动力学入门知识

动力学入门知识
动力学入门知识

动力学

动力学概述

1. 动力学的研究内容

静力学研究作用在刚体上力系的简化和力系的平衡条件;没有讨论物体受不平衡力系作用将如何运动;运动学只是从几何角度研究了物体的运动和描述物体运动的方法,但未涉及物体所受到的力。动力学则将两者结合起来。研究物体运动的变化与作用于物体上的力之间的关系。即建立物体运动的普遍规律。 2. 动力学研究的力学模型

质点,质点系??

?

于非自由质点系非自由质点系,刚体属

自由质点系

3. 动力学研究的问题

(1) 已知物体的运动,求作用于物体的力; (2) 已知作用于物体的力,求物体的运动情况。 4. 动力学的课程体系

1) 经典动力学(矢量动力学)

最高原理:牛顿定律??

?

??

=)(),(),(s m kg SI F a m 时间长度:质量单位制:惯性参考系实验定律

导出规律:??

?达朗伯原理

质点系普遍定律

2) 分析力学初步

3) 两种特殊的运动:碰撞和机械振动基础。

第十二章 动量定理和动量矩定理 本章研究的两个定理

动量定理——力系主矢量的运动效应反映; 动量矩定理——力系主矩的运动效应反映。 一.质点系质量的几何性质

1. 质心

质点系的质量中心,其位置有下式确定:

m

r m r i

i c ∑=

∑=

i m m

其投影式为

m

x m x i

i

c

∑=

, m

y m y i

i c

∑=

, m

z m z i

i c

∑=

2. 刚体对轴的转动惯量 定义:∑=

2

i i Z r m I 为刚体对z 轴的转动惯量或)(22i i i Z y x m I +=∑

影响Z I 的因素??

?

??是常量与刚体是固连在一起时若轴的位置有关与转轴量的分布有关与刚体的质量多少和质

z I z z 单位:2kgm

物理意义:描述刚体绕z 轴时惯性大小的度量。

Z I 的计算方法:

(1) 积分法

例12.1已知:设均质细长杆为l ,质量为m 。求其对于过质心且与杆的轴线垂直的轴z 的转动惯量。

解:建立如图12.2所示坐标,取微段dx 其质量为dx l

m

dm =

,则此杆对轴z 的转动惯量为:12

2

2220

ml dx x l m I l z ==?

例12.2已知:如图12.3所示设均质细圆环的半径为R ,质量为m ,求其对于垂直于圆

环平面且过中心O 的轴的转动惯量。

解:将圆环沿圆周分为许多微段,设每段的质量为i m ,由于这些微段到中心轴的距离都等于半径R ,所以圆环对于中心轴z 的转动惯量为:

222mR m R R m I i i z ===∑∑

例12.3已知:如图12.4所示,设均质薄圆板的半径为R ,质量为m ,求对于垂直于板面且过中心O 的轴z 的转动惯量。

解:将圆板分成无数同心的细圆环,任一圆环的半径为r ,宽度为dr ,质量为

rdr R m dm ππ22=

,由上题知,此圆环对轴z 的转动惯量为dr r R m dm r 32

2

2=,于是,整个圆板对于轴z 的转动惯量为:

230221

2mR dr r R m I R z ==? (2) 回转半径(惯性半径)

设刚体对轴z 的转动惯量为Z I ,质量为m ,则由式m I z

z =ρ定义的长度,称为刚

体对轴z 的回转半径。

例如:均质杆(图12.2) 122ml I z = l l 289.012

2

==ρ

均质圆环(图12.3) 2

mR I z = R =ρ

均质薄圆板(图12.4) 2

2

1mR I z = R R 707.02

2

==

ρ

若已知刚体对轴的回转半径z ρ,则刚体对轴z 的转动惯量为:

2z z m I ρ=

(3) 转动惯量的平行轴定理

在图12.5中,z z //',轴间距离为d ,刚体质量为m ,其中z 轴过质心,则有

2md I I z z +='

例如:在图12.2中,细长杆对z '轴的转动惯量为22

231212ml l m ml I z =??

?

??+='

(4) 组合体

例12.4 已知:钟摆可简化为如图12.6所示。设均质杆和均质圆盘的质量分别为1m 和

2m ,杆长为l ,圆盘直径为d ,求钟摆对通过悬挂点O 的水平轴的转动惯量。

解:钟摆对水平轴O 的转动惯量为:盘杆O O O I I I += 其中: 213l m I O =杆

2

222

222

??

?

??++??? ??=d l m d m

I O 盘 所以 ??

?

??+++=

ld l d m l m I O 22221833 二.动量定理

1. 动量的概念与计算

质点的动量为v m

质点系的动量系为()()

O n n L p v m v m v m

,,,,2211=

质点系的动量(动量系的主矢量)为∑=

i i v m p

将质心公式m

r m r i

i c ∑=

对时间t 求一阶导数,有m

r m r i

i c

∑=

即∑=

i i v m v m

于是 c v m p

=

2. 动量定理

1)质点的动量定理

设质点质量为m ,速度为v ,作用力为F ,由牛顿第二定律,有F dt

v d m = 变换为

dt F v md

= ——质点的动量定理的微分形式 (dt F 为元冲量)

将上式对时间t 积分有

?=-21

12t t dt F v m v m

冲量 ——质点的动量定理的积分形式

2)质点系的动量定理

设质点系由n 个质点组成,其中第i 个质点的质量为i m ,速度为i v

,所受外力为i F ,内力为*

i F (图12.7)

(1)由牛顿第二定律 *+=i i i

i

F F dt

v d m ()n i ,,1 = 将上式由1=i 到n 求和,有

∑∑∑*+=i i i

i F F dt v dm

p dt

p d v m dt d dt v dm i i i i ===∑∑,0=∑*i F ∴?????===-=∑∑∑∑iz

z iy y ix x i F p

F p

F p F p (Ⅰ) 由 c v m p =, c a m p =

质心运动定理:???

??===-=∑∑∑∑iz

cz iy cy ix

cx i c F m a F m a F m a F a m (Ⅱ)

质心运动定理反映了质心的重要力学特征:质点系的质心的运动只取决于质点系的外力,内力改变不了质心的运动。这个定理在理论上和实际中都具有重要的意义。

在求解刚体系统动力学问题时,为了应用方便,常将上式改写为

???

??===-=∑∑∑∑∑∑∑∑iz

iz i iy iy i ix ix i i i i F a m F a m F a m F a m (Ⅲ)

式中 i m 、i a

分别是刚体系统中第i 个刚体的质量和质心加速度。c i i a m a m =∑是

由质心公式对时间求二阶导数后得到的,即m

r m r i

i c ∑=

(2) 积分形式

由式(Ⅰ)可得到积分形式 ?∑=-21

12t t i dt F p p

(3) 动量守恒(质心守恒)

若 0=∑i F 则=p 常矢量 或=c v

常矢量

0=∑ix

F

则=p 常量 或=cx v 常量 若00

===t c cx x

v 则=c v 常量 (质心守恒)

实例分析

实例1利用质心运动定理解释定向爆破

实例2利用质心运动定理分析汽车的起动与刹车

例12.5已知:如图12.11所示的电动机用螺栓固定在刚性基础上,设其外壳和定子的总质量为1m ,质心位于转子转轴的中心1O ;转子质量为2m ,

由于制造或安装是的偏差,转子质心2O 不在转轴中心上,偏心距e O O =21。转子以等角速度ω转动,试求电动机机座的约束力。

解:

1. 研究对象:电动机整体 2. 分析受力(如图示)

3. 分析运动:定子不动011==O O y

x ;转子作匀速圆周运动,其法线加速度2

2ωe a n O = 4. 列动力学方程求解:

∑∑=ix ix

i F a

m ()x F t e m m =-+?ωωc o s 0221

∑∑=iy iy

i

F a

m ()

()g m m F t e m m y 21221s i n 0+-=-+?ωω

由此解出: t e m F x ωωc o s 22-=

()t e m g m m F y ωωsin 2221-+=

5. 讨论

1) 机座的约束力由两部分组成,一部分由重力(主动力)引起的,称为静约束力

(静反力),另一部分是由于转子质心运动状态变化引起的,称为附加动约束力。

2) 附加动约束力有最大值或最小值:

0=?时,22max ωe m F x = 2

π

?=

时,()2

221min ωe m g m m F y -+=

π?=时,22min ωe m F x -=

2

3π?=

时,()2

221max ωe m g m m F y ++= 3) 附加动约束力与成正比,当转子的转速很高时,其数值可以达到静约束力的几

倍,甚至几十倍,而且这种约束力是周期性变化的,必然引起机座和基础的振动,还会引起有关构件内的交变应力。 4) 利用动量定理能否求约束力偶矩M ?

