

required for autophagy (Fig. 4C, P < 0.05 and P < 0.01). IFN-γ–induced autophagy was also

suppressed by lentiviral short hairpin RNA (shRNA) transduction for two key genes of the

autophagy pathway, Beclin-1 and Atg5 (42) (Fig. 4D, P < 0.01), providing further evidence

that IFN-γ induced a classical autophagy pathway. Markedly, the ability of IFN-γ to induce NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

autophagy in human monocytes was also dependent on the vitamin D pathway, because

autophagy was blocked in a dose-dependent manner by the VDR inhibitor VAZ (Fig. 4, E

and F, P < 0.05). In contrast, starvation- or rapamycin-induced autophagywas not vitamin

D–dependent (42), thus indicating at least two distinct pathways for inducing autophagy.

IFN-γ treatment of primary human monocytes resulted in the colocalization of vesicles

containing the autophagosome marker LC3 with lysosomes identified by LysoTracker (Fig.

4G). In M. tuberculosis –infected macrophages, the pathogen accumulates in phagocytic

vesicles or early endosomes, which fail to colocalize with lysosomes as identified with the

lysosomal marker (Fig. 4H). However, IFN-γ–induced phagosome maturation in

macrophages, as evidenced by colocalization of vesicles containing M. tuberculosis and the

lysosomal marker, was blocked by treatment with the VDR inhibitor VAZ in a dose-

dependent manner (Fig. 4, H and I, P < 0.01). As previously demonstrated, direct treatment

of infected macrophages with 1,25D leads to the vesicular colocalization of cathelicidin

peptide with mycobacteria (18). Together, these data indicate that IFN-γ triggers vitamin D–

dependent autophagy in human macrophages, facilitating autophagolysosomal fusion and

phagosomal maturation and allowing for the delivery of antimicrobial peptides to pathogen-

containing compartments.

IFN-γ induces an antimicrobial pathway that requires vitamin D sufficiency

Ultimately, for the host immune response to eliminate an intracellular pathogen, the

activation of macrophages ideally should result in a direct antimicrobial activity.

Recognizing that M. tuberculosis infection has been shown to inhibit several IFN-γ response

genes (17, 43), we first infected primary human monocytes with M. tuberculosis , then

subsequently treated with rIFN-γ, and antimicrobial peptide induction was measured. IFN-γ

induced both cathelicidin and DEFB4 in M. tuberculosis –preinfected monocytes in the

presence of vitamin D–sufficient (25D = 98 nM) serum (fig. S4), although quantitative

analysis indicated that M. tuberculosis infection partially inhibited IFN-γ–induced

antimicrobial peptide expression to a greater extent for DEFB4 than for cathelicidin.

African-Americans have significantly decreased amounts of 25D because their skin melanin

content diminishes ultraviolet (UV)–dependent cutaneous vitamin D3 synthesis (44). In

addition, African-Americans have increased susceptibility to tuberculosis (45). To determine

whether this difference in vitamin D concentration could affect the ability to generate

antimicrobial responses, we collected sera from healthy African-American and white

donors. The concentrations of 25D reflected the lower amounts of vitamin D in the African-

American versus white donors (mean 25D = 56 ± 2 and 113 ± 11 nM, respectively; Fig. 5A,

P < 0.01). IFN-γ–mediated antimicrobial peptide expression in primary human monocytes

was significantly lower when cultured with sera from African-American donors than white

donors (Fig. 5A, P < 0.05). In addition, IFN-γ–mediated antimicrobial peptide expression

correlated with the concentration of 25D (correlation coefficient: cathelicidin versus 25D: r

= 0.68, P < 0.05; DEFB4 versus 25D: r = 0.73, P < 0.05) but not 1,25D (correlation

coefficient: cathelicidin versus 1,25D: r = 0.20; DEFB4 versus 1,25D: r = 0.11).

On the basis of these studies, we hypothesized that previous studies failed to detect an

antimycobacterial activity by IFN-γ–treated human macrophages because of the different

amounts of 25D and/or its availability in the sera used for the in vitro killing experiments.

Because IFN-γ was able to up-regulate antimicrobial peptide mRNA expression, we

compared the types of sera used in the previous reports in which IFN-γ treatment did not

induce an antimycobacterial activity in human macrophages (6, 7, 9–12, 14, 15). We found

that IFN-γ–induced antimicrobial peptide expression was optimal in cultures containing

10% or greater vitamin D–sufficient human serum (25D = 98 nM), but could not be induced

in 2 or 10% heat-inactivated human serum or 10% vitamin D–deficient fetal calf serum

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

(FCS) (25D = 16 nM) (fig. S5, A to C, P < 0.05), conditions used in one or more of the

previously mentioned studies. Markedly, 10% vitamin D–deficient human serum (25D = 45

nM) also failed to support antimicrobial peptide expression in monocytes (Fig. 5B, P <

0.05), but this could be restored by supplementation of vitamin D–deficient serum to

sufficient concentrations by the addition of 25D in vitro (Fig. 5C, P < 0.05).

Because macrophages are the natural hosts of mycobacteria during the course of infection

(46), we tested whether IFN-γ treatment would induce the vitamin D antimicrobial pathway

in monocyte-derived macrophages (MDMs). As observed in human monocytes, IFN-γ

induced cathelicidin and DEFB4 gene expression in MDMs in 10% vitamin D–sufficient

serum (Fig. 5D, P < 0.05), but not in 10% vitamin D–deficient serum. Likewise, the

induction of cathelicidin and DEFB4 gene expression in MDMs could be restored by

supplementation of vitamin D–deficient serum by addition of 25D in vitro (Fig. 5D, P <

0.05). Moreover, vitamin D–deficient serum did not support autophagolysosomal fusion and

phagosome maturation in M. tuberculosis –infected macrophages, but this could be rescued

by in vitro supplementation with 25D (fig. S6).

Because IFN-γ–induced antimicrobial peptide expression and autophagosome maturation

could only be detected in the presence of vitamin D–sufficient human serum, we

consequently tested whether vitamin D was required for IFN-γ–induced antimicrobial

activity against M. tuberculosis . Human monocytes were infected with virulent M.

tuberculosis and then treated with rIFN-γ in 10% vitamin D–sufficient human serumor 10%

vitamin D–deficient human serum in the same experiments. Treatment of infected human

monocytes with IFN-γ in the presence of vitamin D–sufficient serum resulted in significant

growth inhibition of virulent M. tuberculosis , as evidenced by the decreased number of

viable M. tuberculosis bacilli recovered compared to untreated cells (Fig. 5E, P < 0.001). In

contrast, IFN-γ, in the presence of vitamin D–deficient serum, had little or no effect on the

bacterial viability.

Next, we infected MDMs with virulent M. tuberculosis and stimulated the infected cells

with IFN-γ in 10% vitamin D–sufficient human serum or 10% vitamin D–deficient human

serum in the same experiments. IFN-γ treatment of M. tuberculosis –infected MDMs using

vitamin D–sufficient human serum resulted in a 90% reduction of M. tuberculosis growth at

3 days, relative to untreated cells (Fig. 5F, P < 0.01). Markedly, IFN-γ treatment resulted in

an 85% reduction in M. tuberculosis compared to the initial inoculum (Fig. 5F, P < 0.001),

formally demonstrating that IFN-γ induced killing of the bacteria. In contrast, IFN-γ

treatment of MDM using vitamin D–deficient serum had little effect on the bacterial

viability (Fig. 5F); however, antimicrobial activity could be restored by in vitro

supplementation of vitamin D–deficient serum with 25D3 (fig. S7). These data reveal a

marked difference in IFN-γ–induced antimicrobial activity against intracellular M.

tuberculosis depending on the serum 25D concentration. Furthermore, these in vitro data are

consistent with abundant clinical evidence that links low amounts of serum 25D to both

tuberculosis disease susceptibility and progression (47–50).DISCUSSION

Our data define one mechanism of IFN-γ–triggered antimicrobial killing in human cells of

the monocyte/macrophage lineage: Activation of vitamin D–dependent effector pathways

results in the production of antimicrobial peptides and induction of autophagy. The innate

(TLR) and acquired (IFN-γ–dependent) mechanisms activate different receptors and

different signaling pathways, MyD88 and STAT1, respectively (Fig. 6); yet, they converge

on IL-15 production and the downstream 25D-dependent antimicrobial peptide pathway.

These results emphasize the general importance of the vitamin D–dependent antimicrobial

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

mechanism, which appears to have evolved in both innate and acquired immune responses in humans (18, 19, 23) through different signaling pathways, to converge on a common effector mechanism. Additional mechanisms may also contribute to IFN-γ and/or other T cell induction of antimicrobial activity, such as granulysin (51) and ubiquitin- or autophagy-derived peptides (39).We propose a model (Fig. 6) for IFN-γ–induced antimicrobial activity in human cells of the monocyte/macrophage lineage as follows: IFN-γ induction of IL-15 is required for up-regulation of CYP27b1, which results in intracellular conversion of 25D to the bioactive 1,25D, which triggers activation of the VDR, which is required for downstream induction of antimicrobial peptides, autophagy, and phagosome maturation, contributing to the antimicrobial response. Previously, IFN-γ has been shown to up-regulate CYP27B1 activity,but the requirement for IL-15 in mediating this induction was not known (22). Evidence for the key role of the IFN-γ–induced autocrine conversion of 25D to 1,25D in the induction of an antimicrobial pathway is demonstrated by two experiments: (i) siRNA knockdown of CYP27B1 inhibited IFN-γ–induced cathelicidin and DEFB4, and (ii) in vitro supplementation of vitamin D–deficient serum with 25D was able to restore IFN-γ–induced antimicrobial peptide expression. Up-regulation and/or expression of the VDR were also required for IFN-γ induction of antimicrobial peptides because induction was not observed when blocking the VDR by either siRNA knockdown or addition of a pharmacologic antagonist.We also observed that IFN-γ activation of human monocytes led to the vitamin D–dependent induction of autophagy, autophagolysosomal fusion, and phagosome maturation of M.tuberculosis –infected macrophages. These processes facilitate delivery of antimicrobial effector molecules including antimicrobial peptides (42) and ubiquitinated peptides (39) to M. tuberculosis –containing vesicles, which otherwise block lysosomal fusion. Autophagy also has the capacity to envelop pathogens that escape vacuoles and penetrate into the

cytoplasm as has been reported to occur with M. tuberculosis (36, 52–55). IFN-γ–induced

autophagy was dependent on the expression of Atg5 and Beclin-1. Previously, Yuk et al.

have shown that cathelicidin is required for 1,25D-induced gene expression of Atg5 and

Beclin-1; however, the mechanism is not known (42).

