材料概论陶瓷

材料概论陶瓷
材料概论陶瓷

选修课《材料概论》期末考试

论文撰写

陶瓷材料概论

专 业 财务管理 学 号 0904080224 学生姓名 黄胜平 提交日期

2012年6月10日

广东白云学院

2011-2012

第一学期

内容摘要

陶瓷是以粘土为主要原料以及各种天然矿物经过粉碎混炼、成型和煅烧制得的材料以及各种制品。陶瓷产品的应用范围遍及国民经济各个领域。它的发展经历了从简单列复杂、从粗糙到精细、从无油到施釉、从低温到高温的过程。它具有高熔点、高硬度、高耐磨性、耐氧化等优点,可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料,在现在宇航、国防等高科技领域得到越来越广泛的应用。

关键词:陶瓷发展功能材料

目录

一、陶瓷材料的发展过程 (4)

(一)传统陶瓷阶段 (4)

(二)先进陶瓷阶段 (4)

(三)纳米陶瓷阶段 (5)

二、陶瓷材料的分类 (5)

(一)普通陶瓷 (5)

(二)特种陶瓷 (5)

1.氰化铝陶瓷 (6)

2.氮化硅陶瓷 (6)

3.碳化硅陶瓷 (6)

4.氮化硼陶瓷 (6)

三、陶瓷材料的运用及其发展 (6)

参考文献 (7)

陶瓷材料概述

一、陶瓷材料的发展过程

我国的陶瓷研究历史悠久、成就辉煌,它是中华文明的伟大象征之一,在我国的文化和发展史上占有极其重要的地位。作为中华民族文化之一的陶瓷文化,在民族母体中孕育、成长与发展,它表现着民族文化,展现着广阔的社会生活画卷,记录着芸芸众生的悲欢离合,描述着民族的心理、精神和性格的发展与变化,伴随着民族的喜与悲而前行。陶瓷的研究进程分为三个阶段:传统陶瓷阶段、先进陶瓷阶段、纳米陶瓷阶段。

(一)传统陶瓷阶段

传统陶瓷材料的发展可以用五个里程碑和三个技术突破来概括。五个里程碑:新石器时代早期陶器的出现;商周时代印纹硬陶和原始瓷的烧制成功;汉晋时代南方青釉瓷的诞生;隋唐时期北方白釉瓷的突破;宋到清代颜色釉瓷和彩绘瓷的辉煌成。纵观这五个里程碑是既继承又发展。清楚地描绘了我国陶瓷工艺的发展过程。上面提到五个里程碑之所以能随着历史的进展逐一得到实现,全赖在制瓷技术上不断取得重大突破。归纳起来不外以下三个重大技术突破:第一个重大技术突破原料的选择和精制。陶瓷所用的原料都是就地取材。但在制陶过程中,起初可能只经过寻找选择。后来逐渐懂得去除杂质,最后发展到粉碎淘选而达到精制的目的。第二个重大技术突破窑炉的改进和烧成温度的提高。窑炉的改进是从无窑堆烧到挖地为窑的穴窑,然后再发展到带有烟囱的室形窑和龙窑。第三个重大技术突破釉的形成和发展。中国瓷釉从商前时期到清代,逐步发展提高而达到丰富多采的境地。所以说,一部中国陶瓷史,就是一部形象的中国历史,一部形象的中国民族文化史。

(二)先进陶瓷阶段

20世纪以来,随着人类对宇宙的探索、原子能工业的兴起和电子工业的迅速发展,从性质、品种到质量等方面,对陶瓷材料均提出越来越高的要求。从而,促使陶瓷材料发展成为一系列具有特殊功能的无机非金属材料。如氧化物陶瓷、压电陶瓷、金属陶瓷等各种高温和功能陶瓷。陶瓷研究进入了第二个阶段一一先进陶瓷阶段。在先进陶瓷阶段,采用的原料已不再使用或很少使用私土等传统原料,而已扩大到化工原料

和合成矿物,甚至是非硅酸盐、非氧化物原料,组成范围也延伸到无机非金属材料范围。此时可认为,广义的陶瓷概念已是用陶瓷生产方法制造的无机非金属固体材料和制品的统称。这一阶段的先进陶瓷,无论从原料、显微结构中所体现的晶粒、晶界、气孔、缺陷等在尺度上还只是处在微米级的水平,故又可称之为微米级先进陶瓷。先进陶瓷材料的性能很高的物理性能(压电,热电)具备高强在国防、、高硬、耐磨、稳定、综合工业、宇航、电子等方面使用量较大,还广泛用于生物医用领域和日常生活中。

(三)纳米陶瓷阶段

所谓纳米陶瓷,是指显微结构中的物相就有纳米级尺度的陶瓷材料。它包括晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸等均在纳米量级的尺度上。纳米陶瓷是当今陶瓷材料研究中一个十分重要的发展趋向,它将促使陶瓷材料的研究从工艺到理论、从性能到应用都提高到一个崭新的阶段。

二、陶瓷材料的分类

随着生产与科学技术的发展,陶瓷材料及产品种类日益增多,通常以不同的角度加以分类。我将从普通陶瓷(传统陶瓷)和特种陶瓷(现代陶瓷)来进行划分。

(一)普通陶瓷

普通又称传统陶瓷、粘土陶瓷。这种陶瓷以天然硅酸盐矿物,如粘土、长石、石英等为主要原料配制、烧结而成的,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟。它的硬度高,不会氧化生锈,不导电,耐1200℃高温,加工成型性好,成本低廉。玻璃相较多,强度较低,在较高温度下易软化,故耐高温及绝缘性不及其它陶瓷。主要用于日用、建筑、电绝缘、化工等方面。

(二)特种陶瓷

特种陶瓷也叫现代陶瓷、精细陶瓷。特种陶瓷包括特种结构陶瓷和功能陶瓷两大类,如压电陶瓷、磁性陶瓷、电容器陶瓷、高温陶瓷等。按陶瓷的主要组成分:氧化铝陶瓷;氮化硅陶瓷;碳化硅陶瓷;氮化硼陶瓷。

1.氰化铝陶瓷

氧化铝陶瓷的强度高,是普通陶瓷的2~6倍;耐磨性好,硬度次于金刚石;耐高温性能好,刚玉陶瓷可在1600℃下长期工作,在空气中的最高使用温度达1980℃;耐腐蚀性和绝缘性好,但是脆性大,抗热振性差,不能承受环境温度的突然变化。

2.氮化硅陶瓷

氮化物陶瓷一般具有比氧化物更高的熔点。主要用于耐磨、耐高温,耐腐蚀,形状复杂且尺寸精度高的制品。如石油化工泵的密封环、高温轴承、热电偶套管、燃气轮机转子叶片等。

3.碳化硅陶瓷

碳化硅陶瓷有反应烧结和热压烧结两种碳化硅陶瓷。它的有很好的导热性、热稳定性、抗蠕变能力、耐磨性、耐蚀性,且耐辐射,是良好的高温结构材料,主要用于制作火箭喷管的喷嘴,浇注金属的浇道口、热电偶套管、炉管,燃气轮叶片,高温轴承,热交换器及核燃料包封材料等。