本例也可以选用质心运动定理∑=i c F a m

求解。

在图12.10中,因为定子不动,故xy O 1是惯性参考系中,写出系统的质心坐标公式: 212cos m m t e m x c +=

ω 2

12sin m m t

e m y c +=ω

将上两式对时间求二阶导数,可得:

2122cos m m t e m x c +-=ωω 2

122s i n m m t e m y

c +-=ωω 由质心运动定理:

∑=ix c F x

m ()x F m m t

e m m m =+-+2

12221c o s ωω ∑=iy c F y

m ()()g m m F m m t

e m m m y 212

12221s i n +-=+-+ωω 可得t e m F x ωωcos 22-=

()t e m g m m F y ωωs i n 2

221-+=

例12.6 在上例中(例12.5),若电动机机座与基础之间无螺栓固定,且为光滑接触(图12.12),

初始时电动机静止。求转子以等角速度ω转动时电机外壳的运动,并分析电机跳起的条件。

解:1)求电机外壳的运动

研究电机整体 由图示受力分析知

0=∑ix

F

又因为00

==t c x

故=c x 常量

0=?时,由图12.11()a 2

121

m m e

m x c +=

t ω?=时,由图12.11()b ()2

121cos 2m m t e x m x m x c +++=

ω

因为21c c x x = 解得:()t m m e

m x ωcos 12

12-+=

说明电机沿水平方向作简谐振动,振幅为

2

12m m e

m +

2) 电机未跳起时,y F 仍可用上例所求结果,即()t e m g m m F y ωωsin 2

221-+= 令0=y F ,求的电机的角速度为:()t

e g

m m ωωsin 21+=

讨论:当1sin =t ω,即2

π

ω?=

=t 时,转子质心2O 在最高处,可求得使电机跳起的最小

角速度为:()e

g m m 21min +=

ω

例12.7已知:如图12.13表示水流流经变截面弯管的示意图。设流体是不可压缩的理想流体,而且流动是定常的。求流体对管壁的作用力。

解:1)研究对象:取管中aa 截面和bb 截面之间的流体为研究的质点系 2)受力分析:如图所示

设流体密度为ρ,流量为v q ,(流体在单位时间内流过截面的体积流量,定常流动时,

v q 是常量)在dt 时间内,流过截面的质量为dt q dm v ρ=,其动量改变量为

ab b a p p p d -=11

()()

b a aa ab b a

p p p p 111

+-+'=

11aa bb p p

-=

即 ()dt v v q p d v 12

-=ρ

由 ∑=i F dt

p

d 得 ()N v F F F W v v q

+++=-2112ρ

令 N N

N F F F ''+'=

其中N

F '

为管子对流体的静约束力,由下式确定

021='+++N

F F F W

则有 ()()()???-=''-=''-=''y y v Ny

x x v Nx

v N v v q F v v q F v v q F 121212ρρρ

N

F ''

为流体流动时,管子对流体的附加动约束力。可见,当流体流速很高或管子截面积很大时,流体对管子的附加动压力很大,在管子的弯头处必须安装支座(图12.14)

三 动量矩的概念及其计算 1. 质点的动量矩

设质点M 的质量为m ,某瞬时的速度为v ,到O 点的矢径为r

(图12.15)

质点对O 点的动量矩为 ()v m r v m M L O O

?==

质点对z 轴的动量矩为 ()d mv v m M L xy Z z ==

质点对O 点和z 轴(该轴通过O 点)的动量矩关系为 []

z z

O

L L =

2. 质点系的动量矩

设质点系由n 个质点组成,其中第i 个质点的质量为i m ,速度为i v ,到O 点的矢径为i r

则质点系对O 点的动量矩(动量系对点的主矩)为:()∑∑?==i i i i i O O v m r v m M L

质点对z 轴的动量矩为 ()∑=

i z z v m M L

动量矩O L 的解析式为 k L j L i L L Oz Oy Ox O

++=

刚体动量矩的计算

1) 刚体平动(图12.17)

()c c c i i i i i O v m r v r m v m r L ?=?=?=∑∑

2) 定轴转动刚体对转轴的动量矩(图12.18)

()()ωωz

i

i i

i

i i z z I r m r v m v m M L ==?=

=∑∑2

3)平面运动刚体对其平面内一点的动量矩(图12.19)

ωωc c c O O I d mv I v m M L +±=+=)(

例12.8已知:质量为,的两物块分别系在两柔软不可伸长的绳子上,图12.20所示,此两绳分别绕在半径为和并固结在一起的鼓轮上,设鼓轮的质量为,对转轴的回转半径为,并以转动。求系统对鼓轮转轴的动量矩。

解:

1. 分析运动: 2. 计算

例12.9图12.21所示椭圆规尺,质量为,曲柄质量为,滑块和的质量为,设曲柄和均为均质杆,且,曲柄以转动,求:此椭圆规尺机构对转轴的动量矩。

1. 分析运动:规尺作平面运动 2. 计算

物块速度均通过转轴 ,对的动量矩为,杆定轴转动,对轴的动量矩为

四.心为定点的动量矩定理

引言:求均质轮在外力偶的作用下,绕质心轴的角加速度 1. 质点对固定点的动量矩定理图12.22

牛顿第二定律:F dt

v d m = 上式两边左叉矢径r F r dt v d m r

?=? 左边()v m dt

r d v m r dt d

?-?= O 是固定点时,于是有()()

F M v m r dt

d O

=?

——质点对固定点的动量矩定理 2. 质点系对固定点的动量矩定理

设质点系由个质点组成,其中第个质点的质量为,速度为,对固定点的矢径为,作用在该质点上的外力为,内力为。

第个质点对固定点的动量矩定理为 将上式从到求和 由图12.23知 右边 左边

可得 质点系对固定点的动量矩定理 3. 动量矩守恒 若,常矢量 若 则常量

例12.10分析受有心力作用的物体的运动 解:如图12.24所示,因为

故常矢量,可见质点在有心力作用下运动的轨迹是平面曲线。

例12.11 如图12.25所示,在调速器中,除小球外,各杆重量可不计,忽略摩擦,系统绕轴自由转动。初始时,系统的角速度为,当细绳拉断时。求各杆与铅直线成角时系统的角速度。 解:研究整体:因重力和轴承力对于转轴的矩为零,即 故常量 时 时 由 得

例12.12已知:不可伸长的绳子绕过不计质量的定滑轮,绳的一端悬挂物块,另一端有一个与物块重量相等的人,从静止开始沿绳子上爬,设其相对绳子的速度为,试问:物是否动?并分析绳子的速度。

解:研究整体系统:因为,故常量 设轮顺时针转,绳子的速度为 则 由 即

物上升的速度为 人向上的速度为

人、物向上的绝对速度大小相等,方向相同,人物同时到达顶端。 五.刚体定轴转动微分方程

设刚体在主动力系作用下,绕固定轴转动(图12.27),设刚体对轴的转动惯量为,瞬时的角速度为,刚体对转轴的动量矩为,由质点系对固定轴的动量矩定理 可得

刚体的定轴转动微分方程

例12.13 已知复摆由绕水平轴转动的刚体构成,已知复摆的重量为,重心到转轴的距离为,如图12.28所示,设复摆对转轴的转动惯量为。求复摆微摆动的周期。 解:

1. 研究对象:复摆

2. 分析受力:如图12.28所示

3. 分析运动:复摆作定轴转动,用表示其转角 4. 列动力学方程,求解:

由题意,复摆微摆动时,于是有

这是简谐运动的标准微分方程,此方程的解为: 式中称为角振幅,为初相位他们由初始条件确定 摆动周期为 5. 讨论

1) 若测出周期T ,可求出刚体对转轴的转动惯量

2

24πPd

T I o =

2) 如果要求轴承O 的约束力

???-=-=???

