9 第9讲 函数模型及其应用

9 第9讲 函数模型及其应用
9 第9讲 函数模型及其应用

第9讲 函数模型及其应用

1.几种常见的函数模型

判断正误(正确的打“√”,错误的打“×”) (1)幂函数增长比一次函数增长更快.( )

(2)在(0,+∞)内,随着x 的增大,y =a x (a >1)的增长速度会超过并远远大于y =x α

(α>0)的增

长速度.( )

(3)指数型函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题.( ) (4)不存在x 0,使ax 0

(教材习题改编)一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧时剩下的高度h (cm)与燃烧时间t (h)的函数关系用图象表示为图中的( )

答案:B

生产一定数量商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产

成本为C (x )=1

2x 2+2x +20(万元).一万件售价是20万元,为获取更大利润,该企业一个月应

生产该商品数量为( ) A .36万件 B .18万件 C .22万件

D .9万件

解析:选B.设利润为L (x ),则利润L (x )=20x -C (x )=-1

2(x -18)2+142,当x =18 时,L (x )

有最大值.

某城市客运公司确定客票价格的方法是:如果行程不超过100 km ,票价是0.5元/km ,如

果超过100 km ,超过100 km 的部分按0.4元/km 定价,则客运票价y (元)与行驶千米数x (km)之间的函数关系式是________. 解析:由题意可得

y =?????0.5x ,0100.

答案:y =?

????0.5x ,0100

(教材习题改编)某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额x 为8万元时,奖励1万元.销售额x 为64万元时,奖励4万元.若公司拟定的奖励模型为y =a log 4x +b .某业务员要得到8万元奖励,则他的销售额应为________万元.

解析:依题意得?

????a log 48+b =1

a log 464+

b =4,

即?????32a +b =1,

3a +b =4.

解得a =2,b =-2. 所以y =2log 4x -2,当y =8时,即2log 4x -2=8. x =1 024(万元). 答案:1 024

一次函数与二次函数模型(高频考点)

高考对函数应用的考查,常与二次函数、基本不等式及导数等知识交汇,以解答题为主要形式出现.高考对一次函数、二次函数模型的考查主要有以下两个命题角度: (1)单一考查一次函数或二次函数模型的建立及最值问题; (2)以分段函数的形式考查一次函数和二次函数.

[典例引领]

角度一 单一考查一次函数或二次函数模型的 建立及最值问题

某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万

元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( ) A .10.5万元 B .11万元 C .43万元

D .43.025万元

【解析】 该公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x )辆, 所以可得利润y =4.1x -0.1x 2

+2(16-x )=-0.1x 2

+2.1x +32=-0.1(x -212)2+0.1×212

4

+32.

因为x ∈[0,16]且x ∈N ,

所以当x =10或11时,总利润取得最大值43万元,故选C . 【答案】 C

角度二 以分段函数的形式考查一次函数和二 次函数

(2018·山西孝义二轮模考)为了迎接世博会,某旅游区提倡低碳生活,在景区提供自

行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分). (1)求函数y =f (x )的解析式及其定义域;

(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?

【解】 (1)当x ≤6时,y =50x -115,令50x -115>0,解得x ≥2.3,因为x 为整数,所以3≤x ≤6.

当x >6时,y =[50-3(x -6)]x -115=-3x 2+68x -115.

令-3x 2+68x -115>0,有3x 2-68x +115<0,结合x 为整数得6

故y =?

????50x -115(3≤x ≤6,x ∈Z )-3x 2

+68x -115(6

(2)对于y =50x -115(3≤x ≤6,x ∈Z ), 显然当x =6时,y max =185,

对于y =-3x 2

+68x -115=-3????x -3432

+811

3

(6185,

所以当每辆自行车的日租金定为11元时,才能使一日的净收入最多.

一次函数、二次函数及分段函数

模型的选取与应用策略

(1)在实际问题中,若两个变量之间的关系是直线上升或直线下降或图象为直线(或其一部分),一般构建一次函数模型,利用一次函数的图象与性质求解.

(2)实际问题中的如面积问题、利润问题、产量问题或其图象为抛物线(或抛物线的一部分)等一般选用二次函数模型,根据已知条件确定二次函数解析式.结合二次函数的图象、最值求法、单调性、零点等知识将实际问题解决.

(3)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解.但应关注以下两点: ①构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏; ②分段函数的最值是各段的最大(或最小)值中的最大(或最小)值. [提醒] (1)构建函数模型时不要忘记考虑函数的定义域.

(2)对构建的较复杂的函数模型,要适时地用换元法转化为熟悉的函数问题求解.