4.氮化硼陶瓷

它有有白石墨之称,具有良好的耐热性和导热性,热导率与不锈钢相当。硬度较其它陶瓷低,可切削加工,有自润滑性,耐磨性好。

三、陶瓷材料的运用及其发展

随着尖端科学技术的飞跃发展,陶瓷所用的主要原料不再是粘土,长石,石英,有的坯休也使用一些粘土或长石,然而更多的是采用纯粹的氧化物和具有特殊性能的原料,制造工艺与性能要求也各不相同。特种陶瓷是不断发展的产物,随着人们需求的增长,特种陶瓷材料的类型越来越多。特种陶瓷性能好、应用广、发展快,在各个领域均被广泛应用,例如在原子能反应堆的He高温气体炉可用作压力容器、热交换器和其它管道内部的隔热材料,陶瓷纤维除在喷气机上用作气体导管的隔热材料外,还可用作宇宙飞船液体燃料箱的隔热材料,还可作为宇航的增强材料,在减少汽车对大气污染方面,对废气进行催化处理,陶瓷纤维可作为催化剂载体。生物技术陶瓷材料已用于牙科医学,广泛应用于矫正医术。由氧化铝和陶瓷合成的材料,已能适应各种医疗要求。

陶瓷制品生产在中国历史悠久,经过长期的发展,制造工艺得到不断发展。特别是近二十年来,陶瓷制品发展前景广阔,例如,根据陶瓷电学性质的差异可制成导电陶瓷、半导体陶瓷、介电陶瓷、绝缘陶瓷等电子材料,用于制作电容器、电阻器、电子工业中的高温高频器件,变压器等形形色色的电子零件。利用陶瓷的光学性能可制

造固体激光材料、光导纤维、光储存材料及各种陶瓷传感器。此外,陶瓷还用作压电材料、磁性材料、基底材料等。

参 考 文 献

1.李县辉,孙永安,张永乾 《陶瓷学报》 2003 第2期

2.袁建军,刘智恩,徐晓晖等 中国陶瓷1996;32(3)∶7

3.闫康平,工程材料 化学工业出版社,1998

4.刘燕萍,工程材料 国防工业出版社

5.蒙延芬,张胜男 《新技术新工艺》 2000 第5期

6.袁建军,刘智恩.徐晓晖等.中国陶瓷,1996;32(3)∶7

7.于道成,经幼苹.现代技术陶瓷,1998;增刊∶806

8.程 逵,沈 颌,黄丽平等.现代技术陶瓷,1998;增刊∶801

9.俞前,《特种陶瓷国内市场现状与展望》.北京新材料发展中心2010

(一)家庭养老 (1)

(二)集体养老........................................1 (三)储蓄养老. (2)

(四)社会养老 (2)

二、我国农村养老目前遇到的困难与挑战.....................3 (

一)子女数量减少......................................3 (二) 农村劳动力的转移对农村家庭养老的影响.............3 (三) 农传统价值观念遭遇挑战,孝道观念发生变化.........4 (四)农村经济发展水平的差异导致地区间的养老问题差异较大 4 (五)农村养老方面的法律保障不力........................4 (六)农村养老保险制度存在弊端.........................

5 三、解决我国现阶段农村养老问题的建议.....................

5

(一)继续倡导家庭养老................................5 (二)加大财政支持力度,完善基本养老保险制度..........6 1.加大政府支持力度 (6)

2.公共财政支持。...................................6 3.建立多档次缴费率。. (7)

4.扩大养老保险覆盖面。 (7)

(三)通过立法保障老年人的社会经济权利 (7)

(四)通过老年组织建设,维护老年人合法权益............8 参 考 文 献. (9)

智慧树知到《材料学概论》章节测试答案

智慧树知到《材料学概论》章节测试答案 绪论 1、材料让我们成为人,而我们用语言赋予材料生命,这句话对吗? A:对 B:错 答案:对 2、材料与人类发展:“材料-时代”对吗? A:对 B:错 答案:对 3、“物质-有用的物品就是材料“这句话对吗? A:对 B:错 答案:对 4、材料学的基本思想是? A:尺度之上 B:应用为王 C:物质 答案:尺度之上,应用为王 5、“材料是一种物质,但并不是所有的物质都是材料”这句话对吗? A:对 B:错

答案:对 第一章 1、珠光体的含碳量是 A:0.77% B:2.11% C:6.69% 答案:0.77% 2、亚共析钢加热成奥氏体后冷却转变成 A:珠光体+铁素体 B:珠光体 C:铁素体 答案:珠光体+铁素体 3、将铁碳合金加热成奥氏体后在空气中冷却的热处理方式,称为 A:回火 B:退火 C:淬火 答案:退火 4、生铁、熟铁、钢的主要化学成分均为Fe,但他们之间的性能差别显著,主要原因是其中()不同 A:珠光体含量 B:硬度 C:含碳量 答案:含碳量

5、金属中原子的排列方式 A:面心立方 B:体心立方 C:秘排六方 答案:面心立方,体心立方,秘排六方 第二章 1、生产普通陶瓷的主要矿物原料是 A::石英、粘土、长石 B:高岭土、碳酸盐 C:粘土、石英、烧碱 答案::石英、粘土、长石 2、陶瓷坯料采用可塑成型的方法手工成型时,需要控制其含水量在()范围之内,以保证坯体良好的塑形效果。 A:15~25% B:28~35% C:7~15% 答案:15~25% 3、构成敏感陶瓷的主要物质属于()类。 A:导体 B:绝缘体 C:半导体 答案:半导体

罗杰-材料学概论parper(纳米陶瓷)

纳米陶瓷材料的初步了解 罗杰无机1001 摘要:本文主要介绍了纳米陶瓷材料的制备方法、特性、一些当前的应用和前景 前言 随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服 陶瓷材料的脆性,使陶瓷具有像金属似柔韧性和可加工性。英国材料学家Cahn指出,纳米陶瓷是解决陶瓷脆性的战略途径。纳米耐高温陶瓷粉涂层材料是一种通过化学反应而形成耐高温陶瓷涂层的材料。作为一名无机专业的学生,我认为纳米陶瓷将会是本专业的一个极有前景的发展方向,也可能是将来我们自己所要研究的方向,因此我把自己的short parper 的主题放在了这。 纳米陶瓷的制备 纳米陶瓷的制备工艺主要包括纳米粉体的制备、成型和烧结。目前世界上对纳米陶瓷粉体的制备方法多种多样,其中主要分为两类:物理方法和化学方法。其中物理方法有:惰性气体冷凝法、电子蒸发法、激光剥离法等等;化学方法有:化学气相沉积法、沉淀法、溶胶一凝胶法等等。但应用较广且方法较成熟的主要有气相合成和凝聚相合成2种。 1、气相合成:主要有气相高温裂解法、喷雾转化法和化学气相合成法,这些方法较具实用性。化学气相合成法可以认为是惰性气体凝聚法的一种变型,它既可制备纳米非氧化物粉体,也可制备纳米氧化物粉体。这种合成法增强了低温下的可烧结性,并且有相对高的纯净性和高的表面及晶粒边界纯度。原料的坩埚中经加热直接蒸发成气态,以产生悬浮微粒和或烟雾状原子团。原子团的平均粒径可通过改变蒸发速率以及蒸发室内的惰性气体的压强来控制,粒径可小至3~4nm,是制备纳米陶瓷最有希望的途径之一。 2、凝聚相合成(溶胶一凝胶法):是指在水溶液中加入有机配体与金属离子形成配合物,通过控制PH值、反应温度等条件让其水解、聚合,经

