递推法

递推法
递推法

(完整版)已知数列递推公式求通项公式的几种方法

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2 n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。

由递推公式求通项公式的方法

由递推公式求通项公式的方法 已知数列的递推公式,求取其通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,构造的技巧性也很强,但是此类题目也有很强的规律性,存在着解决问题的通法,本文就高中数学中常见的几类题型从解决通法上做一总结,方便于学生学习和老师的教学,不涉及具体某一题目的独特解法与技巧。 一、1()n n a a f n +=+型数列,(其中()f n 不是常值函数) 此类数列解决的办法是累加法,具体做法是将通项变形为1()n n a a f n +-=,从而就有 21321(1),(2),,(1).n n a a f a a f a a f n --=-=-=- 将上述1n -个式子累加,变成1(1)(2)(1)n a a f f f n -=+++- ,进而求解。 例1. 在数列{}n a 中,112,21,.n n n a a a n a +==+-求 解:依题意有 213211,3,,23n n a a a a a a n --=-=-=- 逐项累加有221(123)(1)1323(1)212n n n a a n n n n +---=+++-= =-=-+ ,从而223n a n n =-+。 注:在运用累加法时,要特别注意项数,计算时项数容易出错. 变式练习:已知{}n a 满足11=a ,) 1(11+=-+n n a a n n ,求}{n a 的通项公式。 二、)(1n f a a n n ?=+型数列,(其中()f n 不是常值函数) 此类数列解决的办法是累积法,具体做法是将通项变形为1()n n a f n a +=,从而就有 32121 (1),(2),,(1)n n a a a f f f n a a a -===- 将上述1n -个式子累乘,变成1 (1)(2)(1)n a f f f n a =???- ,进而求解。 例2. 已知数列{}n a 中11123,(2)321 n n n a a a n n --==?≥+,求数列{}n a 的通项公式。

递推公式求通项公式的几种方

由递推公式求通项公式的常用方法 由数列的递推公式求通项公式是高中数学的重点问题,也是难点问题,它是历年高考命题的热点题。对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。 方法一:累加法 形如a n +1-a n =f (n )(n =2,3,4,…),且f (1)+f (2)+…+f (n -1)可求,则用累加法求a n 。有时若不能直接用,可变形成这种形式,然后利用这种方法求解。 例1:(07年北京理工农医类)已知数列{a n }中,a 1=2,a n +1=a n +cn (c 是常数,n =1,2,3,…)且a 1,a 2,a 3成公比不为1的等比数列 (1)求c 的值 (2)求{a n }的通项公式 解:(1)a1,a2,a3成公比不为1的等比数列 2 022)2(2)() ,3,2,1(111113 12 2===++?=+∴=+=?=∴+c c a c c a a c a n cn a a a a a n n 因此(舍去)或解得又 (2)由(1)知n a a n a a n n n n 2,211=-+=++即,将n =1,2, …,n -1,分别代入 ) 1(2322 2121342312-=-?=-?=-?=--n a a a a a a a a n n 将上面n -1个式子相加得a n -a 1=2(1+2+3+…+n -1)=n 2 -n 又a 1=2,a n =n 2 -n +2 方法二:累乘法 形如 a n +1 a n =g (n )(n =2,3,4…),且f (1)f(2)…f (n -1)可求,则用累乘法求a n .有时若不能直接用,可变形成这种形式,然后用这种方法求解。

数列递推公式的九种方法

求递推数列的通项公式的九种方法 利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一. 一、作差求和法 例1 在数列{}中,31 =a , ) 1(11++ =+n n a a n n ,求通项公式. 解:原递推式可化为:1 111 +- + =+n n a a n n 则, 2 11112 -+=a a 3 12123-+ =a a 4 13134-+ =a a ,……,n n a a n n 1111--+ =-逐项相加得:n a a n 111- +=. 故n a n 14- =. 二、作商求和法 例 2 设数列{}是首项为1的正项数列,且 0)1(12 2 1 =+-+++n n n n a a na a n (n=1,2,3…) ,则它的通项公式是=▁▁▁(2000年高考15题) 解:原递推式可化为: ) ]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0, 1 1+=+n n a a n n 则 ,4 3,32,21342312===a a a a a a ……,n n a a n n 11 -= - 逐项相乘得: n a a n 1 1=,即=n 1. 三、换元法 例3 已知数列{},其中9 13,3421 == a a ,且当n ≥3时, ) (3 1 211----=-n n n n a a a a ,求通项公式(1986年高考文科第八