[通关练习]

1.某种新药服用x 小时后血液中的残留量为y 毫克,如图所示为函数y =f (x )的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为( )

A .上午10:00

B .中午12:00

C .下午4:00

D .下午6:00

解析:选C.当x ∈[0,4]时,设y =k 1x , 把(4,320)代入,得k 1=80,所以y =80x .

当x ∈[4,20]时,设y =k 2x +b .把(4,320),(20,0)分别代入

可得?????k 2=-20,b =400.

所以y =400-20x .

所以y =f (x )=?????80x ,0≤x ≤4,400-20x ,4

得???0≤x ≤4,80x ≥240或?????4

400-20x ≥240.

解得3≤x ≤4或4

2.某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线的一段.已知跳水板AB 的长为2 m ,跳水板距水面CD 的高BC 为3 m .为安全和空中姿态优美,训练时跳水曲线应在离起跳点A 处水平距离h m(h ≥1)时达到距水面最大高度4 m .规定:以CD 为横轴,BC 为纵轴建立直角坐标系.

(1)当h =1时,求跳水曲线所在抛物线的方程;

(2)若跳水运动员在区域EF 内入水时才能达到比较好的训练效果,求此时h 的取值范围. 解:由题意知抛物线的最高点为(2+h ,4),h ≥1,故设抛物线的方程为y =a [x -(2+h )]2+4. (1)当h =1时,最高点为(3,4),方程为y =a (x -3)2+4.

将A (2,3)代入,得3=a (2-3)2+4,解得a =-1.所以当h =1时,跳水曲线所在抛物线的方程为y =-(x -3)2+4.

(2)将A (2,3)代入y =a [x -(2+h )]2+4,整理得ah 2=-1.① 由题意,方程a [x -(2+h )]2+4=0在区间[5,6]内有一解. 由①得,y =f (x )=a [x -(2+h )]2+4=-1

h

2[x -(2+h )]2+4,

则?

??f (5)=-1

h 2(3-h )2+4≥0,

f (6)=-1

h

2(4-h )2+4≤0,

解得1≤h ≤4

3.故达到较好的训练效果时h 的取值范围是

[1,43

].

函数y =x +a

x

(a >0)模型

[典例引领]

小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W (x )万元,在年产量不足8万件时,W (x )=13x 2+x (万元).在年产量不小于8万件时,W (x )=6x +100

x -38(万元).每

件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.

(1)写出年利润L (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)

(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少? 【解】 (1)因为每件商品售价为5元,则x 万件商品销售收入为5x 万元, 依题意得,当0

L (x )=5x -????13x 2+x -3=-1

3

x 2+4x -3; 当x ≥8时,L (x )=5x -????6x +100x -38-3=35-????x +100

x . 所以L (x )=?

??-1

3

x 2+4x -3,0

(2)当0

3

(x -6)2+9.

此时,当x =6时,L (x )取得最大值L (6)=9万元, 当x ≥8时,L (x )=35-?

???x +100

x ≤35-2 x ·100

x

=35-20=15,

此时,当且仅当x =100

x

即x =10时,L (x )取得最大值15万元.

因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.

应用函数y =x +a

x

(a >0)模型的关键点

(1)明确对勾函数是正比例函数f (x )=ax 与反比例函数f (x )=b

x

叠加而成的.

(2)解决实际问题时一般可以直接建立f (x )=ax +b

x 的模型,有时可以将所列函数解析式转化为

f (x )=ax +b

x

的形式.

[提醒] (1)解决此类问题时一定要关注函数的定义域.

(2)利用模型f (x )=ax +b

x

求解最值时,注意取得最值时等号成立的条件.

某村计划建造一个室内面积为800 m 2的矩形蔬菜温室,在矩形温室内,沿左、

右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大面积是多少? 解:设矩形温室的左侧边长为x m ,则后侧边长为800

x

m ,

所以蔬菜种植面积y =(x -4)????800x -2=808-2????x +1 600x (4

x

≥2

x ·

1 600

x

=80,所以y ≤808-2×80=648. 当且仅当x =1 600x ,即x =40时取等号,此时800

x

=20,y max =648 m 2.

即当矩形温室的边长各为40 m ,20 m 时,蔬菜的种植面积最大,最大面积是648 m 2.

指数、对数函数模型

[典例引领]

(1)(2016·高考四川卷)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元.在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )

(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A .2018年 B .2019年 C .2020年

D .2021年

(2)里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.

【解析】 (1)设经过x 年后该公司全年投入的研发资金开始超过200万元,则130(1+12%)x >200,即1.12x >2

1.3?x >lg

2

1.3lg 1.12=lg 2-lg 1.3lg 1.12≈0.30-0.110.05

=3.8,所以该公司全年投入的研

发资金开始超过200万元的年份是2019年. (2)M =lg 1 000-lg 0.001=3-(-3)=6.