陶瓷有关的书籍

陶瓷工艺学. 马铁成主编中国轻工业出版社2011 陶瓷及其复合材料周张健编著北京理工大学出版社2007 陶瓷生产工艺知识问答张长海编著化学工业出版社2008 现代陶瓷材料及技术曲远方主编华东理工大学出版社2008 陶瓷矿物原料与坯釉配方应用刘属兴, 刘维良, 夏光华编著化学工业出版社2008 陶瓷-金属复合材料-第2版李荣久主编冶金工业出版社2004 陶瓷工艺学张锐主编化学工业出版社2007 陶瓷矿物原料与岩相分析主编刘属兴武汉理工大学出版社2007 陶瓷材料显微结构与性能张金升 ... [等] 编著化学工业出版社2007 陶瓷镀层(日)竹田博光编思远出版社1993.9 陶瓷表面技术周元康, 孙丽华, 李晔编著国防工业出版社2007 陶瓷材料学周玉编著科学出版社2004 实用陶瓷材料手册张玉龙, 马建平主编化学工业出版社2006.7 陶瓷制品检测及缺陷分析顾幸勇, 陈玉清主编化学工业出版社2006 中国陶瓷综述朱裕平编著山东美术出版社2006 陶瓷-金属材料实用封接技术高陇桥编著化学工业出版社2003 陶瓷添加剂应用技术俞康泰编著化学工业出版社2006 陶瓷材料的强韧化穆柏春 ... [等]著冶金工业出版社2002 陶瓷色釉料与装饰导论俞康泰编著武汉工业大学出版社2001 .陶瓷材料力学性能导论(美)格林著 陶瓷添加剂沈一丁, 李小瑞编著化学工业出版社2004 41.陶瓷滚动轴承王军著东北大学出版社2000 陶瓷材料断裂力学龚江宏著清华大学出版社2001 .陶瓷克里斯·莱夫特瑞上海人民美术出版社2004 陶瓷制品造型设计与成型模具杨裕国编著化学工业出版社2006 .陶瓷材料表面改性技术曾令可, 王慧编著化学工业出版社2006 .陶瓷材料导论主编关长斌, 郭英奎, 赵玉成哈尔滨工程大学出版社2005 .陶瓷材料概论何贤昶著上海科学普及出版社2005.9 .陶瓷-金属材料实用封接技术高陇桥编著化学工业出版社2005.4 .陶瓷纤维崔之开编著化学工业出版社2004 陶瓷材料力学性能导论David J.Green著清华大学出版社2003 .陶瓷腐蚀(美)罗纳德A·麦考利著冶金工业出版社2003

功能陶瓷材料概述

功能陶瓷材料概述 功能陶瓷由于其在电、磁、声、光、热、力等方面优异的性能,广泛应用于电子电力、汽车、计算机、通讯等领域,在科学技术发展和实际生产生活中发挥着越来越重要的作用。主要阐述了功能陶瓷电学、光学、磁学、声学、力学等基本性质,并介绍了功能陶瓷的种类和应用以及未来发展趋势。 标签: 功能陶瓷;性质;应用 1 前言 功能陶瓷是具有电、磁、声、光、热、力、化学或生物功能等的介质材料。它有别于我们所熟知的日用陶瓷、艺术陶瓷、建筑陶瓷等,而是指在电子、微电子、光电子信息和自动化技术以及能源、环保和生物医学领域中所使用的陶瓷材料。功能陶瓷以其独特的声、光、热、电、磁等物理特性和生物、化学以及适当的力学等特性,在相应的工程和技术中发挥着关键作用,如制造电子线路中电容器用的电介质瓷,制造集成电路基片和管壳用的高频绝缘瓷等。 2 功能陶瓷基本性质 功能陶瓷是利用其对电、光、磁、声、热等物理性质所具有的特殊功能而制造出的陶瓷材料。其电学、光学、磁学、声学、热学、力学等性质是研究和运用的重点。功能陶瓷的这些性质与其组成、结构和工艺等有着密切关系。 功能陶瓷电学性质可以用电导率、介电常数、击穿电场强度和介质损耗来表示,是功能陶瓷材料很重要的基本性质之一。光学性质指其在可见光、红外光、紫外光及各种射线作用时表现出的一些性质。表征磁学性质的参数有磁导率、磁化率、磁化强度、磁感应强度等。材料在外力作用下都会发生相应的形变甚至破坏,有必要研究材料的力学性能,功能陶瓷材料也具有弹性模量、机械强度、断裂韧度等表征力学性能的参数。 3 功能陶瓷种类及其应用 功能陶瓷的发展始于20世纪30年代,经历从电介质陶瓷→压电铁电陶瓷→半导体陶瓷→快离子导体陶瓷→高温超导陶瓷的发展过程,目前已发展成为性能多样、品种繁多、使用广泛、市场占有份额很高的一大类先进陶瓷材料。目前已经研究比较深入并大量使用的功能陶瓷有绝缘陶瓷、介电陶瓷、压电陶瓷、半导体陶瓷、敏感陶瓷、磁性陶瓷、生物陶瓷和结构陶瓷等,下面将介绍几种主要的功能陶瓷及其应用。 3.1 绝缘陶瓷

新材料科学导论期末复习题(有答案版)

、填空题: 1.材料性质的表述包括力学性能、物理性质和化学性质。 2.化学分析、物理分析和谱学分析是材料成分分析的三种基本方法。 3.材料的结构包括键合结构、晶体结构和组织结构。 4.材料科学与工程有四个基本要素,它们分别是:使用性能、材料的性质、制备/加工和结构/成分。 5.按组成和结构分,材料分为金属材料,无机非金属材料,高分子材料和复合材料。 6.高分子材料分子量很大,是由许多相同的结构单元组成,并以共价键的形式重复连接而成。 7.复合材料可分为结构复合材料和功能复合材料两大类。 8.聚合物分子运动具有多重性和明显的松弛特性。 9.功能复合材料是指除力学性能以外,具有良好的其他物理性能并包括部分化学和生物性能的复合材料。如有光, 电,热,磁,阻尼,声,摩擦等功能。 10.材料的物理性质表述为光学性质、磁学性质、电学性质和热学性质。 11.由于高分子是链状结构,所以把简单重复(结构)单元称为链节,简单重复(结构)单元的个数称为聚合 度。 12.对于脆性的高强度纤维增强体与韧性基体复合时,两相间若能得到适宜的结合而形成的复合材料,其性能显示为 增强体与基体的互补。(ppt-复合材料,15 页) 13.影响储氢材料吸氢能力的因素有:(1)活化处理;(2)耐久性(抗中毒性能); (3)抗粉末化性能;(4)导热性能;(5)滞后现象。 14.典型热处理工艺有淬火、退火、回火和正火。 15.功能复合效应是组元材料之间的协同作用与交互作用表现出的复合效应。复合效应表现线性效应和非线性效 应,其中线性效应包括加和效应、平均效应、相补效应和相抵效应。 16.新材料发展的重点已经从结构材料转向功能材料。 17.功能高分子材料的制备一般是指通过物理的或化学的方法将功能基团与聚合物骨架相结合的过程。功能高分 子材料的制备主要有以下三种基本类型: ①功能小分子固定在骨架材料上; ②大分子材料的功能化; ③已有功能高分子材料的功能扩展; 18.材料的化学性质主要表现为催化性能和抗腐蚀性。 19.1977 年,美国化学家MacDiarmid ,物理学家Heeger 和日本化学家Shirakawa 首次发现掺杂碘的聚乙炔具 有金属的导电特性,并因此获得2000 年诺贝尔化学奖。 20.陶瓷材料的韧性和塑性较低,这是陶瓷材料的最大弱点。 第二部分名词解释 1.高分子的柔顺性