题改编). 解:设1 1 ---=n n n a a b ,原递推式可化为: } {,3 1 21n n n b b b --=是一个等比数列,9 1 3491312 1 =-= -=a a b ,公比为3 1.故n n n n b b )3 1 ()31(91)31(2211 ==?=---.故n n n a a )3 1 (1=--.由逐差法可得: n n a )3 1(2123-= . 例4已知数列{},其中2,12 1 ==a a ,且当n ≥3时,122 1 =+---n n n a a a ,求通项公式。解 由122 1 =+---n n n a a a 得:1)()(2 1 1 =------n n n n a a a a ,令1 1 ---=n n n a a b ,则上式为12 1 =---n n b b ,因此是一个等差数列,1121=-=a a b ,公差为1.故n b n =.。 由于112312121-=-++-+-=+++--n n n n a a a a a a a b b b ΛΛ 又2 )1(12 1 -= +++-n n b b b n Λ 所以)1(2 1 1-= -n n a n ,即)2(2 12 +-= n n a n 四、积差相消法 例5设正数列,,…,,…满足2 -n n a a 2 1---n n a a = ) 2(≥n 且11 ==a a ,求的通项公式. 解 将递推式两边同除以2 1--n n a a 整理得:122 1 1=----n n n n a a a a 设= 1 -n n a a ,则0 11 a a b = =1,1 21=--n n b b ,故有 1 212=-b b ⑴122 3 =-b b ⑵ … … … …

由递推公式求通项的9种方法经典汇总

由递推公式求通项的9种方法经典汇总

————————————————————————————————作者:————————————————————————————————日期:

精析由递推公式求通项的9种方法 1.a n +1=a n +f (n )型 把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1). [例1] 已知数列{a n }满足a 1=12,a n +1=a n +1n 2+n ,求a n . [解] 由条件,知a n +1-a n =1n 2+n =1n (n +1)=1n -1n +1 ,则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=????1-12+????12-13+????13-14+…+? ?? ??1n -1-1n , 所以a n -a 1=1-1n . 因为a 1=12,所以a n =12+1-1n =32-1n . 2.a n +1=f (n )a n 型 把原递推公式转化为a n +1a n =f (n ),再利用累乘法(逐商相乘法)求解,即由a 2a 1=f (1),a 3a 2=f (2),…,a n a n -1 =f (n -1),累乘可得a n a 1=f (1)f (2)…f (n -1). [例2] 已知数列{a n }满足a 1=23,a n +1=n n +1·a n ,求a n . [解] 由a n +1=n n +1 ·a n ,得a n +1a n =n n +1, 故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ×n -2n -1 ×…×12×23=23n .即a n =23n . 3.a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)型 对于此类问题,通常采用换元法进行转化,假设将递推公式改写为a n +1+t =p (a n +t ),比较系数可知t = q p -1 ,可令a n +1+t

常见递推数列通项公式求法(教案)

问题 1:已知数列{a } , a 1 = 1 , a n +1 = n + 2 ,求{a n }的通项公式。 2 常见递推数列通项公式的求法 一、课题:常见递推数列通项公式的求法 二、教学目标 (1)会根据递推公式求出数列中的项,并能运用叠加法、叠乘法、待定系数 法求数列的通项公式。 (2) 根据等差数列通项公式的推导总结出叠加法的基本题型,引导学生分 组合作并讨论完成叠乘法及待定系数法的基本题型。 (3)通过互助合作、自主探究培养学生细心观察、认真分析、善于总结的良 好思维习惯,以及积极交流的主体意识。 三、教学重点:根据数列的递推关系式求通项公式。 四、教学难点:解题过程中方法的正确选择。 五、教学课时: 1 课时 六、教学手段:黑板,粉笔 七、教学方法: 激励——讨论——发现——归纳——总结 八、教学过程 (一)复习回顾: 1、通项公式的定义及其重要作用 2、区别递推公式与通项公式,从而引入课题 (二)新知探究: a n 变式: 已知数列 {a n } , a 1 = 1 , a n +1 = a n + 2n ,求{a n }的通项公式。 活动 1:通过分析发现形式类似等差数列,故想到用叠加法去求解。教师引导学 生细致讲解整个解题过程。 解:由条件知: a n +1 - a = 2n n 分别令 n = 1,2,3,? ? ? ? ??,(n - 1) ,代入上式得 (n - 1) 个 等式叠加之, 即 (a 2 - a 1 ) + (a 3 - a 2 ) + (a 4 - a 3 ) + ? ? ? ? ? ? +(a n - a n -1 ) = 2 + 2 ? 2 + 2 ? 3 + 2 ? (n - 2) + 2 ? (n - 1) 所以 a - a = (n - 1)[2 + 2 ? (n - 1)] n 1 a = 1,∴ a = n 2 - n + 1 1 n

