傅里叶变换

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T 上满足狄里克莱条件:1o

)(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T - 上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= , ),2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ),3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为 ∑∞=--?? ????-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1 Λ,3,2,1,)(1 ]sin )[cos (1 sin )(1cos )(1222 2222 22==-=-=-=????-----n dt e t f T dt t n j t n t f T dt t n t f T j dt t n t f T jb a c T T t jn T T T T T T n n n ωωωωω Λ,3,2,1,)(1 22 ==?--n dt e t f T c T T t jn n ω 综合n n c c c -,,0,可合并成一个式子 Λ,2,1,0,)(1 22 ±±==?--n dt e t f T c T T t jn n ω, (5)

傅里叶变换光学系统

傅里叶变换光学系统 组号 4 09光信 王宏磊 (合作人: 刘浩明 杨纯川) 一、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT 性质及常用函数与图形的关学频谱分析 力。图1 在该点的厚度。设原复振幅分布为(,)L U x y 其复振幅分布受到透镜的位相调制,附加了一个位相因(,)x y ?后变为(,)L U x y ': 图1 (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为: 00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ?=-+=+- (2) (2)中的k =2π/λ,为入射光波波数。 用位相延迟因子(,)t x y 来表示即为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:

22012 111(,)()()2D x y D x y R R =-+- (4) 其中1R 、2R 是构成透镜的两个球面的曲率半径。公式(4)对双凹、双凸、或凹凸透镜都成立。引入焦距f ,其定义为: 12 111(1)()n f R R =-- (5) 代入(3)得: 220(,)exp()exp[()]2k t x y jknD j x y f =-+ (6) 式(6)即是透镜位相调制的表达式,它表明复振幅(,)L U x y 通过透镜时,透镜各点都发生位相延迟。 从式(6)容易看出第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。第二项22exp[()]2k j x y f -+是具有调制作用的因子,它表明光波通过透镜的位相延迟与该点到透镜中心的距离的平方成正比。而且与透镜的焦距有关。当考虑透镜孔径后,有: 22(,)exp[()](,)2k t x y j x y p x y f =-+ (7) 其中的(,)p x y 为透镜的光瞳函数,表达式为: 1(,)0p x y ?=?? 孔径内 其 它 (8) 2、透镜的傅里叶变换性质 在单色平面波垂直照射下,夫琅和斐衍射光场的复振幅分布正比于衍射屏透射系数的傅里叶变换。衍射图像的强度分布正比于衍射屏的功率谱分布。一般情况下,我们是将夫朗和斐衍射图像成像到透镜的像方焦平面出,这就是说,作为成像元件的透镜,就相当于傅里叶变换器。 如图2所示,设单位振幅的单色平面光垂直照射一透射系数为(,)t x y 的衍射屏,与衍射屏相距Z 处放置一焦距为f 的薄透镜L ,先观察其像方平面L 的光场分布。为了讨论方便,这里我们忽略透镜材料的吸收、散射、透镜表面的反射以及透镜孔径大小等因素的影响。

频谱分析中如何选择合适的窗函数

频谱分析中如何选择合适的窗函数 1、信号截断及能量泄漏效应 数字信号处理的主要数学工具是傅里叶变换。应注意到,傅里叶变换是研究整个时间域和频率域的关系。然而,当运用计算机实现工程测试信号处理时,不可能对无限长的信号进行测量和运算,而是取其有限的时间片段进行分析。做法是从信号中截取一个时间片段,然后用观察的信号时间片段进行周期延拓处理,得到虚拟的无限长的信号,然后就可以对信号进行傅里叶变换、相关分析等数学处理。 周期延拓后的信号与真实信号是不同的,下面从数学的角度来看这种处理带来的误差情况。设有余弦信号x(t)在时域分布为无限长(- ∞,∞),将截断信号的谱XT(ω)与原始信号的谱X(ω)相比,它已不是原来的两条谱线,而是两段振荡的连续谱。这表明原来的信号被截断以后,其频谱发生了畸变,原来集中在f0处的能量被分散到两个较宽的频带中去了,这种现象称之为频谱能量泄漏(Leakage)。 信号截断以后产生的能量泄漏现象是必然的,因为窗函数w(t)是一个频带无限的函数,所以即使原信号x(t)是限带宽信号,而在截断以后也必然成为无限带宽的函数,即信号在频域的能量与分布被扩展了。又从采样定理可知,无论采样频率多高,只要信号一经截断,就不可避免地引起混叠,因此信号截断必然导致一些误差,这是信号分析中不容忽视的问题。 如果增大截断长度T,即矩形窗口加宽,则窗谱W(ω)将被压缩变窄(π/T减小)。虽然理论上讲,其频谱范围仍为无限宽,但实际上中心频率以外的频率分量衰减较快,因而泄漏误差将减小。当窗口宽度T趋于无穷大时,则谱窗W(ω)将变为δ(ω)函数,而δ(ω)与X(ω)的卷积仍为H(ω),这说明,如果窗口无限宽,即不截断,就不存在泄漏误差。 为了减少频谱能量泄漏,可采用不同的截取函数对信号进行截断,截断函数称为窗函数,简称为窗。泄漏与窗函数频谱的两侧旁瓣有关,如果两侧p旁瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱,为此,在时间域中可采用不同的窗函数来截断信号。 2、常用窗函数 实际应用的窗函数,可分为以下主要类型: 幂窗:采用时间变量某种幂次的函数,如矩形、三角形、梯形或其它时间函数x(t)的高次幂;三角函数窗:应用三角函数,即正弦或余弦函数等组合成复合函数,例如汉宁窗、海明窗等;指数窗。:采用指数时间函数,如e-st形式,例如高斯窗等。