?

??

===∑∑∑????ωααττcos sin )(2

2p F m d p F m d F C O m F C O m F M I on o in i i o o 求,积分求

求轴承的约束力

刚体定轴转动微分方程组

例12.14 已知:电动机将不变转矩M 加在轴上(图12.29)轴通过节圆半径为21,r r 的外啮合齿轮传动给轴Ⅱ。轴Ⅱ与提升重物的鼓轮固结为一体,鼓轮半径为R ,轴Ⅰ连同其上零件对轴的转动惯量为1I ,轴Ⅱ连同其上零件对轴的转动惯量为2I ,且各自重心分别在转轴上。重物的质量为,不计摩擦。求:重物A 的加速度。 解:

1. 研究轴Ⅰ(图12.29)

∑=)(i Z Z F M I

111r F M I o τα+-= (1)

2. 研究轴物(图12.29)

2222ωωmR I L Z +=

)(∑=i Z Z

F M dt

dL m g R r F mR I o Z -=+222)(τα (2) 3. 运动学关系

1

221r r

-=αα (3) 2αR a = (4)

由方程(1)、(2)、(3)、(4),解得:

2

1

2

2

212

122

121)(r mR r I r I R mgRr r Mr a ++-=

五.矩心为质心的动量矩定理

1. 质点系对于定点”O”和质心”C”的动量矩之间的关系

如图12.30所示,O 为定点,C 为质点系的质心,质点系对于定点O 的动量矩为

∑?=i i i o v m r L

对于任一质点i M ,由图可见

i c i r r ρ +=

于是∑∑∑?+?=?+=i i i i i c i i i c o v m v m r v m r L ρρ)( 式中∑=c i i v m v m

,

C i i i L v m

=?∑ρ质点系对于质心的绝对动量矩

L

图12.30中为随质心平动的参考系,设点相对该坐标系的速度为,有 式中质点系对于质心的相对动量矩 有

代入式,有

2. 质点系相对于质心的动量矩定理 质点系相对于固定点的动量矩定理 左边 右边 由于 所以

矩心为质心的动量矩定理 若

则 常矢量 矩心为质心的动量矩守恒 试分析跳水运动的腾空动作(图12.31)

刚体的平面运动微分方程

设刚体具有质量对称平面,作用在刚体上的力系可以简化为在此平面内的力系,如图12.31所示。以为基点建立平动坐标系,则刚体相对于此质心的动量矩为

刚体平面运动岁质心平动相对质心转动

随质心平动

相对质心转动

刚体平面运动微分方程:

例12.15 已知:质量为半径为的均质圆轮放在倾角为的斜面上,由静止开始运动。设轮沿斜面作纯滚动。求:(1)轮心的加速度,(2)轮沿斜面不打滑的条件。

解:

1.研究对象:轮

2.分析受力:如图12.33所示

3.分析运动:轮作平面运动,轮心沿斜面作直线运动

4.列动力学方程求解:

轮纯滚动

联立解得:

纯滚动的条件:

5.讨论:若,由式得,常量轮平动

若,则轮沿斜面打滑,此时

由方程可求得

例12.16 已知:均质细杆质量,长度,端用两条细绳悬挂,三者个夹角,如图12.34所示。求:剪断绳时,杆的角加速度及绳的拉力。

解:

1.研究对象:杆

2.分析受力:如图12.34所示

3.分析运动:剪断绳时,杆作平面运动。质心作平面曲线,轨迹未知。

4.列动力学方程,求解:

以上三个式中有个未知量,补充一个运动学关系

以上四式联立,解得:

代入数据,得:

例12.17 已知:质量为半径为的均质圆轮,可以在半径为的圆弧轨道中作纯滚动(如图12.34所示),时圆轮由静止释放。求:(1)接触处的摩擦力和正压力

(2)微运动的周期与运动规律

解:

1.研究对象:圆轮

2.分析受力:如图12.35所示

3.分析运动:轮作平面运动,轮心沿作圆周运动

4.列动力学方程,求解:

5.求

6.微运动时

由式令

解得

所以

周期

化学动力学基础(一、二)习题

化学动力学基础(一、二)习题

化学动力学基础(一、二)习题 一、选择题: 1、某反应的速率常数k=0.0462分-1,又知初始浓度为0.1mol.dm-3,则该反应的半衰期为: (A) 1/(6.93×10-2×0.12) (B) 15分(C) 30分(D) 1/(4.62×102×0.1)分 答案:(B) 2、某一级反应, 当反应物的浓度降为起始浓度的1%时,需要t1秒, 若将反应物的浓度提高一倍, 加快反应速率, 当反应物浓度降低为起始浓度的1%时, 需时为t2, 则: (A ) t1﹥t2(B) t1=t2 (C) t1﹤t2(D) 不能确定二者关系 答案:(B) 3、某反应物反应掉7/8所需的时间恰好是它反应掉1/2所需时间的3倍, 则该反应的级数是: (A) 零级(B) 一级反应(C) 三级反应(D) 二级反应 答案:(B )

4、反应A→B(Ⅰ);A→D(Ⅱ), 已知反应Ⅰ的活化能E1大于反应Ⅱ的活化能E2, 以下措施中哪一种不能改变获得B和D的比例: (A)提高反应温度(B) 降低反应温度 (C) 延长反应时间(D) 加入适当的催化剂 答案:C 5、由基元步骤构成的复杂反应:2A→2B+C A+C→2D,以C物质的浓度变化表示反应速率的速率方程(已知:-dC A/dt=K A1C A2-K A2C B2C c+K A3C A C C ) 则 (A)dC c/dt=K A1C A2-K A2C B2C c+K A3C A C C (B)dC c/dt=1/2K A1C A2-1/2K A2C B2C c+1/2K A3C A C C (C)dC c/dt=2K A1C A2-2K A2C B2C c+2K A3C A C C (D)dC D/dt=-K A3C A C C 答案:(B) 6、反应Ⅰ, 反应物初始浓度C0’, 半衰期t1/2’, 速率常数K1, 反应Ⅱ, 反应物初始浓度C0”, 半衰期t1/2”, 速率常数K2,

热分析动力学

热分析动力学 一、 基本方程 对于常见的固相反应来说,其反应方程可以表示为 )(C )(B )(A g s s +→ (1) 其反应速度可以用两种不同形式的方程表示: 微分形式 )(d d αα f k t = (2) 和 积分形式 t k G =)(α (3) 式中:α――t 时物质A 已反应的分数; t ――时间; k ――反应速率常数; f (α)—反应机理函数的微分形式; G(α)――反应机理函数的积分形式。 由于f (α)和G (α)分别为机理函数的微分形式和积分形式,它们之间的关系为: α αααd /)]([d 1 )('1)(G G f = = (4) k 与反应温度T (绝对温度)之间的关系可用著名的Arrhenius 方程表示: )/exp(RT E A k -= (5)