线性代数 递推公式法(行列式例题)

TH1: 5 1 010 6 51000 6500 06010 00152=D 展开 按第二列5 10 06510065 0006 1-6 510065*********- 3655 106510 65?-=1145108065-=--= 提取公因子: ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf --- =1 1 1 111 1 11 ---adfbce =abcdef 4 化上三角形: d c b a 10 1 10011001---21ar r +d c b a ab 100110011 010---+ =1 2) 1)(1(+--d c a ab 10110 1--+ 2 3dc c +0 10 111-+-+cd c ad a a b =2 3) 1)(1(+--cd ad ab +-+111=1++++ad cd ab abcd

递推法: n n n n n d c d c b a b a D 0 1 1 112 = n n n n n n d d c d c b a b a a 000000 1111 11 11 ---- 展开 按第一行 00 0) 1(11 1 1111 1 1 2c d c d c b a b a b n n n n n n n ----+-+ 2222---n n n n n n D c b D d a 都按最后一行展开 由此得递推公式: 222)(--=n n n n n n D c b d a D 即 ∏=-=n i i i i i n D c b d a D 222)( 而 11111 11 12c b d a d c b a D -==

数列的几种递推公式

数列的几种递推公式 一、 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1:已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 二、 n n a n f a )(1=+ 解法:把原递推公式转化为)(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足321=a ,n n a n n a 1 1+= +,求n a 。

例3:已知31=a ,n n a n n a 2 31 31+-=+ )1(≥n ,求n a 。 解:1231 32231232)2(31)2(32)1(31)1(3a n n n n a n +-?+?-??????+---?+---= 3437 52633134 8531n n n n n --= ????=---。 变式:已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2),则 {a n }的通项1 ___n a ?=?? 12n n =≥ 解:由已知,得n n n na a n a a a a +-+???+++=-+13211)1(32, 用此式减去已知式,得 当2≥n 时,n n n na a a =-+1,即n n a n a )1(1+=+, 又112==a a , n a a a a a a a a a n n =???====∴-1 3423121,,4,3,1, 1, 将以上n 个式子相乘,得2 ! n a n =)2(≥n 三、 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元法转化为等比数列求解。

求递推数列通项公式和求和的常用方法

求递推数列通项公式和求和的常用方法 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为中学中所研究的等差或等比数列,下面就求递推数列通向公式的常用方法举例一二,供参考: 一 公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有1n n n a S S -=-(2)n ≥,等差数列或等比数列的通项公式。 例一 已知无穷数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项公式? 【解析】: 1n n S a =-,∴ 111n n n n n a S S a a +++=-=-,∴ 112n n a a +=,又112a =, ∴ 12n n a ??= ??? . 反思:利用相关数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设条件,建立递推关系,是本题求解的关键. 跟踪训练1.已知数列{}n a 的前n 项和n S ,满足关系()1lg n S n +=(1,2)n =???.试证数列{}n a 是等比数列. 二 归纳法:由数列前几项用不完全归纳猜测出数列的通项公式,再利用数学归纳法证明其正确性,这种方法叫归纳法. 例二 已知数列{}n a 中,11a =,121(2)n n a a n -=+≥,求数列{}n a 的通项公式. 【解析】:11a =,121(2)n n a a n -=+≥,∴2121a a =+3=,3221a a =+7=???? 猜测21n n a =-*()n N ∈,再用数学归纳法证明.(略) 反思:用归纳法求递推数列,首先要熟悉一般数列的通项公式,再就是一定要用数学归纳法证明其正确性. 跟踪训练2.设{}n a 是正数组成的数列,其前n 项和为n S ,并且对于所有自然数n ,n a 与1的等差中项等于n S 与1的等比中项,求数列{}n a 的通项公式. 三 累加法:利用1211()()n n n a a a a a a -=+-+???-求通项公式的方法称为累加法。累加法是求型如1()n n a a f n +=+的递推数列通项公式的基本方法(()f n 可求前n 项和). 例三 已知无穷数列{}n a 的的通项公式是12n n a ??= ??? ,若数列{}n b 满足11b =,(1)n ≥,求数列{}n b 的通项公式. 【解析】:11b =,112n n n b b +??-= ??? (1)n ≥,∴1211()()n n n b b b b b b -=+-+???-=1+12+??+