设9级地震的最大振幅和5级地震的最大振幅分别为A 1,A 2,则9=lg A 1-lg A 0=lg A 1

A 0

,则A 1

A 0

=109, 5=lg A 2-lg A 0=lg

A 2A 0,则A 2A 0=105,所以A 1

A 2

=104. 即9级地震的最大振幅是5级地震最大振幅的10 000倍. 【答案】 (1)B (2)6 10 000

指数型、对数型函数模型

(1)在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y =N (1+p )x (其中N 为基础数,p 为增长率,x 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.

(2)有关对数型函数的应用题,一般都会给出函数解析式,要求根据实际情况求出函数解析式中的参数,或给出具体情境,从中提炼出数据,代入解析式求值,然后根据值回答其实际意义.

(2018·湛江模拟)一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢

慢地匀速漏出,t min 后剩余的细沙量为y =ae

-bt

(cm 3),经过8 min 后发现容器内还有一半的

沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.

解析:当t =0时,y =a ;

当t =8时,y =ae -8b =12a ,故e -8b =1

2

.

当容器中的沙子只有开始时的八分之一时,即y =ae -bt =18a ,e -bt =1

8=(e -8b )3=e -24b ,则t

=24,所以再经过16 min 容器中的沙子只有开始时的八分之一. 答案:16

解决实际应用问题的四大步骤

(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;

(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;

(3)求模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题. 以上过程用框图表示如下:

“对勾”函数的性质 函数f (x )=x +a

x

(a >0).

(1)该函数在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减. (2)当x >0时,x =a 时取最小值2a ; 当x <0时,x =-a 时取最大值-2a .

易错防范

(1)易忽视实际问题的自变量的取值范围,需合理确定函数的定义域.

(2)注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.

1.如图,在不规则图形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把图形ABCD 分成两部分,设AE =x ,左侧部分面积为y ,则y 关于x 的大致图象为( )

解析:选D.因为左侧部分面积为y ,随x 的变化而变化,最初面积增加得快,后来均匀增加,最后缓慢增加,只有D 选项适合.

2.在某个物理实验中,测量得变量x 和变量y 的几组数据,如表:

A .y =2x

B .y =x 2-1

C .y =2x -2

D .y =log 2x

解析:选D.根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B ,C ;将各数据代入函数y =log 2x ,可知满足题意.

3.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 2

10-30x +4 000,则每吨的成本最低时的年产量为( )

A .240吨

B .200吨

C .180吨

D .160吨

解析:选B.依题意,得每吨的成本为y x =x 10+4 000x -30,则y

x ≥2

x 10·4 000x

-30=10, 当且仅当x 10=4 000

x , 即x =200时取等号,

因此,当每吨成本最低时,年产量为200吨.

4.(2018·福建质检)当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用一般的放射性探测器探测不到,则它经过的“半衰期”个数至少是( ) A .8 B .9 C .10

D .11

解析:选C.设死亡生物体内原有的碳14含量为1,则经过n (n ∈N *)个“半衰期”后的含量为

????12n ,由????12n

<11 000

得n ≥10.所以,若探测不到碳14含量,则至少经过了10个“半衰期”.故选C.

5.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )

A .消耗1升汽油,乙车最多可行驶5千米

B .以相同速度行驶相同的路程,三辆汽车中,甲车消耗汽油量最多

C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D .某城市机动车最高限速80千米/小时,相同条件下,在该城市用丙车比用乙车更省油 解析:选D.根据图象知消耗1升汽油,乙车最多行驶里程大于5千米,故选项A 错;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故选项B 错;甲车以80千米/小时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故选项C 错;最高限速80千米/小时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故选项D 对.

6.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成矩形的最大面积为________.(围墙厚度不计) 解析:设矩形的长为x m ,宽为200-x

4m ,

则S =x ·200-x 4=1

4(-x 2+200x ).

当x =100时,S max =2 500 m 2. 答案:2 500 m 2

7.(2018·上海宝山区模拟)王先生购买了一部手机,欲使用中国移动“神州行”卡或加入联通的130网,经调查其收费标准见下表:(注:本地话费以分为计费单位,长途话费以秒为计费单位)

________秒长途电话才合算.

解析:设王先生每月拨打长途电话的时间为x 分钟,所需话费为y 元,若使用联通130,则所需话费y 元与通话时间x 分钟的函数关系式为y =12+0.36×5x +3.6x =5.4x +12;若使用移动“神州行”,则所需话费y 元与通话时间x 分钟的函数关系式为y =0.6×5x +4.2x =7.2x .若用联通130合算,则5.4x +12≤7.2x ,解得x ≥20

3(分钟)=400(秒).

