激光诱导等离子体光谱法

激光诱导等离子体光谱法
激光诱导等离子体光谱法

激光诱导等离子体光谱法

【摘要】激光诱导等离子体光谱分析是基于激光与材料相互作用物理学与光谱学的一项新兴物质成分和浓度分析技术,它是采用高功率激光器烧蚀材料产生等离子体,对等离子体辐射的光谱进行成分分析,可用于对固体、液体和气体成分以及浓度的测量。本文概述了激光诱导等离子光谱法的发展概况、基本原理、基本特性、仪器装置、应用方向和研究进展,并对该光谱法进行了展望。

【关键词】激光诱导等离子体;基本原理;研究进展

1.发展概况

激光诱导等离子体光谱分析(1aser-indueed plasma spectroscopy,简称LIPS)自1962年被报道以来,已被广泛地应用到多个领域,如钢铁成分在线分析、宇宙探索、环境和废物的监测、文化遗产鉴定、工业过程控制、医药检测、地球化学分析,以及美国NASA的火星探测计划CHEMCAM等,并且开发出了许多基于LIPS技术的小型化在线检测系统。

LIPS发展可以分为三个阶段:第一个阶段是至自1962年提出到70年代中期,主要是在于研发利用光电火花源产生等离子体的仪器。第二个阶段是从1980年开始,这种技术重新被人们重视,但实际应用仍然受到笨重的仪器阻碍。第三个阶段是1983年迄今,激光诱导等离子体光谱开始以缩写形式LIPS,开始被商业公司开发应用。这种趋势导致分析工作更加集中于发展坚固的、移动的仪器。此时光纤也被应用于LIPS系统中,主要用于将等离子体发射信息和激光脉冲耦合进光谱仪。[1]

近20多年来,LIPS测量技术在各个行业都有不同程度的应用。通过改进实验LIPS装置来提高测量精度。到上个世纪90年代中期开始,一些商业公司便开发出便携式半定量的成品仪器,LIPS仪器开始走向经济型商业化,从而更加有力地深入到各行业的应用中。[2]

2.基本原理

图1 等离子体演化示意图

脉冲激光束经透镜会聚后辐照在固体靶的表面,激光传递给靶材的能量大于热扩散和热辐射带来的能量损失,能量在靶表面聚集,当能量密度超过靶材的电离阈值时,即可在靶材表面形成等离子体,具体表现为强烈的火花,并伴随有响声。激光诱导的等离子体温度很高,通常在10000K以上,等离子体中含有大量激发态的原子、单重和多重电离的离子以及自由电子,处于激发态的原子和离子从高能态跃迁到低能态,并发射出具有特定波长的光辐射,用高灵敏度的光谱仪对这些光辐射进行探测和光谱分析分析,就可以得到被测样品的成分、含量等信息。通常经过聚焦后的激光功率密度达到GW/cm2量级,光斑处物质蒸发、气

电感耦合等离子体发射光谱仪技术参数

电感耦合等离子体发射光谱仪技术参数 设备名称:电感耦合等离子体发射光谱仪 数量:1套 1、工作条件: 1.1 适于在交流电源相电压为230V±10%,频率50/60Hz的中国电网条件下长期正常工作; 2、设备用途 主要应用于对用于对各类样品中主量、微量及痕量元素的定性、半定量和定量分析, 仪器以固体检测器为基础,由进样系统、高频发生器、等离子体炬、光路系统、检测器、分析软件和计算机系统组成,全自动控制,仪器监控仪表全部由计算机控制. 3、技术规格与要求: 3.1技术规格 ★1具备耐HF酸,分析1ppm的锰标准溶液,Mn 257nm谱线的强度大于990万cps。 2蠕动泵为四通道系统。具有智能快速冲洗功能,随时监测特定的谱线 3炬管、雾室和雾化器为一体式设计,雾室、雾化器和等离子体相互分隔。具有雾化器压力提示功能,随时监控雾化器是否堵塞。提供软件截屏作为证明资料。 ★4自激式射频发生器,频率40.00MHz以上。功率稳定性优于0.1%。射频发生器的功率传输效率优于80%。最大功率≥1500W。提供软件截屏作为证明资料 ★5等离子体为垂直式,轴向、轴向衰减和径向、径向衰减四种观测方式,具有实时全彩色摄像系统,在仪器的控制软件中可以实时全彩色看到等离子体的运行图形,并观察炬管、炬管中心管是否变脏需要清洗。至少可设置1/500秒、1/1000秒、1/2000秒摄像速度抓拍等离子体。提供软件截屏作为证明资料。6免维护的平板或线圈等离子体且无需循环冷却水或气体进行冷却。 ★7等离子体气、雾化器、辅助气全部采用质量流量计控制,连续可调。等离子体正常运行的氩气消耗总量小于11升/分钟。 ★8光学系统高性能二维(交叉)色散中阶梯光栅(或棱镜),波长范围包含170-900nm。 能测试Cs894.347、Cl894.806nm;提供光谱图及标准曲线作为证明资料并作为验收指标。 9固态检测器,其形状与中阶梯二维光谱图完全匹配且无紫外线转换荧光涂层。强光和弱光同时测量采用不同的积分时间,避免检测器的损坏。 10 计算机控制系统与数据工作站为主流品牌最新款高配置商务机型,配激光高速打印机。软件为全中文多任务操作。控制软件可以在中文版Windows 7下运行,可以脱离仪器安装在其它计算机上进行模