式中:A ――表观指前因子; E ――表观活化能; R ――通用气体常数。 方程(2)~(5)是在等温条件下出来的,将这些方程应用于非等温条件时,有如下关系式: t T T β0 += (6) 即: β/=t d dT 式中:T 0――DSC 曲线偏离基线的始点温度(K ); β――加热速率(K ·min -1)。 于是可以分别得到: 非均相体系在等温与非等温条件下的两个常用动力学方程式: )E/RT)f(A t d d αexp(/-=α (等温) (7) )/exp()(β d d RT E f A T -=αα (非等温) (8) 动力学研究的目的就在于求解出能描述某反应的上述方程中的“动力学三因子” E 、A 和f(α)

对于反应过程的DSC 曲线如图所示。在DSC 分析中,α值等于H t /H 0,这里H t 为物质A ′在某时刻的反应热,相当于DSC 曲线下的部分面积,H 0为反应完成后物质A ′的总放热量,相当于DSC 曲线下的总面积。 二、 微分法 2.1 Achar 、Brindley 和Sharp 法: 对方程 )/exp()(β d d RT E f A T -=αα进行变换得方程: )/exp(d d )(βRT E A T f -=α α (9) 对该两边直接取对数有: RT E A T f - =ln d d )(βln αα (10) 由式(11)可以看出,方程两边成线性关系。 通过试探不同的反应机理函数、不同温度T 时的分解百分数,进行线性回归分析,就可以试解出相应的反应活化能E 、指前因子A 和机理函数f(α). 2.2 Kissinger 法

第九章 化学动力学基本原理

第九章 化学动力学基本原理 第一次课: 课程名称:物理化学 本课内容:§9.1引言 §9.2反应速率和速率方程 授课时间: 90 分钟 一、教学目的 通过本次教学,使学生了解明确反应速率,反应级数,反应分子数等概念,掌握反应速率的表示方法方程,并能熟练应用。 二、教学意义 通过本次授课,主要使学生了解动力学的基本概念,掌握反应速率的表示方法,了解动力学研究的意义。 三、教学重点 反应速率,反应级数,反应分子数,反应速率的表示方法 四、教学难点 反应速率的表示方法 五、教学方式 以电子课件为主,辅以少量板书的课堂讲授。 六、讲授内容 §9.1引言 1.化学动力学的任务和目的 2.化学动力学发展简史 3.反应机理的概念 §9.2反应速率和速率方程 1.反应速率的表示法 2.反应速率的实验测定 3.反应速率的经验表达式 4.反应级数 5.质量作用定律 七、讲授方法 §9.1引言 1.化学动力学的任务和目的 首先讲述化学动力学基本任务即研究各种因素对反应速率的影响,进而揭示化学反应发生的具体过程(即反应机理)。 2.化学动力学发展简史 以图片的形式向学生生动的展示化学动力学发展简史,加深学生的印象。3.反应机理的概念 以实例讲述学生所熟悉的许多化学反应并不是简单的一步反应就能实现的,而是经历了一系列具体步骤而最终实现的,从而引出反应机理的概念,即组成宏观总反应的基元反应的总和及其序列,称为“反应机理”或“反应历程”。 §9.2 反应速率和速率方程 1.反应速率的表示法 重点讲述反应速率的表示方法,所谓反应速率就是化学反应进行的快慢程度。国际上已普遍采用以反应进度随时间的变化率来定义反应速率。

1第一章 空气动力学基础知识复习过程

1第一章空气动力学 基础知识

第四单元飞机与飞机系统 第一章空气动力学基础知识 1.1 大气层和标准大气 1.1.1 地球大气层 地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。 根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。 对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组 成成分保持不变。 仅供学习与交流,如有侵权请联系网站删除谢谢1

从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下56.5度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。 中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。 中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。 散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部大气质量的1011 ,是大气的最外一层,因此也称之为“外层大气”。 1.1.2 大气的物理性质 大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。 气体的压强p是指气体作用于容器内壁的单位面积上的正压力。大气的压强是指大气垂直地作用于物体表面单位面积上的力。 仅供学习与交流,如有侵权请联系网站删除谢谢2

聚合物反应工程基础知识总结

聚合物反应工程基础知识总结 第一章(填空、选择、简答) 1.聚合物反应和聚合物生产的特点: ①反应机理多样,动力学关系复杂,重现性差,微量杂质影响大。 ②除了要考虑转化率外,还要考虑聚合度及其分布,共聚物组成及其分布和序列分布,聚合物结构和性能等。 ③要考虑反应时候的聚合物流动、混合、传热、传质等问题。 ④要考虑反应器放大的问题。 2.本课程研究内容: 1)聚合物反应器的最佳设计。 2)进行聚合反应操作的最佳设计和控制。 第二章(所有题型) 化学反应器:完成化学反应的专门容器或设备。 1、反应器分类: 1)按物料相态分类 2)按结构型式分类

3)按操作方式分类 间歇反应器:在反应之前将原料一次性加入反应器中,直到反应达到规定的转化率,即得反应物,通常带有搅拌器的釜式反应器。优点是:操作弹性大,主要用于小批量生产。 连续操作反应器:反应物连续加入反应器产物连续引出反应器,属于稳态过程,可以采用釜式、管式和塔式反应器。优点是:适宜于大规模的工业生产,生产能力较强,产品质量稳定易于实现自动化操作。 半连续操作反应器:预先将部分反应物在反应前一次加入反应器,其余的反应物在反应过程中连续或断连续加入,或者在反应过程中将某种产物连续地从反应器中取出,属于非稳态过程。优点是:反应不太快,温度易于控制,有利于提高可逆反应的转化率。 (PS:造成三种反应器中流体流动型态不同是由于物料在不同反应器中的返混程度不一样。返混:是指反应器内不同年龄的流体微元之间的混合,返混代表时间上的逆向混合。) 2、连续反应器中物料流动型态 平推流反应器: ⑴各物料微元通过反应器的停留时间相同。 ⑵物料在反应器中沿流动方向逐段向前移动,无返混。 ⑶物料组成和温度等参数沿管程递变,但是每一个截面上物料组成和温度等参数在时间进程中不变。 ⑷连续稳态操作,结构为管式结构。 理想混合流反应器: ⑴各物料微元在反应器的停留时间不相同。 ⑵物料充分混合,返混最严重。 ⑶反应器中各点物料组成和温度相同,不随时间变化。

物化课后习题第章化学动力学

第八章 化学动力学* ——课后习题解答 难度级别:基础★,基础2★,综合3★,综合4★,超纲5★ 关于作业:公式有必要牢记,但是平时作业时最好是自己动手推导出比较简单的公式,而不是直接翻书,找到公式,套公式,这样的解题方式不值得提倡。 1.(基础★)气体反应SO 2Cl 2 = SO 2 + Cl 2为一级反应。在593K 时的k = 2.20×10-5 s -1。求半衰期和反应2h 后分解的百分比。 解:1/25 ln 20.693 315002.2010 t s k -= ==?(计算有点误差31507 s ), 510 0ln 2.21023600 1.58410c kt c x --==???=?- 0000 1 1.17161 1.1716100%14.65%1.17161c x x c x c c -===?=--, 2.(基础★)镭原子蜕变成一个Rn 和一个α粒子。它的半衰期是1622年,反应是一级。问1g 无水溴化镭RaBr 2在10年内能放出多少Rn ?Rn 的量用0℃,标准压力下的体积(cm 3)来表示。 解:41 1/2ln 2/0.692/1622 4.27310k t a --===?, 430 0ln 4.2731010 4.27310c kt c x --==??=?-, 0 0 1.00428c c x ∴ =- 1g 无水溴化镭的物质的量为1 0.00259386 mol =,也就是溴离子物质的量 在同一个密闭的容器中 50.00259 1.00428 1.105100.00259x mol x -=?=?- 故1g 无水溴化镭在10年内能放出在0℃,标准大气压下Rn 的体积为 V = 1.105×10- 5×22.4×103 = 0.248 cm 3 【讨论】(1)元素周期表应该作为一个常用的工具备在身边,Ra 的原子量为226,溴的原子量为80;(2)单位是灵活的,可以根据具体的情况而定,目的则是为了方便计算;(3)无水溴化镭RaBr 2不是气体?这样在浓度表达上有问题吗? 4.(基础★★)某二级反应在a = b 时,经过500s 原始物作用了20%,问原始物作用60%时须经过多少时间? *马鞍山,尹振兴,2007,zhenxingyin@https://www.360docs.net/doc/b717363268.html,