材料学导论陶瓷材料

材料学导论陶瓷材料 《材料科学导论》课程学习报告 —关于陶瓷材料学习的体会 1. 陶瓷材料概论 说到陶瓷,在许多人的印象中,是一种坚硬易碎的物体,缺乏韧性,缺乏塑性。许多陶瓷学家把陶瓷看成是用无机非金属化合物粉体,经高温烧结而成,以多晶聚集体为主的固态物。这一定义虽然同时指出了材料的制备特征和结构特征,但却把玻璃、搪瓷、金属陶瓷等摒除在外。所以,陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。它具有高熔点、高硬度、高耐磨性、耐氧化等优点。可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。 2. 陶瓷材料的发展 陶瓷是人类最早利用自然界提供的原料制造而成的材料。旧石器时代,人们就发现经火煅烧过的粘土,其硬度和强度都大大提高,而且不再被水瓦解。于是,就有了利用粘土的可塑性,将其加工成所需的形状,然后用火烧制成的陶器。随着金属冶炼术的发展,人类掌握了通过鼓风机提高燃烧温度的技术,并且发现,有一些经高温烧制的陶器,由于局部熔化变得更加致密坚硬,完全改变了陶器多孔,透水的缺点。经过长期的摸索和经验积累,以粘土,石英,长石等矿物原料配制而成的瓷器出现了。 从陶器发展到瓷器,是陶瓷发展过程中的一次重大飞跃。这种传统的瓷器,从结构上来看,是由玻璃相结合在一起的、由许多微小的晶 粒构成的物体。 随着科学技术的高速发展,人们迫切需要大量强度很高,绝缘性能良好的陶瓷材料。此时,人们发现,尽管陶瓷中的玻璃相使陶瓷变得坚硬、致密,然而它却妨碍了

陶瓷强度的提高。同时,玻璃相也是陶瓷绝缘性能,特别是高频绝缘性能不好的根源。于是,玻璃相含量比传统陶瓷低的一些强度高,性能好的材料不断涌现。现在,许多科学与技术方面使用的高性能陶瓷(High performance Ceramics)都是几乎不含有玻璃相的结晶态陶瓷。为了有别于传统陶瓷,称之为先进陶瓷(Advanced Ceramics)或高技术陶瓷(High Tech Ceramics);有时也称为精细陶瓷(Fine Ceramics)或工程陶瓷(Engineering Ceramics)。 3. 陶瓷材料的定义 陶瓷的传统定义:陶器和瓷器的总称,包括玻璃,搪瓷,耐火材料,砖瓦,水泥,石膏等。 陶瓷的狭义定义:以粘土为主要原料,经高温烧制而成的制品。 陶瓷的广义定义:经高温烧制而成的无机非金属材料的总称。 陶瓷的精确定义:用天然原料或人工合成的粉状化合物,经过成型和高温烧结制成的,由无机化合物构成的多相固体材料。 4. 陶瓷材料的分类陶瓷材料按照性能可大致分为普通陶瓷和特种陶瓷。 1. 普通陶瓷:原料: 粘土、石英和长石。 特点:坚硬而脆性较大、绝缘性和耐腐蚀性极好;制造工艺简单,成本低廉,各种陶瓷中用量极大。 分类:普通陶瓷又分为普通日用陶瓷和普通工业陶瓷。 (1) 普通日用陶瓷:特点:作日用器皿和瓷器,具有良好的光泽度、透明度,热稳定性和机械强度较高。分类:长石质瓷(国内外常用的日用瓷,作一般工业瓷制品)、绢云母质瓷(我国的传统日用瓷)、骨质瓷(近些年得到广泛应用,主要作为高级日用瓷制品)和滑石质瓷(我国发展的综合性能好的新型高质瓷)。 (2) 普通工业陶瓷:特点:普通工业陶瓷有炻器和精陶。炻器是陶器和瓷器之间的一种瓷。分类:工业陶瓷按用途分为:建筑卫生瓷(用于装饰板,卫生间装置和器

陶瓷材料学教学大纲

《陶瓷材料学》教学大纲 英文名称:Science of Ceramic Material 课程编码:0933043 课程性质:限选课 学时:30 周学时:2 学分:1.5 适用专业:材料物理学专业 授课学期:2015-2016学年第二学期 【课程性质、目的和要求】 通过考试考查学生对《陶瓷材料学》课程理论教学和实践教学环节的掌握程度,促使学生系统掌握关于陶瓷材料合成的基本理论和基本工艺方法,掌握有关工艺设计和科研的基本知识和方法,了解陶瓷材料的性质和特点,对陶瓷材料的应用尤其是现代陶瓷材料在各方面的应用深入了解,使学生在学完课程之后,能够胜任陶瓷材料生产技术工作,并且能从事开发、研究和设计工作。 主要依据教学大纲的内容和要求考核。通过闭卷考试方式考查学生对该课程的基本概念、基本理论和基本技能掌握牢固程度,以及综合分析的能力,着重考查学生运用所学知识解决问题的能力。主要以教材内容为主,少量内容考查学生对参考书、文献等了解情况。 【教学内容、要点和课时安排】 绪论(2课时) 教学目的:了解本课程的性质和任务,了解陶瓷材料的发展史,掌握陶瓷材料的概念及其内涵,了解陶瓷材料的分类方特,对不同种类陶瓷材料的性质特点熟悉掌握。 教学重点和难点: 1、陶瓷材料概念 2、陶瓷材料分类 3、陶瓷材料特点 第一节陶瓷材料发展历史及其概念的内涵 第二节陶瓷材料的分类 第三节陶瓷材料的特点 思考题: 1、陶瓷材料的分类? 2、陶瓷材料具有哪些特点? 第一章陶瓷的晶体结构(2课时)

教学目的:了解化学键的形成和分子间的相互作用力,了解陶瓷材料的基本结构有哪些,掌握代表性晶体结构的特点,熟练掌握硅酸盐结构特性,区分离子型晶体和共价型晶体的结构和性质。 教学重点和难点: 1、陶瓷的晶体结构 2、代表性晶体结构 3、硅酸盐结构 4、离子型晶体与共价型晶体的区别 第一节原子间的结合力 第二节陶瓷的晶体结构 第三节代表性晶体结构 第四节硅酸盐晶体结构 第五节离子型晶体的结构与性质 第六节共价型晶体的结构与性质 思考题: 1、陶瓷的晶体结构有哪些? 2、离子型晶体与共价型晶体在结构和性质上的区别? 第二章非晶态与玻璃结构(2课时) 教学目的:了解晶体的形态,认识晶体与非晶态的区别,掌握玻璃结构的特点,了解非晶的晶化过程,对无机玻璃的种类有一定的认识。 教学重点和难点: 1、非晶态的形成 2、玻璃结构的特点 3、非晶的晶化过程 第一节非晶态 第二节玻璃结构 第三节非晶的晶化 第四节无机玻璃的种类 思考题: 1、玻璃结构的特点? 2、非晶的晶化过程? 第三章晶体缺陷(2课时) 教学目的:了解陶瓷材料中晶体的缺陷有哪些,对点缺陷、线缺陷和位错的概念深入了解,掌握不定比化合物的特点,掌握晶界概念。。 教学重点和难点: 1、点缺陷和位错概念理解 2、不定比化合物 第一节点缺陷 第二节不定比化合物