傅里叶变换定律-傅里叶变换定义定律

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。

质量M 弹簧 刚度K t x (t ) o x 0 质量-弹簧系统的力学模型 x (t ) ? ?? ? ??+=0cos )(?t m k A t x 非确定性信号(随机信号):给定条件下取值是不确定的 按取值情况分类:模拟信号,离散信号 数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号

频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。

§2-2 周期信号与离散频谱 一、 周期信号傅里叶级数的三角函数形式 周期信号时域表达式 ) 21() ()2()()( ,,±±=+==+=+=n nT t x T t x T t x t x T :周期。注意n 的取值:周期信号“无始无终” # 傅里叶级数的三角函数展开式 ) sin cos ()(01 00t n b t n a a t x n n n ωω∑∞ =++= (n =1, 2, 3,…) 傅立叶系数:

?- = 2 2 0)(1T T dt t x T a ?- = 2 2 0cos )(2T T n tdt n t x T a ω ? - = 2 2 0sin )(2T T n tdt n t x T b ω 式中 T--周期;0--基频, 0=2 /T 。 三角函数展开式的另一种形式: ) cos()(1 00∑∞ =++=n n n t n A a t x ?ωN 次谐波 N 次谐波的相角 N 次谐波的频率 N 次谐波的幅值 信号的均值,直流分量

离散傅里叶变换(DFT)试题

第一章 离散傅里叶变换(DFT ) 填空题 (1) 某序列的DFT 表达式为 ∑-==1 )()(N n kn M W n x k X ,由此可以看出,该序列时域 的长 度为 ,变换后数字频域上相邻两个频率样点之间的间隔是 。 解:N ; M π 2 (2)某序列DFT 的表达式是 ∑-==1 0)()(N k kl M W k x l X ,由此可看出,该序列的时域长度 是 ,变换后数字频域上相邻两个频率样点之间隔是 。 解: N M π 2 (3)如果希望某信号序列的离散谱是实偶的,那么该时域序列应满足条件 。 解:纯实数、偶对称 (4)线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(22++--=z z z z z H ,则系统 的极点为 ;系统的稳定性为 。系统单位冲激响应)(n h 的初值为 ;终值 )(∞h 。 解: 2,2 1 21-=- =z z ;不稳定 ;4)0(=h ;不存在 (5) 采样频率为Hz F s 的数字系统中,系统函数表达式中1 -z 代表的物理意义是 ,其中时域 数字序列)(n x 的序号 n 代表的样值实际位置是 ;)(n x 的N 点DFT )k X (中,序号k 代表的样值 实际位置又是 。 解:延时一个采样周期F T 1=,F n nT =,k N k πω2= (6)已知 }{}{4,3,2,1,0;0,1,1,0,1][,4,3,2,1,0;1,2,3,2,1][=-===k n h k n x ,则][n x 和 ][n h 的5点循环卷积为 。 解:{}]3[]2[][][][][---+?=?k k k k x k h k x δδδ {}4,3,2,1,0;2,3,3,1,0])3[(])2[(][55==---+=k k x k x k x (7)已知}{}{3,2,1,0;1,1,2,4][,3,2,1,0;2,0,2,3][=--=== k n h k n x 则][][n h n x 和的 4点循环卷积为 。