等离子体诊断技术作业题及答案

“等离子体诊断技术”课程作业题 1.试述光谱分析法对激光等离子体诊断的特点以及能进行定量测试的物理量,并举例说明; 答:不同波段对分析仪器及所用的分析技术的要求不相同。而且各种类型的高温等离子体的参数范围变化很大,不同的参数范围和不同的诊断方法对光谱的分析也有不同的要求。在此着重介绍可见光区光谱分析,稍微介绍下红外和紫外以及X射线光谱。在可见光区,光谱分析基本上都是用棱镜光谱仪、衍射光栅光谱仪和干涉光谱仪。光谱分析仪中最关键的元件是棱镜或衍射光栅等色散元件,它用以使不同波长的光在空间分离出来。 棱镜的分光原理是基于某些透光物质的色散作用,即某些透光介质对不同光波的光具有不同的折射率。棱镜光谱分析仪最大的优点是其没有光谱重叠问题。其显 著缺点是,在0.4m μ到1.0m μ,d n dλ 均下降约达一个数量级,使角色散率和分辨 率都随波长而有显著变化。棱镜光谱仪的工作光谱区,主要取决于棱镜及其它光学零件所用材料的光谱透射率。国产KCA-1型大型棱镜摄谱仪,光源出发的光通过三透镜系统照明狭缝,使得整个狭缝照明均匀,并使光线充满物镜,从而发挥仪器的最大分辨率。狭缝是光谱仪中十分精密的部件,其缝宽调节精度达微米量级,它的高度有光阑调节。 近代高级的光谱仪大多都采用光栅作为色散元件。从广义上讲,任何一种装置和结构,只要它能给入射光的振幅或相位、或者两者同时加以周期性的空间调制,都称为衍射光栅。它的分光作用是基于光的衍射和干涉现象。实际采用的光栅都不采用投射式,而采用反射式。由于振幅调制式光栅的大部分光强仍然都落在五色散的零级谱上,因而现代所有的光栅都采用相位调制式反射光栅。相位调制式反射光栅的主要优点是,可以选择一定形状的沟槽断面,是大部分的入射光集中于预定的方向上,这种光栅称为闪耀光栅。闪耀光栅在闪耀方向上,所集中地入射总光能可达80%~90%,这是闪耀光栅的最大优点。在光栅光谱仪中,不同波长的不同光谱级的光会发生重叠,这是其最严重的缺点之一。反射光栅除了上述的平面反射光栅外,还有一种所谓凹面反射光栅,它是在球面反射镜上沿弦刻画出等间隔且等宽的许多平行直刻痕二制成的。凹面光栅除了具有与平面光栅相同

等离子体发射光谱

等离子体光谱是指等离子体从红外到VUV发射的电磁辐射光谱。 资源 它包含了大量关于等离子体复杂原子过程的信息。利用光谱原理、实验技术和等离子体理论模型对等离子体光谱进行测量和分析具有重要意义。 包括 等离子体光谱主要是线性的和连续的。当等离子体中的中性原子和离子从高能能级的激发态转移到低能能级时,会产生线性谱;②在电子从高能能级跃迁到低能能级逃逸出等离子体之前光子的再吸收量被重新吸收。然而,谱线的总强度与电子和离子的密度和温度有关,每一条谱线都有其强度分布规律。因此,结合光谱模型中的理论模型和原子数据,通过测量谱线的强度,可以得到电子和离子的密度和温度。根据多普勒效应,等离子体的宏观速度可以由谱线波长的偏移来确定。当电子在其他粒子的势场中加速或减速时,就会产生连续的谱。连续谱强度测量也可获得电子密度和温度的数据。 改变

随着等离子体温度的升高,当达到10℃以上时,原子的外部电子逐渐剥离形成各种离子态的离子,如C IV、CV、O VI、n V、Fe Xi x、Ti Xi x(I为中性原子,II,III,IV损失1,2,3)的一个电子外层。这些高电离离子的线性谱主要在远紫外波段。在连续谱情况下,当温度升高时,最大发射强度向短波方向移动;对于聚变高温等离子体,其工作物质为氢,同位素为氘和三种,但不可避免地会含有一些杂质,如C、O、Fe,Ti、Mo、W等元素的温度已达到10度以上。这些杂质离子的光谱大多在真空紫外和X射线波段。分析时间非常重要。比较了高阶重杂质电离线的位置和位置。他们的强度。研究等离子体参数的测量、传输过程和在如此高的温度下的辐射损耗是非常重要的。特别是分析氢离子和氦离子的线强度更为有用,因为这些离子的原子数据相对完整。 形状 等离子体光谱的另一个重要方面是光谱线的形状或轮廓。谱线不是“线”,而是具有一定宽度的等高线。在等离子体光谱中,线展宽的机理非常复杂。多普勒效应和斯塔克效应是影响多普勒效应的两个重要因素。等离子体中的各种粒子都处于随机热运动状

激光诱导等离子体光谱分析

激光诱导等离子体光谱分析

激光光谱分析与联用技术 读书报告 日期:2011年5月25日 激光诱导等离子体光谱法

摘要:本文概述了激光诱导等离子光谱法的发展概况、基本原理、基本特性、仪器装置、应用方向和研究进展,并对该光谱法进行了展望。关键词:激光诱导等离子体光谱研究进展 前言: 激光诱导等离子体(LIP)近年来尤为受到关注,已经成为研究激光与物质相互作用的重要工具,在光谱分析,激光薄膜沉积和惯性约束核聚变等方面也有着广泛的应用。随着激光和阵列探测器的发展,激光诱导等离子体光谱技术(laser-induced plasma spectroscopy或者 laser-induced breakdown spectroscopy)在近30年内取得长足发展,成为原子光谱分析阵营中的一颗明星,犹如早些年的火焰原子吸收光谱法、光电直读光谱法和电感耦合等离子体发射光谱法,在很多领域得到广泛的应用。 1.发展概况 LIPS自1962年被报道以来,已被广泛地应用到多个领域,如钢铁成分在线分析、宇宙探索、