IFN-γ induction of antimicrobial peptides and antimicrobial activity against intracellular M.

tuberculosis was only detected in the presence of vitamin D–sufficient but not vitamin D–

deficient serum. Previously, we demonstrated that the expression of both cathelicidin and

DEFB4 was required for TLR-induced antimicrobial response against M. tuberculosis (56).

Our present data indicate that the treatment of M. tuberculosis –infected macrophages with

IFN-γ resulted in 85% reduction in colony-forming units (CFU) relative to the initial

infection, thus establishing killing of the pathogen, but only in the presence of vitamin D–

sufficient serum. Together, the proposed model explains the requirement for vitamin D in

the IFN-γ–mediated antimicrobial activity of human cells of the monocytes/macrophage

lineage.

The present results provide at least one explanation for a fundamental difference in

antimicrobial mechanisms seen between mice and humans. The IFN-γ–induced

antimicrobial pathway described here is vitamin D–dependent in humans but not in the

mouse. The human promoter of cathelicidin contains three vitamin D response elements

(VDREs), whereas the promoter of the murine homolog does not contain a single VDRE

(57). In addition, the human promoter of DEFB4 contains one VDRE (19), whereas there is

no mouse homolog for this gene. Therefore, the biological significance of the IFN-γ–

induced, vitamin D–dependent antimicrobial pathway must be investigated in human cells

and simply cannot be studied in a mouse model. The evolution of distinct antimicrobial

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

mechanisms makes sense teleologically as well because mice are nocturnal animals and

humans are not, and the amount of vitamin D increases with sun exposure.

These findings may contribute to a conceptual framework for understanding the different roles of the innate and acquired immune responses in responding to intracellular pathogens such as M. tuberculosis . The innate immune response requires that each infected cell be individually activated via pattern recognition receptors such as TLRs. Although such activation is rapid, it is not optimally efficient, in that protection is likely to be effective mostly early where the number of invading pathogens is low. In humans, the infectious dose of M. tuberculosis required to initiate diseases is thought to be only a few bacilli. In contrast,although the acquired immune response requires longer time to develop, it has the great virtue of amplifying the host antimicrobial response by (i) expanding the number of antigen-specific T cells; (ii) providing for the “elaboration of soluble factors,” such as IFN-γ (58),that in a paracrine fashion acts on other cells in the inflammatory microenvironment, such as the granuloma; and (iii) providing long-term memory. Although the innate and acquired immune responses can activate the vitamin D antimicrobial pathway independently, they also may contribute additively or synergistically as shown for the ability of IFN-γ to enhance TLR2/1L responses (23). The fact that only about 10% of immunocompetent individuals infected with M. tuberculosis develop active disease is a testimony to the effectiveness of the human innate and acquired immune responses and the common vitamin D–dependent antimicrobicidal mechanism they share. In these individuals, vitamin D deficiency or certain VDR polymorphisms may contribute to the failure of the human innate and acquired immune responses to provide complete protection against tuberculosis.Because vitamin D production is dependent on exposure to UV light, vitamin D deficiency is increased in dark-skinned populations including African-Americans, who are known to have increased susceptibility to tuberculosis and other infectious diseases (45, 59–64). Our data demonstrate that sera from white individuals with sufficient amounts of vitamin D, but

not sera from African-Americans with lower amounts of 25D, could support IFN-γ–induced

antimicrobial peptide expression. The identical correlation of ethnicity and 25D amount was

previously shown for TLR-induced cathelicidin mRNA (18). Therefore, vitamin D

deficiency may compromise both the innate and the acquired antimicrobial host defense

pathways against tuberculosis infection and likely other infections known to be greater in

blacks (65).

The data indicating that addition of 25D3 to vitamin D–deficient serum restored IFN-γ–

induced antimicrobial peptide expression, autophagolysosomal fusion, phagosome

maturation, and antimicrobial killing are consistent with the clinical improvement observed

in tuberculosis patients supplemented with vitamin D (66, 67). At a time when multidrug-

resistant, extensively drug-resistant, and totally drug-resistant forms of tuberculosis are

emerging threats, understanding how to enhance both innate and acquired host immunity is

of enormous interest. The present findings underscore the importance of maintaining

adequate amounts of vitamin D in all human populations, either naturally or by

supplementation, for sustaining both innate and acquired immunity against infection. The

dependence of the IFN-γ–induced antimicrobial pathway on adequate amounts of vitamin D

provides a rationale for translation to larger-scale clinical trials testing the efficacy of

vitamin D supplementation to both prevent and treat tuberculosis.

Acknowledgments

We thank R. Chun, A. Vazirnia, and J. Steiger for excellent technical assistance.

Funding: This work was supported by NIH grants AI073539, AR040312, AI022553, and AI047868; Deutsche

Forschungsgemeinschaft FA849/1-1 and SFB829; and Basic Science Research Program through the National

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Research Foundation of Korea funded by the Ministry of Education, Science and Technology

(R13-2007-020-01000-0).REFERENCES AND NOTES 1. World Health Organization. Geneva: World Health Organization; 2009. Tuberculosis Facts, 2009Update. http://www.who.int/tb/publications/2009/factsheet_tb_2009update_dec09.pdf 2. Havlir DV, Barnes PF. Tuberculosis in patients with human immunodeficiency virus infection. N.Engl. J. Med. 1999; 340:367–373. [PubMed: 9929528]3. Newport MJ, Huxley CM, Huston S, Hawrylowicz CM, Oostra BA, Williamson R, Levin M. A mutation in the interferon-γ–receptor gene and susceptibility to mycobacterial infection. N. Engl. J.Med. 1996; 335:1941–1949. [PubMed: 8960473]4. Jouanguy E, Lamhamedi-Cherradi S, Lammas D, Dorman SE, Fondaneche MC, Dupuis S,D?ffinger R, Altare F, Girdlestone J, Emile JF, Ducoulombier H, Edgar D, Clarke J, Oxelius VA,Brai M, Novelli V, Heyne K, Fischer A, Holland SM, Kumararatne DS, Schreiber RD, Casanova JL. A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat. Genet. 1999; 21:370–378. [PubMed: 10192386]5. Altare F, Durandy A, Lammas D, Emile JF, Lamhamedi S, Le Deist F, Drysdale P, Jouanguy E,D?ffinger R, Bernaudin F, Jeppsson O, Gollob JA, Meinl E, Segal AW, Fischer A, Kumararatne D,Casanova JL. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency.Science. 1998; 280:1432–1435. [PubMed: 9603732]6. Douvas GS, Looker DL, Vatter AE, Crowle AJ. Gamma interferon activates human macrophages to become tumoricidal and leishmanicidal but enhances replication of macrophage-associated mycobacteria. Infect. Immun. 1985; 50:1–8. [PubMed: 3930401]7. Rook GA, Steele J, Fraher L, Barker S, Karmali R, O’Riordan J, Stanford J. Vitamin D 3, gamma interferon, and control of proliferation of Mycobacterium tuberculosis by human monocytes.Immunology. 1986; 57:159–163. [PubMed: 3002968]8. Rook GA, Steele J, Ainsworth M, Champion BR. Activation of macrophages to inhibit proliferation of Mycobacterium tuberculosis : Comparison of the effects of recombinant gamma-interferon on

human monocytes and murine peritoneal macrophages. Immunology. 1986; 59:333–338. [PubMed:

3098676]

9. Rook GA, Taverne J, Leveton C, Steele J. The role of gamma-interferon, vitamin D 3 metabolites

and tumour necrosis factor in the pathogenesis of tuberculosis. Immunology. 1987; 62:229–234.

[PubMed: 3119471]

10. Denis M. Killing of Mycobacterium tuberculosis within human monocytes: Activation by

cytokines and calcitriol. Clin. Exp. Immunol. 1991; 84:200–206. [PubMed: 1902761]

11. Robertson AK, Andrew PW. Interferon gamma fails to activate human monocyte-derived

macrophages to kill or inhibit the replication of a non-pathogenic mycobacterial species. Microb.

Pathog. 1991; 11:283–288. [PubMed: 1813779]

12. Olakanmi O, Britigan BE, Schlesinger LS. Gallium disrupts iron metabolism of mycobacteria

residing within human macrophages. Infect. Immun. 2000; 68:5619–5627. [PubMed: 10992462]

13. Silver RF, Li Q, Boom WH, Ellner JJ. Lymphocyte-dependent inhibition of growth of virulent

Mycobacterium tuberculosis H37Rv within human monocytes: Requirement for CD4+ T cells in

purified protein derivative-positive, but not in purified protein derivative-negative subjects. J.

Immunol. 1998; 160:2408–2417. [PubMed: 9498784]

14. Bonecini-Almeida MG, Chitale S, Boutsikakis I, Geng J, Doo H, He S, Ho JL. Induction of in vitro

human macrophage anti-Mycobacterium tuberculosis activity: Requirement for IFN-γ and primed

lymphocytes. J. Immunol. 1998; 160:4490–4499. [PubMed: 9574555]

15. Kumar D, Nath L, Kamal MA, Varshney A, Jain A, Singh S, Rao KV. Genome-wide analysis of

the host intracellular network that regulates survival of Mycobacterium tuberculosis . Cell. 2010;

140:731–743. [PubMed: 20211141]

16. Lee JS, Yang CS, Shin DM, Yuk JM, Son JW, Jo EK. Nitric oxide synthesis is modulated by 1,25-

dihydroxyvitamin D3 and interferon-γ in human macrophages after mycobacterial infection.