用傅里叶变换计算衍射的光强分布

龙岩学院学年论文(设计) 论文题目用傅里叶变换计算衍射的光强分布 学院物理与机电工程学院 专业物理学(光电子技术方向) 年级 2011级 姓名徐武童 学号 2011042526 指导教师兑自强 二0一三年四月十二日

用傅里叶变换计算衍射的光强分布 物理与机电工程学院 11物本 2011042526徐武童指导老师:兑自强 【摘要】:利用傅里叶变换式计算光的单缝和圆孔衍射的光强分布,根据计算结果利用MATLAB软件仿真模拟单缝和圆孔衍射及光强分布,分析计算和模拟结果得知衍射图样取决于缝宽或孔径的大小 【关键词】:傅里叶变换;单缝;圆孔;衍射;光强分布

目录 前言1 1.傅里叶变换式 1 1.1一维变换式 2 1.2二维变换式 3 1.3三维傅里叶变换式 3 2. 用傅里叶变换计算衍射的光强分布 4 2.1计算圆孔衍射的光强分布 6 2.2计算单缝衍射的光强分布 7 3.光强分布曲线 8 3.1单缝衍射的光强分布曲线 8 3.2圆孔衍射的光强分布曲线 9 4.讨论10 4.1单缝衍射 10 4.2圆孔衍射 10 总结11 致谢11

0 前言 衍射现象是波动光学中的重要知识,光的衍射的定义从广义上说是光在传播过程中,遇到障碍物时产生的偏离几何光学规律从而引起光强重新分布的现象,也称为绕射。该定义指出光的衍射是一种区别于几何光学规律的光的传播现象。当所选光学元件的尺度与波长相当时,光的传播现象明显不同于几何光学所描述的。它也明确给出了产生衍射现象的条件“光波遇到障碍物”,对于任何一束光都会因在空间传播过程中遇到障碍物而使自由波面受损,从而改变波前后振幅,使光表现出衍射行为。 而傅里叶变换是一种特殊的积分变换,它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。 在现代光学发展的今天,如何运用傅里叶方法解决干涉、衍射和成像等问题成了至关重要的部分。

傅里叶变换光学

中山大学光信息专业实验报告:傅里叶光学变换系统 一、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT 性质及常用函数与图形的关学频谱分析 透镜由于本身厚度的不同,使得入射光在通过透镜时, 图1 点的厚度。设原复振幅分布为(,)L U x y 的光通过透镜后,幅分布受到透镜的位相调制,附加了一个位相因子(,)x y ?为(,)L U x y ': 图1 (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为: 00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ?=-+=+- (2) (2)中的k =2π/λ,为入射光波波数。 用位相延迟因子(,)t x y 来表示即为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:

选择题

云平台”,http://https://www.360docs.net/doc/b317134846.html, 花样流水灯 #include void delay() { unsigned char m,n; for(m=0;m<200;m++) for(n=0;n<200;n++) ; } void main(void) { unsigned char i; while(1) { i=0; while(i<0xff) { P1=i; delay(); i++; } } } 离散时间信号与系统 一、单项选择题 1、下列哪一个单位抽样响应所表示的系统不是因果稳定系统( ) (分数:2分) A. h(n)=δ(n) B. h(n)=u(n) C. h(n)= R5(n) D. h(n)=e^(-2n)u(n) 正确答案:B 2、若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)= δ(n) +2δ(n-1),则当输入为u(n)-u(n-1)时输出为( ) (分数:2分) A. u(n)+u(n-1) B. u(n)+2u(n-1) C. u(n)+u(n-1)+2u(n-2) D. u(n)+u(n-1)-2u(n-2)

3、序列x(n)=sin(2πn/5+π/4)的周期是() (分数:2分) A. 2 B. 5 C. 2/5 D. 无周期 正确答案:B 4、若信号频率上限为fc,要想对其抽样后由抽样信号恢复出原信号,则抽样率fs应 满足()(分数:2分) A. fs>fc B. fs C. fs>2fc D. fs<2fc 正确答案:C 5、若采用8kHz的抽样频率对某连续信号进行无失真的数字信号处理,则连续信号的最高频率为()(分数:2分) A. 2K Hz B. 4K Hz C. 8K Hz D. 16 Hz 正确答案:B 6、系统y(n)=x(2n)是()(分数:2分) A. 线性、时不变系统 B. 线性、时变系统 C. 非线性、时不变系统 D. 非线性、时变系统 正确答案:B 7、信号x(n)=4δ(n)- 3δ(n-1) +6δ(n-2)的直流分量是()(分数:2分) A. 4 B. 5 C. 6 D. 7 正确答案:D 8、序列x(n)和h(n)的长度分别是11和20, 则y(n)=x(n)*h(n) 的长度为()(分数:2分) A. 11 B. 20 C. 30 D. 31