环境和废物的监测、文化遗产鉴定、工业过程控制、医药检测、地球化学分析,以及美国NASA 的火星探测计划CHEMCAM等,并且开发出了许多基于LIPS技术的小型化在线检测系统。 LIPS发展可以分为三个阶段:第一个阶段是至自1962年提出到70年代中期,主要是在于研发利用光电火花源产生等离子体的仪器。第二个阶段是从1980年开始,这种技术重新被人们重视,但实际应用仍然受到笨重的仪器阻碍。第三个阶段是1983年迄今,激光诱导等离子体光谱开始以缩写形式LIPS,开始被商业公司开发应用。这种趋势导致分析工作更加集中于发展坚固的、移动的仪器。此时光纤也被应用于LIPS系统中,主要用于将等离子体发射信息和激光脉冲耦合进光谱仪。 近20多年来,LIPS测量技术在各个行业都有不同程度的应用。通过改进实验LIPS装置来提高测量精度。到上个世纪90年代中期开始,一些商业公司便开发出便携式半定量的成品仪器,

电感耦合等离子体原子发射光谱法(ICP—AES)测定铝合金中其它金属元素的研究

电感耦合等离子体原子发射光谱法(ICP—AES)测定铝合金中其它 金属元素的研究 摘要:本文采用电感耦合全谱直读等离子体原子发射光谱法(ICP-AES)对未知元素组成和含量的铝合金中钛、铜、镁、锰、锌、铬、硅和铁的测定进行了研究,所测试的结果具有较好的精密度和准确度。 关键词:电感耦合等离子体原子发射光谱法元素组成和含量铝合金钛、铜、镁、锰、锌、铬、硅和铁 一、引言 铝合金具有较高的强度,良好的塑性成形能力和机械加工性能,在航空工业中具有重要的应用前景[1-3]。铝合金中其它金属的含量,如金属元素钛、铜、镁、锰、锌、铬、硅和铁等,对其性质和应用具有很大的影响[3-6]。所以,准确测定铝合金中其它金属的含量显得尤为重要。对金属材料的成分进行表征分析,可以深入了解材料的组成元素及其内部构造,可以为我们更好地去研发设计复杂的金属材料提供依据[7]。为此必需建立一个快速、准确的分析方法,以控制其化学成分,使该材料获得良好的物理性能。 国内外常用和新发展的分析方法包括[7-13]:分光光度法、滴定分析法、原子光谱分析法、X射线荧光光谱法、电化学分析法、电感耦合等离子体质谱法、激光诱导等离子体光谱法、电感耦合等离子原子发射光谱法(ICP-AES)和石墨炉原子吸收法。一般铝合金中元素的测定分析方法采用ICP-AES和石墨炉原子吸收法[9,14-18]。ICP-AES[19]作为一种新型的分析方法,较其它分析方法而言,具有灵敏度高、精密度好、线性范围宽、基体效应小、动态范围宽、快速简便并可同时进行多元素分析的优点,已成为铝合金常用的分析方法之一。 基于以上的背景调研,我们拟采用ICP-AES法对未知元素组成和含量的铝合金样品中其它金属元素的组成和含量进行研究,为铝合金材料的潜在应用和材料制备提供理论基础。通过查阅相关文献[3-5],可以知道铝合金材料中可能含有的金属元素;因此,本文主要研究并测定了铝合金中可能存在的金属元素,如钛、铜、镁、锰、锌、铬、硅和铁的含量。 二、实验部分 1.主要仪器及实验条件 铝合金样品(元素组成和含量未知),水(二次去离子),盐酸(优级纯),硝酸(优级纯)。 ICP 6300型电感耦合等离子体发射光谱仪。工作参数:射频功率1.15 kW,

激光等离子体中一些基本过程及其应用

激光等离子体中一些基本过程及 其应用 郑春阳 北京应用物理与计算数学研究所 2008年10月16日北大

I.基本概念 II.黑腔激光等离子体相互作用过程(LPI)III.强场与“快点火”中LPI IV.激光天体物理

I.基本概念(1) 激光与非磁化等离子体相互作用主要涉及三种波:激光(电磁波)、电子等离子体波(Langmuir波)及离子声波 (1)电磁波:ω2=ωp 2+k 2c 2(光子似乎得到“质量”m*c 2=h ωp ) ωL = ωp 对应n c =1.1×1021/λL 2cm -3(稀薄或稠密)(2)Langmuir 波: ω2=ωp 2+3k 2λD 2(λD =v th,e / ωp ) 存在条件:v ph =ω/k ﹥﹥v th,e (Landau 阻尼) (3)离子声波:ω=c ia k, c ia =(Zk B T e /m i )1/2 (ZT e /T i )1/2>1 在实际应用中,对等离子体中存在的大量集体模式(波、不稳定性)的激发、非线性耦合、时空演化的理解是至关重要的。

I.基本概念(2) 不同强度、波长的激光等离子体相互作用性质差异可以很大。我们关心的是电子在激光电场中的振荡能量与它们的热能量可比较 ≈1021cm-3,T e≈1keV 考虑:n e I L~c|E L|2/8π~cn e K B T~1015W/cm2 v osc>v e 激光惯性约束聚变(ICF)激光装置产生的强度范围 激光强度I ~1018W/cm2,v osc~c属于相对论强场物理范围。 L 激光等离子体过程为高度非线性,必须动力学手段描述。

固定污染源废气碱雾的测定等离子体发射光谱法

中华人民共和国国家环境保护标准 HJ □□□-20□□ 固定污染源废气 碱雾的测定 等离子体发射光谱法 Stationary source emission -Determination of alkaline mist —Plasma optical emission spectrometry method (征求意见稿) 201□-□□-□□发布 201□-□□- □□实施

目次 前言 (i) 1适用范围 (1) 2规范性引用文件 (1) 3术语和定义 (1) 4方法原理 (1) 5干扰和消除 (1) 6试剂和材料 (2) 7仪器和设备 (2) 8样品 (2) 9分析步骤 (3) 10结果计算与表示 (4) 11精密度和准确度 (4) 12质量保证和质量控制 (5)

