06物理竞赛讲义——振动和波

06物理竞赛讲义——振动和波
06物理竞赛讲义——振动和波

第六部分 振动和波

第一讲 基本知识介绍

《振动和波》的竞赛考纲和高考要求有很大的不同,必须做一些相对详细的补充。

一、简谐运动

1、简谐运动定义:∑F = -k x

凡是所受合力和位移满足①式的质点,均可称之为谐振子,如弹簧振子、小角度单摆等。

谐振子的加速度:a

= -m

k x

2、简谐运动的方程

回避高等数学工具,我们可以将简谐运动看成匀速圆周运动在某一条直线上的投影运动(以下均看在x 方向的投影),圆周运动的半径即为简谐运动的振幅A 。

依据:∑F x = -m ω2Acos θ= -m ω2x

对于一个给定的匀速圆周运动,m 、ω是恒定不变的,可以令:

m ω2 = k

这样,以上两式就符合了简谐运动的定义式①。所以,x

方向的位移、速度、加速度就是简谐运动的相关规律。从图1不难得出——

位移方程:x

= Acos(ωt + φ) ②

速度方程:v

= -ωAsin(ωt +φ) ③

加速度方程:a

= -ω2A cos(ωt +φ) ④ 相关名词:(ωt +φ)称相位,φ称初相。

运动学参量的相互关系:a = -ω2x

A =

2

020)v (

x ω

+ tg φ= -

x v ω 3、简谐运动的合成

a 、同方向、同频率振动合成。两个振动x 1 = A 1cos(ωt +φ1)和x 2 = A 2cos(ωt +φ2) 合成,可令合振动x = Acos(ωt +φ) ,由于x = x 1 + x 2 ,解得

A =

)cos(A A 2A A 122122

21φ-φ++ ,φ= arctg 2

2112

211cos A cos A sin A sin A φ+φφ+φ

显然,当φ2-φ1 = 2k π时(k = 0,±1,±2,…),合振幅A 最大,当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),合振幅最小。

b 、方向垂直、同频率振动合成。当质点同时参与两个垂直的振动x = A 1cos(ωt + φ1)和y = A 2cos(ωt + φ2)时,这两个振动方程事实上已经构成了质点在二维空间运动的轨迹参数方程,消去参数t 后,得一般形式的轨迹方程为

2

12

A x +222A y -22

1A A xy cos(φ2-φ1) = sin 2(φ2-φ1) 显然,当φ2-φ1 = 2k π时(k = 0,±1,±2,…),有y = 1

2

A A x ,轨迹为直线,合运动仍为简谐运动;

当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),有212

A x +22

2A y = 1 ,轨迹为椭圆,合运

动不再是简谐运动;

当φ2-φ1取其它值,轨迹将更为复杂,称“李萨如图形”,不是简谐运动。

c 、同方向、同振幅、频率相近的振动合成。令x 1 = Acos(ω1t + φ)和x 2 = Acos(ω2t + φ) ,由于合运动x = x 1 + x 2 ,得:x =(2Acos 212ω-ωt )cos (2

1

2ω+ωt +φ)。合运动是振动,但不是简谐运动,称为角频率为

2

1

2ω+ω的“拍”现象。 4、简谐运动的周期 由②式得:ω=

m

k

,而圆周运动的角速度和简谐运动的角频率是一致的,所以 T = 2π

k

m

⑤ 5、简谐运动的能量

一个做简谐运动的振子的能量由动能和势能构成,即

∑E =

21mv 2 + 21kx 2 = 2

1

kA 2 注意:振子的势能是由(回复力系数)k 和(相对平衡位置位移)x 决定的一个抽象的概念,而不是

具体地指重力势能或弹性势能。当我们计量了振子的抽象势能后,其它的具体势能不能再做重复计量。

6、阻尼振动、受迫振动和共振 和高考要求基本相同。

二、机械波

1、波的产生和传播

产生的过程和条件;传播的性质,相关参量(决定参量的物理因素) 2、机械波的描述

a 、波动图象。和振动图象的联系

b 、波动方程

如果一列简谐波沿x 方向传播,振源的振动方程为y = Acos (ωt + φ),波的传播速度为v ,那么在离振源x 处一个振动质点的振动方程便是

y = Acos 〔ωt + φ -

λx

22π〕= Acos 〔ω(t - v

x )+ φ〕 这个方程展示的是一个复变函数。对任意一个时刻t ,都有一个y (x )的正弦函数,在x-y 坐标下可以描绘出一个瞬时波形。所以,称y = Acos 〔ω(t -

v

x

)+ φ〕为波动方程。 3、波的干涉

a 、波的叠加。几列波在同一介质种传播时,能独立的维持它们的各自形态传播,在相遇的区域则遵从矢量叠加(包括位移、速度和加速度的叠加)。

b 、波的干涉。两列波频率相同、相位差恒定时,在同一介质中的叠加将形成一种特殊形态:振动加强的区域和振动削弱的区域稳定分布且彼此隔开。

我们可以用波程差的方法来讨论干涉的定量规律。如图2所示,我们用S 1和S 2表示两个波源,P 表示空间任意一点。

当振源的振动方向相同时,令振源S 1的振动方程为y 1 = A 1cos ωt ,振源S 1的振动方程为y 2 = A 2cos ωt ,则在空间P 点(距S 1为r 1 ,距S 2为r 2),两振源引起的分振动分别是

y 1′= A 1cos 〔ω(t ? v

r

1)〕

y 2′= A 2cos 〔ω(t ?

v

r 2

)〕 P 点便出现两个频率相同、初相不同的振动叠加问题(φ1 = v r 1ω ,φ2 = v

r 2

ω),且初相差Δφ= v

ω

(r 2 – r 1)。根据前面已经做过的讨论,有 r 2 ? r 1 = k λ时(k = 0,±1,±2,…),P 点振动加强,振幅为A 1 + A 2 ; r 2 ? r 1 =(2k ? 1)

2

λ

时(k = 0,±1,±2,…),P 点振动削弱,振幅为│A 1-A 2│。 4、波的反射、折射和衍射 知识点和高考要求相同。 5、多普勒效应

当波源或者接受者相对与波的传播介质运动时,接收者会发现波的频率发生变化。多普勒效应的定量讨论可以分为以下三种情况(在讨论中注意:波源的发波频率f 和波相对介质的传播速度v 是恒定不变的)——

a 、只有接收者相对介质运动(如图3所示) 设接收者以速度v 1正对静止的波源运动。

如果接收者静止在A 点,他单位时间接收的波的个数为f , 当他迎着波源运动时,设其在单位时间到达B 点,则

AB = v 1 ,、

在从A 运动到B 的过程中,接收者事实上“提前”多接收到了n 个波

n =

λA B

= f /v v 1= v

f v 1 显然,在单位时间内,接收者接收到的总的波的数目为:f + n = v

v v 1

+ f ,这就是接收者发现的频率f 1 。即

f 1 =

v

v v 1

+ f 显然,如果v 1背离波源运动,只要将上式中的v 1代入负值即可。如果v 1的方向不是正对S ,只要将v 1出正对的分量即可。

b 、只有波源相对介质运动(如图4所示)

设波源以速度v 2正对静止的接收者运动。

如果波源S 不动,在单位时间内,接收者在A 点应接收f 个波,故S 到A 的距离:SA = f λ

在单位时间内,S 运动至S ′,即S S '= v 2 。由于波源的运动,事实造成了S 到A 的f 个波被压缩在了S ′到A 的空间里,波长将变短,新的波长

λ′=

f

A S '= f S S SA '

-= f v f 2-λ= f v v 2-

而每个波在介质中的传播速度仍为v ,故“被压缩”的波

(A 接收到的波)的频率变为

f 2 = λ'

v

= 2v v v - f

当v 2背离接收者,或有一定夹角的讨论,类似a 情形。

c 、当接收者和波源均相对传播介质运动

当接收者正对波源以速度v 1(相对介质速度)运动,波源

也正对接收者以速度v 2(相对介质速度)运动,我们的讨论可以在b 情形的过程上延续…

f 3 = v v v 1

+ f 2 = 21v v v v -+ f

关于速度方向改变的问题,讨论类似a 情形。

6、声波

a 、乐音和噪音

b 、声音的三要素:音调、响度和音品

c 、声音的共鸣

第二讲 重要模型与专题

一、简谐运动的证明与周期计算

物理情形:如图5所示,将一粗细均匀、两边开口的U 型管固定,其中装有一定量的水银,汞柱总长为L 。当水银受到一个初始的扰动后,开始在管中振动。忽略管壁对汞的阻力,