常用傅立叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移, 变换2的频域对应4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当 | a | 趋向 无穷时,成为 Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这

9 矩形脉冲和归一化的sinc 函数 10 变换10的频域对应。矩形函数是理想的低通滤波器,sinc 函数是这类滤波器对反因果冲击的响应。 11 tri 是三角形函数 12 变换12的频域对应 13 高斯函数 exp( ? αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。 14 15 16 a>0 17 变换本身就是一个公式

18 δ(ω) 代表狄拉克δ函数分布. 这 个变换展示了狄拉克δ函数的重要 性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 21 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22 由变换1和25得到 23 这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这 个变换是根据变换7和24得到的。 将此变换与1结合使用,我们可以变 换所有多项式。 24 此处sgn(ω)为符号函数;注意此变 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. 27 此处u(t)是单位阶跃函数; 此变换 根据变换1和31得到.

模拟信号带宽与傅里叶变换

模拟信号带宽与傅里叶变换 模拟信号的带宽就是一个模拟信号的"频谱宽度",就是最高的频率分量-最低的频率分量,我也觉得这个定义很抽象,所以本文试图形象化的解释一下"模拟信号的带宽",因为通信工程中涉及最多的就是"声音信号",所以我们以声音信号为例子解释一下"模拟信号带宽"的问题。 很好的理解模拟信号带宽的一个预备知识是"傅里叶变换",我认为傅里叶变换是现代科学里面非常重要的一个基础,我也理解的不是很深刻。学过高等数学的人都知道"傅里叶级数",傅里叶级数就是傅里叶变换的基本数学形式。下面通过"声音"简单介绍一下为什么傅里叶变换在通信领域如此的重要,傅里叶变换告诉我们,"任何形式的周期函数都可以转换成正弦函数的叠加",我们应该理解这个道理:"波的图像本质上就是一个函数",我们学习数学函数的目的就是为了学习处理各种"波动",因此本文"波"和"函数"在本质上基本是等同的。通信领域传输的有用波形都是周期波形(后面会简单介绍为什么通信领域涉及的都是周期函数),傅里叶级数提供了一种理论,这种理论把一个复杂的周期函数分解成简单的正弦函数,所以在通信领域提供了一种"复杂问题简单化"的重要手段。其实我们解决问题的唯一手段也就是"简单化、平民化",讲天书的教授属于外星人。 我们知道通信工程中,最先解决的实质问题就是传递"声音",电话通信网应该是世界最早的也是最大的通信网络,一般来说通信工程涉及的内容都是从电话网开始的。所以,我们先大致了解一下"声音的特点"。声音本质上是一个"机械波",它是依靠物体振动发声,在某种介质中传播,因此声音无法在真空中传递(因为真空是一种无介质状态)。这个规律就告诉我们,我们可以把声音还原成波形来研究,那么如果用波的观点来看声音,会带来什么变化呢? 1、如果是一个固定频率的"正弦波",那么这种声音就叫做"纯音",在音乐里面很好理解,每个音符就是一个纯音,数学表达式:"每个音符=固定频率的一个正弦波"。这里面有一个重要的概念,纯音的幅度并不决定音调,对声音的响度有更大的影响。简单化说明,如果我们把收音机的音量无论调大或者是调小(在能听见的范围内),音乐总还是这个音乐,不会变成另外一个音乐。

傅里叶变换公式

第2 章信号分析 本章提要 ?信号分类 ?周期信号分析--傅里叶级数 ?非周期信号分析--傅里叶变换 ?脉冲函数及其性质信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法和手段 §2 -1 信号的分类 ?两大类:确定性信号,非确定性信号确定性信号:给定条件下取值是确定的。 进一步分为:周期信号,非周期信号。