前言 为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护环境,保障人体健康,规范固定汚染源废气中碱雾的测定方法,制定本标准。 本标准规定了测定固定汚染源废气中碱雾的等离子体发射光谱法。 本标准为首次发布。 本标准由环境保护部环境监测司、科技标准司组织制订。 本标准起草单位:哈尔滨市环境监测中心站。 本标准验证单位:黑龙江省环境监测中心站、国家环境分析测试中心、北京市环境保护监测中心、天津市环境监测中心、杭州市环境监测中心站和长春市环境监测中心站。 本标准环境保护部20□□年□□月□□日批准。 本标准自20□□年□□月□□日起实施。 本标准由环境保护部解释。

固定污染源废气碱雾的测定等离子体发射光谱法 1 适用范围 本标准规定了测定固定污染源废气中碱雾的等离子体发射光谱法。 本标准适用于固定污染源废气中碱雾的测定。 当采样体积为0.6 m3(标准干态烟气下),碱雾(以NaOH计)的方法检出限为0.04 mg/m3,测定下限为0.16 mg/m3。 2 规范性引用文件 本标准引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法 HJ/T 48 烟尘采样器技术条件 HJ/T 373 固定污染源监测质量保证与质量控制技术规范(试行) HJ/T 397 固定源废气监测技术规范 3 术语和定义 下列术语和定义适用于本标准。 3.1 碱雾 alkali mist 本标准测定的碱雾包括氢氧化钠、碳酸钠及碳酸氢钠等液态和固态碱性颗粒(以NaOH 计)。 4 方法原理 以等速采样的方式,使固定污染源排气通过采样管收集于石英纤维滤筒上。采集后的碱雾样品用实验用水提取后,用等离子体发射光谱仪对钠进行测定,结果以NaOH计。 5 干扰和消除 5.1 废气颗粒物中的钠盐会干扰测定。 5.2 光谱干扰主要包括连续背景和谱线重叠干扰。通过选择正确的分析线,采用直接干扰校正法扣除背景干扰可以获得满意的结果。非光谱干扰主要包括化学干扰、电离干扰、物理干扰及去溶剂干扰等。

前沿物理讲座--浅析激光等离子体相互作用原理

浅析激光等离子体相互作用原理 一、摘要 超强激光脉冲与等离子体相互作用是近几年新兴的前沿学科,它在激光蒸发沉积、激光推进、新型的粒子加速器、超快高能X射线光源和“快点火”惯性约束聚变等方面,都有着广泛的应用前景。因此,激光等离子体相互作用的研究是十分必要的。 论文中我们阐述了激光等离子体的性质相互作用。通过建立简化的物理模型,即将部分电离的等离子体简化为类氢离子讨论了激光等离子体相互作用物理和超短超强激光等离子体相互作用。最后,我们根据得到的一些相关结论简单的描述了激光等离子体的一些应用。 关键词:激光等离子体 二、介绍 人类对等离子体的研究从气体放电开始。1879年,英国的Crookes首先发现气体放电管中的电离气体区别于固、液、气三态,将之称为“物质第四态”。1928年,美国的Tonks和Langmuir采用等离子体(Plasma)来描述这种新的物质形态。随后,Vlasov和Landau等人建立了等离子体的动力学描述,这也标志了等离子体物理学的正式建立。到了二十世纪五十年代,在受控热核聚变和空间技术发展的推动下,等离子体物理逐渐发展成熟,成为一个新的、独立的物理学分支。等离子体是一种由大量电子、离子等带电粒子和中性粒子(原子,分子,微粒等)组成的,并具有一定集体行为的、准中性的、非束缚态的宏观体系。与通常的固、液、气三态相比,等离子体的基本特征主要是“准电中性”和“集体行为”。 自1960年Maiman研制成功第一台红宝石激光器以来,激光技术的每一次发展都极大的拓展了物理学的研究领域。图1给出了激光强度随年代的增长及相关的物理学进展。 图1

激光等离子体物理,是随着超短超强激光脉冲技术发展而形成的一个新的分支学科。激光技术的每一次革命,都为激光与等离子体作用的研究开辟新的领域。随着激光强度的不断增强,激光等离子体物理经历了从线性响应到非线性光学,再到相对论的非线性作用的研究历程。在现有激光技术的推动下(强度S 1023VI//cm2,脉宽/S 量级),超短超强激光脉冲同等离子体的作用更是成为了当今物理学研究前沿的一个重要分支。 现代激光技术的发展,引发了人们研究超短超强激光脉冲同等离子体作用的浓厚兴趣。这一方面是出于探索自然物理规律特别是非线性问题的需要,另一方面则是源于激光等离子体作用可以用来充当各种光子、电子和离子源气由于激光的高能量密度,这些产生的粒子源具有更好的紧凑性和其它一些非常优秀的束流性质,如高亮度、低散射度、短脉冲等。而这样的粒子源存在很多新颖的实际应用,比如在离子束治疗癌症、生物照相、超快探测、快点火聚变等方面将会产生巨大的作用。目前,国际上激光等离子体物理的主要研究领域在如下几个方面:激光驱动的可控惯性约束核聚变,粒子桌面加速器,基于激光等离子体作用的电磁波辐射源研究,如X 射线源P 气阿秒脉冲,高次谐波和太赫兹辐射等。另外,利用超短脉冲激光在大气中传播形成的超长等离子通道来实现激光雷达和激光引雷等研究也得到了人们越来越多的关注。 三、激光等离子体相互作用原理 高功率激光束照射靶物质时,部分激光能量被吸收,导致靶物质被加热、电离而产生热等离子体,从而激光直接与等离子体相互作用。激光等离子体相互作用与激光参数、等离子体的材料特性和状态参数等密切相关,其中最具决定性因素的是激光强度人和等离子体密度,。激光强度(激光的聚焦功率密度)为: L L E I S τ= (1) 其中L E 是打到靶面的激光能量,S 是激光束辐照在靶上的面积(焦斑),r 是激光脉冲的时间宽度。激光强度也可以用电场来表示: 20012 L I c E ε= (2) 其中0ε是真空中的介电常数,c 为“光速。另一个常用来表示激光强度的物理量是激光场的无量纲化振幅002e eA a m c =,其中0A 为激光矢势A 的幅值, e m 为电子质量, e 为电子电量,对于线极化激光有: 0A =(3) 圆极化激光有: 0A = (4) 其中0λ为激光波长。强度不同的激光发生相互作用的机理可能完全不同,强度超过1016瓦特的激光称为相对论激光,这是由于电子在激光电场中的高速振荡速