试证明汞柱做简谐运动,并求其周期。

模型分析:对简谐运动的证明,只要以汞柱为对象,看它的回复力与位移关系是否满足定义式①,值得注意的是,回复力∑F

系指振动方向上的合力(而非整体合力)。当简谐运动被证明后,回复力系数k 就有了,求周期就是顺理成章的事。

本题中,可设汞柱两端偏离平衡位置的瞬时位移为x 、水银密度为ρ、U 型管横截面积为S ,则次瞬时的回复力

ΣF = ρg2xS =

L

mg

2x 由于L 、m 为固定值,可令:L

mg

2 = k ,而且ΣF 与x 的方向相反,故汞柱做简谐运动。

周期T = 2π

k

m

= 2πg

2L

答:汞柱的周期为2π

g

2L

。 学生活动:如图6所示,两个相同的柱形滚轮平行、登高、水平放置,绕各自的轴线等角速、反方向地转动,在滚轮上覆盖一块均质的木板。已知两滚轮轴线的距离为L 、滚轮与木板之间的动摩擦因素为μ、木板的质量为m ,且木板放置时,重心不在两滚轮的正中央。试证明木板做简谐运动,并求木板运动的周期。

思路提示:找平衡位置(木板重心在两滚轮中央处)→力矩平衡和ΣF 6= 0结合求两处弹力→求摩擦力合力…

答案:木板运动周期为2π

g

2L

μ 。 巩固应用:如图7所示,三根长度均为L = 2.00m 地质量均匀直杆,构成一正三角形框架ABC ,C 点悬挂

在一光滑水平轴上,整个框架可绕转轴转动。杆AB 是一导轨,一电动松鼠可在导轨上运动。现观察到松鼠正在导轨上运动,而框架却静止不动,试讨论松鼠的运动是一种什么样的运动。

解说:由于框架静止不动,松鼠在竖直方向必平衡,即:

松鼠所受框架支持力等于松鼠重力。设松鼠的质量为m ,即:

N = mg ①

再回到框架,其静止平衡必满足框架所受合力矩为零。以C 点为转轴,形成力矩的只有松鼠的压力N 、和松鼠可能加速的静摩擦力f ,它们合力矩为零,即:

M N = M f

现考查松鼠在框架上的某个一般位置(如图7,设它在导轨方向上距C 点为x ),上式即成:

N 2x = f 2Lsin60° ②

解①②两式可得:f =

L

3mg 2x ,且f 的方向水平向左。

根据牛顿第三定律,这个力就是松鼠在导轨方向上的合

力。如果我们以C 在导轨上的投影点为参考点,x 就是松鼠的瞬时位移。再考虑到合力与位移的方向因素,松鼠的合力与位移满足关系——

∑F = -k x

其中k =

L

3mg 2 ,对于这个系统而言,k 是固定不变的。

显然这就是简谐运动的定义式。 答案:松鼠做简谐运动。

评说:这是第十三届物理奥赛预赛试题,问法比较模糊。如果理解为定性求解,以上答案已经足够。但考虑到原题中还是有定量的条件,所以做进一步的定量运算也是有必要的。譬如,我们可以求出松鼠的运动周期为:T = 2π

k

m

= 2πg

2L

3 = 2.64s 。

二、典型的简谐运动

1、弹簧振子

物理情形:如图8所示,用弹性系数为k 的轻质弹簧连着一个质

量为m 的小球,置于倾角为θ的光滑斜面上。证明:小球在弹簧方向的振动为简谐运动,并求其周期T 。

学生自己证明…。周期T = 2π

k

m 模型分析:这个结论表明,弹簧振子完全可以突破放置的方向而伸展为一个广义的概念,且伸展后不会改变运动的实质。其次,我们还可以这样拓展:把上面的下滑力换程任何一个恒力(如电场力),它的运动性质仍然不会改变。

当然,这里的运动性质不变并不是所有运动参量均不改变。譬如,振子的平衡位置、振动方程还是会改变的。下面我们看另一类型的拓展——

物理情形:如图9所示,两根相同的弹性系数分别为k 1和k 2的轻质弹簧,连接一个质量为m 的滑块,可以在光滑的水平面上滑动。试求这个系统的振动周期T 。

解说:这里涉及的是弹簧的串、并联知识综合。根据弹性系数的定义,不难推导出几个弹性系数分别为k 1、k 2、…、k n 的弹簧串、并联后的弹性系数定式(设新弹簧系统的弹性系数为k )——

串联:

k 1

= ∑=n 1i i

k 1

并联:k = ∑=n

1i i k

在图9所示的情形中,同学们不难得出:T = 2π

2

121k k )

k k (m +

当情形变成图10时,会不会和图9一样呢?详细分析形变量和受力的关系,我们会发现,事实上,这时已经变成了弹簧的并联。

答案:T = 2π

2

1k k m

+ 。

思考:如果两个弹簧通过一个动滑轮(不计质量)再与质量为m 的钩码相连,如图11所示,钩码在竖直方向上的振动周期又是多少?

解:这是一个极容易出错的变换——因为图形的外表形状很象“并联”。但经过仔细分析后,会发现,动滑轮在这个物理情形中起到了重要的作用——致使这个变换的结果既不是串联、也不是并联。

★而且,我们前面已经证明过,重力的存在并不会改变弹簧振子的振动方程,所以为了方便起见,这里(包括后面一个“在思考”题)的受力分析没有考虑重力。

具体分析如下:

设右边弹簧的形变量为x 2 、滑轮(相对弹簧自由长度时)的位移为x 、钩子上的拉力为F ,则 k 1x 1 = k 2x 2

x =

2

x x 2

1+ F = 2 k 2x 2

解以上三式,得到:F =

2121k k k k 4+x ,也就是说,弹簧系统新的弹性系数k = 2

12

1k k k k 4+ 。

答:T = π

2

121k k )

k k (m + 。

再思考:如果两弹簧和钩码通过轻杆和转轴,连成了图12所示的系统,已知k 1 、k 2 、m 、a 、b ,再求钩码的振动周期T 。

思路提示:探讨钩码位移和回复力关系,和“思考”题类似。

(过程备考:设右弹簧伸长x 2 ,则中间弹簧伸长x 1 = 1

2ak bk

x 2

钩码的位移量x = x 1 +

b

a

x 2 而钩码的回复力F = k 1x 1

结合以上三式解回复力系数k = x

F

= 2212212k b k a k k b + ,所以…)

答:T = 2πm k k b k b k a 2

122

212+ 。

2、单摆

单摆分析的基本点,在于探讨其回复力随位移的变化规律。相对原始模型的伸展,一是关于摆长的变化,二是关于“视重加速度”的变化,以及在具体情形中的处理。至于复杂的摆动情形研究,往往会超出这种基本的变形,而仅仅是在分析方法上做适当借鉴。