Immune Netw. 2009; 9:192–202. [PubMed: 20157607]

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

17. Ting LM, Kim AC, Cattamanchi A, Ernst JD. Mycobacterium tuberculosis inhibits IFN-γtranscriptional responses without inhibiting activation of STAT1. J. Immunol. 1999; 163:3898–3906. [PubMed: 10490990]18. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, Kamen DL, Wagner M, Bals R, Steinmeyer A, Zügel U, Gallo RL, Eisenberg D, Hewison M,Hollis BW, Adams JS, Bloom BR, Modlin RL. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006; 311:1770–1773. [PubMed: 16497887]19. Liu PT, Schenk M, Walker VP, Dempsey PW, Kanchanapoomi M, Wheelwright M, Vazirnia A,Zhang X, Steinmeyer A, Zügel U, Hollis BW, Cheng G, Modlin RL. Convergence of IL-1β and VDR activation pathways in human TLR2/1-induced antimicrobial responses. PLoS One. 2009;4:e5810. [PubMed: 19503839]20. Yamamura M, Uyemura K, Deans RJ, Weinberg K, Rea TH, Bloom BR, Modlin RL. Defining protective responses to pathogens: Cytokine profiles in leprosy lesions. Science. 1991; 254:277–279. [PubMed: 1925582]21. Salgame P, Abrams JS, Clayberger C, Goldstein H, Convit J, Modlin RL, Bloom BR. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science. 1991;254:279–282. [PubMed: 1681588]22. Adams JS, Gacad MA. Characterization of 1α-hydroxylation of vitamin D 3 sterols by cultured alveolar macrophages from patients with sarcoidosis. J. Exp. Med. 1985; 161:755–765. [PubMed:3838552]23. Edfeldt K, Liu PT, Chun R, Fabri M, Schenk M, Wheelwright M, Keegan C, Krutzik SR, Adams JS, Hewison M, Modlin RL. T-cell cytokines differentially control human monocyte antimicrobial responses by regulating vitamin D metabolism. Proc. Natl. Acad. Sci. U.S.A. 2010; 107:22593–22598. [PubMed: 21149724]24. Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science. 1999;285:732–736. [PubMed: 10426995]25. Duits LA, Ravensbergen B, Rademaker M, Hiemstra PS, Nibbering PH. Expression of β-defensin

1 and

2 mRNA by human monocytes, macrophages and dendritic cells. Immunology. 2002;

106:517–525. [PubMed: 12153515]

26. Chan J, Xing Y, Magliozzo RS, Bloom BR. Killing of virulent Mycobacterium tuberculosis by

reactive nitrogen intermediates produced by activated murine macrophages. J. Exp. Med. 1992;

175:1111–1122. [PubMed: 1552282]

27. Chan J, Tanaka K, Carroll D, Flynn J, Bloom BR. Effects of nitric oxide synthase inhibitors on

murine infection with Mycobacterium tuberculosis . Infect. Immun. 1995; 63:736–740. [PubMed:

7529749]

28. Thoma-Uszynski S, Stenger S, Takeuchi O, Ochoa MT, Engele M, Sieling PA, Barnes PF,

Rollinghoff M, Bolcskei PL, Wagner M, Akira S, Norgard MV, Belisle JT, Godowski PJ, Bloom

BR, Modlin RL. Induction of direct antimicrobial activity through mammalian Toll-like receptors.

Science. 2001; 291:1544–1547. [PubMed: 11222859]

29. Boltz-Nitulescu G, Willheim M, Spittler A, Leutmezer F, Tempfer C, Winkler S. Modulation of

IgA, IgE, and IgG Fc receptor expression on human mononuclear phagocytes by 1α,25-

dihydroxyvitamin D 3 and cytokines. J. Leukoc. Biol. 1995; 58:256–262. [PubMed: 7643018]

30. Herdick M, Steinmeyer A, Carlberg C. Antagonistic action of a 25-carboxylic ester analogue of 1α,

25-dihydroxyvitamin D 3 is mediated by a lack of ligand-induced vitamin D receptor interaction

with coactivators. J. Biol. Chem. 2000; 275:16506–16512. [PubMed: 10748178]

31. Krutzik SR, Tan B, Li H, Ochoa MT, Liu PT, Sharfstein SE, Graeber TG, Sieling PA, Liu YJ, Rea

TH, Bloom BR, Modlin RL. TLR activation triggers the rapid differentiation of monocytes into

macrophages and dendritic cells. Nat. Med. 2005; 11:653–660. [PubMed: 15880118]

32. Krutzik SR, Hewison M, Liu PT, Robles JA, Stenger S, Adams JS, Modlin RL. IL-15 links

TLR2/1-induced macrophage differentiation to the vitamin D-dependent antimicrobial pathway. J.

Immunol. 2008; 181:7115–7120. [PubMed: 18981132]

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

33. Musso T, Calosso L, Zucca M, Millesimo M, Ravarino D, Giovarelli M, Malavasi F, Ponzi AN,Paus R, Bulfone-Paus S. Human monocytes constitutively express membrane-bound, biologically active, and interferon-γ–upregulated interleukin-15. Blood. 1999; 93:3531–3539. [PubMed:10233906]34. Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD,Gluck SL, Heuser J, Russell DG. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science. 1994; 263:678–681. [PubMed: 8303277]35. Armstrong JA, Hart PD. Response of cultured macrophages to Mycobacterium tuberculosis , with observations on fusion of lysosomes with phagosomes. J. Exp. Med. 1971; 134:713–740.[PubMed: 15776571]36. McDonough KA, Kress Y, Bloom BR. Pathogenesis of tuberculosis: Interaction of Mycobacterium tuberculosis with macrophages. Infect. Immun. 1993; 61:2763–2773. [PubMed: 8514378]37. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages.Cell. 2004; 119:753–766. [PubMed: 15607973]38. Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science. 2006; 313:1438–1441. [PubMed: 16888103]39. Alonso S, Pethe K, Russell DG, Purdy GE. Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proc. Natl. Acad. Sci. U.S.A. 2007;104:6031–6036. [PubMed: 17389386]40. Tiwari S, Choi HP, Matsuzawa T, Pypaert M, MacMicking JD. Targeting of the GTPase Irgm1 to the phagosomal membrane via PtdIns(3,4)P 2 and PtdIns(3,4,5)P 3 promotes immunity to mycobacteria. Nat. Immunol. 2009; 10:907–917. [PubMed: 19620982]41. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y,Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000; 19:5720–5728. [PubMed: 11060023]42. Yuk JM, Shin DM, Lee HM, Yang CS, Jin HS, Kim KK, Lee ZW, Lee SH, Kim JM, Jo EK.Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe. 2009; 6:231–243. [PubMed: 19748465]

43. Fortune SM, Solache A, Jaeger A, Hill PJ, Belisle JT, Bloom BR, Rubin EJ, Ernst JD.

Mycobacterium tuberculosis inhibits macrophage responses to IFN-γ through myeloid

differentiation factor 88-dependent and -independent mechanisms. J. Immunol. 2004; 172:6272–

6280. [PubMed: 15128816]

44. Matsuoka LY, Wortsman J, Haddad JG, Kolm P, Hollis BW. Racial pigmentation and the

cutaneous synthesis of vitamin D. Arch. Dermatol. 1991; 127:536–538. [PubMed: 1848745]

45. Stead WW, Senner JW, Reddick WT, Lofgren JP. Racial differences in susceptibility to infection

by Mycobacterium tuberculosis . N. Engl. J. Med. 1990; 322:422–427. [PubMed: 2300105]

46. Bustamante J, Arias AA, Vogt G, Picard C, Galicia LB, Prando C, Grant AV, Marchal CC, Hubeau

M, Chapgier A, de Beaucoudrey L, Puel A, Feinberg J, Valinetz E, Jannière L, Besse C, Boland A,

Brisseau JM, Blanche S, Lortholary O, Fieschi C, Emile JF, Boisson-Dupuis S, Al-Muhsen S,

Woda B, Newburger PE, Condino-Neto A, Dinauer MC, Abel L, Casanova JL. Germline CYBB

mutations that selectively affect macrophages in kindreds with X-linked predisposition to

tuberculous mycobacterial disease. Nat. Immunol. 2011; 12:213–221. [PubMed: 21278736]

47. Grange JM, Davies PD, Brown RC, Woodhead JS, Kardjito T. A study of vitamin D levels in

Indonesian patients with untreated pulmonary tuberculosis. Tubercle. 1985; 66:187–191.

[PubMed: 4049530]

48. Wilkinson RJ, Llewelyn M, Toossi Z, Patel P, Pasvol G, Lalvani A, Wright D, Latif M, Davidson

RN. Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis

among Gujarati Asians in west London: A case-control study. Lancet. 2000; 355:618–621.

[PubMed: 10696983]

49. Talat N, Perry S, Parsonnet J, Dawood G, Hussain R. Vitamin D deficiency and tuberculosis

progression. Emerg. Infect. Dis. 2010; 16:853–855. [PubMed: 20409383]

50. Martineau AR, Leandro AC, Anderson ST, Newton SM, Wilkinson KA, Nicol MP, Pienaar SM,

Skolimowska KH, Rocha MA, Rolla VC, Levin M, Davidson RN, Bremner SA, Griffiths CJ, Eley

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

BS, Bonecini-Almeida MG, Wilkinson RJ. Association between Gc genotype and susceptibility to TB is dependent on vitamin D status. Eur. Respir. J. 2010; 35:1106–1112. [PubMed: 19797128]51. Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, Ganz T, Thoma-Uszynski S, Melián A, Bogdan C, Porcelli SA, Bloom BR, Krensky AM, Modlin RL. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science. 1998; 282:121–125. [PubMed:9756476]52. van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M, Peters PJ. M.tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells.Cell. 2007; 129:1287–1298. [PubMed: 17604718]53. Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, Hamada S, Yoshimori T. Autophagy defends cells against invading group A Streptococcus . Science. 2004; 306:1037–1040. [PubMed: 15528445]54. Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C. Escape of intracellular Shigella from autophagy. Science. 2005; 307:727–731. [PubMed: 15576571]55. Py BF, Lipinski MM, Yuan J. Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy. 2007; 3:117–125. [PubMed: 17204850]56. Liu PT, Stenger S, Tang DH, Modlin RL. Cutting edge: Vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J.Immunol. 2007; 179:2060–2063. [PubMed: 17675463]57. Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D 3. FASEB J. 2005; 19:1067–1077. [PubMed: 15985530]58. Bloom BR, Bennett B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science. 1966; 153:80–82. [PubMed: 5938421]59. Clemens TL, Adams JS, Henderson SL, Holick MF. Increased skin pigment reduces the capacity of skin to synthesise vitamin D 3. Lancet. 1982; 1:74–76. [PubMed: 6119494]60. Loomis WF. Skin-pigment regulation of vitamin-D biosynthesis in man. Science. 1967; 157:501–506. [PubMed: 6028915]61. Harris SS, Dawson-Hughes B. Seasonal changes in plasma 25-hydroxyvitamin D concentrations of

young American black and white women. Am. J. Clin. Nutr. 1998; 67:1232–1236. [PubMed:

9625098]

62. Nesby-O’Dell S, Scanlon KS, Cogswell ME, Gillespie C, Hollis BW, Looker AC, Allen C,

Doughertly C, Gunter EW, Bowman BA. Hypovitaminosis D prevalence and determinants among

African American and white women of reproductive age: Third National Health and Nutrition

Examination Survey, 1988–1994. Am. J. Clin. Nutr. 2002; 76:187–192. [PubMed: 12081833]

63. Gibney KB, Mihrshahi S, Torresi J, Marshall C, Leder K, Biggs BA. The profile of health

problems in African immigrants attending an infectious disease unit in Melbourne, Australia. Am.

J. Trop. Med. Hyg. 2009; 80:805–811. [PubMed: 19407128]

64. Ustianowski A, Shaffer R, Collin S, Wilkinson RJ, Davidson RN. Prevalence and associations of

vitamin D deficiency in foreign-born persons with tuberculosis in London. J. Infect. 2005; 50:432–

437. [PubMed: 15907552]

65. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R,

Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK.