电感耦合等离子体原子发射光谱法

电感耦合等离子体原子发射光谱法 电感耦合等离子体原子发射光谱法(ICP-AES)是以等离子体为激发光源的原子发射光谱分析方法,可进行多元素的同时测定。 样品由载气(氩气)引入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气氛中被充分蒸发、原子化、电离和激发,发射出所含元素的特征谱线。根据特征谱线的存在与否,鉴别样品中是否含有某种元素(定性分析);根据特征谱线强度确定样品中相应元素的含量(定量分析)。 本法适用于各类药品中从痕量到常量的元素分析,尤其是矿物类中药、营养补充剂等药品中的元素定性定量测定。 1、对仪器的一般要求 电感耦合等离子体原子发射光谱仪由样品引入系统、电感耦合等离子体(ICP)光源、分光系统、检测系统等构成,另有计算机控制及数据处理系统,冷却系统、气体控制系统等。 样品引入系统 按样品状态不同可以分为以液体、气体或固体进样,通常采用液体进样方式。样品引入系统由两个主要部分组成:样品提升部分和雾化部分。样品提升部分一般为蠕动泵,也可使用自提升雾化器。要求蠕动泵转速稳定,泵管弹性良好,使样品溶液匀速地泵入,废液顺畅地排出。雾化部分包括雾化器和雾化室。样品以泵入方式或自提升方式进入雾化器后,在载气作用下形成小雾滴并进入雾化室,大雾滴碰到雾化室壁后被排除,只有小雾滴可进入等离子体源。要求雾化器雾化效率高,雾化稳定性高,记忆效应小,耐腐蚀;雾化室应保持稳定的低温环境,并需经常清洗。常用的溶液型雾化器有同心雾化器、交叉型雾化器等;常见的雾化室有双通路型和旋流型。实际应用中宜根据样品基质,待测元素,灵敏度等因

素选择合适的雾化器和雾化室。 电感耦合等离子体(ICP)光源 电感耦合等离子体光源的“点燃”,需具备持续稳定的高纯氩气流,炬管、感应圈、高频发生器,冷却系统等条件。样品气溶胶被引入等离子体源后,在6,000K~10,000K的高温下,发生去溶剂、蒸发、离解、激发、电离、发射谱线。根据光路采光方向,可分为水平观察ICP源和垂直观察ICP源;双向观察ICP 光源可实现垂直/水平双向观察。实际应用中宜根据样品基质、待测元素、波长、灵敏度等因素选择合适的观察方式。 色散系统 电感耦合等离子体原子发射光谱的色散系统通常采用棱镜或光栅分光,光源发出的复合光经色散系统分解成按波长顺序排列的谱线,形成光谱。 检测系统 电感耦合等离子体原子发射光谱的检测系统为光电转换器,它是利用光电效应将不同波长光的辐射能转化成电信号。常见的光电转换器有光电倍增管和固态成像系统两类。固态成像系统是一类以半导体硅片为基材的光敏元件制成的多元阵列集成电路式的焦平面检测器,如电荷注入器件(CID)、电荷耦合器件(CCD)等,具有多谱线同时检测能力,检测速度快,动态线性范围宽,灵敏度高等特点。检测系统应保持性能稳定,具有良好的灵敏度、分辨率和光谱响应范围。 冷却和气体控制系统 冷却系统包括排风系统和循环水系统,其功能主要是有效地排出仪器内部的热量。循环水温度和排风口温度应控制在仪器要求范围内。气体控制系统须稳定正常地运行,氩气的纯度应不小于99.99%。 2、干扰和校正 电感耦合等离子体原子发射光谱法测定中通常存在的干扰大致可分为两类:

激光诱导土壤等离子体光谱辐射实验参数优化

1206011-1第47卷第12期 红外与激光工程2018年12月Vol.47No.12Infrared and Laser Engineering Dec.2018 收稿日期:2018-07-10;修订日期:2018-08-28 基金项目:重庆市基础科学与前沿技术研究专项项目重点项目(cstc2015jcyjBX0016);重庆市教委科学研究项目(KJ1500436);教育部 留学回国人员科研启动基金(教外司留[2015]1098号);重庆市基础科学与前沿技术研究专项项目一般项目 (cstc2016jcyjA0389);重庆邮电大学博士基金(A2016-113) 作者简介:王金梅(1981-),女,副教授,博士,主要从事光电检测技术方面的研究。Email:wangjm@https://www.360docs.net/doc/bd17614324.html, 通讯作者:郑培超(1980-),男,教授,博士,主要从事光谱测量技术方面的研究。Email:zhengpc@https://www.360docs.net/doc/bd17614324.html, Optimization of experimental parameters of laser induced soil plasma spectral radiation Wang Jinmei,Yan Haiying,Zheng Peichao *,Xue Shuwen (Chongqing Municipal Level Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology,College of Optoelectronic Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China) Abstract:Laser induced breakdown spectroscopy (LIBS)was employed to investigate the soil.LIBS analyses were performed with Nd:YAG laser operating at 1064nm,5.82ns pulse duration.The spectral lines of Ca II 393.37nm and Ca II 396.85nm were selected as the analytical lines for optimizing the experimental parameters (ICCD delay,laser energy,ICCD gate width,repetition rate and cumulative number of spectrum)which had influence on spectral line.The experimental conditions were determined as follows.The ICCD delay was 1μs,the laser energy was 50mJ,the ICCD gate width was 3.5μs,the repetition rate was 1Hz and the cumulative number of spectrum was 100times.Under the optimal experimental conditions,the results of the electron temperatures T e and electron densities N e were 11604K and 5.155×1016cm -3,respectively.The local thermal equilibrium condition of the plasma was satisfied.The results are useful for the analysis and detection of elements in soil. Key words:laser induced breakdown spectroscopy; sequential test;soil;electron temperatures; electron densities CLC number:O433.4;TN249Document code:A DOI :10.3788/IRLA201847.1206011激光诱导土壤等离子体光谱辐射实验参数优化 王金梅,颜海英,郑培超*,薛淑文 (重庆邮电大学光电工程学院光电信息感测与传输技术重庆重点实验室,重庆400065) 摘要:采用激光诱导击穿光谱法(LIBS)对土壤进行了研究。激光器采用的是Nd:YAG 脉冲激光器,激光器的输出波长是1064nm ,脉宽是5.82ns ,激光聚焦在土壤表面产生激光诱导等离子体,通过优化实验参数(ICCD 延时、脉冲能量、ICCD 门宽、脉冲频率、谱图积累次数)对Ca II 393.37nm 和Ca II 396.37nm 两条特征谱线强度及信背比的影响,确定实验最佳条件是ICCD 延时1μs ,激光能量50mJ ,ICCD 门宽3.5μs ,脉冲频率1Hz ,谱图积累次数100次。在最优实验条件下计算等离子体参数,得出土壤中的等离子体电子温度是11604K ,土壤的等离子体电子密度是5.155×1016cm -3,经过万方数据