物理情形1:如图13所示,在一辆静止的小车内用长为L 的轻绳静止悬挂着一个小钢球,当小车突

然获得水平方向的大小为a 的加速度后(a <g ),试描述小球相对小车的运动。

模型分析:小钢球相对车向a 的反方向摆起,摆至绳与竖直方向夹角θ= arctg

g

a

时,达到最大速度,此位置即是小球相对车“单摆”的平衡位置。以车为参照,小球受到的场力除了重力G 外,还有一惯性力F 。所以,此时小球在车中相当于处在一个方

向倾斜θ、大小变为22F G +的新“重力”的作用,属超重情况。这是一种“视重加速度”增加的情形。

解说:由于摆长L 未变,而g 视 = 22a g +,如果a 很小,致使最大摆角不超过5°的话,小角度单

摆可以视为简谐运动,周期也可以求出来。

答案:小球以绳偏离竖直方向θ= arctg

g

a

的角度为平衡位置做最大摆角为θ的单摆运动,如果θ≤5°,则小球的摆动周期为T = 2π

2

2

a

g L +

物理情形2:某秋千两边绳子不等长,且悬点不等高,相关数据如图14所示,且有a 2

+ b 2

= 21L + 22L ,试求它的周

期(认为人的体积足够小)。

模型分析:用C 球替代人,它实际上是在绕AB 轴摆动,类似将单摆放置在光滑斜面上的情形。故视

重加速度g 视 = gcos θ= g 2

2b a a + ,等效摆长l = CD ,如图15所

示。

由于a 2

+ b 2

= 21L + 22L 可知,AC ⊥CB ,因此不难求出

CD =

22

21

21L

L L L + ,最后应用单摆周期公式即可。

答案:T = 2π

ag

L L 2

1 。 相关变换1:如图16所示,质量为M 的车厢中用长为L 的细绳悬挂着一个质量为m 的小球,车轮与水平地面间的摩擦不计,试求这个系统做微小振动的周期。

分析:我们知道,证明小角度单摆作简谐运动用到了近似处理。在本题,也必须充分理解“小角度”的含义,大胆地应用近似处理方法。

解法一:以车为参照,小球将相对一个非惯性系作单摆运动,在一般方位角θ的受力如图17所示,其中惯性力F = ma ,且a 为车子的加速度。由于球在垂直T 方向振动,故回复力

F 回 = Gsin θ+ Fcos θ= mgsin θ+ macos θ ① *由于球作“微小”摆动,其圆周运动效应可以忽略,故有 T + Fsin θ≈ mgcos θ ② 再隔离车,有 Tsin θ= Ma ③

解①②③式得 F 回 =

θ

+2sin m M sin g )M m (m

*再由于球作“微小”摆动,sin 2

θ→0 ,所以 F 回 = M

sin g )M m (m θ

+ ④

令摆球的振动位移为x ,常规处理 sin θ≈L

x

⑤ 解④⑤即得 F 回 = ML

g

)M m (m +x

显然,

ML

g

)M m (m + = k 是恒定的,所以小球作简谐运动。最后求周期用公式即可。

解法二:由于车和球的系统不受合外力,故系统质心无加速度。小球可以看成是绕此质心作单摆运动,而新摆长L ′会小于L 。由于质心是惯性参照系,故小球的受力、回复力的合成就很常规了。

若绳子在车内的悬挂点在正中央,则质心在水平方向上应与小球相距x = M

m M

+Lsin θ,不难理解,“新摆长”L ′=

M

m M

+L 。(从严谨的意义上来讲,这个“摆长”并不固定:随着车往“平衡位置”靠近,它会加长。所以,这里的等效摆长得出和解法一的忽略圆周运动效应事实上都是一种相对“模糊”的处理。如果非要做精准的运算,不启用高等数学工具恐怕不行。)

答:T = 2π

g

)m M (ML

+ 。

相关变换2:如图18所示,有一个均质的细圆环,借助一些质量不计的辐条,将一个与环等质量的小球固定于环心处,然后用三根竖直的、长度均为L 且不可伸长的轻绳将这个物体悬挂在天花板上,环上三个结点之间的距离相等。试求这个物体在水平方向做微小扭动的周期。

分析:此题的分析角度大变。象分析其它物理问题一样,分析振动也有动力学途径和能量两种途径,此处若援用动力学途径寻求回复力系数k 有相当的难度,因此启用能量分析。

本题的任务不在简谐运动的证明,而是可以直接应用简谐运动的相关结论。根据前面的介绍,任何简谐运动的总能都可以表达为

E =

2

1kA 2

① 而我们对过程进行具体分析时,令最大摆角为θ(为了便于寻求参量,这里把摆角夸大了)、环和球

的质量均为m ,发现最大的势能(即总能)可以表达为(参见图19)

E = 2m 〃gL(1 ? cos θ) ② 且振幅A 可以表达为

A = 2Lsin

2

θ

③ 解①②③式易得:k =

L

mg

2 最后求周期时应注意,中间的球体未参与振动,故不能纳入振子质量(振子质量只有m )。

答:T = π

g

L

2 。 三、振动的合成

物理情形:如图20所示,一个手电筒和一个屏幕的质量均为m ,都被弹性系数为k 的弹簧悬挂着。平衡时手电筒的光斑恰好照在屏幕的正中央O 点。现在令手电筒和屏幕都在竖直方向上振动(无水平晃动或扭动),振动方程分别为y 1 = Acos(ωt + φ1),y 2 = Acos(ωt + φ2) 。试问:两者初位相满足什么条件时,可以形成这样的效果:(1)光斑相对屏幕静止不动:(2)光斑相对屏幕作振幅为2A 的振动。

模型分析:振动的叠加包括振动的相加和相减。这里考查光斑相对屏幕的运动事实上是寻求手电筒相对屏幕的振动,服从振动的减法。设相对振动为y ,有

y = y 1 ? y 2 = Acos(ωt + φ1) ? Acos(ωt + φ2)

= ?2Asin

221?-?sin(2

t 2

1?+?+ω) 解说:(1)光斑相对屏幕静止不动,即y = 0 ,得 φ1 = φ2 (2)要振幅为2A ,必须2

sin 2

1?-? = 1 ,得φ1 ? φ2 = ±π 答案:初位相相同;初位相相反。

相关变换:一质点同时参与两个垂直的简谐运动,其表达式分别为x = 2cos(2ωt +2φ) ,y = sin ωt 。(1)设φ =

2

π

,求质点的轨迹方程,并在xOy 平面绘出其曲线;(2)设φ = π ,轨迹曲线又怎样?

解:两个振动方程事实已经构成了质点轨迹的参数方程,我们所要做的,只不过是消掉参数,并寻求在两个具体φ值下的特解。在实际操作时,将这两项工作的次序颠倒会方便一些。

(1)当φ =

2

π时,x = ?2(1 ? 2sin 2ωt) ,即 x = 4y 2

? 2 描图时应注意,振动的物理意义体现在:函数的定义域 ?1 ≤ y ≤ 1 (这事实上已经决定了值域 ?2 ≤ x ≤ 2 )

(2)当φ =π时,同理 x = 2(1 ? 2sin 2ωt)= 2 ? 4y 2

答:轨迹方程分别为x = 4y 2 ? 2和x = 2 ? 4y 2

,曲线分别如图21的(a )(b )所示——

四、简谐波的基本计算

物理情形:一平面简谐波向?x 方向传播,振幅A = 6cm ,圆频率ω= 6πrad/s ,当t = 2.0s 时,距原点O 为12cm 处的P 点的振动状态为y P = 3cm ,且v P > 0 ,而距原点22cm 处的Q 点的振动状态为y Q = 0 ,且v Q < 0 。设波长λ>10cm ,求振动方程,并画出t = 0时的波形图。

解说:这是一个对波动方程进行了解的基本训练题。简谐波方程的一般形式已经总结得出,在知道A 、ω的前提下,加上本题给出的两个特解,应该足以解出v 和φ值。

由一般的波动方程y = Acos 〔ω(t -

v

x

)+ φ〕 (★说明:如果我们狭义地理解为波源就在坐标原点的话,题目给出特解是不存在的——因为波向?x 方向传播——所以,此处的波源不在原点。同学们自己理解:由于初相φ的任意性,上面的波动方程对波源不在原点的情形也是适用的。)

参照简谐运动的位移方程和速度方程的关系,可以得出上面波动方程所对应质点的速度(复变函数)

v = ?ωAsin 〔ω(t -

v

x

)+ φ〕 代t = 2.0s 时P 的特解,有—— y P = 6cos 〔6π(2 - v 12)+ φ〕= 3 ,v P = ?36πsin 〔6π(2 - v

12

)+ φ〕> 0 即 6π(2 -

v 12)+ φ = 2k 1π - 3

π

① 代t = 2.0s 时Q 的特解,有—— y Q = 6cos 〔6π(2 -

v 22)+ φ〕= 0 ,v Q = ?36πsin 〔6π(2 - v

22

)+ φ〕< 0

即 6π(2 -

v

22

)+ φ = 2k 2π + 2π ②

又由于 AB = 22 ? 12 = 10 <λ ,故k 1 = k 2 。解①②两式易得

v = ?72cm/s , φ= 32π(或?34π

所以波动方程为:y = 6cos 〔6π(t + 72x )+ 32π〕,且波长λ= v ω

π

2 = 24cm 。

当t = 0时, y = 6cos (

12πx + 3

),可以描出y-x 图象为——

答案:波动方程为y = 6cos 〔6π(t +

72x )+ 3

2π〕,t = 0时的波形图如图22所示。

相关变换:同一媒质中有甲、乙

两列平面简谐波,波源作同频率、同方向、同振幅的振动。两波相向传播,波长为8m ,波传播方向上A 、B 两点相距20m ,甲波在A 处为波峰时,乙波在B 处位相为?2