3.3递推法解题

§3.3递推法解题 基础知识 对于某些与自然数有关的问题,我们有时可以用递推法解决,扎谓用递推法解题,就是根据题目的特点,构造出递推关系解题的一种方法,解决问题的关键在于构造递推关系。递推关系一般可以用归纳、猜想等途径获得。 利用递推法解题的一般步骤为:(1)确定初始值;(2)建立递推关系;(3)利用递推关系求通项。 递推方法是人们从开始认识数量关系时就很自然地产生的一种推理思想.例如自然数中 最小的数是1,比1大1的数是2,接下来比2大1的数是3,…由此得到了自然数数列:1,2,3,4,5,….在这里实际上就有了一个递推公式,假设第n个数为a n,则a n+1=a n+1;即由自然数中第n个数加上1,就是第n+1个数。由此可得a n+2=a n+1+1,这样就可以得到自然数数列中任何一个数. 再看一个例子: 平面上5条直线最多能把圆的内部分成几部分?平面上100条直线最多能把圆的内部分成几部分? 解:假设用a k表示k条直线最多能把圆的内部分成的部分数.这里k=0,1,2,…. a0=1 a1=a0+1=2 a2=a1+2=4 a3=a2+3=7 a4=a3+4=11 … 归纳出递推公式a n+1=a n+n. (1) 即画第n+1条直线时,最多增加n部分.原因是这样的:第一条直线最多把圆分成两部分,故a1=2.当画第二条直线时要想把圆内部分割的部分尽可能多,就应 和第一条直线在圆内相交,交点把第二条直线在圆内部分分成两条线段,而每条线 段又把原来的一个区域划分成两个区域,因而增加的区域数是2,正好等于第二条 直线的序号.同理,当画第三条直线时,要想把圆内部分割的部分数尽可能多,它就应和前两条直线在圆内各有一个交点.两个交点把第三条线在圆内部分成三条线段. 而每条线段又把原来一个区域划分成两个区域.因而增加的区域部分数是3,正好等 于第三条直线的序号,….这个道理适用于任意多条直线的情形.所以递推公式(1) 是正确的.这样就易求得5条直线最多把圆内分成: a5=a4+5=11=5=16(部分)。 要想求出100条直线最多能把圆内分成多少区域,就去求通项公式。 一般来说,如果一个与自然数有关的数列中的任一项a n可以由它前面的k(≤n-1)项经过运算或其他方法表示出来,我们就称相邻项之间有递归关系,并称这个数列为递归数列.

由递推公式求通项的9种方法经典总结

精析由递推公式求通项的9种方法 1.a n +1=a n +f (n )型 把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1). [例1] 已知数列{a n }满足a 1=1 2,a n + 1=a n +1 n 2 +n ,求a n . [解] 由条件,知a n +1-a n =1 n 2+n = 1nn +1=1n -1 n +1 ,则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=? ????1-12+? ??? ?12-13+? ????13-14+…+? ?? ???1n -1-1n , 所以a n -a 1=1-1n .

因为a 1=12,所以a n =12+1-1n =32-1 n . 2.a n +1=f (n )a n 型 把原递推公式转化为a n +1 a n =f (n ),再利用累乘法(逐商相乘法) 求解,即由a 2a 1=f (1),a 3a 2=f (2),…,a n a n -1=f (n -1),累乘可得a n a 1= f (1)f (2)…f (n -1). [例2] 已知数列{a n }满足a 1=2 3,a n + 1=n n +1 ·a n ,求a n . [解] 由a n +1=n n +1·a n ,得a n +1a n = n n +1 , 故a n =a n a n -1·a n -1a n -2·…·a 2 a 1 ·a 1=n -1n × n -2n -1×…×12×23=23n .即a n =2 3n . 3.a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)型

递推数列通项公式求法(教案设计)