激光诱导等离子体光谱法(LIPS)及其影响因素

基于LIPS检测铬铁碳含量时影响因素的分析 摘要利用聚焦的强激光束入射物体表面产生激光等离子体,对等离子体中原子和离子发射谱进行元素分析叫做激光诱导等离子体光谱法(Laser-induced plasma spectroscopy),简称LIPS。由于LIPS测量方法具有许多优点,如不需对样品进行预处理,快速、无损检测,高灵敏度,可以对固体、液体、气体中的悬浮颗粒等进行实时的现场检测,所以这种方法逐渐成为化学分析的一种重要方法。影响分析检测的主要因素有激光的能量密度,激光的波长,激光脉冲宽度,样品的物理化学性质,以及周围环境气体的性质和压力等的影响。 关键字激光诱导等离子体光谱法(LIPS) 碳元素含量光谱仪影响因素 1引言 激光诱导等离子体光谱法(LIPS)是基于高强度的脉冲激光与材料相互作用,产生等离子体,对等离子体辐射的光谱分析,获得被测物质的成分和含量,适用于固体、液体和气体样品。脉冲激光束(脉宽纳秒量级,单脉冲能量几十毫焦)经透镜聚焦后作用于样品表面,能量密度达到GW/2cm以上,辐照处物质蒸发、气化后形成稠密的等离子体,等离子体一般能持续几十微秒后衰减消失。激光诱导等离子体光谱法装置简便,样品无需预处理,发射一次脉冲能同时测量多种元素,可以实现快速的在线分析,大大提高生产效率,以及实现有毒、强辐射等恶劣环境下远距离、非接触性探测分析。LIPS 的应用领域非常广泛,在环境保护,地质矿藏勘探,核燃料分析处理钢铁冶金,考古,海洋等领域都有广泛的应用。 2 LIPS的装置与实验结果 2.1 LIPS的典型装置 典型的LIP S光谱探测系统主要由激光光源、光束传输系统、分光系统、信号接收系统、时序控制系统和计算机等组成。系统架构示意图如图1所示。该系统的工作原理为:脉冲激光器输出的脉冲光束经聚焦透镜聚焦到样品表面,样品被烧蚀、蒸发、激发和离化后在样品表面形成高温、高压、高电子密度的等离子体的火花,辐射出包含原子和离子特征谱线的光谱;将等离子体光谱通过光纤导入到分光系统,分光系统后面的信号接收系统采集信号,将光信号转化成电信号输出;经数据处理电路进行滤波、放大、A/D转换、存储等处理过程,然后送入计算机进一步处理。经过上述步骤,即可完成整个光谱的采集过程。通常实验平台中引入时序控制系统,时序控制器控制激光脉冲发出和光信号检测之间的延迟时间,用于时间分辨光谱的研究和谱线信噪比的研究。