π

,求AB 连线上因干涉而静止的各点

的位置。

解:因为不知道甲、乙两波源的位置,设它们分别在S 1和S 2两点,距A 、B 分别为a 和b ,如图23所示。

它们在A 、B 之间P 点(坐标为x )形成的振动分别为——

y 甲 = Acos ω(t - v x a +)= Acos …ωt ? 4

π

(a + x )? y 乙 = Acos ω(t ?

v x b 20-+)= Acos …ωt ? 4

π

(20 + b ? x )? 这也就是两波的波动方程(注意:由于两式中a 、b 、x 均是纯数,故乙波的速度矢量性也没有表达) 当甲波在A 处(x = 0)为波峰时,有 ωt = 4

a π

① 此时,乙波在B 处(x = 20)的位相为?2π ,有 ωt ? 4b π

= ?2

π ②

结合①②两式,得到 b ? a = 2 所以,甲波在任意坐标x 处的位相 θ甲

= ωt ?

4

π

(a + x ) 乙波则为θ

= ωt ?

4

π

(22 + a ? x ) 两列波因干涉而静止点,必然满足θ甲 ?θ乙 =(2k - 1)π 所以有 x = 13 ? 4k ,其中 k = 0,±1,±2,… 在0~20的范围内,x = 1、5、9、13、17m

答:距A 点1m 、5m 、9m 、13m 、17m 的五个点因干涉始终处于静止状态。 思考:此题如果不设波源的位置也是可以解的,请同学们自己尝试一下…

(后记:此题直接应用波的干涉的结论——位相差的规律,如若不然,直接求y甲和y乙的叠加,解方程将会困难得多。此外如果波源不是“同方向”振动,位相差的规律会不同。)

第三讲典型例题解析

教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。

例题选讲针对“教材”第九、第十章的部分例题和习题。关于波的知识,现在的很多奥赛教材都基本只涉及高考范畴的内容,《奥林匹克物理思维训练教材》的第十章也是如此。这是不是意味着奥赛的考纲有所更新——要求降低了?

☆第五部分完☆

完整版机械振动和机械波测试题

简谐运动,关于振子下列说法正确的是( A. 在a 点时加速度最大,速度最大 B ?在0点时速度最大,位移最大 C ?在b 点时位移最大,回复力最大 D.在b 点时回复力最大,速度最大 5. 一质点在水平方向上做简谐运动。如图,是该质点在0 的振动图象,下列叙述中正确的是( ) A. 再过1s ,该质点的位移为正的最大值 B ?再过2s ,该质点的瞬时速度为零 C. 再过3s ,该质点的加速度方向竖直向上 D. 再过4s ,该质点加速度最大 6. 一质点做简谐运动时,其振动图象如图。由图可知,在 时刻,质点运动的( ) A.位移相同 B .回复力大小相同 C.速度相同 D .加速度相同 7. 一质点做简谐运动,其离开平衡位置的位移 与时间 如图所示,由图可知( ) A.质点振动的频率为4 Hz B .质点振动的振幅为2cm C. 在t=3s 时刻,质点的速率最大 D. 在t=4s 时刻,质点所受的合力为零 8. 如图所示,为一列沿x 轴正方向传播的机械波在某一时刻的图像, 这列波的振幅A 、波长入和x=l 米处质点的速度方向分别为:( 高二物理选修3-4《机械振动、机械波》试题 一、选择题 1. 关于机械振动和机械波下列叙述正确的是:( ) A .有机械振动必有机械波 B .有机械波必有机械振动 C .在波的传播中,振动质点并不随波的传播发生迁移 D .在波的传播中,如振源停止振动,波的传播并不会立即停止 2. 关于单摆下面说法正确的是( ) A. 摆球运动的回复力总是由摆线的拉力和重力的合力提供的 B. 摆球运动过程中经过同一点的速度是不变的 C. 摆球运动过程中加速度方向始终指向平衡位置 D. 摆球经过平衡位置时加速度不为零 3. 两个质量相同的弹簧振子,甲的固有频率是 3f .乙的固有频率是4f ,若它们 均在频率为5f 的驱动力作用下做受迫振动.则( ) A 、振子甲的振幅较大,振动频率为3f B 、振子乙的振幅较大.振动频率为4f C 、振子甲的振幅较大,振动频率为5f D 、振子乙的振幅较大.振动频率为5f 班级: 姓名: 成绩: 4. 如图所示,水平方向上有一弹簧振子, 0点是其平衡位置,振子在a 和b 之间做 t 的关系 )

高三 高中物理竞赛机械振动(无答案)

机械振动 振动类型:机械振动,交流电中电流和电压的振动,电磁学中电场和磁场的振动等。 这些振的物理本质不同,但遵守的基本规律相同。机械振动形象直观,最简单的机械振动是简谐运动。 1.简谐运动物体的受力特征: 质点离开平衡位置后所受合力是线性回复力 kx F -= 式中 x 为质点相对于平衡位置的位移,k 为力常数。 2.简谐运动的矢量图示分析法: 如图所示,矢量OP 绕x 轴上的坐标原点O 沿逆时针方向匀速转动,则P 做匀速圆周运动,P 在x 轴上的投影点Q 的运动就 是简谐运动,O 为平衡位置,OP 的长为振幅值。简谐运动的周 期等于圆周运动的周期。这种用旋转矢量表示简谐运动的方法称为矢量图示法。P 通过的圆为参考圆。 3.简谐运动的位移、速度和加速度方程 如图,令OP 长为A ,其旋转角速度为ω,在t=0时矢量OP 与x 夹角为φ0,则经过时间t ,P 在x 轴上投影点Q 的位移为()0cos φω+==t A OQ x ,此方程即为简谐运动的位移方程。 参考圆上参考点P 的线速度v P 在x 轴上的投影就等于Q 点作简谐运动的速度?? ? ?? ++=2cos 0πφωt v v P ,式中A v P ω=为速度的幅值。 参考圆上参考点P 的向心加速度a P 在x 轴上的投影就等于Q 点做简谐运动的加速度()0cos φω+-=t a a P 。其中A a P 2ω=为加速度的幅值。 4.简谐运动的图象 图象是从另一角度来描述物体的运动特征的,它与方程相比 较具有形象直观的特点。如下图中的甲、乙、丙三图分别表示简谐运动物体的位移——时间,速度——时间,加速度——时间图象。 2π(或者说落后2 ),加速度相位比位移相位超前π(或者说落后π)。 5.简谐运动的固有周期和频率 由牛顿第二定律和简谐运动的受力特征有 x m k m F a -==回 ………………① 由位移方程)c o s (0?ω+=t A x 和加速度方程)c o s (02?ωω+-=t A a 可得