答案:400

8.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x ∈N *)件.当x ≤20时,年销售总收入为(33x -x 2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元,则y (万元)与x (件)的函数关系式为________,该工厂的年产量为________件时,所得年利润最大(年利润=年销售总收入-年总投资).

解析:当0<x ≤20时,y =(33x -x 2)-x -100=-x 2+32x -100;当x >20时,y =260-100-x =160-x .

故y =?????-x 2

+32x -100,0<x ≤20,160-x ,x >20

(x ∈N *).

当0<x ≤20时,y =-x 2+32x -100=-(x -16)2+156,x =16时,y max =156.而当x >20时,160-x <140,故x =16时取得最大年利润.

答案:y =?

????-x 2

+32x -100,0<x ≤20,

160-x ,x >20(x ∈N *) 16

9.A ,B 两城相距100 km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度. (1)求x 的取值范围;

(2)把月供电总费用y 表示成x 的函数;

(3)核电站建在距A 城多远,才能使供电总费用y 最少? 解:(1)x 的取值范围为10≤x ≤90.

(2)y =5x 2+5

2

(100-x )2(10≤x ≤90).

(3)因为y =5x 2

+52(100-x )2

=152x 2-500x +25 000=152????x -10032+50 0003,所以当x =1003

时,

y min =

50 0003.故核电站建在距A 城100

3

km 处,能使供电总费用y 最少. 10.某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到(15-0.1x )万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:

(1)每套丛书售价定为100元时,书商所获得的总利润是多少万元?

(2)每套丛书售价定为多少元时,单套丛书的利润最大?解:(1)每套丛书售价定为100元时,销售量为15-0.1×100=5(万套),所以每套丛书的供货价格为30+10

5=32(元),

故书商所获得的总利润为5×(100-32)=340(万元).

(2)每套丛书售价定为x 元时,由?

????15-0.1x >0,

x >0,得0

设单套丛书的利润为P 元,则P =x -(30+1015-0.1x )=x -100

150-x -30,

因为00,所以P =-[(150-x )+100

150-x ]+120, 又(150-x )+100

150-x

≥2

(150-x )·100

150-x

=2×10=20,

当且仅当150-x =100

150-x ,即x =140时等号成立,

所以P max =-20+120=100.

故每套丛书售价定为140元时,单套丛书的利润最大,为100元.

1.已知甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某商人持有资金120万元,他可以在t 1至t 4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t 4时刻卖出所有商品,那么他将获得的最大利润是( )

A .40万元

B .60万元

C .120万元

D .140万元

解析:选C.甲6元时该商人全部买入甲商品,可以买120÷6=20(万份),在t 2时刻全部卖出,此时获利20×2=40(万元),乙4元时该商人买入乙商品,可以买(120+40)÷4=40(万份),在t 4时刻全部卖出,此时获利40×2=80(万元),共获利40+80=120(万元),故选C. 2.我们定义函数y =[x ]([x ]表示不大于x 的最大整数)为“下整函数”;定义y ={x }({x }表示不小于x 的最小整数)为“上整函数”;例如[4.3]=4,[5]=5;{4.3}=5,{5}=5.某停车场收费标准为每小时2元,即不超过1小时(包括1小时)收费2元,超过一小时,不超过2小时(包括2小时)收费4元,以此类推.若李刚停车时间为x 小时,则李刚应付费为(单位:元)( ) A .2[x +1] B .2([x ]+1) C .2{x } D .{2x }

解析:选C.如x =1时,应付费2元,

此时2[x +1]=4,2([x ]+1)=4,排除A ,B ;当x =0.5时,付费为2元,此时{2x }=1排除D ,故选C.

3.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +

b (e =2.718…

为自然对数的底数,k ,b 为常数).若该食品在 0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时. 解析:由已知条件,得192=e b , 所以b =ln 192.

又因为 48=e 22k +b =e 22k +ln 192=192e 22k =192(e 11k )2, 所以e 11k

=(48192)12

=(14)12=12

.

设该食品在33 ℃的保鲜时间是t 小时,则t =e 33k +ln 192=192e 33k =192(e 11k )3=192×(1

2)3=24.

答案:24

4.某超市2017年一月份到十二月份月销售额呈现先下降后上升的趋势,现有三种函数模型.

①f (x )=p ·q x (q >0,q ≠1); ②f (x )=log p x +q (p >0,p ≠1); ③f (x )=x 2+px +q .

(1)能较准确反映超市月销售额f (x )与月份x 关系的函数模型为________. (2)若所选函数满足f (1)=10,f (3)=2,则f (x )min =________.