陶瓷材料

陶瓷材料 【摘要】:陶瓷材料是我们日常生活中一种非常重要的材料,尤其是在我们中国,制作陶瓷自古以来就是我们的专长。到了现代陶瓷的概念和功能发生了一系列的变化,本文主要对陶瓷材料的性能,应用以及发展前景做一个简单的概述 【关键字】:陶瓷,材料 正文: 1,概述:传统的陶瓷材料是粘土、石英、长石等硅酸盐材料,而现代陶瓷材料是无机非金属材料的统称。 陶瓷材料是一种天然或人工合成的粉状化合物, 经过成型或高温烧结,由金属元素和非金属的无机化合物构成的多相固体材料。陶瓷材料具有耐高温、耐腐蚀、耐磨损、原料丰富、成本低廉等诸多优点而被人一直关注。现在,陶瓷材料、金属材料、高分子材料被称为三大主要固体材料。 2,性能: (1)力学性能:陶瓷材料具有极高的硬度和优良的耐磨性,弹性模量高,钢度大抗拉强度低抗压强度很高,陶瓷的塑性、韧性低,脆性大,在室温下几乎没有塑性。 (2)机械性能:大多数陶瓷的硬度都比金属高的多,特别好, 常用作耐磨零件(如轴承, 刀具).它具有高的弹性模量和高脆性,具有低的抗拉强度和高的抗压强度, 具有较强的耐热功能,具有耐高温的特性, 其熔点一般大于2000℃。此外, 陶瓷材料还具有热膨胀系数较小、导热性较低、热容量较小等机械特性。 (3)电学性能:大多数陶瓷材料有较高的电阻率、较小的介电常数和介电损耗, 因此它可以用作绝缘材料。少数的陶瓷材料可以用作半导体材料,而且已经成为无线电技术和高新技术领域不可或缺的材料。有的陶瓷材料还具有超导特性,,具有超导特性的陶瓷已经成为高温超导材料中的重要组成部分。 (4)化学性能:陶瓷材料具有抗高温氧化、抗腐蚀的能力。它不仅对酸、碱、盐具有良好的抵抗作用,而且还对熔融金属具有抗蚀作用。所以陶瓷材料常用作化学反应的发生器、用作离子交换膜。有的陶瓷材料还可以含载体对化学反应有催化作用。 (5)生物性能:陶瓷材料的生物功能主要表现在可以修复或替换人体的某些组织、器官或增强脏器功能的方面。比如人造腔膜、心脏起搏器用电池板、助听器用振动板等。另外, 有的陶瓷材料还具有人体感知功能。 (6)光学性能:某些陶瓷材料具有光吸收、光反射及光偏移的特性,还有的具有分光性、感光性及导光性。一些先进光学陶瓷材料还具有良好的透光性。利用陶瓷材料的这些光特性可以制造出许多光学产品, 例如制作特种灯具(比如Na灯) 的灯管材料、陶瓷感光计等等。 3,应用: (1),纳米陶瓷材料:纳米陶瓷是指在纳米技术的基础上研究开发的具有更高更多特性陶瓷材料。在陶瓷材料的显微结构中, 相粒尺寸、第二相分布、气孔尺寸等量纲均在纳米量级( 0.1nm至100nm) 的水平上, 因此使得材料的强度、韧性和超塑性大幅度提高。我们都知道普通陶瓷材料的显微组织主要由晶体相、玻璃相及气相组成, 各相的组成、结构、数量、形状与分布都对陶瓷材料的性能有直接的影响, 而玻璃相及气相的含量较大会使陶瓷的强度、硬度和抗热冲击等性能降低。纳米陶瓷材料的出现很好地克服了普通陶瓷材料这些缺点。并且对材料的力学、电学、化学、光 学、磁学等性能产生重要影响, 为替代普通陶瓷材料的应

氧化锆陶瓷(材料科学概论论文)

氧化锆陶瓷 摘要:本文介绍了氧化锆的基本性质、氧化锆超细粉体的制备方法、高性能氧化锆陶瓷材料的成型工艺以及其在各领域的应用情况。 关键词:氧化锆;高性能陶瓷;制备;应用 材料所处的环境极为复杂,材料损坏引起事故的危险性不断增加,研究与开发对损坏能自行诊断并具有自修复能力的材料是十分重要而急迫的任务,氧化锆就是具有这种功能的智能材料! 一、名称:氧化锆陶瓷,ZrO2陶瓷,Zirconia Ceramic 二、种类及特点 纯ZrO2为白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。世界上已探明的锆资源约为1900万吨,氧化锆通常是由锆矿石提纯制得。在常压下纯ZrO2共有三种晶态:单斜氧化锆(m-ZrO2)、四方氧化锆(t-ZrO2)和立方氧化锆(c-ZrO2),上述三种晶型存在于不同的温度范围,并可以相互转化: 单斜(Monoclinic)氧化锆(m-ZrO2)<950℃ 5.65g/cc 四方(Tetragonal)氧化锆(t-ZrO2)1200-2370℃ 6.10g/cc 立方(Cubic)氧化锆(c-ZrO2)>2370℃ 6.27g/cc 三、增韧原理 氧化锆增韧的方法,主要是利用氧化锆的相变才能达到的!. 部分稳定ZrO2陶瓷在烧结冷却过程中,t-ZrO2晶粒会自发相变成m-ZrO2,引起体积膨胀,在基体中产生微裂纹,相变诱导的微裂纹会使主裂纹扩展时分叉或改变方向而吸收能量,使主裂纹扩展阻力增大,从而使断裂韧性提高。这种机理称微裂纹增韧。主要增韧方法有:应力诱导相变增韧、微裂纹增韧、残余应力增韧、表面增韧以及复合增韧等。 其中t-ZrO2转化为m-ZrO2相变具有马氏体相变的特征,并且相变伴随有3%~5%的体积膨胀。不加稳定剂的ZrO2陶瓷在烧结温度冷却的过程中,就会由于发生相变而严重开裂。解决的办法是添加离子半径比Zr小的Ca、Mg、Y等金属的氧化物。 材料中的t-ZrO2晶粒在烧成后冷却至室温的过程中仍保持四方相形态,当材料受到外应力的作用时,受应力诱导发生相变,由t相转变为m相。由于ZrO2晶粒相变吸收能量而阻碍裂纹的继续扩展,从而提高了材料的强度和韧性。相转变发生之处的材料组成一般不均匀,因结晶结构的变化,导热和导电率等性能随之而变,这种变化就是材料受到外应力的信号,从而实现了材料的自诊断。 对氧化锆材料压裂而产生裂纹,在300℃热处理50h后,因为t相转变为m 相过程中产生的体积膨胀补偿了裂纹空隙,可以再弥合,实现了材料的自修复。 四、氧化锆粉体的制备 ZrO2超细粉体的制备技术 锆英石的主要成分是ZrSiO4,一般均采用各种火法冶金与湿化学法相结合的工艺,即先采用火法冶金工艺将ZrSiO4破坏,然后用湿化学法将锆浸出,其中间