(完整word版)机械振动和机械波知识点复习及练习

机械振动和机械波 一 机械振动知识要点 1. 机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动 条件:a 、物体离开平衡位置后要受到回复力作用。b 、阻力足够小。 ? 回复力:效果力——在振动方向上的合力 ? 平衡位置:物体静止时,受(合)力为零的位置: 运动过程中,回复力为零的位置(非平衡状态) ? 描述振动的物理量 位移x (m )——均以平衡位置为起点指向末位置 振幅A (m )——振动物体离开平衡位置的最大距离(描述振动强弱) 周期T (s )——完成一次全振动所用时间叫做周期(描述振动快慢) 全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程 频率f (Hz )——1s 钟内完成全振动的次数叫做频率(描述振动快慢) 2. 简谐运动 ? 概念:回复力与位移大小成正比且方向相反的振动 ? 受力特征:kx F -= 运动性质为变加速运动 ? 从力和能量的角度分析x 、F 、a 、v 、E K 、E P 特点:运动过程中存在对称性 平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小 最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大 ? v 、E K 同步变化;x 、F 、a 、E P 同步变化,同一位置只有v 可能不同 3. 简谐运动的图象(振动图象) ? 物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律 可直接读出振幅A ,周期T (频率f ) 可知任意时刻振动质点的位移(或反之) 可知任意时刻质点的振动方向(速度方向) 可知某段时间F 、a 等的变化 4. 简谐运动的表达式:)2sin( φπ +=t T A x 5. 单摆(理想模型)——在摆角很小时为简谐振动 ? 回复力:重力沿切线方向的分力 ? 周期公式:g l T π 2= (T 与A 、m 、θ无关——等时性) ? 测定重力加速度g,g=2 24T L π 等效摆长L=L 线+r 6. 阻尼振动、受迫振动、共振 阻尼振动(减幅振动)——振动中受阻力,能量减少,振幅逐渐减小的振动 受迫振动:物体在外界周期性驱动力作用下的振动叫受迫振动。 特点:驱受f f = ? 共振:物体在受迫振动中,当驱动力的频率跟物体的固有频率相等的时候,受迫振动的振 幅最大,这种现象叫共振 ? 条件:固驱f f =(共振曲线) 【习题演练一】 1 一弹簧振子在一条直线上做简谐运动,第一次先后经过M 、N 两点时速度v (v ≠0)相同,那么,下列说法正确的是( ) A. 振子在M 、N 两点受回复力相同 B. 振子在M 、N 两点对平衡位置的位移相同 C. 振子在M 、N 两点加速度大小相等 D. 从M 点到N 点,振子先做匀加速运动,后做匀减速运动 2 如图所示,一质点在平衡位置O 点两侧做简谐运动,在它从平衡位置O 出发向最大位移A 处运动过程中经0.15s 第一次通过M 点,再经0.1s 第2次通过M 点。则此后还要经多长时间第3次通过M 点,该质点振动的频率为 3 甲、乙两弹簧振子,振动图象如图所示,则可知( ) A. 两弹簧振子完全相同 B. 两弹簧振子所受回复力最大值之比F 甲∶F 乙=2∶1

高中物理竞赛教程(超详细修订版)_第九讲_机械振动和机械波

第五讲 机械振动和机械波 §5.1简谐振动 5.1.1、简谐振动的动力学特点 如果一个物体受到的回复力回F 与它偏离平衡位置的位移x 大小成正比,方向相反。即满足: K F -=回的关系,那么这个物体的运动就定义为简谐振动。根据牛顿第二定律,物体的加速度m K m F a -== 回x ,因此作简谐振动的物体,其加速度也和它偏离平衡位置的位移大 小成正比,方何相反。 现有一劲度系数为k 的轻质弹簧,上端固定在P 点,下端固定一个质量为m 的物体,物体平衡时的位置记作O 点。现把物体拉离O 点后松手,使其上下振动,如图5-1-1所示。 当物体运动到离O 点距离为x 处时,有 mg x x k mg F F -+=-=)(0回 式中 0x 为物体处于平衡位置时,弹簧伸长的长度,且有mg kx =0,因此 kx F =回 说明物体所受回复力的大小与离开平衡位置的位移x 成正比。因回复力指向平衡位置O ,而位移x 总是背离平衡位置,所以回复力的方向与离开平衡位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。 注意:物体离开平衡位置的位移,并不就是弹簧伸长的长度。 5.1.2、简谐振动的方程 由于简谐振动是变加速运动,讨论起来极不方便,为此。可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平衡位置O 为圆心,以振幅A 为半径作圆,这圆就称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度ω作匀速圆周运动,它在开始时与O 的连线跟x 轴夹角为0?,那么在时刻t ,参考圆上的质点与O 的连线跟 x 的夹角就成为 0?ω?+=t ,它在x 轴上的投影点的坐标 )cos(0?ω+=t A x (2) 这就是简谐振动方程,式中0?是t=0时的相位,称为初相:0?ω+t 是t 时刻的相位。 参考圆上的质点的线速度为ωA ,其方向与参考圆相切,这个线速度在x 轴上的投影是 0cos(? ωω+-=t A v ) (3) 这也就是简谐振动的速度 参考圆上的质点的加速度为2 ωA ,其方向指向圆心,它在x 轴上的投影是 02 cos(?ωω+-=t A a ) (4) 这也就是简谐振动的加速度 由公式(2)、(4)可得 x a 2ω-= 由牛顿第二定律简谐振动的加速度为 x m k m F a -== 因此有 m k = 2ω (5) 简谐振动的周期T 也就是参考圆上质点的运动周期,所以 图5-1-1 图5-1-2

机械振动与机械波 答案

衡水学院 理工科专业《大学物理B 》机械振动 机械波 习题解答 命题教师:杜晶晶 试题审核人:杜鹏 一、填空题(每空2分) 1、一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取坐标原点。若t =0时质点第一次通过x =-2cm 处且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为23 s 。 2、一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。 (a )若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为cos(2//2)x A t T ππ=-。 (b )若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为cos(2//3)x A t T ππ=+。 3、频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距 0.5 m 。。 4、一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π,则振幅是 0.02m ,波长是 2.5m ,频率是 100 Hz 。 5、产生机械波的条件是有 波源 和 连续的介质 。 二、单项选择题(每小题2分) (C )1、一质点作简谐振动的周期是T ,当由平衡位置向x 轴正方向运动时,从1/2最大位移处运动到最大位移处的这段路程所需的时间 为( ) (A )T /12 (B )T /8 (C )T /6 (D ) T /4 ( B )2、两个同周期简谐振动曲线如图1所示,振动曲线1的相位比振动曲线2的相位( ) 图1 (A )落后2π (B )超前2 π (C )落后π (D )超前π ( C )3、机械波的表达式是0.05cos(60.06)y t x ππ=+,式中y 和x 的单位是m ,t 的单位是s ,则( ) (A )波长为5m (B )波速为10m ?s -1 (C )周期为13s (D )波沿x 正方向传播 ( D )4、如图2所示,两列波长为λ的相干波在p 点相遇。波在S 1点的振动初相是1?,点S 1到点p 的距离是r 1。波在S 2点的振动初相是2?,点S 2到点p 的距离是r 2。以k 代表零或正、负整数,则点p 是干涉极大的条件为( ) (A )21r r k π-= (B )212k ??π-= (C )()21212/2r r k ??πλπ-+-= 图2

高中物理竞赛辅导机械振动和机械波

高中物理竞赛辅导机械振动和机械波 §5.1简谐振动 5.1.1、简谐振动的动力学特点 假如一个物体受到的回复力回F 与它偏离平稳位置的位移x 大小成正比,方向相反。即满 足:K F -=回的关系,那么那个物体的运动就定义为简谐振动依照牛顿第二是律,物体的加速度 m K m F a -== 回,因此作简谐振动的物体,其加速度也和它偏 离平稳位置的位移大小成正比,方何相反。 现有一劲度系数为k 的轻质弹簧,上端固定在P 点,下端固定一个质量为m 的物体,物体平稳时的位置记作O 点。现把物体拉离O 点后松手,使其上下振动,如图5-1-1所示。 当物体运动到离O 点距离为x 处时,有 mg x x k mg F F -+=-=)(0回 式中0x 为物体处于平稳位置时,弹簧伸长的长度,且有mg kx =0, 因此 kx F =回 讲明物体所受回复力的大小与离开平稳位置的位移x 成正比。因回复力指向平稳位置O , 而位移x 总是背离平稳位置,因此回复力的方向与离开平稳位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。 注意:物体离开平稳位置的位移,并不确实是弹簧伸长的长度。 5.1.2、简谐振动的方程 由于简谐振动是变加速运动,讨论起来极不方便,为此。可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平稳位置O 为圆心,以振幅A 为半径作圆,这圆就 称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度ω作匀速圆周运动,它在开始时与O 的连线跟x 轴夹角为0?,那么在 时刻t ,参考圆上的质点与O 的连线跟x 的夹角就成为 0?ω?+=t ,它在x 轴上的投影点的坐标 )cos(0?ω+=t A x 〔2〕 这确实是简谐振动方程,式中0?是t=0时的相位,称为初相:0?ω+t 是t 时刻的相位。 参考圆上的质点的线速度为ωA ,其方向与参考圆相切,那个线速度在x 轴上的投影是 0cos(? ωω+-=t A v 〕 〔3〕 这也确实是简谐振动的速度 参考圆上的质点的加速度为2 ωA ,其方向指向圆心,它在x 轴上的投影是 图5-1-1 图5-1-2