解析:(1)因为f (x )=pq x ,f (x )=log p x +q 是单调函数,f (x )=x 2+px +q 中,f ′(x )=2x +p ,令f ′(x )=0,得x =-1

2p ,f (x )有一个零点,可以出现一个递增区间和一个递减区间,所以应选③f (x )

=x 2+px +q 模拟函数. (2)因为f (1)=10,f (3)=2,

所以?????1+p +q =10,9+3p +q =2,

解得,p =-8,q =17,

所以f (x )=x 2-8x +17=(x -4)2+1,所以f (x )min =f (4)=1. 答案:(1)③ (2)1

5.声强级Y (单位:分贝)由公式Y =10lg ???

?I

10-12给出,其中I 为声强(单位:W/m 2).

(1)平常人交谈时的声强约为10-

6W/m 2,求其声强级;

(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?

(3)比较理想的睡眠环境要求声强级Y ≤50分贝,已知熄灯后两位同学在宿舍说话的声强为5×10-

7W/m 2,问这两位同学是否会影响其他同学休息?

解:(1)当声强为10-6

W/m 2

时,由公式Y =10lg ? ????I 10-12得Y =10lg ? ??

??10-610-12=10lg 106

=60(分贝). (2)当Y =0时,由公式Y =10lg ? ????I 10-12

得10lg ? ??

??I 10-12=0.

所以I 10-12

=1,即I =10-12W/m 2, 则最低声强为10-12W/m 2.

(3)当声强为5×10-7W/m 2时,声强级Y =10lg ? ??

??5×10

-710-12

=10lg(5×105)=50+10lg 5,

因为50+10lg 5>50,

所以这两位同学会影响其他同学休息.

6.某创业投资公司拟投资开发某种新能源产品,估计能获得投资收益的范围是[10,100](单位:万元).现准备制定一个对科研课题组的奖励方案:资金y (单位:万元)随投资收益x (单位:万元)的增加而增加且资金不超过5万元,同时资金不超过投资收益的20%.

(1)若建立函数模型y =f (x )制定奖励方案,请你根据题意,写出奖励函数模型应满足的条件; (2)现有两个奖励函数模型:(ⅰ)y =1

20

x +1;

(ⅱ)y =log 2x -2.试分析这两个函数模型是否符合公司要求. 解:(1)设奖励函数模型为y =f (x ), 则该函数模型满足的条件是: ①当x ∈[10,100]时,f (x )是增函数; ②当x ∈[10,100]时,f (x )≤5恒成立. ③当x ∈[10,100]时,f (x )≤x

5恒成立.

(2)(a)对于函数模型(ⅰ)y =1

20x +1,

它在[10,100]上是增函数,满足条件①;

但当x =80时,y =5,因此,当x >80时,y >5,不满足条件②; 故该函数模型不符合公司要求.

(b)对于函数模型(ⅱ)y =log 2x -2,它在[10,100]上是增函数,满足条件①, x =100时,y max =log 2100-2=2log 25<5,即f (x )≤5恒成立.满足条件②, 设h (x )=log 2x -2-15x ,则h ′(x )=log 2e x -1

5,

又x ∈[10,100], 所以1100≤1x ≤1

10

所以h ′(x )

5

=0,

所以h (x )在[10,100]上是递减的,因此h (x )

5

恒成立,满足条件③,

故该函数模型符合公司要求.

综上所述,函数模型(ⅱ)y =log 2x -2符合公司要求.

关于函数y =ax +b

x (a ≠0,b ≠0)性质的推广

关于函数y =ax +b

x

(a ≠0且b ≠0)性质的讨论.

当a >0,b >0时[特例] 当a =b =1时,函数化为f (x )=x +1

x .

①定义域为(-∞,0)∪(0,+∞).②奇偶性:f (-x )=-x +

1

-x

=-???

?x +1x =-f (x ),函数为奇函数.之后只需讨论x >0时的情况.当x >0时,③单调性:Δy =x 2-x 1x 1x 2(x 1x 2

-1),令x 1=x 2=x ,x 1x 2-1=0,解得x =

1,当0

时,y →1x ;当x →+∞时,y →x +

.⑤作出函数图象,如图1.⑥值域:当x =1时,f (x )有最小值2,值域为(2,+∞).

[推广] y =ax +b

x .①定义域为(-∞,0)∪(0,+∞).②奇偶性:f (-x )=-????ax +b x =-f (x ),

函数为奇函数.当x >0时,③单调性:Δy =ax 2+b x 2-ax 1-b x 1=x 2-x 1

x 1x 2·(ax 1x 2-b ),令x 1=x 2

=x ,ax 1x 2-b =0解得x =

ab a ,当0

a

.⑤图象略.⑥值域:当x =ab a 时,

f (x )=a

ab a +ab

ab

=2ab ,即为最小值2ab ,值域为()2ab ,+∞.