第十一章 化学动力学基础(一)习题

化学动力学基础(一) 一、简答题 1.反应Pb(C 2H 5)4=Pb+4C 2H 5是否可能为基元反应?为什么? 2.某反应物消耗掉50%和75%时所需要的时间分别为t 1/2和 t 1/4,若反应对该反应物分别是一级、二级和三级,则t 1/2: t 1/4的比值分别是多少? 3.请总结零级反应、一级反应和二级反应各有哪些特征?平行反应、对峙反应和连续反应又有哪些特征? 4.从反应机理推导速率方程时通常有哪几种近似方法?各有什么适用条件? 5.某一反应进行完全所需时间时有限的,且等于 k c 0(C 0为反应物起始浓度),则该反应是几级反应? 6. 质量作用定律对于总反应式为什么不一定正确? 7. 根据质量作用定律写出下列基元反应速率表达式: (1)A+B→2P (2)2A+B→2P (3)A+2B→P+2s (4)2Cl 2+M→Cl 2+M 8.典型复杂反应的动力学特征如何? 9.什么是链反应?有哪几种? 10.如何解释支链反应引起爆炸的高界限和低界限? 11.催化剂加速化学反应的原因是什么? 二、证明题

1、某环氧烷受热分解,反应机理如下: 稳定产物?→??+?+??→??++??→??? +??→?432134 33k k k k CH R CH R CH RH CO CH R H R RH 证明反应速率方程为()()RH kc dt CH dc =4 2、证明对理想气体系统的n 级简单反应,其速率常数()n c p RT k k -=1。 三、计算题 1、反应2222SO Cl SO +Cl →为一级气相反应,320℃时512.210s k --=?。问在320℃ 加热90min ,22SO Cl 的分解百分数为若干?[答案:11.20%] 2、某二级反应A+B C →初速度为133105---???s dm mol ,两反应物的初浓度皆为 32.0-?dm mol ,求k 。[答案:11325.1---??=s mol dm k ] 3、781K 时22H +I 2HI →,反应的速率常数3-1-1HI 80.2dm mol s k =??,求2H k 。[答 案:113min 1.41---??=mol dm k ] 4、双光气分解反应32ClCOOCCl (g)2COCl (g)→可以进行完全,将反应物置于密 闭恒容容器中,保持280℃,于不同时间测得总压p 如下: [答案: 1.1581a =≈;-14-12.112h 5.8710s k -==?] 5、有正逆反应均为一级反应的对峙反应: D-R 1R 2R 32L-R 1R 2R 3CBr 已知半衰期均为10min ,今从D-R 1R 2R 3CBr 的物质的量为1.0mol 开始,试计算10min 之后,可得L-R 1R 2R 3CBr 若干?[答案:0.375mol]

1第一章 空气动力学基础知识

第四单元飞机与飞机系统 第一章空气动力学基础知识 1.1 大气层和标准大气 1.1.1 地球大气层 地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。 根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。 对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组成成分保持不变。 从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下56.5度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。 中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。 中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到 1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。 散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部大气质量的1011 ,是大气的最外一层,因此也称之为“外层大气”。 1.1.2 大气的物理性质 大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。

化学动力学基础(一)

化学动力学基础(一) 教学目的与要求: 使学生了解和掌握化学动力学的一些基本概念,测定化学反应速率的一般方法,几种简单级数反应的动力学特征,几种典型的复杂分应的动力学特征,温度对反应速率的影响,有自由基参加的反应的动力学特征,拟定反应动力学方程的一般方法。 重点与难点: 化学动力学的一些基本概念:反应的级数与反应的分子数,基元反应与非基元反应以及反应的速率的描述方法等;简单级数反应的动力学特征,几种典型复杂反应的动力学特征,温度对反应速率的影响(反应的活化能的概念),链反应的动力学特征以及动动学方程的推导方法。 §11.1 化学动力学的任务和目的 化学反应用于生产实践所遇到的两个方面的问题和热力学的局限性以及化学动力学的必要性,它的实际意义。 化学动力学的基本任务:1.研究化学反应的速率,以及各种因素(浓度,压力,温度,催化剂)对速率的影响。2.研究反应的机理(历程)。 化学动力学与物质结构的关系:化学动力学和化学热力学的研究方法是不同的。它要研究反应速率及其影响的因素,必须了解体系的物质结构方面的知识,同时,通过对反应速率以及反应机理的研究,也可以加深人们对物质结构的认识。 化学动力学的发展过程:第一阶段,宏观动力学阶段,主要从宏观上测定化学反应的速率,确定反应的级数,在此阶段,确立了质量作用定律和阿累尼乌斯定律,并提出了活化能的概念。 第二阶段,包括从宏观动力学到微观动力学的过程,以及从微观研究化学反应的速度。在这一阶段,建立了各种反应的速度理论,如碰撞理论,过渡状态理论,链反应,单分子反应速度等理论,从二十世纪五十年代开始,分子束和激光技术应用于化学动力学的研究,使人们进入到了态--态反应的层次,研究不同量子态的反应物和产物的速率,以及反应的细节。 化学动力学理论还不能象热力 学理论那样系统和完善。 §11.2化学反应速 率表示法 反应系统中反应物的消耗和