机械振动和机械波知识点总结教学教材

机械振动和机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在 圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)机械振动的应用——受迫振动和共振现象的分析 (1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关。 (2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣。 2机械波中的应用问题 1. 理解机械波的形成及其概念。 (1)机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质。 (2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同。 (3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移。 (4)描述机械波的物理量关系:v T f ==? λ λ 注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定。 2. 会用图像法分析机械振动和机械波。 振动图像,例:波的图像,例: 振动图像与波的图像的区别横坐标表示质点的振动时间横坐标表示介质中各质点的平衡位置 表征单个质点振动的位移随时间变 化的规律 表征大量质点在同一时刻相对于平衡位 置的位移 相邻的两个振动状态始终相同的质 点间的距离表示振动质点的振动周 期。例:T s =4 相邻的两个振动始终同向的质点间的距 离表示波长。例:λ=8m

江苏省南京市金陵中学高中物理竞赛《力学教程第五讲 机械振动和机械波》教案

力学教程第五讲 机械振动和机械波 5.1.1、简谐振动的动力学特点 如果一个物体受到的回复力回F 与它偏离平衡位置的位移x 大小成正比,方向相反。即满 足:x K F 回的关系,那么这个物体的运动就定义为简谐振动根据牛顿第二是律,物体的加速度 m K m F a 回,因此作简谐振动的物体,其加速度也和它偏 离平衡位置的位移大小成正比,方何相反。 现有一劲度系数为k 的轻质弹簧,上端固定在P 点,下端固定一个质量为m 的物体,物体平衡时的位置记作O 点。现把物体拉离O 点后松手,使其上下振动,如图5-1-1所示。 当物体运动到离O 点距离为x 处时,有 mg x x k mg F F )(0回 式中0x 为物体处于平衡位置时,弹簧伸长的长度,且有mg kx 0, 因此 kx F 回 说明物体所受回复力的大小与离开平衡位置的位移x 成正比。因回复力指向平衡位置O ,而位移x 总是背离平衡位置,所以回复力的方向与离开平衡位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。 注意:物体离开平衡位置的位移,并不就是弹簧伸长的长度。 5.1.2、简谐振动的方程 由于简谐振动是变加速运动,讨论起来极不方便,为此。可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平衡位置O 为圆心,以振幅A 为半径作圆,这圆就 称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度 作匀速圆周运动,它在开始时与O 的连线跟x 轴夹角为0 ,那么在时刻t ,参考圆上的质点与O 的连线跟x 的夹角就成为 0 t ,它在x 轴上的投影点的坐标 )cos(0 t A x (2) 这就是简谐振动方程,式中0 是t=0时的相位,称为初相: 0 t 是t 时刻的相位。 参考圆上的质点的线速度为 A ,其方向与参考圆相切,这个线速度在x 轴上的投影是 0cos( t A v ) (3) 这也就是简谐振动的速度 参考圆上的质点的加速度为2 A ,其方向指向圆心,它在x 轴上的投影是 02 cos( t A a ) (4) 图5-1-1 图5-1-2

机械振动与机械波相结合的综合应用(教案)

机械振动与机械波相结合的综合应用 【教学目标】 1、通过对比简谐运动与简谐波,掌握简谐运动与简谐波的特征及描述方法。 2、知道简谐运动与简谐波相结合的综合题的题型,掌握解决此类问题的基本方法。【教学过程】 一、核心知识 1、研究对象:简谐运动、简谐波 2、简谐运动与简谐波的对比 学生活动:学生先讨论课前独立填写的学案中的下表中红色内容(2分钟),然后 学生活动:①学生先小组讨论学案上按要求完成的内容(每一类问题2分钟),然后展示要难点问题,提请全班讨论解决。②第三类题型讨论完后,总结合归纳解题基本方法。 老师活动:①老师对重点突破共同难点问题,突破方法是通过提前预设的PPT进行分析。②对学生归纳的解题方法进行提炼和深化。③强调解题规范。 1、已知波的传播和波上质点振动的部分信息,分析问题 【例1】(2016年全国Ⅲ卷,34(1))(5分)由波源S形成的简谐横波在均匀介质中向左、右传播。波源振动的频率为20 Hz,波速为16 m/s。已知介质中P、Q两质点位于波源S的两侧,且P、Q和S的平衡位置在一条直线上,P、Q的平衡位置到S的平衡位置之间的距离分别为m、m,P、Q开始震动后,下列判断

正确的是_____。(填正确答案标号。选对1个得2分,选对2个得4分,选对3个得5分。每选错1个扣3分,最低得分为0分) A .P 、Q 两质点运动的方向始终相同 B .P 、Q 两质点运动的方向始终相反 C .当S 恰好通过平衡位置时,P 、Q 两点也正好通过平衡位置 、 D .当S 恰好通过平衡位置向上运动时,P 在波峰 E .当S 恰好通过平衡位置向下运动时,Q 在波峰 【答案】BDE 【考点】波的图像,波长、频率和波速的关系 【解析】根据题意信息可得1s 0.05s 20 T ==,16m/s v =,故波长为0.8m vT λ==,找P 点关于S 点的对称点P ',根据对称性可知P '和P 的振动情况完全相同,P '、 Q 两点相距15.814.630.80.82x λλ???=-= ??? ,为半波长的整数倍,所以两点为反相点,故P '、Q 两点振动方向始终相反,即P 、Q 两点振动方向始终相反,A 错误B 正确; P 点距离S 点3194 x λ=,当S 恰好通过平衡位置向上振动时,P 点在波峰,同理Q 点距离S 点1184 x λ'=,当S 恰好通过平衡位置向下振动时,Q 点在波峰,DE 正确。 巩固练习:(2016年全国Ⅱ卷,34(2)))(10分)一列简谐横波在介质中沿x 轴正向传播,波长不小于10cm .O 和A 是介质中平衡位置分别位于x =0和x=5cm 处的两个质点.t=0时开始观测,此时质点O 的位移为y =4cm ,质点A 处于波峰位置;1 s 3 t =时,质点O 第一次回到平衡位置,t=1s 时,质点A 第一次回到平衡位置.求: (ⅰ)简谐波的周期、波速和波长;(ⅱ)质点O 的位移随时间变化的关系式. 【答案】(i )T =4s ,v =s ,λ=30cm (ii )50.08sin(t )26y ππ=+或者10.08cos(t )23 y ππ=+ 【解析】(i )t =0s 时,A 处质点位于波峰位置 t =1s 时,A 处质点第一次回到平衡位置可知 1s 4 T =,T =4s … 1s 3 t =时,O 第一次到平衡位置,t =1s 时,A 第一次到平衡位置 可知波从O 传到A 用时2s 3 ,传播距离x =5cm 故波速7.5cm /s x v t ==,波长λ=vT =30cm (ⅱ)设0sin(t )y A ω?=+,可知2rad/s 2T ππω== 又由t =0s 时,y =4cm ;1s 3t =,y =0,代入得A =8cm ,再结合题意得056 ?π= 故50.08sin(t )26y ππ=+或者10.08cos(t )23 y ππ=+ 2、已知两个时刻的波形图和部分信息,分析问题

机械振动和机械波·机械波·教案

机械振动和机械波·机械波·教案 一、教学目标 1.在物理知识方面的要求: (1)明确机械波的产生条件; (2)掌握机械波的形成过程及波动传播过程的特征; (3)了解机械波的种类极其传播特征; (4)掌握描述机械波的物理量(包括波长、频率、波速)。 2.要重视观察演示实验,对波的产生条件及形成过程有全面的理解,同时要求学生仔细分析课本的插图。 3.在教学过程中教与学双方要重视引导和自觉培养正确的思想方法。 二、重点、难点分析 1.重点是机械波的形成过程及描述; 2.难点是机械波的形成过程及描述。 三、教具 1.演示绳波的形成的长绳; 2.横波、纵波演示仪; 3.描述波的形成过程的挂图。 四、主要教学过程 (一)引入新课