递推数列通项公式的求法 彭山一中 郑昌建 一、课题:常见递推数列通项公式的求法 二、教学目标 1、知识与技能: 会根据递推公式求出数列中的项,并能运用累加、累乘、待定系数等方法求数列的通项公式。 2、过程与方法: ①复习回顾所学过的通项公式的求法,对比递推公式与通项公式区别认识到由递推公式求通项公式的重要性,引出课题。 ②对比等差数列的推导总结出累加法的试用题型。 ③学生分组讨论完成累乘法及待定系数法的相关题型。 3、情感态度与价值观: ①通过对数列的递推公式的分析和探究,培养学生主动探索、勇于发现的求知精神; ②通过对数列递推公式问题的分析和探究,使学生养成细心观察、认真分析、善于总结的良好思维习惯; ③通过互助合作、自主探究等课堂教学方式培养学生认真参与、积极交流的主体意识。 三、教学重点:根据数列的递推关系式求通项公式。 四、教学难点:解题过程中方法的正确选择。 五、教学课型,课时:复习课 1课时 六、教学手段:多媒体课件,黑板,粉笔 七、教学方法: 激励——讨论——发现——归纳——总结 八、教学过程 (一)复习回顾: 1、通项公式的定义及其重要作用 2、学过的通项公式的几种求法 3、区别递推公式与通项公式,从而引入课题 (二)新知探究: 问题1:已知数列}{n a ,1a =1,1n a +=n a +2,求n a ? 变式: 已知数列}{n a ,1a =1,1n a +=n a +2n ,求n a ?

活动:通过分析发现形式类似等差数列,故想到用累加法去求解。教师引导学生细致讲解整个解题过程。 解:由条件知:n a a n n 21=-+ 分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之, 即)()()()(1342312--+??????+-+-+-n n a a a a a a a a )1(2)2(232222-?+-?+?+?+=n n 所以[]2)1(22)1(1-?+-=-n n a a n 由 1a =1,12+-=∴n n a n 练习: 已知数列}{n a ,1a =1,n n n a a 2 11=-+,求n a ? 总结:类型1:)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 问题2: 已知数列{a n }满足)(,2,111*+∈==N n a a a n n ,求{a n }的通项公式。 变式:若条件变为)(,21*+∈=N n a a n n n 方法归纳:利用累乘法求数列通项 活动:类比类型1推导过程,让学生分组讨论研究相关解题方案。 解:1342312-??????????n n a a a a a a a a 1 2212222--??=n n 即) 1()2(2112-+-+++=n n n a a 练习: 已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 总结:类型2型如 用累乘法求解 问题3: 已知数列{a n }满足)(,12,111*+∈+==N n a a a n n ,求{a n }的通项公式。 发现:)1(21,112111+=+++=+++n n n n a a a a 即 令b n =a n +1,则b n+1=a n+1+1 即21=+n n b b ) (1n f a a n n ?=+222n n n a -=∴2=++∴ +11n 1n a a

最全的递推数列求通项公式方法

高考递推数列题型分类归纳解析 各种数列问题在很多情形下,就是对数列通项公式的求解。特别是在一些综合性比较 强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。本文总结出几种求解数列通项公式的方法,希望能对大家有帮助。 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 解:由条件知:1 1 1)1(1121+-=+=+= -+n n n n n n a a n n 分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之,即 )()()()(1342312--+??????+-+-+-n n a a a a a a a a )111()4131()3121()211(n n --+??????+-+-+-= 所以n a a n 1 11-=- 211=a ,n n a n 1231121-=-+=∴ 变式:(2004,全国I ,个理22.本小题满分14分) 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5; (II )求{ a n }的通项公式. 解: k k k a a )1(122-+=-,k k k a a 3212+=+ ∴k k k k k k a a a 3)1(312212+-+=+=-+,即k k k k a a )1(31212-+=--+ ∴)1(313-+=-a a , 2235)1(3-+=-a a …… …… k k k k a a )1(31212-+=--+ 将以上k 个式子相加,得 ]1)1[(2 1 )13(23])1()1()1[()333(22112--+-=-+???+-+-++???++=-+k k k k k a a 将11=a 代入,得