Active Bacterial Core surveillance (ABCs) MRSA Investigators, Invasive methicillin-resistant

Staphylococcus aureus infections in the United States. JAMA. 2007; 298:1763–1771. [PubMed:

17940231]

66. Yamshchikov AV, Desai NS, Blumberg HM, Ziegler TR, Tangpricha V. Vitamin D for treatment

and prevention of infectious diseases: A systematic review of randomized controlled trials.

Endocr. Pract. 2009; 15:438–449. [PubMed: 19491064]

67. Martineau AR, Timms PM, Bothamley GH, Hanifa Y, Islam K, Claxton AP, Packe GE, Moore-

Gillon JC, Darmalingam M, Davidson RN, Milburn HJ, Baker LV, Barker RD, Woodward NJ,

Venton TR, Barnes KE, Mullett CJ, Coussens AK, Rutterford CM, Mein CA, Davies GR,

Wilkinson RJ, Nikolayevskyy V, Drobniewski FA, Eldridge SM, Griffiths CJ. High-dose vitamin

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

D3 during intensive-phase antimicrobial treatment of pulmonary tuberculosis: A double-blind

randomised controlled trial. Lancet. 2011; 377:242–250. [PubMed: 21215445] NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Fig. 1.

T cell–secreted IFN-γ induces the vitamin D antimicrobial pathway. (A ) T H 1 and T H 2 T cell

clones were stimulated with plate-bound mAb to CD3 antibody, and supernatants were

collected after 18 hours. T cell supernatants were added to human monocytes for 24 hours in

10% vitamin D–sufficient human serum, and amounts of mRNA encoding the antimicrobial

peptides cathelicidin (Cath.) and DEFB4 were measured by qPCR (mean fold change ±

SEM; shown is one representative donor done in triplicate). In parallel, T cell supernatants

were characterized according to their secreted concentrations of IFN-γ and IL-4 (protein

concentrations in ng/ml ± SD). (B ) The correlation between T cell supernatant cytokine

concentrations (ng/ml) and monocyte antimicrobial gene expression (mean fold change) was

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

determined and represented as the correlation coefficient r. (C) Monocytes were pretreated

with mAb to IFN-γ or isotype control antibody for 15 min and then stimulated with the T H1

T cell clone supernatant for 20 or 24 hours in 10% vitamin D–sufficient human serum. NIH-PA Author Manuscript

mRNA quantities were measured by qPCR (mean fold change ± SEM, n = 7 to 9). *P <

0.05.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Fig. 2.

IFN-γ and TLR2/1L induce a common vitamin D–dependent antimicrobial pathway.

Primary human monocytes were stimulated with rIFN-γ or TLR2/1L for 24 hours in 10%

vitamin D–sufficient human serum. (A and B ) Cathelicidin and DEFB4 (A) and CYP27B1

and VDR (B) gene expression was assessed by qPCR (mean fold change ± SEM, n = 3 to 7).

(C ) To assess CYP27b1 activity, we cultured human monocytes treated with rIFN-γ in 10%FCS overnight for an additional 5 hours with [3H]25D3. The amount of conversion to [3H]1,25D3 and [3H]24,25D3 was measured by high-performance liquid chromatography,

and CYP27b1 activity was calculated as the ratio of 1,25D3/24,25D3 (relative change

compared to media ± SEM, n = 4). (D ) Human monocytes were transfected with siRNA

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

oligos specific for CYP27B1 (siCYP27B1), VDR (siVDR), or nonspecific (siCTRL) and

then treated with IFN-γ in 10% vitamin D–sufficient serum for 20 or 24 hours. Cathelicidin,

DEFB4, and CD64 gene expression was determined by qPCR (mean fold change ± SEM, n NIH-PA Author Manuscript

= 3 to 5). (E) Human monocytes were cultured in 10% vitamin D–sufficient human serum,

pretreated with the VDR antagonist VAZ (ZK159222) for 15 min, and then exposed to

rIFN-γ. Cathelicidin, DEFB4, and CD64 gene expression was determined by qPCR (mean

fold change ± SEM, n = 4 to 7). *P≤ 0.05. NIH-PA Author Manuscript

NIH-PA Author Manuscript

Fig. 3.

IFN-γ induction of the vitamin D antimicrobial pathway is IL-15–dependent. (A ) IL-15 cell

surface expression on monocytes stimulated with rIFN-γ or TLR2/1L as measured by flow

cytometry at 24 hours [Δ mean fluorescence intensity (MFI) ± SEM, n = 3]. (B ) Wild-type

(WT), MyD88?/?, and STAT1?/? bone marrow–derived macrophages (BMDMs) were

stimulated with murine rIFN-γ or TLR2/1L for 4 hours. IL-15 mRNA was quantified by

qPCR (mean fold change ± SEM, n = 4). (C ) Primary human monocytes were incubated

with anti–IL-15 mAb, isotype, or media control for 15 min and stimulated with human rIFN-

γ in 10% FCS for 24 hours. CYP27B1 gene expression was assessed by qPCR (mean fold

change ± SEM, n = 5). (D ) Monocytes were cultured as described in (C) in 10% vitamin D–

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

sufficient human serum for 20 or 24 hours. Cathelicidin and DEFB4 gene expression was

assessed by qPCR (mean fold change ± SEM, n = 6 to 8). *P≤ 0.05. NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Fig. 4.

IFN-γ–induced autophagy and phagosome maturation are VDR-dependent. (A ) Human

primary monocytes were incubated with rIFN-γ, rapamycin (Rapa), or medium for 24 hours

in 10% vitamin D–sufficient human serum, fixed, and immunolabeled with anti–LC3-FITC

(fluorescein isothiocyanate) antibody (green). Nuclei were stained with 4′,6-diamidino-2-

phenylindole (DAPI) (blue). Representative immunofluorescence images are shown. (B )

LC3 punctate cells were quantified (mean of percent positive cells ± SEM, n = 5). (C )

Monocytes were incubated with rIFN-γ in the presence or absence of 3-MA or WM for 24

hours, and the percentage of LC3 punctate cells was determined (mean ± SEM, n = 4). (D )

Gene expression was knocked down inmonocytes with lentiviral shRNA specific for

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

制作游戏视频完美使用教程

制作游戏视频完美使用教程 很多的游戏玩家不但喜欢玩各种新颖的游戏,还喜欢制作游戏视频。本人也是一个游戏爱好者,但刚开始制作游戏视频时,确实遇到了不少难题,所以总结出来,制作游戏视频最重要的便是要找到一款好用的视频制作软件,当然视频的精美度也是我们所关注的。下面我就根据自己的经验,使用国内最流行的电子相册制作软件《数码大师》,教大家快速制作动感十足的游戏视频。 工具/原料 数码大师安全下载地址:https://www.360docs.net/doc/b916764388.html,/indexgb.htm 超级捕快安全下载地址:https://www.360docs.net/doc/b916764388.html,/cm 方法/步骤 一、使用《超级捕快》录制游戏视频短片 软件除了可以游戏图片作为制作游戏视频的素材,还可以在视频中插入游戏视频片段,我们可以使用国内最流行的全能录像软件《超级捕快》,录制精彩的一段游戏视频,然后

将其插入作为整个制作的游戏视频的片头或片尾,还可以在相片间插入,导入方式非常多样。下面的第一张图片即是使用《超级捕快》的“电脑屏幕录像”功能录制游戏视频短片,而第二张图片则是在《数码大师》中导入游戏图片和刚才录制的视频短片的操作,都是非常简单的哦。

二、为游戏视频设置喜欢的音乐 在如下的“背景音乐”选项卡中,点击“添加媒体文件”和“插入歌词文件”按钮,可为制作的游戏视频设置喜欢的背景音乐和歌词。

三、设置文字特效和相片转场特效 特效可让相片的展示更具动感。《数码大师》提供了十多种炫酷的文字特效,以供抒写图片的注释和名字,让文字的展示非常多样化,除了文字特效。作为国内发展最久的电子相册制作软件,软件提供的相片特效不但在数量上首屈一指,特效的炫酷程度也让人十分震撼。如各种3D效果的翻页特效、透镜效果、卷画特效等等。

(新手必读)教你怎样安装游戏_所有类型

(新手必读)教你怎样安装游戏_所有类型的哦! [ 来源: | 作者: | 时间:2008-03-27 | 返回上一页 | 打印 ] 在很多地方都看到新手都不会安装游戏,几乎天天都能看到类似“如何安装游戏”的求助帖子,现在我就教大家安装游戏,新手要好好学习,看完这个帖子,你肯定会安装游戏的。 先讲讲S60机,因为S60的游戏比较多,所以主要讲S60游戏的安装方法: 前提条件:电脑安装了解压软件WINRAR和WINZIP(很多游戏是打包上传的)。 安装游戏的必备传输工具:读卡器,蓝牙适配器,红外适配器(需手机带红外功能),以及数据线。在这里我主要向大家推荐读卡器和蓝牙适配器。因为有些游戏(比如QD的官方游戏)多为文件夹格式的,有了读卡器可以很快速的复制,而且速度快。一些SIS游戏和JAVA 游戏,对于储存卡在电池下面的机型(比如7610,6600),用读卡器比较麻烦,必须关机-取卡-拷贝-卡装机子里-开机安装,所以还是用蓝牙比较方便点。 目前一合一的读卡器的价格在30块左右,推荐SSK的。20米范围的蓝牙适配器大约80几块,牌子无所谓 如果两者一种都没有的话,那么我还是劝你至少买一个上述的工具吧。花了那么多银子买了智能机,不差这点钱买一个传输工具吧? 推荐读卡器,各种类型的都可以安装,蓝牙安装文件夹格式的游戏很麻烦很麻烦。不过最好两个都买,加一起不过100多点。各地的电子城很容易就买到 有了这些工具,游戏就可以安装了。 现在就开始教我装游戏吗? 别着急,还没装文件管理软件呢! 文件管理软件是干吗的? SIS文件和JAVA游戏,如果是通过读卡器拷贝到MMC卡上,还需要通过文件管理软件来进行安装。而一些破解游戏文件和汉化游戏文件,也需要通过它来剪切替换。它还可以删除文件,设置LOGO,隐藏文件等等等等,属于必装软件 新手看到这里,是不是有点晕了,其实是很简单很简单的!只要你有信心! 下载一个文件管理软件,比如SELEQ(下面有这个Seleq下载)! 读卡器安装SELEQ方法:把SELEQ这个文件拖到卡里,不用放在某一个文件夹里,放在