材料科学与工程导论样本

材料科学与工程导论 1 本课程的基本概念: 材料科学虽然是一门基础科学, 可是它涉及到诸如本课程的基本概念: 表面物理学、表面化学、金属学、陶瓷学、高分子学、传热学、传质学等多个学科的理论; 同时也与信息科学、生命科学、深海和深空科学等现代科学技术紧密相连。 1.1材料与人类文明一、材料与人类文明发展( 历史贡献) --石器时代、铜器时代、铁器时代、钢铁时代、合成材料时代、复合材料时代…… 陶器( china) 1.陶器出現是人类跨入新石器时代的重要标志之一, 2.据当前已知的考古资料, 中国的陶器制作至少已80 以上的历史。 青铜: 第一种合金 1.青铜, 古称金或吉金, 是红铜与其它化学元素( 锡、镍、铅、磷等) 的合金。 2.史学上所称的”青铜时代”是指大量使用青铜工具及青铜礼器的时期。 3.到春秋战国時期, 齐国工匠总结科技经验写成的《考工记》一书中, 提出了「金有六齐」, 这是世界科技史上最早的冶铜经验总结。 二、材料与人类现代文明 --材料是发展高科技的先导和基石 ( 一) 支撑人类现代文明大厦的四大支柱技术 1.材料科学与技术 2.生物科学与技术 3.能源科学与技术 4.信息科学与技术 * 其中材料是基础! 材料的应用: 计算机与材料; 飞机和材料;复合科学材料能源。 ( 二) 新能源材料则是指实现新能源的转化和利用以及发展新能源技术中所要用到的关键材料。 1.主要包括储氢电极合金材料为代表的镍氢电池材料;

2.嵌锂碳负极和LiCoO2正极为代表的锂离子电池材料、燃料电池材料; 3.Si 半导体材料为代表的太阳能电池材料; 4.铀、氘、氚为代表的反应堆核能材料等。 1.2 材料科学概论 化学成分不同的材料其性能也不相同。但对于同一成分的材料, 经过不同的加工工艺也能够使其性能发生极大的变化。*可见, 除化学成分外, 材料内部的结构和组织状态也是决定材料性能的重要因素。 *材料科学与工程( MSE ) 四要素:材料的合成与制备;成分与组织结构;材料特性;服役行为与使用寿命。 * 性能: 工程材料的性能主要是指材料的使用性能和工艺性能。 一使用性能: 材料的使用性能是指在服役条件下, 能保证安全可靠工作所必备的性能, 其中包括材料的力学性能、物理性能和化学性能。 ①力学性能:主要包括工程材料的强度、硬度、塑性、韧性、蠕变和疲劳性能。 ②物理性能:主要包括工程材料的熔点、密度以及电、磁、光和热性能。 ③化学性能:是指工程材料在环境作用下的耐腐蚀和抗老化性能。 ( 一) 、力学性能——材料在外加载荷( 外力或能量) 作用下或载荷环境因素( 温度、介质和加载速率) 联合作用下表现出来的行为。 -主要是指材料在力的作用下抵抗变形和开裂的性能。 机械设计中应首先考虑材料的力学性能。通俗地讲力学性能决定了在多大和怎样形式的载荷条件下而不致于改变零件几何形状和尺寸的能力。 指标:弹性、塑性、韧性、强度、硬度和疲劳强度等。1、材料的强度(strength)—材料所能承受的极限应力。 物理意义:材料在载荷作用下抵抗变形和破坏的能力。 抗拉强度、抗压强度、抗弯强度、抗剪强度、抗扭强度等。公式: σ=P/F o 单 位: 单位: MPa(MN/mm 2 ) ( 1) 屈服强度σs( yield strength) 和条件屈服强度σ0.02

材料科学概论复习题及答案

复习 特种陶瓷—材料的结构—.材料科学—无机非金属材料—失效—特种陶瓷— 硅酸盐水泥—热处理—纳米材料 判断题 1. 低碳钢的硬度及塑性均比高碳钢的高。错 2. 橡胶是在高弹态下使用的高分子材料。对 3. 玻璃是一种晶体材料,它具有透光性、抗压强度高、但脆性大的特点。错 4. 位错、空位、间隙原子都是实际晶体中的点缺陷。错 5. 什么是材料?如何进行分类? 材料是指人类社会可接受、能经济地制造有用器件或物品的固体物质。 6. 什么是材料的成分?什么是材料的组织?什么是材料的结构? 材料的成分是指组成材料的元素种类及其含量,通常用质量分数(w),也可以用粒子数分数表示。材料的组织是指在光学显微镜或电子显微镜下可观察到,能反应各组成相形态、尺寸和分布的图像。材料的结构主要是指材料中原子的排列方式。 7. 材料科学与工程的四大要素是什么? 材料成分,结构,工艺,性能。 8. 传统陶瓷坯料常见的成形方法及生产工艺? 9. 什么是高分子材料?高分子材料具有哪些性能特点? 高分子材料是由可称为单体的原料小分子通过聚合反应而合成的。力学性能:最大的特点是高弹性和黏弹性。电性能:绝大多数高分子材料为绝缘体。热性能:绝热性。 10. 什么叫复合材料?按基体材料分为哪几类? 复合材料指由两种或更多种物理性能、化学性能、力学性能和加工性能不同的物质,经人工组合而成的多相固体材料。复合材料可分为基体相和增强相。按基体分为树脂基、金属基陶瓷基。

11. 陶瓷由哪些基本相组成?它们对陶瓷的性能有什么影响? 晶体相、玻璃相、气相。 12. 简述提高陶瓷材料强度及减轻脆性的途径? 13. 按照用途可将合金钢分为哪几类?机器零部件用钢主要有哪些? 可分为结构钢,工具钢,特殊钢和许多小类。 轴,齿轮,连接件。 14. 材料典型的热处理工艺有哪些?什么叫回火? 退火、正火、淬火、回火。 钢件淬火后,为了消除内应力并获得所要求的性能,将其加热Ac1以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺叫做回火。 15. 什么是特种陶瓷?阐述其与传统陶瓷的区别 特种陶瓷是以高纯化工原料和合成矿物为原料,沿用传统陶瓷的工艺流程制备的陶瓷,是一些具有各种特殊力学、物理或化学性能的陶瓷。 16 .谈谈你对材料的认识,材料的未来发展趋势

陶瓷概述

陶瓷概述 学号:姓名: [摘要]:陶瓷是陶器和瓷器的总称。人们早在约8000年前的新石器时代就发明了陶器。除了使用于食器、装饰上外,陶瓷在科学、技术的发展中亦扮演着重要角色。陶瓷原料是地球原有的大量资源黏土经过淬取而成。在今日文化科技中有各种创意的应用。陶瓷材料大多是氧化物、氮化物、硼化物和碳化物等。如今,陶瓷工艺真正飞速发展。 [关键词]:陶瓷历史;陶瓷材料;新品种陶瓷;新品种陶瓷特点 1.陶瓷的概念及发展历史 1.1什么是陶瓷 陶瓷是以粘土为主要原料以及各种天然矿物经过粉碎混炼、成型和煅烧制得的材料以及各种制品。陶器和瓷器的总称。陶瓷的传统概念是指所有以粘土等无机非金属矿物为原料的人工工业产品。它包括由粘土或含有粘土的混合物经混炼,成形,煅烧而制成的各种制品。由最粗糙的土器到最精细的精陶和瓷器都属于它的范围。对于它的主要原料是取之于自然界的硅酸盐矿物(如粘土、石英等),因此与玻璃、水泥、搪瓷、耐火材料等工业,同属于“硅酸盐工业”的范畴。 1.2陶瓷的发展历史 陶瓷的发展史是中华文明史的一个重要的组成部分,中国作为四大文明古国之一,为人类社会的进步和发展做出了卓越的贡献,其中陶瓷的发明和发展更具有独特的意义,中国历史上各朝各代有着不同艺术风格和不同技术特点。中国是世界上最早应用陶器的国家之一,而中国瓷器因其极高的实用性和艺术性而备受世人的推崇. 在中国,制陶技艺的产生可追溯到纪元前4500年至前2500年的时代,汉族劳动人民在科学技术上的成果以及对美的追求与塑造,在许多方面都是通过陶瓷制作来体现的,并形成各时代非常典型的技术与艺术特征。 夏朝以前发展的标志是彩陶。其中有较为典型的仰韶文化、以及在甘肃发现的稍晚的马家窑与齐家文化等等,解放后在西安半坡史前遗址出土了大量制作精美的彩陶器,令人叹为观止. 汉朝,陶器受到了更为确切的重视,在这一时期,烧造技艺有所发展,较为坚致的釉陶普遍出现,汉字中开始出现“瓷”字。同时,通过新疆、波斯至叙利亚的通商路线,中国与罗马帝国开始交往,促使东西方文化往来交流,从此一时期的陶瓷器物中也可以看出外来影响的端倪。 唐代,陶瓷的工艺技术改进巨大,许多精细瓷器品种大量出现,即使用当今的技术鉴测标准来衡量,它们也算得上是真正的优质瓷器。尤其以唐三彩最为出名。唐末五代十国出现了一个陶瓷新品种——柴窑瓷(萧窑),质地之优被广为传颂,但传世者极为罕见。