质量-弹簧系 统的力学模型x(t) = A cos k t +0 非确定性信号(随机信号:给定条件下取值是不确定的 ?按取值情况分类:模拟信号,离散信号数字信号:属于离散信号,幅值离散,并用二进制表示。 ?信号描述方法 时域描述如简谐信号

简谐信号及其三个要素 频域描述 以信号的频率结构来描述信号的方法: 将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。 §2-2 周期信号与离散频谱 一、周期信号傅里叶级数的三角函数形式?周期信号时域表达式 x(t) = x(t +T) = x(t + 2T) = = x(t + nT) (n = 1, 2 ,)

T :周期。注意n 的取值:周期信号“无始无 终” # ? 傅里叶级数的三角函数展开式 x (t ) = a + (a cos n t + b sin n t ) n =1 (n =1, 2, 3 ,…) 傅立叶系数: T a 0 = 1 x (t )dt - 2 T x (t )cos n tdt 2 T 2 x (t ) sin n tdt 2 式中 T--周 期;0--基频, 0=2/T 。 ? 三角函数展开式的另一种形式: 2 a n = b n =2

傅里叶变换光学

中山大学光信息专业实验报告:傅里叶光学变换系统 一、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT 性质及常用函数与图形的关学频谱分析 力。图1 在该点的厚度。设原复振幅分布为(,)L U x y 其复振幅分布受到透镜的位相调制,附加了一个位相因(,)x y ?后变为(,)L U x y ': 图1 (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为: 00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ?=-+=+- (2) (2)中的k =2π/λ,为入射光波波数。 用位相延迟因子(,)t x y 来表示即为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:

22012 111(,)()()2D x y D x y R R =-+- (4) 其中1R 、2R 是构成透镜的两个球面的曲率半径。公式(4)对双凹、双凸、或凹凸透镜都成立。引入焦距f ,其定义为: 12 111(1)()n f R R =-- (5) 代入(3)得: 220(,)exp()exp[()]2k t x y jknD j x y f =-+ (6) 式(6)即是透镜位相调制的表达式,它表明复振幅(,)L U x y 通过透镜时,透镜各点都发生位相延迟。 从式(6)容易看出第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。第二项22exp[()]2k j x y f -+是具有调制作用的因子,它表明光波通过透镜的位相延迟与该点到透镜中心的距离的平方成正比。而且与透镜的焦距有关。当考虑透镜孔径后,有: 22(,)exp[()](,)2k t x y j x y p x y f =-+ (7) 其中的(,)p x y 为透镜的光瞳函数,表达式为: 1(,)0p x y ?=?? 孔径内 其 它 (8) 2、透镜的傅里叶变换性质 在单色平面波垂直照射下,夫琅和斐衍射光场的复振幅分布正比于衍射屏透射系数的傅里叶变换。衍射图像的强度分布正比于衍射屏的功率谱分布。一般情况下,我们是将夫朗和斐衍射图像成像到透镜的像方焦平面出,这就是说,作为成像元件的透镜,就相当于傅里叶变换器。 如图2所示,设单位振幅的单色平面光垂直照射一透射系数为(,)t x y 的衍射屏,与衍射屏相距Z 处放置一焦距为f 的薄透镜L ,先观察其像方平面L 的光场分布。为了讨论方便,这里我们忽略透镜材料的吸收、散射、透镜表面的反射以及透镜孔径大小等因素的影响。

傅里叶变换公式

连续时间周期信号傅里叶级数:?= T dt t x T a )(1 ??--= = T t T jk T t jk k dt e t x T dt e t x T a π ω2)(1 )(1 离散时间周期信号傅里叶级数:[][]()∑∑= - =-= = N n n N jk N n n jkw k e n x N e n x N a /21 1 0π 连续时间非周期信号的傅里叶变换:()? ∞∞ --=dt e t x jw X jwt )( 连续时间非周期信号的傅里叶反变换:()dw e jw X t x jwt ? ∞ ∞ -=π 21 )( 连续时间周期信号傅里叶变换:∑+∞ -∞ =??? ? ? ? -=k k k w a jw X T 22)(πδπ 连续时间周期信号傅里叶反变换:()dw e w w t x jwt ? ∞ ∞ --=0221 )( πδπ 离散时间非周期信号傅里叶变换:∑∞ -∞ =-= n n j e n x e X ωω j ][)( 离散时间非周期信号傅里叶反变换:? = π 2d e )(e π 21][ωωωn j j X n x 离散时间周期信号傅里叶变换:∑+∞ -∞ =-= k k k a X )(π2)e (0 j ωωδω 离散时间周期信号傅里叶反变换:[]ωω ωδωd e n n j ?--=π 20 πl)2(π2π 21][x 拉普拉斯变换:()dt e t s X st -∞ ∞ -? =)(x 拉普拉斯反变换:()()s j 21 t x j j d e s X st ?∞ +∞ -= σσ π Z 变换:∑∞ -∞ =-=n n z n x X ][)z ( Z 反变换: ??-== z z z X r z X n x n n d )(πj 21d )e ()(π21][1j π2ωω