当a <0,b <0时此情况与情况1基本相同,作出函数图象,如图2.设函数为f (x )=-ax -b

x (此时a >0,b >0)①定义域为(-∞,0)∪(0,

+∞).②奇偶性:f (-x )=-f (x ),函数为奇函数.当x >0时,③单调性:Δy =x 1-x 2x 1x 2(ax 1x 2-b ),同情况1,x =ab a ,得f (x )在????

0,

ab a 上为增函数,在??

?

?ab a ,+∞上为减函数.④渐近线:当x →0+时,y →-b x ;当x →+∞时,y →-ax +

.⑤图象略.⑥值域:当x =ab a 时,f (x )=-a ab a -ab ab

-2ab ,即为最大值-2ab ,值域为()-∞,-2ab . 当a >0,b <0时

[特例] 当a =1,b =-1时,函数化为f (x )=x -1

x .①定义域为(-∞,0)∪(0,+∞).②奇偶

性:f (-x )=-????x -1x =-f (x ),函数为奇函数.当x >0时,③单调性:Δy =x 2-x 1x 1x 2(x 1x 2+1),得Δy >0,f (x )为增函数.④渐近线:当x →0+时,y →-1x ;当x →+∞时y →x +

.⑤作出函数图

象,如图3.⑥值域为(-∞,+∞).

[推广] 改函数为f (x )=ax -b

x (此时b >0).①定义域为(-∞,0)∪(0,+∞).②奇偶性:f (-

x )=-????ax -b x =-f (x ),函数为奇函数.当x >0时,③单调性:Δy =x 2-x 1x 1x 2(ax 1x 2+b ),得Δy >0,f (x )为增函数.④渐近线:当x →0+时,y →-b x ;当x →+∞时,y →ax +

.⑤图象略.⑥值域为(-

∞,+∞).

当a <0,b >0时此情况与情况3基本相同,作出函数图象,如图4.设函数为

f (x )=-ax +b

x (此时a >0).①定义域为(-∞,0)∪(0,+∞).②奇偶

性:f (-x )=-f (x ),函数为奇函数.③单调性:Δy =x 1-x 2

x 1x 2·(ax 1x 2

+b )(x >0),得Δy <0,f (x )为减函数.④渐近线:当x →0+

时,y →b x

当x →+∞时,y →-ax +

.⑤图象略.⑥值域为()-∞,+∞.

1.如图,在不规则图形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把图形ABCD 分成两部分,设AE =x ,左侧部分面积为y ,则y 关于x 的大致图象为( )

解析:选D.因为左侧部分面积为y ,随x 的变化而变化,最初面积增加得快,后来均匀增加,最后缓慢增加,只有D 选项适合.

2.在某个物理实验中,测量得变量x 和变量y 的几组数据,如表:

A .y =2x

B .y =x 2-1

C .y =2x -2

D .y =log 2x

解析:选D .根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B ,C ;将各数据代入函数y =log 2x ,可知满足题意.

3.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 2

10-30x +4 000,则每吨的成本最低时的年产量为( )

A .240吨

B .200吨

C .180吨

D .160吨

解析:选B.依题意,得每吨的成本为y x =x 10+4 000x -30,则y

x ≥2

x 10·4 000x

-30=10, 当且仅当x 10=4 000

x , 即x =200时取等号,

因此,当每吨成本最低时,年产量为200吨.

4.(2018·福建质检)当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用一般的放射性探测器探测不到,则它经过的“半衰期”个数至少是( ) A .8

B .9

C .10

D .11

解析:选C.设死亡生物体内原有的碳14含量为1,则经过n (n ∈N *)个“半衰期”后的含量为

????12n ,由????12n

<11 000

得n ≥10.所以,若探测不到碳14含量,则至少经过了10个“半衰期”.故选C.

5.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )

A .消耗1升汽油,乙车最多可行驶5千米

B .以相同速度行驶相同的路程,三辆汽车中,甲车消耗汽油量最多

C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D .某城市机动车最高限速80千米/小时,相同条件下,在该城市用丙车比用乙车更省油 解析:选D .根据图象知消耗1升汽油,乙车最多行驶里程大于5千米,故选项A 错;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故选项B 错;甲车以80千米/小时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故选项C 错;最高限速80千米/小时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故选项D 对.

6.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成矩形的最大面积为________.(围墙厚度不计) 解析:设矩形的长为x m ,宽为200-x 4m ,

则S =x ·200-x 4=1

4(-x 2+200x ).

当x =100时,S max =2 500 m 2.