神经系统疾病定位诊断

神经系统疾病定位诊断

神经系统疾病定位诊断 神经系统包括:中枢神经系统(脑、脊髓)和周围神经系统(颅神经、脊神经)两个部分。中枢神经主管分析、综合、归纳由体内外环境传来的信息,周围神经主管传递神经冲动。 神经病学,是研究神经系统(中枢神经和周围神经)疾病与骨骼肌疾病的病因、发病机制、病理、症状、诊断、治疗、预后的一门学科。 神经系统损害的主要表现:感觉、运动、反射障碍,精神、语言、意识障碍,植物神经功能障碍等。神经系统疾病诊断有三个步骤: 详细的临床资料:即询问病史和体格检查,着重神经系统检查。 定位诊断:(根据神经系统检查的结果)用神经解剖生理等基础理论知识来分析、解释有关临床资料,确定病变发生的解剖部位。(总论症状学的主要内容。) 定性诊断:(根据病史资料)联系起病形式、疾病的发展和演变过程、个人史、家族史、临床检查资料,综合分析,筛选出初步的病因性质(即疾病的病因和病理诊断)。(各论各个疾病单元中学习的内容。)辅助检查:影像学有CT、MR、SPECT、PET、DSA等;电生理有EEG、EMG、EP等;脑脊液检查。 感觉系统 一.感觉分类 ㈠特殊感觉:嗅、视、味、听觉。 ㈡一般感觉 1.浅感觉——痛觉、温度觉、触觉 2.深感觉——运动觉、位置觉、震动觉等。 3.皮层觉(复合觉)——实体觉、图形觉、两点辨别觉、定位觉等。 二.感觉的解剖生理 1.感觉的传导径路: 一般感觉的传导径路有两条:①痛温觉传导路,②深感觉传导路。 它们都是由三个向心的感觉神经元连接组成,但它们在脊髓中的传导各有不同。 第一神经元:均在后根神经节 第二神经元:(发出纤维交叉到对侧) ⑴痛觉、温度觉:后角细胞 ⑵深感觉:薄束核、楔束核 ⑶触觉:一般性同⑴,识别性同⑵ 第三神经元:均在丘脑外侧核。 感觉的皮质中枢:在顶叶中央后回(感觉中枢与外周的关系呈对侧支配) 2.节段性感觉支配: (头颈)耳顶联线后C2、颈部C3、肩部C4; (上肢)桡侧C5-7、尺侧C8-T2; (躯干)胸骨角T2、乳头线T4、剑突T6、肋下缘T7-8、脐T10、腹股沟T12-L1; (下肢)大腿前L2-3、小腿前L4-5、下肢后侧S1-3、肛门周围S4-5。 3.周围性感觉支配:了解周围性支配的特点。 4.髓内感觉传导的层次排列:有助于判断脊髓(髓内、外)病变的诊断。 三.感觉障碍的性质、表现 ㈠破坏性症状: 1.感觉缺失:对刺激的感知能力丧失。 ⑴完全性感觉缺失:各种感觉全失。

医疗技术临床应用管理办法版

医疗技术临床应用管理办法 (2018版) 第一章总则 第一条为加强医疗技术临床应用管理,促进医学科学发展和医疗技术进步,保障医疗质量和患者安全,维护人民群众健康权益,根据有关法律法规,制定本办法。 第二条本办法所称医疗技术,是指医疗机构及其医务人员以诊断和治疗疾病为目的,对疾病作出判断和消除疾病、缓解病情、减轻痛苦、改善功能、延长生命、帮助患者恢复健康而采取的医学专业手段和措施。本办法所称医疗技术临床应用,是指将经过临床研究论证且安全性、有效性确切的医疗技术应用于临床,用以诊断或者治疗疾病的过程。 第三条医疗机构和医务人员开展医疗技术临床应用应当遵守本办法。 第四条医疗技术临床应用应当遵循科学、安全、规范、有效、经济、符合伦理的原则。安全性、有效性不确切的医疗技术,医疗机构不得开展临床应用。 第五条国家建立医疗技术临床应用负面清单管理制度,对禁止临床应用的医疗技术实施负面清单管理,对部分需要严格监管的医疗技术进行重点管理。其他临床应用的医疗技术由决定使用该类技术的医疗机构自我管理。 第六条医疗机构对本机构医疗技术临床应用和管理承担主体责任。医疗机构开展医疗技术服务应当与其技术能力相适应。医疗机构主要负责人是本机构医疗技术临床应用管理的第一责任人。 第七条国家卫生健康委负责全国医疗技术临床应用管理工作。县级以上地方卫生行政部门负责本行政区域内医疗技术临床应用监督管理工作。 第八条鼓励卫生行业组织参与医疗技术临床应用质量控制、规范化培训和

技术评估工作,各级卫生行政部门应当为卫生行业组织参与医疗技术临床应用管理创造条件。 第二章医疗技术负面清单管理 第九条医疗技术具有下列情形之一的,禁止应用于临床(以下简称禁止类技术): (一)临床应用安全性、有效性不确切; (二)存在重大伦理问题; (三)该技术已经被临床淘汰; (四)未经临床研究论证的医疗新技术。禁止类技术目录由国家卫生健康委制定发布或者委托专业组织制定发布,并根据情况适时予以调整。 第十条禁止类技术目录以外并具有下列情形之一的,作为需要重点加强管理的医疗技术(以下简称限制类技术),由省级以上卫生行政部门严格管理:(一)技术难度大、风险高,对医疗机构的服务能力、人员水平有较高专业要求,需要设置限定条件的; (二)需要消耗稀缺资源的; (三)涉及重大伦理风险的; (四)存在不合理临床应用,需要重点管理的。国家限制类技术目录及其临床应用管理规范由国家卫生健康委制定发布或者委托专业组织制定发布,并根据临床应用实际情况予以调整。省级卫生行政部门可以结合本行政区域实际情况,在国家限制类技术目录基础上增补省级限制类技术相关项目,制定发布相关技术临床应用管理规范,并报国家卫生健康委备案。 第十一条对限制类技术实施备案管理。医疗机构拟开展限制类技术临床应用的,应当按照相关医疗技术临床应用管理规范进行自我评估,符合条件的可

KRKR入门教程,教你做出一个完整的小游戏

进入正题: 吉里(KR)入门篇2010年1月31日星期日18:18 Salles &不知原作谁写的 一、初识吉里(KR) 吉里2(以下简称KR)/KAG3是由日本W.Dee氏编写的一个ADV(恋爱AVG文字游戏)制作引擎,具有很强的功能以及扩展性。 虽然采用了类似Java的tjs语言,但如果只是使用基本的ADV制作功能,则只需要用到KAG3的一些相对简单的指令。 由于KR支持Unicode,即使是日文原版也可以较好地支持其他语言。 在音频方面,它支持非压缩的Wav、Midi格式以及CD音轨,加载插件后还可以支持ogg、mp3等。 在视频方面则支持mpeg 1、swf。 图像方面则支持bmp、jpg、png、eri和tlg 5、tlg6等。 虽然占用资源较Nscripter等其他工具有所增大,但制作出的效果也更加华丽,前段时间大红大紫的Fate系列就很好地展现了KR的威力。 (《Fate/stay night》有兴趣的,可以去下载这个游戏玩玩,百度上有,这里不给下载地址了) KR的源程序可以在下面地址下载(去掉中间的空格,h ttp之间,5 8之间,20 6之间,2C A之间,in put之间,100 2007之间 共六处空格,全部去掉): h ttp:

//58.251.57.206/down?cid=2CA4450B80FEEEFC915F6A9BDD6A556D4AF6E250 &t=2&fmt=&usrin put=kagexpress&dt=100 2007这是迅雷、BT下载地址。 最后,本教程只是入门级的基础教程,如果您已经可以用KR实现基本的ADV制作,本教程对您的参考价值就很有限了…… 二、制作前的准备: 1.下载并解压KR,放在除系统盘以外的盘里,如: "D: \KR"。 2.首先我们需要建立一个新的工程。 在你解压KR后生成的目录里,有个叫Wizard的可执行程序,双击它。 在出现的对话框里,选择下拉菜单中的800*600,新工程目录输入: course,你会发现在KR目录里多了一个叫course的目录,这就是新的工程目录。 在确定后弹出一个设置对话框,什么都不用改先,确定就行。 3.用记事本方式打开course\data\config.tjs文件,这里可以进行一些设置。 目前需要用到的是先把; System.title = "KCDDP KAGeXpress 3.0";改为你需要的标题。这里不妨设为;System.title = "KR基础教学"。 4.下面,开始进行脚本编辑: 在course\data\scenario目录下,有个叫first.ks的文件,可以用记事本打开,这里就是你输入代码的地方。 5.把自己的图片放在course\data\bgimage里,名字自定。 最好先准备5张背景图,一张全黑的,叫black;一张全白的,叫white;另外三张随便在哪弄来三张图片,可自己命名为bgi

PS3硬盘游戏破解安装傻瓜教程

PS3硬盘游戏破解安装傻瓜教程 手把手教你破解ps3游戏之“批处理文件篇” 破解的原理不再赘述,其简单说来,就是将游戏的eboot.bin文件中,关于指向游戏DVD的字段改为指向ps3主机本地硬盘,欺骗游戏主机来执行PSN游戏。 主机必须先越狱,怎么越狱看版里的置顶帖。 还有,这个批处理程序的方法,其实就是版大介绍的命令行方法的简化版,大家不懂的,可以看置顶贴,版大的帖子PS3破解相关教程整理,包含3.55自制系统的安装和游戏PKG 的制作。 准备工作: 下载要破解的游戏(当然这个是必须的呀,没有游戏你玩个P啊?哈哈) 以我的实况2011欧洲版为例,ps3游戏都会有如下文件结构:

在【/BLES01022/PS3_GAME/】文件夹下面,可以看到【LICDIR】【TROPDIR】【USRDIR】几个文件夹,以及几个游戏图标及相关文件。这里的几个文件夹和【USRDIR】下面的EBOOT.BIN文件就是我们要使用的。 具体步骤: 1. 首先,下载批处理版的破解文件,内含failoverflow小组的工具套装,以及使用GeoHot的大包及签名工具。 地址:https://www.360docs.net/doc/b916764388.html,/file/f6c32ef6e7。 文件如下图所示EBOOTCreationKit.rar。 2. 解压文件后,得到如下的工作文件夹及文件:

.ps3文件夹中是破解的主机key文件,to_usb_root文件夹下是最后生成的pkg文件。 3. 此时,运行runme.bat这个批处理文件,如下显示:

现在需要注意那行英文提示,意思是说,把要破解的eboot.bin文件拷入到【EBOOTCreationKit/bin】文件夹。这个bin文件夹是刚刚运行runme.bat才生成的。因此,请将刚刚准备工作提到的【/BLES01022/PS3_GAME/USRDIR】文件夹下的EBOOT.BIN 文件拷贝到【EBOOTCreationKit/bin】下。 4. 按任意键继续,得到如下界面