信号与系统选择题

【课程信息】 课程名称:信号与系统 课程编码: 任课教师:王秀贞 【录入】王秀贞 【章节】第一章信号的函数表示与系统分析方法 【知识点】 1、信号的函数表示 说明:连续函数和奇异函数、信号分解 2、系统数学模型 说明:系统性质 【单选题】 1、f (5-2t )是如下运算的结果( )。 A .f (-2t )右移5 B .f (-2t )左移5 C .f (-2t )右移25 D .f (-2t )左移25 答案:C 难度:1 分值:2 知识点:1 【判断题】 1.偶函数加上直流后仍为偶函数。( ) 答案:T 2. 不同的系统具有不同的数学模型。( ) 答案:F 3. 任何信号都可以分解为偶分量与奇分量之和。( ) 答案:T 4.奇谐函数一定是奇函数。( ) 答案:T 【简答题】 1.信号、信息与消息的差别? 答案:信号:随时间变化的物理量;消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等 信息:所接收到的未知内容的消息,即传输的信号是带有信息的。 2.单位冲激信号的物理意义及其取样性质? 答案:冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到。 它表达的是一类幅度很强,但作用时间很短的物理现象。其重要特性是筛选性,即: ()()()(0)(0) t x t dt t x dt x δδ∞ ∞ -∞ -∞ ==? ?

【录入】王秀贞 【章节】第二章连续时间系统的时域分析 【知识点】 【单选题】 1.系统微分方程式 ),()(),(2)(2)(t u t x t x t y dt t dy ==+若 3 4 )0(=-y ,解得完全响应y (t )=)0(,131 2≥+-t e t 当 则零输入响应分量为 ( )。 A .t e 23 1 - B .21133 t e -- C . t e 23 4- D .12+--t e 答案:C 难度:1 分值:2 知识点:1 2.已知)()(),()(21t u e t f t u t f at -==,可以求得=)(*)(21t f t f ( )。 A .1-at e - B .at e - C . )1(1 at e a -- D . at e a -1 答案:C 难度:1 分值:2 知识点:1 3.若系统的起始状态为0,在x (t )的激励下,所得的响应为 ( )。 A .强迫响应 B .稳态响应 C .暂态响应 D .零状态响应 答案:C 难度:1

快速傅里叶变换(FFT)的原理及公式

快速傅里叶变换(FFT)的原理及公式 原理及公式 非周期性连续时间信号x(t)的傅里叶变换可以表示为 式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT)。因此需要利用离散信号x(nT)来计算信号x(t)的频谱。 有限长离散信号x(n),n=0,1,…,N-1的DFT定义为: 可以看出,DFT需要计算大约N2次乘法和N2次加法。当N较大时,这个计算量是很大的。利用WN的对称性和周期性,将N点DFT分解为两个N/2点 的DFT,这样两个N/2点DFT总的计算量只是原来的一半,即(N/2)2+(N/2)2=N2/2,这样可以继续分解下去,将N/2再分解为N/4点DFT等。对于N=2m点的DFT都可以分解为2点的DFT,这样其计算量可以减少为(N/2)log2N 次乘法和Nlog2N次加法。图1为FFT与DFT-所需运算量与计算点数的关系曲线。由图可以明显看出FFT算法的优越性。 将x(n)分解为偶数与奇数的两个序列之和,即

x1(n)和x2(n)的长度都是N/2,x1(n)是偶数序列,x2(n)是奇数序列,则 其中X1(k)和X2(k)分别为x1(n)和x2(n)的N/2点DFT。由于X1(k)和X2(k)均以N/2为周期,且WN k+N/2=-WN k,所以X(k)又可表示为: 上式的运算可以用图2表示,根据其形状称之为蝶形运算。依此类推,经过m-1次分解,最后将N点DFT分解为N/2个两点DFT。图3为8点FFT的分解流程。 FFT算法的原理是通过许多小的更加容易进行的变换去实现大规模的变换,降低了运算要求,提高了与运算速度。FFT不是DFT的近似运算,它们完全是等效的。 关于FFT精度的说明: 因为这个变换采用了浮点运算,因此需要足够的精度,以使在出现舍入误差时,结果中的每个组成部分的准确整数值仍是可辨认的。为了FFT的舍入误差,应该允许增加几倍log2(log2N)位的二进制。以256为基数、长度为N字节的数