激光等离子体的受激Brillouin散射

第12卷 第1期 强激光与粒子束V o l .12,N o .1 2000年2月H IGH POW ER LA SER AND PA R T I CL E B EAM S Feb .,2000 文章编号: 1001—4322(2000)01—048—03 激光等离子体的受激Br illou i n 散射 Ξ 蒋小华, 郑志坚, 李文洪, 刘永刚(中国工程物理研究院核物理与化学研究所,高温高密度等离子体物理实验室,绵阳919-218信箱,621900) 郑 坚, 王以超 (中国科学技术大学近代物理系,合肥,230027) 摘 要: 研究了激光等离子体背向和侧向受激B rillou in 散射光谱结构。激光等离子体相互作用时,受激B rillou in 散射光谱受激光等离子体状态的影响而产生Dopp ler 效应。当激光以45°入射不同材料的平面靶时,等离子体运动产生不同的二维效应,高Z 材料产生的等离子体冕区主要沿靶法向运动,受激B rillou in 散射光谱在侧向产生较大蓝移,而低Z 材料则主要在激光入射方向产生较大蓝移。 关键词: 激光等离子体; 受激B rillou in 散射; Dopp ler 效应 中图分类号: O 437.2 文献标识码: A 受激B rillou in 散射(SB S )是激光等离子体中一个入射激光光波衰变为一个散射光波和一个离子声波的参量不稳定过程,它可发生在激光等离子体的整个次临界区[1,2]。在惯性约束聚变物理研究中,SB S 会带来不利的影响,另外它的发生和激光等离子体的状态密切相关,由SB S 产生的散射光将为诊断激光等离子体状态提供依据[1,3]。选择合适的激光2靶耦合方式控制激光等离子体状态的演变,将能有效降低聚变对激光器件的要求。因此,通过对不同角度的SB S 光谱结构的观测,来研究0.351Λm 激光与不同靶材作用对SB S 光谱结构的影响。 1 实验条件和结果 F ig .1 Experi m ent setup s 图1 实验装置布置图 星光 钕玻璃激光装置以三倍频输出,激光输 出波长为0.351Λm ,激光输出能量为70J ,激光脉冲 宽度为800p s ,激光入射靶面功率密度约为1×1014 W c m 2,激光以45°入射<600Λm 的平面盘靶,靶材 料分别为CH ,CH +A u 的多层靶(10层8nmA u + 3nm CH )及A u ,实验利用两台OM A 4光谱仪分别 在激光背向和侧向30°探测了SB S 的光谱结构。实 验布置如图1所示。 图2给出0.351Λm 激光作用平面CH 材料靶 时,在激光入射背向和侧向得到的红移SB S 光谱,在两方向上散射光谱结构完全一致,只是相对有一个平移,其中背向散射光谱相对侧向有0.4nm 的蓝移。 图3和图4是0.351激光与A u 盘靶和多层靶作用时,在背向和侧向得到的散射光谱,与CH 靶作用一样,各方向散射光谱结构相似,只是散射光谱变窄,但是侧向光谱相对背向出现了约0.1nm 的蓝移。 Ξ国家自然科学基金资助课题(19735002) 1999年7月28日收到原稿,2000年2月12日收到修改稿。 蒋小华,男,1968年8月出生,硕士,助研

Varian 715-ES等离子体发射光谱仪图文操作手册

Varian 715-ES等离子体发射光谱仪的 图文操作手册 一、V arian 715-ES等离子体发射光谱仪: V arian 715-ES等离子体发射光谱仪 二、功能和用途: 1、功能:本仪器可以全波段同时测量,所以可选择不同的波长轻易避免光谱 干扰,意味着具有更好的精度、更好的背景矫正和更高的效率;采用百万像素CCD检测器搭配Echelle二维分光器,可以使系统在一次观测就可完成高低浓度样品的检测,并具有更低的检出限和更宽的动态线性范围; CCI冷锥切割尾焰技术使水平观测检测限更低,并能分析较高TDS含量的样品;测定过程中没有任何移动部件的光学系统提高了仪器稳定性;直观、强大、易学易用的ICP Expert II全中文操作软件大大提高了工作效率。 2、用途:本仪器可以同时测定元素周期表中73中元素,每个元素的波长可 以任意选择,最大限度地减少了元素之间的相互干扰,液体进样适用于金属材料、食品、医药、环保等领域中低含量及中等含量的化学元素的快速定量或半定量分析。 三、操作步骤: 1、开机 a、冷开机(从仪器关闭状态开机) (1)、依次打开计算机主机、显示器和打印机,进入操作系统;

(2)、打开氩气气源阀,检查并调节减压阀在5.5MPa左右,气体纯度≥99.996%; (3)、打开循环水电源开关,检查压力指示在0.5~3.1MPa,温度设定在20℃±1℃; (4)、打开仪器后部高压电源开关(向上); (5)、打开仪器前部系统电源开关(绿色指示灯处于亮的状态); (6)、打开实验室排风系统; (7)、如有其它附件,依次打开。 b、热开机 (1)、依次打开计算机主机、显示器和打印机开关; (2)、打开循环水开关;

固态和液态钢的激光诱导等离子体比较_KONDOHiroyuki

冶金分析,2013,33(5):1-5Metallurg ical Analysis,2013,33(5):1-5文章编号:1000-7571(2013)05-0001-05 固态和液态钢的激光诱导等离子体比较 KONDO Hiroy uki(新日本制铁株式会社高级技术实验室,富津293- 8511,日本)摘 要:比较了产生于室温固态钢以及高温液态钢上激光诱导等离子体的特征、原子铁的激发温度以及电子密度。通过在386~400nm波长范围的中性铁原子发射谱线, 由波尔兹曼作图法确定了铁原子的激发温度。通过测量Al I394.4nm的谱线宽度,估算了电子密度。对固体钢来说,铁元素的激发温度从延迟时间为10μs时的10  800K下降到延迟时间为80μs时的7  300K。当延迟时间分别为10μs和70μs时,产生于固态钢和液态钢上等离子体间的激发温度并没有显著差别。在铁元素和铝元素大部分的中性原子线中,可以观察到液态钢的谱线宽度比固态钢的谱线宽度更窄。当激光脉冲的观察延迟时间均为10μs时,产生于液态钢上等离子体的电子密度大约为(0.99±0.15)×1017/cm3,这相当于产生在固态钢上等离子体电子密度的46%。 关键词:激光诱导击穿光谱(LIBS );等离子体温度;电子密度中图分类号:O657.38 文献标识码:A 收稿日期:2012-12-15 作者简介:KONDO Hiroyuki(1959-),男,高级研究员;E-mail:kondoh.hiroyuki@nsc.co.jp . L IBS(激光诱导击穿光谱)的光谱线强度会受到许多因素的影响, 诸如激光能量密度、辐射、波长、持续时间、环境气体以及压力等。以激光诱 导等离子体的温度和电子密度与大气压[1] 环境下 的环境气体、空气、氩气和氦气的对比为例,等离子体特性还取决于样品的物理性能。在将不锈钢样品加热到1 000K时,等离子体温度并没有很大程度的改变,而烧蚀质量却随着样品温度的上 升而增加[2- 3]。实验表明,随着样品温度的上升, 样品表面的反射率下降,从而导致有效激光能量馏分的增加。 激光诱导击穿光谱在钢铁工业中应用优点之一在于激光诱导击穿光谱不仅适用于固态钢分 析[4-6],同时还可用于液态钢的直接分析[ 7- 9]。然而, 产生于液态钢和固态钢上的等离子体特性不一致。研究分析了产生于液态钢的激光诱导等离子体的温度和电子密度,并于同产生于固态钢中等离子体的温度和电子密度进行了比较,以便为激光诱导击穿光谱分析液态钢提供一些指导。 1 实验部分 实验采用一个平凸透镜将Q-开关N d:YAG激光(脉冲持续时间7ns,脉冲重复率10Hz,波长1064nm)的辐射聚焦到样品表面,产生一个直径约1mm的斑点,从而对样品表面产生200mJ的脉冲能量。 在样品正常表面的入射激光的光轴中放置了一面涂覆有铝的穿孔镜子,等离子体中的发射光通过这面镜子进行反射,随后通过20m长的光学纤维束输送到配备有ICCD的380mm的Cz-erny -Turner光谱仪的入口狭缝中(宽度为60μ m)。然后通过PIN光电二极管检测的散射消融激光起动时间分辨观察。通过数字脉冲发生器设置了观察的延长时间和栅极宽度。 在室温下,对固态钢样(日本钢铁有证的参考物质JSS175-6)进行了分析。在液态钢的分析中,实验采用感应炉熔化了低碳钢,熔融钢的温度达到了1 873K到1 923K。在分析固态钢和液态钢两种试样时,都采用氩气吹样品分析表面。 — 1—