高中数学:函数模型及其应用练习

高中数学:函数模型及其应用练习 1.已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P 运动的路程为x,△ABP的面积为S,则函数S=f(x)的图象是(D) 解析:依题意知当0≤x≤4时,f(x)=2x;当4<x≤8时,f(x)=8;当8<x≤12时,f(x)=24-2x,观察四个选项知D项符合要求. 2.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是(B) x 1.99234 5.15 6.126 y 1.517 4.041 87.51218.01 A.y=2x-2 B.y=1 2(x 2-1) C.y=log2x D.y=log 1 2x 解析:由题中表可知函数在(0,+∞)上是增函数,且y的变化随x的增大而增大的越来越快,分析选项可知B符合,故选B. 3.我们定义函数y=[x]([x]表示不大于x的最大整数)为“下整函数”;定义y={x}({x}表示不小于x的最小整数)为“上整函数”;例如[4.3]=4,[5]=5;{4.3}=5,{5}=5.某停车场收费标准为每小时2元,即不超过1小时(包括1小时)收费2元,超过一小时,不超过2小时(包括2小时)收费4元,以此类推.若李刚停车时间为x小时,则李刚应付费为(单位:元)(C) A.2[x+1] B.2([x]+1) C.2{x} D.{2x} 解析:如x=1时,应付费2元,此时2[x+1]=4,2([x]+1)=4,排除A、B;当x=0.5时,付费为

2元,此时{2x }=1,排除D,故选C. 4.(福建质检)当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用一般的放射性探测器探测不到,则它经过的“半衰期”个数至少是( C ) A .8 B .9 C .10 D .11 解析:设死亡生物体内原有的碳14含量为1,则经过n (n ∈N *)个“半衰期”后的含量为? ???? 12n , 由? ?? ?? 12n <11 000得n ≥10.所以,若探测不到碳14含量,则至少经过了10个“半衰期”.故选C. 5.(贵州遵义模拟)某企业为节能减排,用9万元购进一台新设备用于生产,第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加3万元.该设备每年生产的收入均为21万元.设该设备使用了n (n ∈N *)年后,盈利总额达到最大值(盈利总额等于总收入减去总成本),则n 等于( B ) A .6 B .7 C .8 D .7或8 解析:盈利总额为21n -9-?????? 2n +12×n (n -1)×3=-32n 2+412n -9.因为其对应的函数的图 象的对称轴方程为n =41 6.所以当n =7时取最大值,即盈利总额达到最大值,故选B. 6.已知每生产100克饼干的原材料加工费为1.8元.某食品加工厂对饼干采用两种包装,包装费用、销售价格如下表所示: ①买小包装实惠;②买大包装实惠;③卖3小包比卖1大包盈利多;④卖1大包比卖3小包盈利多.

高中数学函数模型及其应用练习题(含答案)

高中数学函数模型及其应用练习题(含答案) 数学必修1(苏教版) 2.6 函数模型及其应用 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,于是商场经理决定每件衬衫降价15元,经理的决定正确吗? 基础巩固 1.某商场售出两台取暖器,第一台提价20%以后按960卖出,第二台降价20%以后按960元卖出,这两台取暖器卖出后,该商场() A.不赚不亏B.赚了80元 C.亏了80元D.赚了160元 解析:960+960-9601+20%-9601-20%=-80. 答案:C 2.用一根长12 m的铁丝折成一个矩形的铁框架,则能折成的框架的最大面积是__________. 解析:设矩形长为x m,则宽为12(12-2x) m,用面积公式可得S的最大值. 答案:9 m2 3.在x g a%的盐水中,加入y g b%的盐水,浓度变为c%,

则x与y的函数关系式为__________. 解析:溶液的浓度=溶质的质量溶液的质量=xa%+yb%x+y= c%,解得y=a-cc-bx=c-ab-cx. 答案:y=c-ab-cx 4.某服装个体户在进一批服装时,进价已按原价打了七五折,他打算对该服装定一新标价在价目卡上,并说明按该价的20%销售.这样仍可获得25%的纯利,求此个体户给这批服装定的新标价y与原标价x之间的函数关系式为________ 解析:由题意得20%y-0.75x=0.7x25%y=7516x. 答案:y=7516x 5.如果本金为a,每期利率为r,按复利计算,本利和为y,则存x期后,y与x之间的函数关系是________. 解析:1期后y=a+ar=a(1+r); 2期后y=a(1+r)+a(1+r)r=a(1+r)2;…归纳可得x期后y =a(1+r)x. 答案:y=a(1+r)x 6.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,n年后这批设备的价值为________万元. 解析:1年后价值为:a-ab%=a(1-b%),2年后价值为:a(1-b%)-a(1-b%)b%=a(1-b%)2, n年后价值为:a(1-b%)n.