递推公式求数列通项的八大常见形式

新课标高考由递推公式求数列通项的八大常见形式对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列称辅助数列法。 1.递推公式为%严戸耳+4 (其中P, q均为常数,吩 解法:把原递推公式转化为:g 7 = pg- f) 其中1-P ,再利用换元法转化为等比数列求解。 例1.已知数列但J中,码=h為+1 = 2巧+亠求叭。 2. 8 =也+朋皿型递推式 可构造为形如口”】+几申+凡3 = ^[叭+凡1(稈-1)+^』的等比数列。 3 r \ ^1 二_ 1 2&衬—1 —6料—3 例5.在数列I口』中, 2 ' ,求通项公式^*。 解:原递推式可化为2(叭+几严+几2)二碍_1+几103-1)+无,比较系数可得:几1=-6 2 丄 2,公比为2 3. 口乂+】=儿^严y(A、B、C为常数,下同)型递推式 类型4递推公式为%】=戸耳+0 (其中P , q均为常数, )。 如_戸,玉+丄 J十1 - 」宀)。 无二9 ,上式即为2虬二如十仮}是一个等比数列,首项俎二口1-6乳 "厂(卜+切-9 ,故2为所求。 (1)可构造为形如^-1+ A ? C*L =月(务 +1 CJ的等比数列。

(2)可构造为形如目9 7 9

b — g” 引入辅助数列(其中* / ),得: 再应用类型1的方法解决。 例1.已知数列⑺」中, ,求"*。 例2.已知数列中, (P 、 4*2 =p W+l +q ^ 毗-庄如=P (4* 1- & a ? )? { 4*1-空"讯}是 G.P 特殊地如=?如勿耳(?+g=i )型 分析:;p+gi q 均为常数)(二阶递归) a + ^ = p ?G0 = -g 解出庄、 0因此 = 0-切如+吗二如-?(如-% "卧厂磚報二-g?厂。罷 备1-陽 ???仏+17}是以幻5为首项,公比为一 g 的等比数列 例1、'1 = °,砌二1,陽=纭-厂纽4 S>3),求q 5 5 2 例 2: ai=1, a2= 3 4+2月心*1- ?如,求数列{心}的通项公式兔f 。

求前n项和的方法和由递推公式求通项公式的方法

数列求和的基本方法和技巧 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n )12)(1(6112++==∑=n n n k S n k n 2 1 3)]1(21[+==∑=n n k S n k n [例1] 已知3 log 1 log 23-=x ,求数列{x n }的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列. [例3] 求和:1 3 2 )12(7531--+???++++=n n x n x x x S (注意讨论)

[例4] 求数列??????,2 2,,26,24,2232n n 前n 项的和. 三、倒序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 2 2 2 2 2++???+++的值 四、分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231 ,,71,41,1112-+???+++-n a a a n ,…(注意讨论)

由递推公式求通项的9种方法经典总结

精析由递推公式求通项的9种方法 1.a n +1=a n +f (n )型 把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1). [例1] 已知数列{a n }满足a 1=12,a n +1=a n +1 n 2+n ,求a n . [解] 由条件,知a n +1-a n = 1n 2+n =1n n +1=1n -1n +1 ,则(a 2 -a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=? ????1-12+? ????12-13+? ??? ? 13-14+…+? ???? 1n -1-1n , 所以a n -a 1=1-1n . 因为a 1=12,所以a n =12+1-1n =32-1 n . 2.a n +1=f (n )a n 型 把原递推公式转化为a n +1 a n =f (n ),再利用累乘法(逐商相乘法)求 解,即由a 2a 1=f (1),a 3a 2=f (2),…,a n a n -1=f (n -1),累乘可得a n a 1= f (1)f (2)…f (n -1).

[例2] 已知数列{a n}满足a1=2 3,a n+1= n n+1 ·a n,求a n. [解] 由a n+1= n n+1 ·a n,得 a n+1 a n = n n+1 , 故a n= a n a n-1 · a n-1 a n-2 ·…· a2 a1 ·a1= n-1 n × n-2 n-1 ×…× 1 2 × 2 3 = 2 3n .即 a n=2 3n . 3.a n+1=pa n+q(其中p,q均为常数,pq(p-1)≠0)型 对于此类问题,通常采用换元法进行转化,假设将递推公式改写 为a n+1+t=p(a n+t),比较系数可知t= q p-1 ,可令a n+1+t=b n+1换 元即可转化为等比数列来解决. [例3] 已知数列{a n}中,a1=1,a n+1=2a n+3,求a n. [解] 设递推公式a n+1=2a n+3可以转化为a n+1-t=2(a n-t),即a n+1=2a n-t,则t=-3. 故递推公式为a n+1+3=2(a n+3). 令b n=a n+3,则b1=a1+3=4,且b n+1 b n = a n+1+3 a n+3 =2. 所以{b n}是以b1=4为首项,2为公比的等比数列.所以b n=4×2n-1=2n+1,即a n=2n+1-3. 4.a n+1=pa n+q n(其中p,q均为常数,pq(p-1)≠0)型