材料概论(陶瓷材料)

We live in a world of material possessions,that largely define our social relationships and economic quality of life .we distinguish six categories that encompass the materials available to practicing engineers:metals,ceramics,glasses,polymers,composites,and semiconductors. Ceramics is the most ancient material that widely used as the engineering material since about 8000 years ago.and it also be developed for the airspace and electronics industries.Ceramics can be divided into two categories:structual ceramic and fuctional ceramic . the raw materials of trantional ceramic contains clay,kaolinite,montmorillonite and other materials that can improve and change the property of ceramics.there materials are abundent and economical,many of the traditional ceramics that we use are made of these materials called silicates.With the development of the ceramic,it has been more and more advanced . When we first discuss a material,we often talk about it’s structual and property and then application.The structure of ceramic cotains three phases:crystal phase,glass phase and gaseous phase(i.e.pore)Because it’s crystal structual,ceramics often called crystalline ceramics by looking at the SiO2-based silicates.It’s network of the structure contribute to the property of it’s s pecial hardness and excellent temperature resistance and other phsical and chemical properties.The role of glass phase is to fill the crystalline gap,improve the density,lower the sintering temperature and

材料科学导论

第1 章原子结构与键合 决定材料性能的最根本的因素是组成材料的各元素的原子结构,原子间的相互作用、相互结合,原子或分子在空间的排列分布和运动规律,原子集合体的形貌特征等。 物质是由原子组成的,而原子是由位于原子中心的带正电的原子核和核外带负电的电子构成的。 原子结构中的电子结构——决定了原子键合的本身。 1.1 原子结构 1.1.1 物质的组成 一切物质是由无数微粒按一定的方式聚集而成的。这些微粒可能是分子、原子或离子。 分子是能单独存在、且保持物质化学特性的一种微粒。分子的体积很小,如H2O分子的直径约为0.2 nm。而分子的质量则有大有小:H2分子是分子世界中最小的,它的相对分子质量只有2,而天然高分子化合物——蛋白质可高达几百万。 分子是由一些更小的微粒——原子所组成的。在化学变化中,分子可以再分成原子,而原子却不能再分,原子是化学变化中的最小微粒。量子力学中,原子并不是物质的最小微粒。它具有复杂结构。原子结构直接影响原子间的结合方式。 1.1.2 原子的结构 原子由质子和中子组成的原子核,以及核外的电子所构成。原子的体积很小,原子直径约为10–10 m 数量级,原子核直径为10–15 m 数量级。原子的质量主要在原子核内。每个质子和中子的质量大致为1.67×10–24 g,电子的质量约为9.11×10–28 g,为质子的1/1836。原子呈电中性。原子核带正电(质子带正电,中子不带电),电子带负电(1.6022×10–19 C),电子和质子数目相等。原子核与电子的结合力为静电力。 1.1.3 原子的电子结构 电子云:电子在原子核外空间作高速旋转运动,就好像带负电荷的云雾笼罩在原子核周围。 电子既具有粒子性又具有波动性,即具有波粒二象性。电子运动没有固定的轨道,但可根据电子的能量高低,用统计方法判断其在核外空间某一区域内出现的几率的大小。能量低的,通常在离核近的区域(壳层)运动;能量高的,通常在离核远的区域运动。 原子中一个电子的空间位置和能量可用四个量子数来确定: (1)主量子数n 决定原子中电子能量以及与核的平均距离,即表示电子所处的量子壳层,只限于正整数1,2,3,4,……量子壳层用一个大写英文字母表示。 n = 1为最低能级量子壳层,最靠近核的轨道,K壳层,n = 2,3,4等依次为L,M,N壳层等。 (2)轨道角动量量子数l 给出电子在同一量子壳层内所处的能级(电子亚层),与电子运动的角动量有关,取值为0,1,2,……,n-1。 钠原子结构中K、L和M量子壳层的电子分布 n = 2,有两个轨道角动量量子数l2 = 0 和l2 = 1,即L壳层中,根据电子能量差别,还包含有两个电子亚层。常用小写的英文字母来标注对应于轨道角动量量子数l i的电子能级(亚层): l i:0 1 2 3 4 能级:s p d f g 在同一量子壳层里,亚层电子的能量是按s,p,d,f,g的次序递增的。不同电子亚层的电子云形状不同,如s亚层的电子云是以原子核为中心的球状,p亚层的电子云是纺锤形…… (3)磁量子数m i 给出每个轨道角动量量子数的能级数或轨道数。每个l i下的磁量子数的总数为2l i + 1。对于l i = 2 的