航模基础知识空气动力学

航模基础知识空气动力学 一章基础物理 本章介绍一些基本物理观念,在此只能点到为止,如果你在学校已上过了或没兴趣学,请跳过这一章直接往下看。第一节速度与加速度速度即物体移动的快慢及方向,我们常用的单位是每秒多少公尺﹝公尺/秒﹞加速度即速度的改变率,我们常用的单位是﹝公尺/秒/秒﹞,如果加速度是负数,则代表减速。第二节牛顿三大运动定律第一定律:除非受到外来的作用力,否则物体的速度(v)会保持不变。没有受力即所有外力合力为零,当飞机在天上保持等速直线飞行时,这时飞机所受的合力为零,与一般人想象不同的是,当飞机降落保持相同下沉率下降,这时升力与重力的合力仍是零,升力并未减少,否则飞机会越掉越快。第二定律:某质量为m 的物体的动量(p = mv)变化率是正比于外加力F 并且发生在力的方向上。此即著名的F=ma 公式,当物体受一个外力后,即在外力的方向产生一个加速度,飞机起飞滑行时引擎推力大于阻力,于是产生向前的加速度,速度越来越快阻力也越来越大,迟早引擎推力会等于阻力,于是加速度为零,速度不再增加,当然飞机此时早已飞在天空了。第三定律:作用力与反作用力是数值相等且方向相反。你踢门一脚,你的脚也会痛,因为门也对你施了一个相同大小的力第三节力的平衡作用于飞机的力要刚好平衡,如果不平衡就是合力不为零,依牛顿第二定律就会产生加速度,为了分析方便我们把力分为X、Y、Z 三个轴力的平衡及绕X、Y、Z 三个轴弯矩的平衡。轴力不平衡则会在合力的方向产生加速度,飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞,升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称x 及y 方向﹝当然还有一个z 方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x 方向阻力与推力大小相同方向相反,故x 方向合力为零,飞机速度不变,y 方向升力与重力大小相同方向相反,故y 方向合力亦为零,飞机不升降,所以会保持等速直线飞 弯矩不平衡则会产生旋转加速度,在飞机来说,X 轴弯矩不平衡飞机会滚转, Y 轴弯矩不平衡飞机会偏航、Z 轴弯矩不平衡飞机会俯 第四节伯努利定律 伯努利定律是空气动力最重要的公式,简单的说流体的速度越大,静压力 越小,速度越小,静压力越大,这里说的流体一般是指空气或水,在这里当然是 指空气,设法使机翼上部空气流速较快,静压力则较小,机翼下部空气流速较慢, 静压力较大,两边互相较力,于是机翼就被往上推去,然后飞机就 飞起来,以前的理论认为两个相邻的空气质点同时由机翼的前端往后走,一个流 经机翼的上缘,另一个流经机翼的下缘,两个质点应在机翼的后端相会合,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无 法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上 缘的质点会比流经机翼的下缘质点先到达后缘 我曾经在杂志上看过某位作者说飞机产生升力是因为机翼有攻角,当气流 通过时机翼的上缘产生”真空”,于是机翼被真空吸上去﹝如图1-6﹞,他的真 空还真听话,只把飞机往上吸,为什么不会把机翼往后吸,把你吸的动都不能动, 还有另一个常听到的错误理论有时叫做***理论,这理论认为空气的质点如同子 弹一般打在机翼下缘,将动量传给机翼,这动量分成一个往上的分量于是产生升 力,另一个分量往后于是产生阻力﹝如图1-7﹞,可是克拉克Y 翼及内凹翼在攻 角零度时也有升力,而照这***理论该二种翼型没有攻角时只有上面”挨子 弹”,应该产生向下的力才对啊,所以机翼不是风筝当然上缘也没有所谓真空。 伯努利定律在日常生活上也常常应用,最常见的可能是喷雾杀虫剂了﹝如

空气动力学基础知识及飞行基础原理

-/ M8空气动力学基础及飞行原理 1、绝对温度的零度是 A、-273℉ B、-273K C、-273℃ D、32℉ 2、空气的组成为 A、78%氮,20%氢和2%其他气体 B、90%氧,6%氮和4%其他气体 C、78%氮,21%氧和1%其他气体 D、21%氮,78%氧和1%其他气体 3、流体的粘性系数与温度之间的关系是? A、液体的粘性系数随温度的升高而增大。 B、气体的粘性系数随温度的升高而增大。 C、液体的粘性系数与温度无关。 D、气体的粘性系数随温度的升高而降低。 4、空气的物理性质主要包括 A、空气的粘性 B、空气的压缩性 C、空气的粘性和压缩性 D、空气的可朔性 5、下列不是影响空气粘性的因素是 A、空气的流动位置 B、气流的流速 C、空气的粘性系数 D、与空气的接触面积 6、气体的压力

、密度<ρ>、温度三者之间的变化关系是 A、ρ=PRT B、T=PRρ C、P=Rρ/ T D、P=RρT 7、在大气层内,大气密度 A、在同温层内随高度增加保持不变。 B、随高度增加而增加。 C、随高度增加而减小。 D、随高度增加可能增加,也可能减小。 8、在大气层内,大气压强 A、随高度增加而增加。 B、随高度增加而减小。 C、在同温层内随高度增加保持不变。

-/ D、随高度增加可能增加,也可能减小。 9、空气的密度 A、与压力成正比。 B、与压力成反比。 C、与压力无关。 D、与温度成正比。 10、影响空气粘性力的主要因素: A、空气清洁度 B、速度剃度 C、空气温度 D、相对湿度 11、对于空气密度如下说法正确的是 A、空气密度正比于压力和绝对温度 B、空气密度正比于压力,反比于绝对温度 C、空气密度反比于压力,正比于绝对温度 D、空气密度反比于压力和绝对温度 12、对于音速.如下说法正确的是: A、只要空气密度大,音速就大 B、只要空气压力大,音速就大 C、只要空气温度高.音速就大 D、只要空气密度小.音速就大 13、假设其他条件不变,空气湿度大 A、空气密度大,起飞滑跑距离长 B、空气密度小,起飞滑跑距离长 C、空气密度大,起飞滑跑距离短 D、空气密度小,起飞滑跑距离短 14、一定体积的容器中,空气压力 A、与空气密度和空气温度乘积成正比 B、与空气密度和空气温度乘积成反比 C、与空气密度和空气绝对湿度乘积成反比 D、与空气密度和空气绝对温度乘积成正比 15、一定体积的容器中.空气压力 A、与空气密度和摄氏温度乘积成正比 B、与空气密度和华氏温度乘积成反比 C、与空气密度和空气摄氏温度

化学反应动力学基础(一)-学生

5202 反应 2O 3→ 3O 2的速率方程为 - d[O 3]/d t = k [O 3]2[O 2]-1 , 或者 d[O 2]/d t = k '[O 3]2[O 2]-1,则速率常数 k 和 k ' 的关系是: ( ) (A) 2k = 3k ' (B) k = k ' (C) 3k = 2k ' (D) -k /2 = k '/3 5203 气相反应 A + 2B ─→ 2C ,A 和 B 的初始压力分别为 p A 和 p B ,反应开始时 并无 C ,若 p 为体系的总压力,当时间为 t 时,A 的分压为: ( ) (A) p A - p B (B) p - 2p A (C) p - p B (D) 2(p - p A ) - p B 5204 对于反应 2NO 2= 2NO + O 2,当选用不同的反应物和产物来表示反应速率时,其相互关系为:( ) (A) -2d[NO 2]/d t = 2d[NO]/d t = d[O 2]/d t (B) - d[NO 2]/2d t = d[NO]/2d t = d[O 2]/d t = d ξ /d t (C) - d[NO 2]/d t = d[NO]/d t = d[O 2]/d t (D) - d[NO 2]/2d t = d[NO]/2d t = d[O 2]/d t = 1/V d ξ /d t 5207 气相基元反应 2A k 1 B 在一恒容的容器中进行,p 0为 A 的初始压力, p t 为时间 t 时反应 体系总压,此反应速率方程 d p t / d t = 。 - k (2p t - p 0)2 5208 有一反应 mA → nB 是一简单反应,其动力学方程为 -d c A / d t = kc A m , c A 的单位为 mol ·dm -3, 时间单位为 s ,则: (1) k 的单位为 ___________ mol 1- m ·dm 3( m -1)·s -1 (2) 以d c B /d t 表达的反应速率方程和题中给的速率方程关系为 B A A A 1d 1d 'd d m m c c k c k c n t m t m =-== 5209 反应 2N 2O 5─→ 4NO 2+ O 2 在328 K 时,O 2(g)的生成速率为0.75×10-4 mol ·dm -3·s -1。 如其间任一中间物浓度极低, 难以测出, 则该反应的总包反应速率为 _______________mol ·dm -3·s -1, N 2O 5之消耗速率为__________ mol ·dm -3·s -1,NO 2之生成速率为_______________mol ·dm -3·s -1 。0.75×10-4, 1.50×10-4, 3.00×10-4 5210 O 3分解反应为 2O 3─→3O 2 ,在一定温度下, 2.0 dm 3容器中反应。实验测出O 3每秒消耗1.50×10-2 mol, 则反应速率为_______________mol ·dm -3·s -1氧的生成速率为_______________mol ·dm -3·s -1, d ξ /d t 为_______________ 0.75×10-2, 2.25×10-2, 1.50×10-2.。 5211 2A +B =2C 已知反应某一瞬间, r A =12.72 mol ·dm -3·h -1, 则 r B = , r C =_____________r B =6.36 mol ·dm -3·h -1, r C =12.72mol ·dm -3·h -1 5212分别用反应物和生成物表示反应A +3B =2C 的反应速率, 并写出它们间关系为: 。r A = 13r B =1 2 r C 5222 有关基元反应的描述在下列诸说法中哪一个是不正确的: ( ) (A) 基元反应的级数一定是整数 (B) 基元反应是“态-态”反应的统计平均结果 (C) 基元反应进行时无中间产物,一步完成 (D) 基元反应不一定符合质量作用定律 5223 400 K 时,某气相反应的速率常数k p = 10-3(kPa)-1·s -1,如速率常数用 k C 表示,则 k C 应为: (A) 3.326 (mol ·dm -3)-1·s -1 k C = k p (RT ) (B) 3.0×10-4 (mol ·dm -3)-1·s -1 (C) 3326 (mol ·dm -3)-1·s -1 (D) 3.0×10-7 (mol ·dm -3)-1·s -1 5224 如果反应 2A + B = 2D 的速率可表示为:

空气动力学基础知识及飞行基础原理笔试题

空气动力学基础及飞行原理笔试题 1绝对温度的零度是:C A -273℉ B -273K C -273℃ D 32℉ 2 空气的组成为C A 78%氮,20%氢和2%其他气体 B 90%氧,6%氮和4%其他气体 C78%氮,21%氧和1%其他气体 D 21%氮,78%氧和1%其他气体 3 流体的粘性系数与温度之间的关系是? B A液体的粘性系数随温度的升高而增大。 B气体的粘性系数随温度的升高而增大。 C液体的粘性系数与温度无关。 D气体的粘性系数随温度的升高而降低。 4 在大气层内,大气密度:C A在同温层内随高度增加保持不变。B随高度增加而增加。 C随高度增加而减小。D随高度增加可能增加,也可能减小。 5 在大气层内,大气压强:B A随高度增加而增加。B随高度增加而减小。 C在同温层内随高度增加保持不变。C随高度增加可能增加,也可能减小。 6 增出影响空气粘性力的主要因素 B C A空气清洁度B速度梯度C空气温度D相对湿度 7 对于空气密度如下说法正确的是B A空气密度正比于压力和绝对温度B空气密度正比于压力,反比于绝对温度C空气密度反比于压力,正比于绝对温度D空气密度反比于压力和绝对温度 8 “对于音速.如下说法正确的是”C A只要空气密度大,音速就大”B“只要空气压力大,音速就大“ C”只要空气温度高.音速就大”D“只要空气密度小.音速就大” 9 假设其他条件不变,空气湿度大:B A空气密度大,起飞滑跑距离长B空气密度小,起飞滑跑距离长 C空气密度大,起飞滑跑距离短D空气密度小,起飞滑跑距离短 10一定体积的容器中。空气压力D A与空气密度和空气温度乘积成正比B与空气密度和空气温度乘积成反比

第六章 化学动力学基础.

第六章 化学动力学基础 首 页 习题解析 本章练习 本章练习答案 章后习题答案 习题解析 [TOP] 例13-1在酸的存在下蔗糖的反应中,偏光计的读数αt 如下: t/(min) 0 30 90 150 330 630 ∞ αt 46.57 41.00 30.75 22.00 2.75 -10.00 -18.75 这个反应是一级反应,求反应速率常数。 解1 对一级反应,不仅反应物的浓度本身,如果有和浓度成比例的量,则可以用来代替浓度。αt 是蔗糖溶液的偏振面转过的角度,在t = 0时溶液中只存在蔗糖,在t = ∞时蔗糖应该完全消失,而在公式ln c A =ln c A0-kt 中,和c A0成比例的量是α0-α∞,和c A 成比例的量是αt -α∞,因此可以用ln(αt -α∞)=ln(α0-α∞)-kt 计算各时刻的k 。 min 100.375 .1800.4175 .1857.46ln min 30131-?=++= k min 101.375.1875.3075 .1857.46ln min 90132-?=++= k min 102.375.1800.2275 .1857.46ln min 150133-?=++=k min 104.375 .1875.275 .1857.46ln min 330134-?=++= k min 102.375 .1800.1275 .1857.46ln min 630135-?=+-+= k min 102.35 35 4321-?=++++= k k k k k k 解2 采用作图法,以lg(αt -α∞)对t 作图,得一直线,其斜率b = -k /2.303。 t /min 30 90 150 330 630

叶片的空气动力学基础

叶片的空气动力学基础 在风力机基础知识一节中介绍过叶片的升力与阻力基本知识,本节将进一步介绍相关理论知识。在风力机基础知识一节中已作介绍的不再重复,仅介绍有关内容的提高部分。 常用叶片的翼型 由于平板叶片攻角略大就易产生气流分离,阻力增大;平板的强度也很低,所以正式的叶片截面都就是流线型的,即使有一定厚度阻力也很小。图1就是一幅常见翼型的几何参数图,该翼型的中弧线就是一条向上弯曲的弧线,称这种翼型为不对称翼型或带弯度翼型,比较典型的带弯度翼型为美国的NACA4412。 图1--翼型的几何参数 当弯度等于0时,中弧线与弦线重合,称这种翼型为对称翼型,图2就是一个对称翼型,比较典型的对称翼型为美国的NACA0012。

图2--对称翼型的几何参数 图3就是一个性能较好的适合风力机的低阻翼型,就是带弯度翼型,在水平轴风力机中应用较多。 图3--带弯度的低阻翼型 翼型的升力原理 有关翼型的升力原理解释有多种,归纳起来主要依据就是基于牛顿定律的气流偏转产生反作用力与基于伯努利原理的气流速度不同产生压差两个原理,我们结合这两个原理对翼型的升力作通俗的解释。

带弯度翼型在攻角为0度时的升力与阻力 图4就是一个带弯度翼型在攻角为0度时的流线图与压强分布图,左图就是该翼型的流线图,由于翼型上下面不对称,气流在上下面的流动状态也不同。翼型上表面就是凸起的,通道截面减小,气流的流速会加快,另一个原因就是凸起的表面使翼型后面的气压有所减小,前后的压差使得气流速度加快,特别就是翼型上表面前端流速较快。翼型下表面较平,多数气流基本就是平稳流过,由于由于上表面前端高速气流产生低压的吸引,翼型前端气流都向上表面流去,造成靠下表面的气流通道加宽,导致靠近下表面的气流速度有所下降。这样流过上表面的气流速度要比下表面快,根据伯努利原理,流速快的地方压力比流速慢的地方压力小,也就就是说翼型下方压力大于上方,压力差使翼型获得一个向上的力Fl,所以说带弯度翼型在攻角为0度时也会有升力。 图4--翼型在攻角为0度时的流线图与压强分布图图4右图就是该翼型的压力分布图,图中翼型上部分浅绿色区域内的绿色箭头线就是上表面的压力分布,箭头线的长短与方向表示该点的压