水质32种元素的测定电感耦合等离子体发射光谱法

HMEM-QP016-JL01 方法确认报告 编号:____________ 项目水质镉、铅、铜、锌、镣、总铭、铁、镒、钾、 钠、钙、镁、神、硒的测定 方法水质32种元素的测定电感耦合等离子体发射光谱法 在符合确认情况的□打勾 □非标准方法 口超出预定围使用的标准方法 口扩充和修改过的标准方法 □新扩展项目 说明:国家环境保护部发布水质32种元素的测定电感耦合等离子体发射光谱法。 参加确认人员及职称蔡敏助理工程师 报告编写___________________ 蔡敏 _______________________ 报告初审________________________________________________ 报告审核________________________________________________ 报告批准________________________________________________

日期____________________________________________________ 一、适用围 适用于地表水、地下水、生活污水及工业肺水中银、铝、碑、硼、钥、锻、秘'、钙、镉、钻、铭、铜、铁、钾、锂、镁、猛、钳、钠、镣、磷、铅、硫、镣、硒、硅、锡、钛、机、锌及皓等32种元素可 溶性元素及元素总量的测定。 二、使用仪器设备 电感耦合等离子体发射光谱仪型号:Agilent 5100 ICP-OES,编 号:MY16291009。 三、方法步骤及条件 1、标准曲线的建立 分别移取0.00, 0.25, 0.50, 1.00, 1.50, 2.50ml 铭(镉、铅、 铜、锌、镣、铁、猛、钾、钠、镁、碑、硒)标准使用液(100mg/L)于100 ml 容量瓶中,分别移取0.00, 1.00, 2.00, 4.00, 6.00, 10.0ml 钙标准使用液 (100mg/L),于100 ml容量瓶中用1%5肖酸定容至标线,摇匀,铭、镉、铅、 铜、锌、镣、铁、锭、钾、钠、镁、碑、硒的标 准系列质量浓度分别为0.00, 0.25, 0.50, 1.00, 1.50, 2.50ml/L,钙标准系列质量浓度 分别为0.00, 1.00, 2.00, 4.00, 6.00, 10.0ml/L, 由低质量浓度到高质量浓度依次测量 标准浓度溶液的发射强度。 由发射强度值在校准曲线上查得目标元素含量。样品测量过程中,若待测元素浓度超出校准曲线围,样品需要稀释后重新测定。 3、试样测定 按照与标准曲线相同步骤测量试样的发射强度值。 4、空白试验 按照与试样测定相同步骤测量空白试样的发射强度值。

激光诱导等离子体引燃MAG电弧的引弧特性研究

目录 摘要 ABSTRACT 目录 第一章绪论 (1) 1.1课题研究背景 (1) 1.2等离子基本特征和产生机制 (1) 1.2.1等离子体的定义 (1) 1.2.2电弧等离子体产生的机制 (2) 1.2.3激光等离子产生机制 (3) 1.2.4激光诱导等离子体的应用 (4) 1.3焊接电弧引弧现状的研究 (5) 1.3.1 TIG引弧的现状 (5) 1.3.2MAG/MIG引弧的现状 (6) 1.3.3激光等离子体引弧的现状 (8) 1.4选题意义及主要研究内容 (9) 第二章试验材料、设备及方法 (11) 2.1实验材料 (11) 2.2实验设备 (11) 2.3实验方法 (12) 2.3.1试验参数的设计 (12) 2.3.2焊接等离子光谱采集 (14) 2.3.3 熔滴过渡和等离子体形貌的采集方法 (14) 第三章复合焊接等离子体的诊断方法及物理特征的表征 (16) 3.1等离子体的诊断方法 (16) 3.2复合焊接等离子体光谱特征分析 (18) 3.3等离子体发射光谱的时间演化特性研究 (22) 3.4激光-电弧复合焊接等离子体参量的表征 (25) 3.4.1等离子体局部热力平衡判据 (25) 3.4.2等离子体的电子温度计算 (26) 3.4.3等离子体的电子密度计算 (28) 3.5复合焊接工艺参数对电弧等离子电子温度和电子密度影响规律 (30) 3.5.1电弧脉冲频率对电弧等离子体电子温度和电子密度的影响 (30) 3.5.2激光作用时间对电弧等离子体的电子温度和电子密度的影响 (32) 3.5.3热源间距对电弧等离子体的电子温度和电子密度的影响 (35)

相关文档
最新文档