肠外营养药物临床使用规范

肠外营养药物临床使用规范 一、总则 1、肠外营养药物ICU临床应用较广。为规范其临床使用,保障患者用药安全,参考《临床诊疗指南:肠外肠内营养学分册(2008版,中华医学会编)》及相关规定,制定本规范。 2、临床营养支持(nutrition support, NS)是指经口、肠道或肠外途径为患者提供较全面的营养素。目前临床上包括肠内营养(enteral nutrition, EN)支持和肠外营养(parenteral nutrition,PN)支持。肠内营养是指经消化道给以较全面的营养素;肠外营养是经静脉为无法经胃肠道摄取或摄取营养物不能满足自身代谢需要的患者提供包括氨基酸、脂肪、碳水化合物、维生素及矿物质在内的营养素,以抑制分解代谢,促进合成代谢并维持结构蛋自的功能。所有营养素完全经肠外获得的营养支持方式称为全肠外营养(total parenteral nutrition,TPN)。 3、按照循证医学原则,以当前最佳证据为依据,按照系统和规范方法,对临床营养支持按A、B、C、D四级进行推荐使用。最高等级(A)的推荐至少有一项随机对照研究;最低等级(D)的推荐以专家观点为基础,包括无研究证据的共识意见(附表一)。 二、确定毎天的营养素需要量,是营养支持的基本要求。肠外营养因缺乏人体自身调节的过程,使用不当可造成营养素过量;但若补充过少,则又可能导致营养状况的进一步恶化。故应进行个体化营养评估。成人营养素需要量推荐意见如下: 1、确定营养素需要量应当根据疾病状况、体重与体成份组成、生理功能变化等方面进行个体化评估,制定合理化配方。(B) 2、大部分住院病人实际能量消耗通常低于经典的方程式或教科书上的公式推算出来的值。(D) 3、在败血症或创伤的急性代谢期,不主张采用高热卡营养支持获得正氮平衡或氮平衡。(C) 4、允许性低摄入有益于围手术期患者临床结局。(A) 5、水、电解质生理需要量是维持生命所必需。(A) 6、无论肠内或肠外营养支持患者,都需要监测出入液量、水肿或脱水症状体征、血电解质水平等,并及时调整补充剂量,根据病情,选择肠内或肠外途径补充。(A) 7、重症疾病状态下是否需要增加维生素与微量元素的供给量,目前无确定性结论。在合理用药的前提下,可参照美国FDA推荐剂量,根据医生的判断,结合患者需求,调整部分维生素的应用剂量。(D) 三、对于住院患者可行营养风险筛查(NRS 2002,2002年欧洲肠外肠内营养学会大会推出,营养风险筛查评分简表见附表二)。 对于总评分大于等于3分的住院患者结合临床要求制定营养支持计划;对评分暂时低于3分者,可以定时进行再次营养风险筛查。推荐意见如下:

疼痛动物模型规范

疼痛实验动物模型 科研探索2007-04-25 23:11:36 阅读147 评论0 字号:大中小订阅 疼痛是机制非常复杂的神经活动。疼痛研究已经成为当前神经科学研究的重要课题之一。由于疼痛机制的复杂性,使得在患者身上研究与疼痛有关的神经机制成为不可能的事。因而,我们的研究需要相应的动物模型。本章介绍了在现代神经科学研究中常用的疼痛动物模型。在概要介绍了疼痛研究的意义及其现状之后,重点介绍了在生理痛研究和急性、慢性病理痛研究中所应用的动物模型。生理痛的模型即常用的动物伤害性感受阈测定法;急性病理痛的模型则主要是各种急性炎症模型模型;慢性病理痛的模型则包 括慢性炎症模型和慢性神经损伤模型。 前言 疼痛(pain)是人们一生中经常遇到的不愉快的感觉。它提供躯体受到威胁的警报信号,是生命不可缺少的一种特殊保护功能。另一方面,它又是各种疾病最常见的症状,也是当今困扰人类健康最严重的问题之一。近年来,仅在美国就有三至四千万人患有慢性痛。据估计,美国每年用于治疗慢性痛的费用约为400~600亿美元;澳大利亚每年用于治疗疼痛的费用占全部医疗费用的40%。随着医学的进步和人类生活水平的提高,烈性传染病逐渐得到控制,疼痛在人的身心痛苦和医疗费用消耗上的相对地位将越来越重要。 由于难以在人体对疼痛进行深入的机制研究,有必要建立疼痛的动物模型。但疼痛是是包括性质、强度和程度各不相同的多种感觉的复合,并往往与自主神经系统、运动反应、心理和情绪反应交织在一起,它既不是简单地与躯体某一部分的变化有关,也不是由神经系统某个单一的传导束、神经核和神经递质进行传递的,所以很难将某种客观指标与疼痛直接联系起来。因而,我们只能根据模型动物对伤害性刺激的 保护反应和保护性行为来推测它们的疼痛程度。 伤害性感受(nociception)和痛觉是两个有密切关系但又不相同的概念。前者是指中枢神经系统对由于伤害性感受器的激活而引起的传入信息的加工和反应,以提供组织损伤的信息;痛觉则是指上升到感觉水 平的疼痛感觉。两者之间有时并没有严格的相关性。 生理痛模型与常用的痛阈测定法 概述 为了能够对痛觉现象及其机制作深入细致的观察,特别是在中枢神经系统的形态学、细胞生物学和分子生物学水平研究痛觉机制,必须建立动物的痛觉模型。又由于痛觉是意识水平的感觉,我们无法确定动物是否具有痛觉,只能观察其对伤害性刺激的行为反应。因而在下文的描述中有时用伤害性感受阈 (nociceptive threshold)取代痛阈(pain threshold)。 正常情况下,疼痛是机体对外界伤害性刺激的感受,它是一种报警系统,提示实存的或潜在的组织损伤的可能性。如果这种伤害性刺激是可以回避的,那么痛觉就是一种具有完全的积极意义的感觉形式,称为生理痛。这种意义上的疼痛模型实际上就是对伤害性感受阈的测量。它是通过观察动物对伤害性温度 和机械刺激的逃避反应实现的。 如果动物遇到无法逃避的伤害性刺激,就会引起它的情绪反应,发出嘶叫声。这是需要高级神经中枢配合的反应,并且不受局部运动功能的影响。因而,在伤害性刺激下引起的嘶叫反应也可以作为伤害性 感受阈的测量指标。 热辐射-逃避法 这是最常见的伤害性感受阈测量方式。最常用的有热辐射-甩尾法、热辐射-甩头法和热辐射-抬足法。

FLASH小游戏开发教程:游戏制作前的准备

FLASH游戏这东西吧,总入不了大流。国内拿FLASH做美术方面的应用比较多,而传统的游戏程序员又把FLASH当小儿科,不屑搞这个,事实上开发FLASH游戏也赚不了钱,七七八八的原因加起来,就变成了没多少职业程序员来开发FLASH游戏,学校也不会培养学生深入学习开发FLASH,搞这块的人少,人少交流讨论的也少,正正规规的教材也少,当然优秀作品更少。目前国内大部分的FLASH游戏开发爱好者没有好教材的指引,自己摸索着就上路了(我也是这样开始的),开发流程和习惯都是各人一套,很多人因为没有接受正确的学习而走了很多歪路(好像我也是)于是乎,话题转回来,我就开一贴跟菜鸟们多交流吧…… ================================================================= LESSON 1:游戏制作前的准备 突然灵光一闪:老子要做个XX类型游戏!于是立马打开电脑,打开FLASH,找图片,建元件,F9一按,代码蹭蹭的打啊……结果做了一半做不下去了。以上情况常常发生…… 做游戏首先脑子里先要有整个游戏的规划,最好是拿笔画个流程简图,然后再下手。游戏流程的规划是很重要的,我在做一个游戏游戏前,草稿纸上来来回回要打个半天的草稿才开工,我一直认为游戏的规划部分是很难的,如果真等到全部想好了,做起来其实是个很轻松的过程,只是耗时间罢了。理论知识多说没用……我们不如来实践下,跟我一起做个简单的游戏吧…… 【吃金币游戏-策划】(我在草稿纸头上写下以下几点) 基本描述: 1.天上掉宝物,地下小人物由自己控制,去接宝得分 2.时间限制30秒 写到这里,顺手画了张草图:

因维生素缺乏而造成的病

在航海中,船员患坏血病的例子记载最多。例如詹姆斯?林德医师于1755年收集的资料中就有记载关于1535年的第二次探险队的情况:"正是12月,到达纽芬兰靠岸时,遇上很严重的疾病,患者先是感到浑身无力,站立不起来,接着双腿肿胀,肌腱萎缩变为黑色。有的病人皮肤布满出血点,成为紫色。口腔有恶臭,牙龈腐烂,肌肉消失。这种可怕的病传播很快,在两个月内,使8人死亡,50余人失去恢复健康的希望。" 16世纪,意大利伟大的航海家哥伦布经常带领船队在大西洋上探险。有一次,船队出发不久,航行不到一半的路程,已经有十几个船员病倒了。为了不拖累大家,患病的船员提出要留在附近的荒岛上,等船队返航时再将尸体运回家乡。几个月后哥伦布的船队胜利返航了.当船在荒岛靠岸时,那十几个患坏血病的船员竟向大船奔跑过来,哥伦布又惊又喜地问他们:"你们是怎么活过来的?""我们来到岛上以后,很快就把你们留下的食物吃完了。后来我们就只好采些野果子吃,就这样我们不仅一天天地活下来了,而且病也好了。"难道是野果子治好了这些船员的坏血病吗?理查得?哈金斯爵士于1593年曾有用柠檬汁治疗坏血病的记载:"1600年,新成立的东印度公司组织船队第一次由英国驶往东印度。船长詹姆斯?兰坎斯忒在自己所乘的旗舰上准备了柠檬汁。当这个舰上的船员稍出现坏血病症状时,即于每日清晨服用3满匙的柠檬汁,当船队到达南非好望角时,船队中很多人患了坏血病,全队424人中有105人死于坏血病,而在旗舰上的人员无一死亡。这一经验由东印度公司的医师于1639年总结出来,但当时人们根本没有认识到这是由于营养缺乏所致。 巴赫斯特如姆是第一个认为坏血病是一种营养缺乏病的人。他记载道:"在航行中,当船抵达格陵兰时,一个船员患了坏血病,同伴们把他送到岸上,认为他已毫无恢复健康的希望,只有让他在该岛上病死,以免传染给其他人。这个可怜的人已经不能走路了,只能在地上爬行,岛上布满了植物,他只有像牲畜一样啃吃这些植物。但他却奇迹般地完全恢复了健康,并返回了家乡。后来有人发现他吃的恰好是植物学上属于十字花科的一种对治疗坏血病有特效的药草,名叫"坏血病草"。但这一发现并没有很快得到应用。 1747年,詹姆斯?林德根据人们早期对坏血病的叙述记载和自己的观察,在停泊于英吉利海峡的装有火炮的具有三桅杆的军舰上,对坏血病的治疗开始进行实验研究。当时,海员们已在船上停留了2个月,其中有12人患了坏血病,病情都比较严重。林德让他们分组进食,比较不同食物的作用,其中2人每天吃2个橘子,1个柠檬,以6天为一个疗程。 林德的实验结果是十分明显的。6天后病人的病状都大为减轻,其中一人已能值勤。26天后,两个人都完全恢复了健康。 通过实验,林德比较了不同的治疗方法,并记录了全部观察结果。英国著名的航海家和探险家詹姆斯、柯克演示了林德实验的有效性,在他第二次去南极探险并环球航行时,所到之处,都利用各种机会给他的海员提供新鲜水果和蔬菜,并改善生活环境。虽然这次航海历时3年(1772--1775),但竟无一个人患坏血病,这说明新鲜的水果和蔬菜可预防坏血病。因此,他于1776年被选为英国皇家学会会员,并被授予"预防坏血病"的奖章。 在埃克曼发现抗脚气病的物质后,寻找抗坏血病物质的工作也展开了。1912年有人发现豚鼠也会患坏血病,但只要在饲料中增加一点白菜,它就不会患病。后来终于在白菜等几种蔬菜中找到了这种水溶性维生素。1920年,英国生物化