材料科学概论课后习题归纳及补充

一、填空题: 1.原子间的键合可分为化学键和物理键两大类。其中化学键包括离子键、金属键和共价键。 2.铁碳合金可按含碳量来分类,含碳量低于2.11%的为碳钢(含碳量低于0.0218&的为工业纯铁),含碳量大于2.11%的为铸铁。 3.以锌为唯一的或主要的合金元素的铜合金称为黄铜。 4.传统上,陶瓷的概念是指所有以黏土为主要原料与其他天然矿物质原料经过粉碎加工、成型、煅烧等过程而制成的各种制品。 5.按照陶瓷坯体结构不同和坯体致密度不同,把陶瓷制品分为两大类陶器和瓷器。 6.陶瓷的微观结构是指晶体结构类型、对称性、晶格常数、原子排列情况及晶格缺陷等,分析京都可达数挨。 7.陶瓷的显微结构是指在光学显微镜(如金相显微镜、体式显微镜等)或是电子显微镜(SEM/TEM)下观察到的陶瓷内部的组织结构,也就是陶瓷的各种组成(晶相、玻璃相、气相)的形状、大小、种类、数量、分布及晶界状态、宽度等,观察范围为微米数量级。 8.高聚物的静态粘弹性行为表现有蠕变、应力松弛。 9.聚合物在溶液中通常呈无规线团构象,在晶体中呈锯齿形或螺旋形。 10.制作碳纤维的五个阶段分别是拉丝、牵伸、稳定、碳化和石墨化。 11.复合材料通常有三种分类法,分别是增强材料、基体材料、纤维材料。 12.所谓纳米材料,从狭义上说,是有关原子团簇、纳米颗粒、纳米线、纳米薄膜、纳米碳管和纳米固体材料的总称。从广义上说,纳米材料是指晶粒或晶界等显微构造等达到纳米尺寸(<100nm)的材料。 13.信息材料是指与信息技术相关,用于信息收集、储存、处理、传输和显示的各类功能材料。 补充: 1.每个面心立方晶胞的原子数为4,其配位数为12。 2.刃型位错的柏氏矢量与位错线互相垂直,螺旋形位错的柏氏矢量与位错相互平行 3.莱氏体是共晶转变所形成的奥氏体和渗碳体组成的混合物。 2.陶瓷的显微组织:晶相、玻璃相、气相。 3.孪晶面:指镜而对称的晶体相交的界,称为孪晶面。 5.晶体的面缺陷:表面、晶界、亚晶界、相界。 4.单体:组成高分子化合物的简单低分子化合物。 5.链节:构成高聚物的重复结构单元称为链节。P146 缩聚反应:由一种单体或多种单体相互缩合成聚合物,同时析出其他低分子化合物的反应称为缩聚反应。复合材料:由两种或者两种以上性能不同的材料组成一个整体,从而表现出某些优于其中任何一种材料性能的材料。 二、名称解释: 1.加工硬化:金属随变形程度的增大,强度和硬度上升而塑性和韧性下降的现象。 2.热处理:p67 3.白口铸铁:p81 4.玻璃相:p127 5.晶体相:p126 6.气相:p128 7.结构陶瓷:p117 8.功能陶瓷:p118 9.球晶:p164 10.取向:高分子链在特定的情况下,沿特定方向的择优平行排列,聚合物呈各向异性特征。 11.液晶态:p165 12.复合材料:p175 13.碳纤维:p181 14.拉挤成型:在牵引设备下,将浸渍树脂的连续显微或其织物通过成型模加热使树脂固化、生产复合材料型材的工艺方法。 15.干法缠绕:是采用经过预浸胶处理的预浸沙或带在缠绕上,经加热软化至粘液态后缠绕到芯模上。16.智能材料:p221 17.超导现象:p228 补充: 1.塑性变形:材料在外力作用下产生去除外力后不能恢复原状的永久性变形称为塑性变形。

氧化铝陶瓷基复合材料概述

概述了氧化铝陶瓷基复合材料,并且对其一般的生产工艺金属间、氧化铝陶瓷基复合材料以及其应用领域作了介绍, 前言 氧化铝(Al2O3) 陶瓷材料具有耐高温、硬度大、强度高、耐腐蚀、电绝缘、气密性好等优良性能, 是目前氧化物陶瓷中用途最广、产量最大的陶瓷新材料。但是与其他陶瓷材料一样,该陶瓷具有脆性这一固有的致命弱点,使得目前Al2O3 陶瓷材料的使用范围及其寿命受到了相当大的限制。近年来, 在氧化铝陶瓷中引入金属铝塑性相的Al/Al2O3 陶瓷基复合材料是一个非常活跃的研究领域。 概述 金属间化合物的结构与组成它的两组元不同, 具有序的超点阵结构, 各组元原子占据点阵的固定位置, 最大程度地形成异类原子之间结合。由于其原子的长程有序排列以及金属键和共价健的共存性, 有可能同时兼顾金属的较好塑性和陶瓷的高温强度。在力学性能上, 有序金属间化合物填补了陶瓷和金属之间的材料空白区域。有序金属间化合物中, Ti - Al、Ni - Al、Fe - Al 和Nb-Al系等几个系列的多种铝化物更是特别受到重视。这些铝化物具有优异的抗氧化性、抗硫化腐蚀性和较高的高温强度, 密度较小, 比强度较高。 由于在空气中铝粉极易氧化而在表面形成Al2O3 钝化膜,使Al 粉和Al2O3 颗粒之间表现出很差的润湿性,导致烧结法制备Al/Al2O3 陶瓷材料烧结困难, 影响复合材料的机械性能[5]。挤压铸造和气压浸渍工艺浸渍速度快, 但是预制体中的细小空隙很难进一步填充[ 6], 而后发展的无压渗透工艺操作复杂,助渗剂的选择随意, 且作用机理复杂, 反而增加了工艺控制难度[7]。20世纪80年代初, 美国Lanxide公司提出了一种制备陶瓷基复合材料的新工艺定向金属氧化技术( DirectedMetal Ox-idation, 简称DMOX)。该工艺是在高温下利用一定阻生剂限制金属熔体在其他5个方向的生长, 使金属熔体与氧化剂反应并只单向生长即定向氧化。采用该方法制备的Al/ Al2O3 陶瓷材料在显微结构上表现为由立体连通的-Al2O3 基体与三维网状连通的残余金属和不连续的金属组成, 由于Al2O3 晶间纯净, 骨架强度高于烧结、浸渍等工艺制得的同类材料的强度[ 9]同时, 三维连通的金属铝具有良好的塑性, 从而使该复合材料具有更为良好的综合机械性能。

2019华中科技大学复试《陶瓷材料学》考试大纲

2019华中科技大学复试《陶瓷材料学》考试大纲 1. 绪论 1.1 陶瓷材料的定义 1.2 陶瓷材料的发展史 1.3 陶瓷材料的键特性与基本性能 1.4 典型陶瓷材料及其应用 1.5 陶瓷材料未来发展及关键问题 2. 陶瓷材料的晶体结构 2.1 离子晶体的结构规则—鲍林规则 2.2 几种典型的晶体结构 ●MX结构 ●MX2结构 ●M2X结构 ●M2X3结构 2.3 硅酸盐陶瓷的晶体结构 ●硅酸盐陶瓷的晶体结构特点及分类 ●岛状硅酸盐陶瓷晶体结构 ●组群状硅酸盐陶瓷晶体结构 ●链状硅酸盐陶瓷晶体结构 ●层状硅酸盐陶瓷晶体结构 ●架状硅酸盐陶瓷晶体结构 3. 非晶态与玻璃结构 3.1 非晶态原子结构 ●非晶态原子结构特点 ●非晶态物质的结构表征方法 ●非晶态物质的热学参数表征 ●非晶态结构的制备方法 3.2 氧化物玻璃 ●硅酸盐玻璃 ●硼酸盐玻璃 ●磷酸盐玻璃 4. 陶瓷材料的平衡相图

4.1陶瓷系统相平衡特点 4.2单元系统相图 ●SiO2系统相图 ●ZrO2系统相图 4.3 二元系统相图 ●具有低共熔点的二元系统 ●生成一致熔融化合物的二元系统 ●生成不一致熔融化合物的二元系统 ●固相中有化合物形成或分解的系统 ●具有多晶转变的系统 ●具有液相分层的系统 ●形成连续固溶体的系统 ●形成不连续固溶体的系统 4.4 三元系统相图 ●具有三元最低共熔点的系统 ●生成一个一致熔融二元化合物的三元系统相图 ●生成一个不一致熔融二元化合物的三元系统 ●生成一个固相分解的二元化合物的三元系统 ●具有低温稳定的二元化合物的三元系统 ●具有同组成熔融三元化合物的系统 ●具有异组成熔融三元化合物的系统 ●具有两种液相分层的三化合物的系统 5. 陶瓷材料的烧结 5.1概述 5.2 烧结动力学 5.3 固相烧结及机理 5.4 液相烧结及机理 5.5 陶瓷烧结的影响因素 5.6 特色烧结方法及装备 6. 陶瓷材料的脆性与增韧 6.1 陶瓷材料的脆性机理 6.2 陶瓷材料的增韧 ●相变增韧 ●微裂纹增韧

相关文档
最新文档