我们学习过的机械振动是描述单个质点的运动形式,这一节课我们来学习由大量质点构成的弹性媒质的整体的一种运动形式——机械波。 (二)教学过程设计 1.机械波的产生条件 例子——水波:向平静的水面投一小石子或用小树枝不断地点水,会看到水面上一圈圈起伏不平的波纹逐渐向四周传播出去,形成水波。 演示——绳波:用手握住绳子的一端上下抖动,就会看到凸凹相间的波向绳的另一端传播出去,形成绳波。 以上两种波都可以叫做机械波。 (1)机械波的概念:机械振动在介质中的传播就形成机械波 (2)机械波的产生条件:振源和介质。 振源——产生机械振动的物质,如在绳波中的手的不停抖动就是振源。 介质——传播振动的媒质,如绳子、水。 2.机械波的形成过程 (1)介质模型:把介质看成由无数个质点弹性连接而成,可以想象为(图1所示) (2)机械波的形成过程: 由于相邻质点的力的作用,当介质中某一质点发生振动时,就会带动周围的质点振动起来,从而使振动向远处传播。例如:

历届全国初中物理竞赛(机械运动).docx

最近十年初中应用物理知识竞赛题分类解析专题1-- 机械运动 一、选择题 1.( 2013 中学生数理化潜能知识竞赛)下图是空中加油的情景,我们说加油机是静止的,是以下 列哪个物体为参照物() A.以加油机自己为参照物 B.以受油机为参照物 C.以地面为参照物 D.三种说法都不对 1.答案: B 解析:空中加油,我们说加油机是静止的,是以受油机为参照物,选项 B 正确。 2.( 2013中学生数理化潜能知识竞赛“频闪摄影”是研究物体运动时常用的一种实验方法,下面四 个图是小严同学利用频闪照相机拍摄的不同物体运动时的频闪照片(黑点表示物体的像),其中可 能做匀速直线运动的是() 2.答案: B 解析:根据匀速直线运动特点可知,选项 B 正确。 3.(2011 上海初中物理知识竞赛题)小轿车匀速行驶在公路上,坐在副驾驶位置的小青观察到轿车速 度盘的指针始终在100km/h 位置处,在超越相邻车道上同向匀速行驶的另一辆普通轿车的过程中, 小青发现该轿车通过自己的时间恰好为 1 秒,则该轿车的车速围为()A. 15~20m/s B.20~25 m/s C. 25~30 m/s D.30~35 m/s 解析:小轿车速度100km/h=28m/s,以小轿车为参照物,小轿车长度取 3.5m ,在超越相邻车道上 同向匀速行驶的另一辆普通轿车的过程中,两车相对路程为7m ,由 s=vt 可知,相对速度为7m/s 。该轿车的车速围为20~25m/s ,选项 B 正确。 答案: B 4.(2009 上海初中物理知识竞赛复赛题 )2008 年 9 月 25 日 21 时 10 分“神舟”七号飞船载着三名航天 员飞上蓝天,实施太空出舱活动等任务后于28 日 17 时 37 分安全返回地球。已知:“神舟”七号飞船在距地球表面高343 千米的圆轨道上运行,运行速度为7.76 千米 / 秒;地球半径 6.37×103千米。

2018年机械振动和机械波专题复习

知识点一:振动图像(物理意义、质点振动方向)与波形图(物理意义、传播方向与振动方向),回复力、位移、速度、加速度等分析 1.悬挂在竖直方向上的弹簧振子,周期为2 s,从最低点的位置向上运动时开始计时,它的振动图像如图所示,由图 可知?( ) A.t=1.25 s 时振子的加速度为正,速度为正 B.t=1.7 s 时振子的加速度为负,速度为负 C.t=1.0 s 时振子的速度为零,加速度为负的最大值 D.t=1.5 s 时振子的速度为零,加速度为负的最大值 2.如图甲所示,一弹簧振子在A 、B 间做简谐运动,O 为平衡位置,如图乙是振子做简谐运动时的位移-时间图像,则 关于振子的加速度随时间的变化规律,下列四个图像(选项)中正确的是?( ) 3.如图甲所示,水平的光滑杆上有一弹簧振子,振子以O 点为平衡位置,在a 、 b 两点之间做简谐运动,其振动图象如图乙所示。由振动图象可以得知 A .振子的振动周期等于t 1 B .在t =0时刻,振子的位置在a 点 C .在t =t 1时刻,振子的速度为零 D .从t 1到t 2,振子正从O 点向b 点运动 4.一简谐机械波沿x 轴正方向传播,周期为T ,波长为λ。若在 振动图像如右图所示,则该波在t=T /2时刻的波形曲线为( 5.一列横波沿x 轴正向传播,a 、b 、c 、d 为介质中沿波传播方向上四个质点的平衡位置。某时刻的波形如图1 所示,此后,若经过3/4周期开始计时,则图2描述的是 A.a 处质点的振动图象 B.b 处质点的振动图象 C.c 处质点的振动图象 D.d 处质点的振动图象 A y

6.如图所示,甲图为一列简谐横波在t=0.2s 时刻的波动图象,乙图为这列波上质点P 的振动图象,则该波 A .沿x 轴负方传播,波速为0.8m/s B .沿x 轴正方传播,波速为0.8m/s C .沿x 轴负方传播,波速为5m/s D .沿x 轴正方传播,波速为5m/s 7.如图所示是一列沿x 轴传播的简谐横波在某时刻的波形图。已知a 质点的运动状态总是滞后于b 质点0.5s ,质点b 和质点c 之间的距离是5cm 。下列说法中正确的是 A .此列波沿x 轴正方向传播 B .此列波的频率为2Hz C .此列波的波长为10cm D .此列波的传播速度为5cm/s 8.一列向右传播的简谐横波在某一时刻的波形如图所示,该时刻,两个质量相同的质点P 、Q 到平衡位置的距离相等。关于P 、Q 两个质点,以下说法正确的是( ) A .P 较Q 先回到平衡位置 B .再经 4 1 周期,两个质点到平衡位置的距离相等 C .两个质点在任意时刻的动量相同 D .两个质点在任意时刻的加速度相同 9.在介质中有一沿水平方向传播的简谐横波。一质点由平衡位置竖直向上运动,经0.1 s 到达最大位移处.在 这段时间内波传播了0.5 m 。则这列波( ) A .周期是0.2 s B .波长是0.5 m C .波速是2 m/s D .经1.6 s 传播了8 m 10.如图所示,两列简谐横波分别沿x 轴正方向和负方向传播,两波源分别位于x=-0.2m 和x=1.2m 处,两列波的速度大小均为v=0.4m/s ,两波源的振幅均为A=2cm 。图示为t=0时刻两列波的图象(传播方向如图所示),该时刻平衡位置位于x=0.2m 和x=0.8m 的P 、Q 两质点刚开始振动,质点M 的平衡位置处于x=0.5m 处。关于各质点运动情况的判断正确的是( ) A. t=0时刻质点P 、Q 均沿y 轴正方向运动 B. t=1s 时刻,质点M 的位移为-4cm C. t=1s 时刻,质点M 的位移为+4cm D. t=0.75s 时刻,质点P 、Q 都运动到x=0.5m x /10-1 m y /cm -2 2 4 6 8 10 12 v 2 -2 v P Q M /m t /s

物理竞赛12:机械振动二三事

平衡位置 所在位置 x 0 在平衡位置时: 0 mg kx =m g kx 0 x m g k (x 0 +x ) 在距平衡位置x 处时: () 0F mg k x x ∑=-+kx =-则该振动系统做简谐运动,且周期为 2T m k π=振动系统1 竖直面内振动的弹簧振子

θm g T θF 回 sin F mg θ=回当θ角很小时 sin θθ≈O B BO BO x ≈=x 则有 sin F mg mg θθ ==回BO mg l =?l x mg l =?mg l =-x k =-2m T k π=2l T g π∴=振动系统2 单摆

如图所示,劲度系数为k 的弹簧一端固定,另一端与质量为m 的物体a 相连,当弹簧处于自然长度时,将a 无初速地放置在匀速运动(速度很大)的足够长的水平传送带上,弹簧轴线保持水平,设A 与传送带间动摩擦因数为μ,试说明A 将做什么运动? 在平衡位置时: mg kA μ= a 平衡位置 mg μkA A x 在距平衡位置x 处时: mg μ()k A x -()F k A x mg ∑=--μkx =-振动系统3 a 该振动系统做简谐运动,且周期为 2T m k π=v a