3D立体游戏驱动程序 安装教程

万能立体游戏驱动安装教程 万能立体游戏驱动,这是一套专门为立体屏幕所设计的驱动软件,能够广泛支持nVidia及ATI全系列显卡,能兼容的游戏非常丰富,只要3D建模的东西或者说只要兼容DX就可以开启。 一副红蓝立体眼镜,,一张强劲的显卡(因为要多计算一个角度的3D效果,所以FPS会打折扣,比如原先有135FPS,会降低到80FPS ),正确安装显卡驱动后(最好更新为更新的驱动),利用万能立体驱动程序,就可以让你立刻体验立体游戏那身临其境般的震撼效果! 注1:任何根据微软DirectX 8, DirectX 9之标准所开发的3D游戏,皆可通过立体驱动呈現立体效果。仅非常少数游戏有兼容性问题,建议参考《支持3D的游戏列表》,或自行进行测试。 注2:驱动程序所支持的显卡为:nVidia Geforce 6,7,8,9系列之单核心显示卡,以及ATI 1/2/3/4全系列與使用Crossfire X技術之显示卡。 影响游戏立体效果的因素:1、显卡的好坏。一款高端显卡的立体效果要比低端显卡的立体效果要好很多;2、显示器的大小。屏幕越大,立体效果越好;3、周围的环境光。强光会减弱游戏的立体效果,在暗的环境里观看,立体效果更好。 关于掉帧问题:将游戏的分辨率调低,如果电脑配置高就不用了。有掉帧时,将分辨率调到800X600或者高点,根据电脑配置了,然后就不掉帧了。 关于重影问题:首先按照《游戏设定技巧》里的说明,调节角色不会出现重谍影。有的显示器或电视有偏色现象,互补立体影象呈现效果是和颜色有密切关系,如果颜色太深或太浅,都会直接影响立体效果。经测试最好的解决方法是将显示器或电视调成暖色温。或者在三原色里,对显示器的红/绿/蓝(RGB)进行微调,戴眼镜调至没有重影为止。 我们进入实战模式 一、立体驱动安装部分 当您进入立体世界之前,请您先安装所提供的驱动程式: 一开始,系统回与您确认安裝的目录:

常见疾病抗菌药物临床应用规范

常见疾病抗菌药物临床应用规范 一、急性细菌性上呼吸道感染(急性咽炎及扁桃体炎) 1、抗菌药物选择:青霉素类(青霉素、哌拉西林、阿莫西林) 头孢菌素类(头孢呋辛) 大环内酯类(红霉素、罗红霉素、阿奇霉素) 其他类(克林霉素) 2、选药依据:患者有病毒感染的同时有溶血性链球菌感染、流感嗜血杆菌等感染。 3、用药时机:体温超过38.3℃,血常规:白细胞总数>10×10/L,中性粒细胞百分数>70%。抗病毒对症治疗未见好转。 4、用药疗程: 青霉素400万-1200万单位或哌拉西林8克或阿莫西林2克,每日分2次静脉滴注,3至7天。 青霉素过敏者选用口服每日红霉素1-2克或罗红霉素150毫克或阿奇霉素(限制使用级)0.5克,用药3至7天。 克林霉素0.9克每日一次静脉滴注,用药3至7天,热退后口服3天。头孢呋辛0.5克,每日2次口服,用药3至7天。 二、急性气管-支气管炎 1、抗菌药物选择:青霉素类(青霉素、哌拉西林、阿莫西林)头孢菌素类(头孢呋辛)大环内酯类(红霉素、罗红霉素、阿奇霉素)其他类(克林霉素)氟喹诺酮类(左氧氟沙星) 2、选药依据:患者有病毒感染同时有流感嗜血杆菌、肺炎链球菌、葡萄球菌感染。

3、用药时机:白细胞明显增高、胸部X线改变明显,患者有原发病不能承受轻微感染者, 4、用药疗程: 青霉素400万-1200万单位或哌拉西林8克或阿莫西林2克,每日分2次静脉滴注,3至7天。 青霉素过敏者选用口服每日红霉素1-2克或罗红霉素150毫克或阿奇霉素(限制使用级)0.5克,用药3至7天。 克林霉素0.9克每日一次静脉滴注,用药3至7天,热退后口服3天。头孢呋辛0.5克,每日2次口服,用药3至7天。 左氧氟沙星0.3,每日一次静脉滴注,用药3至7天。 三、慢性阻塞性肺病 1、抗菌药物选择:青霉素类(青霉素、哌拉西林、阿莫西林)头孢菌素类(头孢哌酮/舒巴坦钠)大环内酯类(阿奇霉素)氟喹诺酮类(左氧氟沙星) 2、选药依据:痰、血病原菌培养和药敏试验。 3、用药时机:患者有气急加重、痰量增加、脓性痰。 4、用药疗程: 青霉素400万-1200万单位或哌拉西林8克或阿莫西林2克,每日分2次静脉滴注,7至14天。 头孢哌酮/舒巴坦钠(限制使用级)1.5克,每日2次静脉滴注,7至14天。 阿奇霉素(限制使用级)0.5克,每日1次静脉滴注,7至14天。左氧氟沙星0.3,每日2次静脉滴注,用药7至14天。 四、肺炎

KRKR入门教程,教你做出一个完整的小游戏

进入正题: 吉里吉里(KRKR)入门篇 2010年1月31日星期日18:18 作者:Salles & 不知原作谁写的 一、初识吉里吉里(KRKR) 吉里吉里2(以下简称KRKR)/KAG3是由日本W.Dee氏编写的一个ADV(恋爱AVG文字游戏)制作引擎,具有很强的功能以及扩展性。 虽然采用了类似Java的tjs语言,但如果只是使用基本的ADV制作功能,则只需要用到KAG3的一些相对简单的指令。 由于KRKR支持Unicode,即使是日文原版也可以较好地支持其他语言。 在音频方面,它支持非压缩的Wav、Midi格式以及CD音轨,加载插件后还可以支持ogg、mp3等。 在视频方面则支持mpeg1、swf。 图像方面则支持bmp、jpg、png、eri和tlg5、tlg6等。 虽然占用资源较Nscripter等其他工具有所增大,但制作出的效果也更加华丽,前段时间大红大紫的Fate系列就很好地展现了KRKR的威力。 (《Fate/stay night》有兴趣的,可以去下载这个游戏玩玩,百度上有,这里不给下载地址了) KRKR的源程序可以在下面地址下载(去掉中间的空格,h ttp之间,5 8之间,20 6之间,2C A之间,in put之间,100 2007之间 共六处空格,全部去掉): h ttp://5 8.251.57.20 6/down?cid=2C A4450B80FEEEFC915F6A9BDD6A556D4AF6E250&t=2&fmt=&usrin put=kagexpress&dt=100 2007 这是迅雷、BT下载地址。 最后,本教程只是入门级的基础教程,如果您已经可以用KRKR实现基本的ADV制作,本教程对您的参考价值就很有限了……

维生素缺乏导致病症总结

PFK:磷酸果糖激酶

Fe在血红蛋白中的作用: 构成血红蛋白是高等生物体内负责运载氧的一种蛋白质。也是红细胞中唯一一种非膜蛋白。人体内的血红蛋白由四个亚基构成,分别为两个α亚基和两个β亚基,在与人体环境相似的电解质溶液中血红蛋白的四个亚基可以自动组装成α2β2的形态。血红蛋白的每个亚基由一条肽链和一个血红素分子构成,肽链在生理条件下会盘绕折叠成球形,把血红素分子抱在里面,这条肽链盘绕成的球形结构又被称为珠蛋白。血红素分子是一个具有卟啉结构的小分子,在卟啉分子中心,由卟啉中四个吡咯环上的氮原子与一个亚铁离子配位结合,珠蛋白肽链中第8位的一个组氨酸残基中的吲哚侧链上的氮原子从卟啉分子平面的上方与亚铁离子配位结合,当血红蛋白不与氧结合的时候,有一个水分子从卟啉环下方与亚铁离子配位结合,而当血红蛋白载氧的时候,就由氧分子顶替水的位置。 人体内的血红蛋白由四个亚基构成,分别为两个α亚基和两个β亚基,在与人体环境相似的电解质溶液中血红蛋白的四个亚基可以自动组装成α2β2的形态。 血红蛋白血红蛋白的每个亚基由一条肽链和一个血红素分子构成,肽链在生理条件下会盘绕折叠成球形,把血红素分子抱在里面,这条肽链盘绕成的球形结构又被称为珠蛋白。血红素分子是一个具有卟啉结构的小分子,在卟啉分子中心,由卟啉中四个吡咯环上的氮原子与一个亚铁离子配位结合,珠蛋白肽链中第8位的一个组氨酸残基中的吲哚侧链上的氮原子从卟啉分子平面的上方与亚铁离子配位结合,当血红蛋白不与氧结合的时候,有一个水分子从卟啉环下方与亚铁离子配位结合,而当血红蛋白载氧的时候,就由氧分子顶替水的位置。 血红蛋白是脊椎动物红血细胞的一种含铁的复合变构蛋白,由血红素和珠蛋白结合而成。其功能是运输氧和二氧化碳,维持血液酸碱平衡。也存在于某些低等动物和豆科植物根瘤中。分子量约67 000,含有四条多肽链,每个多肽链含有一个血红素基团,血红素中铁为二价,与氧结合时,其化学价不变,形成氧合血红蛋白。呈鲜红色,与氧解离后带有淡蓝色。有多种类型:血红蛋白A(HbA),α2β2,占成人血红蛋白的98%;血红蛋白A2(HbA2),α2δ2,占成人血红蛋白的2%;血红蛋白F(HbF),α2γ2,仅存在于胎儿血中;血红蛋白H(HbH),β4,四个相同β链组成的四聚体血红蛋白;血红蛋白C(HbC),β链中Lys被Glu取代的血红蛋白;血红蛋白S(HbS),镰刀状细胞红蛋白;血红蛋白O2(HbO2,HHbO2),氧合血红蛋白;血红蛋白CO(HbCO),一氧化碳结合血红蛋白。在没有氧存在的情况下,四个亚基之间相互作用的力很强。氧分子越多与血红蛋白结合力越强。中心离子铁(II)进一步和蛋白质链中的组氨酸结合,成为五配位。既是配位中心,又是活性中心。血红蛋白中铁(II)能可逆地结合氧分子,取决于氧分压。它能从氧分压较高的肺泡中摄取氧,并随着血液循环把氧气释放到氧分压较低的组织中去,从而起到输氧作用。一氧化碳与血红蛋白的结合较氧强,即使浓度很低也能优先和血红蛋白结合,致使通往组织的氧气流中断,造成一氧化碳中毒(使氧气与血红蛋白的结合能力下降,使人窒息而死亡)。 血红蛋白血红蛋白与氧结合的过程是一个非常神奇的过程。首先一个氧分子与血红蛋白四个亚基中的一个结合,与氧结合之后的珠蛋白结构发生变化,造成整个血红蛋白结构的变化,这种变化使得第二个氧分子相比于第一个氧分子更容易寻找血红蛋白的另一个亚基结合,而它的结合会进一步促进第三个氧分子的结合,以此类推直到构成血红蛋白的四个亚基分别与四个氧分子结合。而在组织内释放氧的过程也是这样,一个氧分子的离去会刺激另一个的离去,直到完全释放所有的氧分子,这种有趣的现象称为协同效应。协同效应 血红蛋白病变血红素分子结构由于协同效应,血红蛋白与氧气的结合曲线呈S形,在特定范围内随着环境中氧含量的变化,血红蛋白与氧分子的结合率有一个剧烈变化的过程,生物体内组织中的氧浓度和肺组织中的氧浓度恰好位于这一突变的两侧,因而在肺组织,血红蛋白可以充分地与氧结合,在体内其他部分则可以充分地释放所携带的氧分子。可是当环境中的氧气含量很高或者很低的时候,血红蛋白的氧结合曲线非常平缓,氧气浓度巨大的波动