傅里叶变换光学系统-实验报告

实验10 傅里叶变换光学系统 实验时间:2014年3月20日 星期四 一、 实验目的 1. 了解透镜对入射波前的相位调制原理。 2. 加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3. 观察透镜的傅氏变换力图像,观察4f 系统的反傅氏变换的图像,并进行比较。 4. 在4f 系统的变换平面插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、 实验原理 1. 透镜的FT 性质及常用函数与图形的关学频谱分析 透镜由于本身厚度的不同,使得入射光在通过透镜时,各处走过的光程差不同,即所受时间延迟不同,因而具有相位调制能力。假设任意点入射光线在透镜中的传播距离等于改点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大小正比于透镜在该点的厚度。设原复振幅分布为(,)L U x y 的光通过透镜后,其复振幅分布受到透镜的位相调制后变为(,)L U x y ': (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0(,)D D x y -,透镜折射率为n ,则该点的位相延迟因子(,)t x y 为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (2) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,并引入焦距f ,有: 22012 111(,)()()2D x y D x y R R =-+- (3) 12 111(1)()n f R R =-- (4) 220(,)exp()exp[()]2k t x y jknD j x y f =-+ (5) 第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。当考虑透镜孔径后,有: 22(,)exp[()](,)2k t x y j x y p x y f =-+ (6)

数字图像处理复习题(选择题及相应答案)

第一章 1.1.1可以用f(x,y)来表示:(ABD) A、一幅2-D数字图像 B、一个在3-D空间中的客观景物的投影; C 2-D空间XY中的一个坐标的点的位置; D、在坐标点(X,Y)的某种性质F的数值。 提示:注意3个符号各自的意义 1.1.2、一幅数字图像是:(B) A、一个观测系统; B、一个有许多像素排列而成的实体; C、一个2-D数组中的元素 D、一个3-D空间的场景。 提示:考虑图像和数字图像的定义 1.2.2、已知如图1.2.2中的2个像素P和Q,下面说法正确的是:(C) A、2个像素P和Q直接的De距离比他们之间的D4距离和D8距离都短: B、2个像素p和q之间的D4距离为5; C、2个像素p和q之间的D8距离为5; D、2个像素p和q之间的De距离为5。 1.4.2、半调输出技术可以:(B) A、改善图像的空间分辨率; B、改善图像的幅度分辨率; C、利用抖动技术实现; D、消除虚假轮廓现象。 提示:半调输出技术牺牲空间分辨率以提高幅度分辨率 1.4.3、抖动技术可以(D) A、改善图像的空间分辨率; B、改善图像的幅度分辨率; C、利用半输出技术实现; D、消除虚假轮廓现象。 提示:抖动技术通过加入随即噪声,增加了图像的幅度输出值的个数 1.5.1、一幅256*256的图像,若灰度级数为16,则存储它所需的比特数是:(A) A、256K B、512K C、1M C、2M 提示:表达图像所需的比特数是图像的长乘宽再乘灰度级数对应的比特数。 1.5.2、图像中虚假轮廓的出现就其本质而言是由于:(A) A、图像的灰度级数不够多造成的; B、图像的空间分辨率不够高造成; C、图像的灰度级数过多造成的 D、图像的空间分辨率过高造成。 提示:图像中的虚假轮廓最易在平滑区域内产生。(平滑区域内灰度应缓慢变化,但当图像的灰度级数不够多时会产生阶跃) 1.5.3、数字图像木刻画效果的出现是由于下列原因所产生的:(A) A、图像的幅度分辨率过小; B、图像的幅度分辨率过大;