求递推数列通项公式的常用方法归纳

求递推数列通项公式的常用方法归纳 目录 一、概述·································· 二、等差数列通项公式和前n项和公式·································· 1、等差数列通项公式的推导过程································ 2、等差数列前n项和公式的推导过程·································· 三、一般的递推数列通项公式的常用方法·································· 1、公式法·································· 2、归纳猜想法·································· 3、累加法·································· 4、累乘法·································· 5、构造新函数法(待定系数法)·································· 6、倒数变换法·································· 7、特征根法·································· 8、不动点法································· 9、换元法································· 10、取对数法·································· 11、周期法··································

线性代数 递推公式法(行列式例题)

5 1 010 6 51000 6500 06010 00152=D 展开 按第二列5 10 06510065 0006 1-6 510065*********- 3655 106510 65?-=1145108065-=--= 提取公因子: ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf --- =1 1 1 111 1 11 ---adfbce =abcdef 4 化上三角形: d c b a 10 1 10011001---21ar r +d c b a ab 100110011 010---+ =1 2) 1)(1(+--d c a ab 10110 1--+ 2 3dc c +0 10 111-+-+cd c ad a a b =2 3) 1)(1(+--cd ad ab +-+111=1++++ad cd ab abcd

n n n n n d c d c b a b a D 0 1 1 112O N N O = n n n n n n d d c d c b a b a a 00 0000 111 111 1 1 ----Λ O N M N O 展开 按第一行 00 0) 1(11 1 1111 1 1 2c d c d c b a b a b n n n n n n n ----+-+O N N O 2222---n n n n n n D c b D d a 都按最后一行展开 由此得递推公式: 222)(--=n n n n n n D c b d a D 即 ∏=-=n i i i i i n D c b d a D 222)( 而 11111 11 12c b d a d c b a D -==

根据递推公式,求数列通项公式的常用方法总结归纳

求递推数列通项公式的常用方法归 纳 目录 一、概述·································· 二、等差数列通项公式和前n项和公式·································· 1、等差数列通项公式的推导过程································ 2、等差数列前n项和公式的推导过程·································· 三、一般的递推数列通项公式的常用方法·································· 1、公式法·································· 2、归纳猜想法·································· 3、累加法·································· 4、累乘法·································· 5、构造新函数法(待定系数法)·································· 6、倒数变换法·································· 7、特征根法·································· 8、不动点法································· 9、换元法································· 10、取对数法·································· 11、周期法··································

递推公式求数列通项的八大常见形式

新课标高考由递推公式求数列通项的八大常见形式 对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列称辅助数列法。 1.递推公式为(其中p,q均为常数,)。解法:把原递推公式转化为: 其中,再利用换元法转化为等比数列求解。 例1. 已知数列中,,求。 2.型递推式 可构造为形如的等比数列。 例5. 在数列中,,求通项公式。 解:原递推式可化为,比较系数可得:, ,上式即为是一个等比数列,首项 ,公比为。 所以。 即,故为所求。 3. (A、B、C为常数,下同)型递推式 (1)可构造为形如的等比数列。 类型 4 递推公式为(其中p,q均为常数, )。 (2)可构造为形如

引入辅助数列(其中),得: 再应用类型1的方法解决。 例1. 已知数列中,,求。 例2. 已知数列中,,求。 4.=p+q (p、q均为常数)(二阶递归) =p+q-=(-)∴解出、因此 {-}是G.P 型 特殊地 分析:∵ ∴ ∴是以为首项,公比为的等比数列 例1、,,,求 例2:a1=1,a2==-,求数列{}的通项公式。

-=(-)解得:=1、= -=(-), a2-a1= ∴-=∴=(-)+ (-)+┈+(a2-a1)+a1=++┈++1=3-. ∴=3- 5.等差数列: 由此推广成差型递推关系: 累加: =,于是只要可以求和就行。 递推公式为 解法:把原递推公式转化为, (特殊情形:⑴.(差后等差数列)⑵(差后等比数列))利用累加法求解。 例1.已知{}满足,且,求 例2.已知{}满足,且,求 例3.已知{}满足,且,求 例4. 已知数列满足,求。 6.等比数列:递推公式为 累乘: 类型2递推公式为

相关主题
相关文档
最新文档