神经系统定位定性诊断

神经系统病变的定位定性诊断 神经系统疾病的诊断,是根据一般查体与神经系统检查所获得的资料,结合有关实验室检查,加以分析而推断出来的。一般分为定位和定性诊断两方面。 由于神经系统各部位的解剖结构和生理功能不同,当损伤时即出现不同的神经功能障碍,表现出不同的临床症状和体征,定位诊断是根据这些症状和体征,结合神经解剖、生理和病理知识,推断其病灶部位的一种诊断过程。定性诊断乃系确定病变的病理性质和原因,即对疾病作出病理、病因诊断的过程。因为神经系统与其它系统有密切联系,且神经系统疾病不仅可由神经系统本身疾病所致也可继发于其它系统疾病,故在考虑定性诊断时,必须从整体出发,根据起病急缓、病程长短、症状和体征出现的先后次序以及其演变过程,参照有关辅助检查的结果进行分析。常见病因有:感染、外伤、血管性疾病、中毒、代谢障碍、肿瘤、变性疾病、先天性疾病和寄生虫病等。 神经系统疾病的定位诊断和定性诊断不可截然分开,如某些神经系统疾病,在确定病变部位的同时也可推断出病变的性质,如内囊附近病损,多由动脉硬化合并高血压性血管疾病所致。因而在不少情况下,神经系统疾病的定位、定性诊断是相互参考同时进行的。 常见病症的定位诊断 一、颅神经损害的定位诊断 (一)视神经损害的定位:视神经通路自视网膜、经视神经、视交叉、视束、外侧膝状体、视放射至枕叶视觉皮质,径路很长,易于受损,但由于行走各部的解剖结构及生理功能的不同,损害后的视野改变也各异,故由此可判断视路损害的部位。 1.视神经损害: 病侧眼视力减退或全盲伴直接光反应消失,但间接光反应存在,眼底可见视乳头萎缩。多见于各种原因引起的视神经炎,脱髓鞘性病变以及外伤、肿瘤压迫等。 2.视交叉损害: 视交叉中央损害时,视神经双鼻侧纤维受损,产生双颞侧偏盲,多见于鞍区肿瘤,特别是垂体瘤。如病变扩及视交叉外侧累及病侧的颞侧纤维时,则患侧眼全盲,对侧眼颞侧偏盲。见于鞍区肿瘤、视交叉蛛网膜炎等。 3.视束损害:病灶同侧视神经颞侧纤维和对侧视神经鼻侧纤维受损,产生病侧眼鼻侧偏盲,对侧眼颞侧偏盲,即对侧同向偏盲,伴有“偏盲性瞳孔强直”(光束自偏盲侧照射瞳孔,不出现瞳孔对光反射,自另侧照射时则有对光反射)。多见于鞍区肿瘤。 4.视放射病变:也出现对侧同向偏盲,但因瞳孔光反射的传入纤维已进入丘脑外侧膝状,故无偏盲性瞳孔强直。此外,视放射向后其上方和下方纤维逐渐分开,故可出现同向上象限性盲(下方纤维受损)或同向下象限性盲(上方纤维受损)。多见于内囊血管性病变和颞顶叶肿瘤。 5.视觉皮质损害:一侧病变时视野改变同视放射病变,出现对侧同向偏盲或上下象限性盲,但恒有黄斑回避。双侧视皮质损害时,视力丧失,但对光及调视反射存在,称皮质盲;刺激病变时,可出现光幻视或形象纪视。多见于枕叶的脑血管病、肿瘤及变性病变。 (二)眼动障碍的定位诊断:眼球运动由动眼、滑车及外展神经完成,眼动障碍可由上述神经单个或同时损害引起。临床以动眼神经麻痹和外展神经麻痹多见。

医疗技术临床应用管理办法(2018.09.14)

医疗技术临床应用管理办法 发布时间:2018-09-14 中华人民共和国国家卫生健康委员会令第1 号 《医疗技术临床应用管理办法》已经原国家卫生计生委委主任会议讨论通过,并经国家卫生健康委审核通过,现予公布,自2018年11月1日起施行。 主任马晓伟 2018年8月13日医疗技术临床应用管理办法 第一章总则 第一条为加强医疗技术临床应用管理,促进医学科学发展和医疗技术进步,保障医疗质量和患者安全,维护人民群众健康权益,根据有关法律法规,制定本办法。 第二条本办法所称医疗技术,是指医疗机构及其医务人员以诊断和治疗疾病为目的,对疾病作出判断和消除疾病、缓解病情、减轻痛苦、改善功能、延长生命、帮助患者恢复健康而采取的医学专业手段和措施。 本办法所称医疗技术临床应用,是指将经过临床研究论

证且安全性、有效性确切的医疗技术应用于临床,用以诊断或者治疗疾病的过程。 第三条医疗机构和医务人员开展医疗技术临床应用应当遵守本办法。 第四条医疗技术临床应用应当遵循科学、安全、规范、有效、经济、符合伦理的原则。 安全性、有效性不确切的医疗技术,医疗机构不得开展临床应用。 第五条国家建立医疗技术临床应用负面清单管理制度,对禁止临床应用的医疗技术实施负面清单管理,对部分需要严格监管的医疗技术进行重点管理。其他临床应用的医疗技术由决定使用该类技术的医疗机构自我管理。 第六条医疗机构对本机构医疗技术临床应用和管理承担主体责任。医疗机构开展医疗技术服务应当与其技术能力相适应。 医疗机构主要负责人是本机构医疗技术临床应用管理的第一责任人。 第七条国家卫生健康委负责全国医疗技术临床应用管理工作。 县级以上地方卫生行政部门负责本行政区域内医疗技术临床应用监督管理工作。 第八条鼓励卫生行业组织参与医疗技术临床应用质量

经典游戏制作教程

经典游戏制作教程 peng 1.游戏制作的主要流程 ------------------------------------------------------------------------------- 电脑游戏开发小组中的任何一个人(这个角色通常有策划担任),只要有了一个新的想法或 念头,就孕育着一个新游戏的诞生。在这个创意被充分讨论之后,再加上对其操作过程的趣 味性及市场销售的可行性的预测等因素的准确判断,一个完整的策划方案才可能产生。在经 过充分的讨论后,策划人员必须将讨论的重点写成文字,也就是提出完整的策划方案,经决 策者同意认可后,才能进下一步的工作。这份策划方案就像一部电影的剧本,它必须完整地 涵盖整个游戏的故事、流程、内容、方式、游戏画面、角色造型、场景规划、人工智能、硬 件配备、市场评估等。对整个游戏过程的详细描述及实施规划都应记录在案。当进入创作 过程之后,策划还必须随时和美术设计师和程序设计员保持联系,以免游戏程序的编写失控。 策划应能对游戏设置的内容与精神了如指掌,与各个小组及时沟通,并且控制整个游戏制作 的进程。 2.游戏设计基本论 ------------------------------------------------------------------------------- 要设计一个游戏,首先你必须要确定几个重要方针,第一是你要设计的游戏是属於那一种 类型,第二是时代背景,第三是模式,第四是程式技术,第五是表现手法,第六是市场定位, 第七是研发时间,在掌握上述七个方针之後,你就可以再做详细的规划内容及调配资源,那 麽何谓是七项方针呢? 笔者以范例来说明之! 一、类型: 所谓的类型是指这个游戏所着眼的一个游戏方式,通过这个方式来使玩者达到娱乐的目的,这个游戏方式有专有名词来各别予以命名,兹如下述: (1) RGP角色扮演: 这个类型的游戏以通过故事剧情牵引来使玩家能溶入主角所存在的一个世界,这类型态的 游戏多半透过战斗升级系统及人物对话的方式来一步步完成设计者所布下的剧情路线,最具 代表的作品有日本史克威尔所设计的 "太空战士系列" 及国内大宇资讯所设计的"仙剑奇侠传",当然还有很多部作品例如"神奇传说"等也是此中的佼佼者。 在RGP的类型中,在近几年来又分支了几个类似的型态,例如说Blizzard的"暗黑破坏神"Dirblo"被定位为"动作RPG",因其动作成分相当高所至,而"神奇传说"、"超时空英雄传说"则被定位尽"战略RPG",只因战略成分比重较高所以又有别於传统RPG。 (2) SLG战略: 谈起战略游戏,大家最耳熟能详的应是日本光荣公司所出品的"三个系列",KOEI的三国 志风靡东亚,从一代进化到现阶段的六代皆为玩家们所津津乐道,而所谓的战略游戏则是透

相关文档
最新文档