如图所示,密度为ρ的液体注入一弯折细管中,弯折管之两段与水平面的交角为α、β,液柱总长为l .若对液体平衡状态加一扰动,则管中液柱即开始往复振动,求证:其属简谐运动并求振动周期.毛细管作用及摩擦忽略不计. x 0 该液片在平衡位置时: 0F F gh s ρ==左右h 0 取管之底端一截面积为s 的液片 若液柱向右侧振动,液片在 平衡位置右侧x 时: x x ()() 00sin sin F gs h x gs h x ραρβ=--+∑() 2sin sin ls T gs ρπραβ=+()sin sin gs ραβ=-+x k =-专题12-例2 ()2sin sin l g παβ+=

大学物理振动与波动

振动与波动 选择题 0580.一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示), 作成一复摆.已知细棒绕通过其一端的轴的转动惯量23 1 ml J =,此摆作微小振 动的周期为 (A) g l π2. (B) g l 22π. (C) g l 322π . (D) g l 3π. [ C ] 3001. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) π. (B) π/2. (C) 0 . (D) θ. [ C ] 3003.轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2 的物体,于是弹簧又伸长了?x .若将m 2移去,并令其振动,则振动周期为 (A) g m x m T 122?π= . (B) g m x m T 212?π=. (C) g m x m T 2121?π= . (D) g m m x m T )(2212+π=?. [ B ] 3004.劲度系数分别为k 1和k 2的两个轻弹簧串联在一起,下面挂着质量为m 的物体,构成一个竖挂的弹簧振子,则该系统的振动周期为 (A) 21212)(2k k k k m T +π =. (B) ) (221k k m T +π= . (C) 2121)(2k k k k m T +π=. (D) 2 122k k m T +π=. [ C ] 3255.如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为4m 的物体,最后将此弹簧截断为两个等长的弹簧并联后悬挂质 量为m 的物体,则这三个系统的周期值之比为 (A) 1∶2∶2/1. (B) 1∶2 1 ∶2 .

高中物理竞赛:振动与波

高中物理竞赛:振动与波 一、知识网络与概要 1.机械振动 (1)弹簧振子,简谐运动,简谐运动的振幅、周期和频率,简谐运动的位移—时间图象. (2)单摆,在小振幅条件下单摆做简谐运动,周期公式.(3)振动中的能量转化. (4)自由振动和受迫振动,受迫振动的振动频率,共振及其常见的应用. 2.机械波 (1)振动在介质中的传播——波,横波和纵波,横波的图象,波长、频率和波速的关系. (2)波的叠加,波的干涉、衍射现象. (3)声波、超声波及其应用. (4)多普勒效应. 二、巩固:夯实基础 1.机械振动的意义: 物体(或物体的一部分)在某一中心位置两侧所做的往复运动,叫机械振动. 回复力:使偏离平衡位置的振动物体回到平衡位置的力,叫回复力.回复力总是指向平衡位置,它是根据作用效果命名的,类似于向心力.振动物体所受的回复力可能是物体所受的合外力,也可能是物体所受的某一个力的分力. 2.描述振动的物理量 (1)位移x :由平衡位置指向振动质点所在位置的有向线段表示振动位移,是矢量. (2)振幅A :振动物体离开平衡位置的最大距离,是标量.表示振动的强弱. (3)周期T 和频率f :物体完成一次全振动所需的时间叫周期,而频率则等于单位时间内完成全振动的次数.它们是表示振动快慢的物理量.二者互为倒数关系:T=f 1. 当T和f 是由振动系统本身的性质决定时(非受迫振动),则叫做固有周期和固有频率. 3.简谐运动:物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振

动. (1)受力特征:回复力F=-kx. (2)运动特征:加速度a=-kx/m ,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动.在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大. 判断一个振动是否为简谐运动,依据就是看它是否满足上述受力特征或运动特征. (3)振动能量:对于两种典型的简谐运动——单摆和弹簧振子,其振动能量与振幅有关,振幅越大,能量越大.简谐运动过程中动能和势能相互转化,机械能守恒. (4)物体做简谐运动时,其位移、回复力、加速度、速度等矢量都随时间做周期性变化,它们的变化周期就是简谐运动的周期T.物体的动能和势能也随时间做周期性变化,其变化周期为2 1T. 4.单摆:(1)周期公式:T=2πg l 其中摆长l 指悬点到小球重心的距离,重力加速度为单摆所在处的测量值. (2)单摆的等时性:在振幅很小的条件下,单摆的振动周期跟振幅无关(单摆的振动周期跟振子的质量也没有关系). (3)单摆的应用: A.计时器.(摆钟是靠调整摆长而改变周期,使摆钟与标准时间同步) B.测重力加速度:g=224T l . 5.简谐运动的位移—时间图象 如图所示为一弹簧振子做简谐运动的图象.它反映了振子的位移随时间变化的规律,而其轨迹并非正弦曲线. 6.受迫振动:物体在周期性驱动力作用下的振动.做受迫振动的物体,它的周期或频率等于驱动力的周期或频率,而与物体的固有周期或频率无关. 7.共振:做受迫振动的物体,它的固有频率与驱动力的频率越接近,其振幅就越大,当

大学物理题库之振动与波.doc

一、选择题:(每题3分) 1、把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) π. (B) π/2. (C) 0 . (D) θ. [ 2、两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为 (A) )π2 1cos(2+ +=αωt A x . (B) )π2 1cos(2- +=αωt A x . (C) )π2 3cos(2- +=αωt A x . (D) )cos(2π++=αωt A x . [ ] 3、一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有 (A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'. (C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ ] 4、一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振 动.当重物通过平衡位置且向规定的正方向运动时,开始计时.则其振动方程为: (A) )2 1/(cos π+=t m k A x (B) )2 1/cos( π-=t m k A x (C) )π2 1/(cos +=t k m A x (D) )2 1/cos( π-=t k m A x (E) t m /k A x cos = [ ] 5、一物体作简谐振动,振动方程为)4 1cos(π+=t A x ω.在 t = T /4(T 为周期)时刻, 物体的加速度为 (A) 2 221ωA - . (B) 2 221ωA . (C) 232 1ωA - . (D) 2 32 1ωA . [ ] 6、一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为 (A) φωsin A -. (B) φωsin A . (C) φωcos A -. (D) φωcos A . [ ] 7、一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 (A) T /12. (B) T /8. (C) T /6. (D) T /4. [ ]

高一物理竞赛第4讲 机械振动.教师版

第四讲 机械振动 1 .简谐振动的受力分析 2 .等效法研究简谐振动 3 .三角函数法描述振动 第一部分:振动的受力特点以及参数 知识点睛 一、模型引入 1.什么是振动? 振动是自然界和工程技术领域常见的一种运动,广泛存在于机械运动、电磁运动、热运动、原子运动等运动形式之中.从狭义上说,通常把具有时间周期性的运动称为振动.如钟摆、发声体、开动的机器、行驶中的交通工具都有机械振动. 如图:振动演示实验:当振子往复振动时,匀速的拉动纸带,就可以研究振子离开中心位置的位移与时间的关系。 广义地说,任何一个物理量在某一数值附近作周期性的变化,都称为振动.变化的物理量称为振动量,它可以是力学量,电学量或其它物理量.例如:交流电压、电流的变化、无线电波电磁场的变化等等. 2.什么是机械振动? 机械振动是最直观的振动,它是物体在一定位置附近的来回往复的运动,口语称为“来回晃悠”。如活塞的运动,钟摆的摆动等都是机械振动. 产生机械振动的条件是:物体受到回复力的作用; 回复力: 使振动物体返回平衡位置的力叫回复力.回复力时刻指向平衡位置.回复力是以效果命名的力,它是振动物体在振动方向上的合外力,可能是几个力的合力,也可能是某个力或某个力的分力,可能是重力、弹力、摩擦力、电场力、磁场力等. 3.简谐运动 物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力作用下的振动,叫简谐运动.表达式为:F kx =-.做简谐运动物体的位移是相对于平衡位置的,位移的方向总是由平衡位置指向物体,而回复力总由物体是指向平衡位置,所以回复力总跟位移方向相反,式中的负号表示了这种相反关系. 知识模块 本讲介绍

相关文档
最新文档