傅里叶变换光学系统

傅里叶变换光学系统 组号4 09 光信王宏磊09327004 (合作人:刘浩明杨纯川)、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT)图像,观察4f系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f系统的变换平面(T)插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT性质及常用函数与图形的关学频谱分析透镜由于本身厚度的不同,使得入射光在通过透镜时,各处走过的光程差不同,即所受时间延迟不同,因而具有相位调制能力。图1为简化分析,假设任意点入射光线在透镜中的传播距离等于改点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大小正比于透镜在该点的厚度。设原复振幅分布为 U L(x, y)的光通过透镜后, 其复振幅分布受到透镜的位相调制,附加了一个位相因子 (x, y)后变为U L (x, y): U L(X, y) U L(X, y)exp[j (x,y)] 若对于任意一点(x, y)透镜的厚度为D(x,y),透镜的中心厚度为D0。光线由该点 通过透镜时在透镜中的距离为D(x, y),空气空的距离为D0—D(x, y),透镜折射率为n, 则该点的总的位相差为: (x, y) k[D°D(x, y)] knD (x, y) kD°k(n 1)D(x, y) (2) (2)中的k = 2 n /入,为入射光波波数。 用位相延迟因子t(x, y)来表示即为: D(x,y) Q i i 1 Q2 D o

傅里叶光学金典试题及答案和重要知识点总结

1 / 11 光学信息技术原理与应用 复习资料 一、基本概念: 1. 傅里叶变换,傅里叶逆变换; 正变换 dx πux j x g u G ?∞ ∞ --= ]2[ex p )()( 逆变换 u ux j u x g d ]2exp[)G()(?∞ ∞ -=π μ,ν— 空间频率 G(μ,ν) — 频谱 ,傅里叶谱,角谱 物理意义: 1.一个空间函数 g(x ,y) ,可视为向前传播的一列光波。 2.它可分解为无穷多个传播方向不同的平面波。 3.某一方向传播的平面波可视为一个空间单频信号。 4.每个空间单频信号可看作原函数 g(x ,y) 的傅里叶分量,其振幅是该频率的函数 G(μ,ν)。 5.原函数 g(x ,y) 可看作是所有傅里叶分量的加权的迭加, G(μ,ν) 是其权重 。 2.频谱, 空间频率; 空间频率:沿某一特定方向传播的平面波具有单一的空间频率 。 定义为: 其中:cos α 、cos β为平面波的方向余弦。 空间频谱 :一般情况下可视为各平面波分量的振幅分布函数, 高频分量的振幅较小,低频分量的振幅较大。 3.脉冲响应,传递函数 传递函数 :平面波的角谱:]cos cos 1exp[)0,,(),,(2 20βα--?=jkz v u A z v u A z 改写为:()()()νμνμνμ,,,,,0H z A z A z ?= 其中()]cos cos 1exp[,2 2βανμ--=jkz H 表征光的传播在频域中的特性。 脉冲响应:惠更斯—菲涅尔原理:普通光源可看作若干个单个球面波照明的集合。 )r ,n (cos r )jkr (exp j 1)Q ,P (h d )P (U )Q ,P (h )Q (U λ= ∑?=??∑ 其中: h 称为脉冲响应函数它表示当P 处有一点源时,在观察点Q 处接收到的复振幅分布。 表示孔径中一点在观察平面上的响应,因而 h (x ,y ) 也称为 点扩展函数。 4. 空间滤波, 高通滤波, 低通滤波, 带通滤波,振幅滤波, 位相滤波; 空间滤波:利用透镜的傅里叶变换特性,把透镜作为频谱分析仪,改变物体的频谱结构从而改变像的结构。 高通滤波: 通高频信号阻低频信号,滤除频谱中的低频部分,增强模糊图像的边缘,提高对图像的识别能力, 实现衬度反转;能量损失较大,输出结果一般较暗。 低通滤波:通低频信号阻高频信号,用于消除图像中的高频噪声和周期性网格。 带通滤波:利用信号能量集中的频带不同,选择某些频谱分量通过,阻挡另一些分量。 振幅滤波:仅改变各频率成分的相对振幅分布,不改变其位相分布。 位相滤波:仅改变各频率成分的相对位相分布,不改变其相对振幅分布。 5. 光波的复振幅,平面波的空间频率,平面波的角谱; 一般描述: ()()()]ex p[0P j P U P U ?= 单色平面波光场 : 单色球面波光场: λ αcos =u λ βcos =v ?? ? ???+= )(exp )exp(),(22y x z 2k j jkz z j 1 y x h λ]ex p[)(0 jkr r U P U ±= ? ?2 20 k U )] (2ex p[),(vy ux j A y x U +=π二维]2ex p[)(ux j A x U π= 一维

相关文档
最新文档