纤维素热分析动力学

廖艳芬,王树荣,骆仲泱,周劲松,余春江,岑可发.纤维素热裂解过程动力学的实验分析研究.浙江大学学报,2002,36(2). 摘要:尽管针对纤维素热裂解动力学方面的研究以已开展的比较广泛,但其表观动力学的确定认识一个具有争论性的问题,从而对纤维素热裂解机理的描述也就各不相同。廖艳芬等人试图通过纤维素的热裂解动力学研究,对此种想象作出合理的解释,并给出相应的机理描述。纤维素热裂解随温度的升高经历了五个不同的阶段,其中第三阶段是整个过程的主要是部分,期间大量灰分分析出并造成明显失重。实验发现随着升温速率的增加,热滞后现象的加重致使纤维素热裂解各个阶段向高温侧移动;同时高升温速率对炭的生成具有抑制作用,但有利于挥发分的生成。通过对热裂解主反应区的热重分析,采用微商法求得对应的反应动力学参数,以600K作为分界点,低温段的活化能约在267KJ/mol,较高温度段则体现为174 KJ/mol左右的低活化能。纤维素热裂解是一传热传质现象,与化学动力学机制相互影响控制的过程试验条件传热传质过程的影响是造成结论存在差异的内在原因。 随着世界经济持续发展导致对能源需求的高速增长以及大量化石燃料燃烧利用所造成的环境污染,生物质能这一可再生的清洁能源目前已引起了世界各国的高度重视。相比于煤炭等化石燃料,生物质具有低污染排放特点,而且其生产 的零排放,从而对于缓解“温室效应”具有特殊意义。 利用过程中能实现CO 2 生物质能的热化学转换技术是生物质能转换利用研究中的一个重点,其中生物质热裂解作为目前世界上生物质能研究开发的前沿技术,不仅是生物质气化或燃烧等转化过程中的必经步骤,而且其本身就是一种产生高能量密度产物的独立工艺。生物质热裂解是指生物质由于受到外界热效应的影响而发生的热化学转换过程,随着过程的进行,生物质的理化性质发生变化,研究这种变化的趋势不仅有助于了解生物质热裂解进程的演变情况,为生物质热裂解液化技术提供理论基础,同时对开发生物质高效直接燃烧和气化技术也具有重要的工程价值。纤维素作为生物质的主要组成部分,其热裂解行为在很大程度上体现出生物质整体的热裂解规律,因而进行纤维素热裂解过程的研究对生物质热转化利用技术的规模化应用具有重要意义,而对于纤维素热裂解过程的研究通常从其动力学特点入手来解释其过程的发展。 本文采用Perkin-Elmer TGA-7型差示热重分析仪,在程控温度操作条件下以5~50K/min的不同升温速率对纤维素原料在300~1200K的温度下进行动态升温试验,测量物质的物理性质与温度的关系,从而研究其反应动力学。试验用的载气为高纯度氮气,以保持炉内惰性气氛,同时能及时将纤维素热裂解生成的挥发性产物带离样品,从而减少了由于二次反应对试样瞬时重量带来的影响。动力学分析采用的纤维素是从含纤维素为99%的纯棉花中提取,其灰份质量分数为0.01%,粒径为50~60μm,试样量均控制在8mg以内。 2 纤维素热裂解动力学试验结果 在给定的升温速率下,随着原料温度的升高,纤维素热裂解经历了几个不同阶段,主要分为五个区域(见图1)。 的部分,在该区域中生物质除了温度升高外,没有第一区域是从室温开始到T 发生失重,此时试样的性质基本未变化;第二区域是指T0到T1的这个范围,在这个过程中生物质开始失去自由水;在接下的T1至T2的第二区域内,热重曲线几乎成一平台,期间发生微量的失重,这是生物质发生解聚及“玻璃化转变“现象的一个缓慢过程;第三区域是从T2到T4阶段,该区域是生物质热裂解过程的

第十章 化学动力学基础

第十章 化学动力学基础 一、学习提示: 热力学只能预言在给定的条件下,反应发生的可能性,即在给定的条件下,反应能不能发生,发生到什么的程度。而要把可能性变成现实性,就需要化学动力学的知识,化学动力学的基本任务:一是研究反应的速率以及各种因素(如分子结构、温度、压力、浓度、介质、催化剂等)对反应速率的影响,从而给人们提供选择反应条件,使化学反应按我们所希望的速率进行。 化学动力学的基本任务之二是研究反应历程一即反应物究竟按什么途径,经过哪些步骤,才转化为最终产物。 学习中应掌握以下主要内容: 1、掌握等容反应速率的表示法以及基元反应、复杂反应、反应分子数、反应级数、反应速率方程式等基本概念; 2、简单级数反应(零级、一级、二级反应)的速率公式和它的特征,并能由实验数据确定简单反应的级数。 3、对三种复杂反应(对峙反应、平行反应和连续反应)要掌控其各自的特点并能对比较简单的反应能写出反应速率与浓度关系的微分式; 4、明确温度、活化能对反应速率的影响、理解,阿化尼乌斯经验式中各项的含意,计算Ea 。 5、掌握链反应的特点,会应用稳态近似、平衡假设等近处理方法。 二、主要公式及使用条件 1、对于反应 aA+bB →yY+zZ 有:-a 1·dt dC A =-b 1·dt dC B =y 1·dt dC y =21·dt dC z a K A =b K b =y K y =2z K

γ=B V 1·dt B d ] [ (适合物反应过程中体积恒定) γm =m 1· dt d ξ (多相催化反应) 2、A+B →C 为基元反应 γ=k[A][B] 1、1、简单级数反应的动力学方程及特征 零级反应:微分式:γ=-dt dC A =k o γ=dt d x =k o 积分式: C A ·O -C A =k o t γ=k o t 丰衰期:t 1/2=o k a 2 C A -t 作图为一直线 k o 的量纲:[浓度]·[时间]-1 一级反应: 微分式:γ=-dt dC A = dt dC p = k 1C A dt dx = k 1(a -x) (a 为起始浓度) x a dx -= k 1dt 积分式:ln(a -x)=-k 1t+C

叶片的空气动力学基础

叶片的空气动力学基础

叶片的空气动力学基础 在风力机基础知识一节中介绍过叶片的升力与阻力基本知识,本节将进一步介绍相关理论知识。在风力机基础知识一节中已作介绍的不再重复,仅介绍有关内容的提高部分。 常用叶片的翼型 由于平板叶片攻角略大就易产生气流分离,阻力增大;平板的强度也很低,所以正式的叶片截面都是流线型的,即使有一定厚度阻力也很小。图1是一幅常见翼型的几何参数图,该翼型的中弧线是一条向上弯曲的弧线,称这种翼型为不对称翼型或带弯度翼型,比较典型的带弯度翼型为美国的NACA4412。 图1--翼型的几何参数 当弯度等于0时,中弧线与弦线重合,称这种翼型为对称翼型,图2是一个对称翼型,比较典型的对称翼型为美国的NACA0012。

图2--对称翼型的几何参数 图3是一个性能较好的适合风力机的低阻翼型,是带弯度翼型,在水平轴风力机中应用较多。 图3--带弯度的低阻翼型 翼型的升力原理 有关翼型的升力原理解释有多种,归纳起来主要依据是基于牛顿定律的气流偏转产生反作用力与基于伯努利原理的气流速度不同产生压差两个原理,我们结合这两个原理对翼型的升力作通俗的解释。

带弯度翼型在攻角为0度时的升力与阻力 图4是一个带弯度翼型在攻角为0度时的流线图与压强分布图,左图是该翼型的流线图,由于翼型上下面不对称,气流在上下面的流动状态也不同。翼型上表面是凸起的,通道截面减小,气流的流速会加快,另一个原因是凸起的表面使翼型后面的气压有所减小,前后的压差使得气流速度加快,特别是翼型上表面前端流速较快。翼型下表面较平,多数气流基本是平稳流过,由于由于上表面前端高速气流产生低压的吸引,翼型前端气流都向上表面流去,造成靠下表面的气流通道加宽,导致靠近下表面的气流速度有所下降。这样流过上表面的气流速度要比下表面快,根据伯努利原理,流速快的地方压力比流速慢的地方压力小,也就是说翼型下方压力大于上方,压力差使翼型获得一个向上的力Fl,所以说带弯度翼型在攻角为0度时也会有升力。 图4--翼型在攻角为0度时的流线图与压强分布图图4右图是该翼型的压力分布图,图中翼型上部分浅绿色区域内的绿色箭头线是上表面的压力分布,箭头线的长短与方向表示该点的压力

相关文档
最新文档