函数模型的应用实例 说课稿 教案 教学设计

函数模型的应用实例 课型:新授课 教学目标 能够利用给定的函数模型或建立确定性函数模型解决实际问题,进一步感受运用函数概念建立函数模型的过程和方法,对给定的函数模型进行简单的分析评价. 二、教学重点 重点:利用给定的函数模型或建立确定性质函数模型解决实际问题. 难点:将实际问题转化为数学模型,并对给定的函数模型进行简单的分析评价. 三、学法与教学用具 1.学法:自主学习和尝试,互动式讨论. 2.教学用具:多媒体 四、教学设想 (一)创设情景,揭示课题. 现实生活中有些实际问题所涉及的数学模型是确定的,但需我们利用问题中的数据及其蕴含的关系来建立.对于已给定数学模型的问题,我们要对所确定的数学模型进行分析评价,验证数学模型的与所提供的数据的吻合程度. (二)实例尝试,探求新知 例1.一辆汽车在某段路程中的行驶速度与时间的关系如图所示. 1)写出速度v关于时间t的函数解析式; 2)写出汽车行驶路程y关于时间t的函数关系式,并作图象; 3)求图中阴影部分的面积,并说明所求面积的实际含义; 4)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立汽车行驶这段路程时汽车里程表读数s与时间t的函数解析式,并作出相应的图象. 本例所涉及的数学模型是确定的,需要利用问题中的数据及其蕴含的关系建立数学模型,此例分段函数模型刻画实际问题. 教师要引导学生从条块图象的独立性思考问题,把握函数模型的特征. 注意培养学生的读图能力,让学生懂得图象是函数对应关系的一种重要表现形式. 例2.人口问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798,英国经济家马尔萨斯就提出了自然状态下的人口增长模型: 0rt y y e 其中t表示经过的时间, y表示t=0时的人口数,r表示人口的年均增长率.下表是1950~1959年我国的人口数据资料:(单位:万人) 年份1950 1951 1952 1953 1954 人数55196 56300 57482 58796 60266 年份1955 1956 1957 1958 1959

专题3.9 函数的实际应用(精讲)(原卷版)

专题3.9 函数的实际应用 【考纲要求】 1. 能将一些简单的实际问题转化为相应的函数问题,并给予解决. 2.培养学生的数学抽象、数学运算、数学建模、逻辑推理、直观想象等核心数学素养. 【知识清单】 1.常见的几种函数模型 (1)一次函数模型:y =kx +b (k ≠0). (2)反比例函数模型:y =k x (k ≠0). (3)二次函数模型:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0). (4)指数函数模型:y =a ·b x +c (b >0,b ≠1,a ≠0). (5)对数函数模型:y =m log a x +n (a >0,a ≠1,m ≠0). 2. 指数、对数及幂函数三种增长型函数模型的图象与性质 【重点总结】 解答函数应用题的一般步骤: ①审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型; ②建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型; ③求模:求解数学模型,得出数学结论; ④还原:将数学问题还原为实际问题的意义. 【考点梳理】 考点一 :一次函数与分段函数模型

【典例1】(2020·四川省乐山沫若中学高一月考)2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括:①赡养老人费用,②子女教育费用,③继续教育费用,④大病医疗费用等,其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元,②子女教育费用:每个子女每月扣除1000元,新的个税政策的税率表部分内容如下: 现有李某月收入为18000元,膝下有一名子女在读高三,需赡养老人,除此之外无其它专项附加扣除,则他该月应交纳的个税金额为() A.1800B.1000C.790D.560 【典例2】(2018届广东省深圳中学高三第一次测试)中国移动通信公司早前推出“全球通”移动电话资费“个性化套餐”,具体方案如下: (I)写出“套餐”中方案1的月话费y(元)与月通话量t(分钟)(月通话量是指一个月内每次通话用时之和)的函数关系式; (II)学生甲选用方案1,学生乙选用方案2,某月甲乙两人的电话资费相同,通话量也相同,求该月学生甲的电话资费;

《函数模型及其应用》同步训练题

《函数模型及其应用》同步训练题 一、选择题 1、某厂日产手套总成本y(元)与手套日产量x(副)的关系式为y=5x+4 000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为( ) A.200副B.400副 C.600副D.800副 2、某厂原来月产量为a,一月份增产10%,二月份比一月份减产10%,设二月份产量为b,则( ) A.a=b B.a>b C.a

4、拟定从甲地到乙地通话m分钟的电话费f(m)=1.06·(0.50×[m]+1),其中m>0,[m]是大于或等于m的最小整数(如[3]=3,[3.7]=4,[5.1]=6),则从甲地到乙地通适时间为5.5分钟的通话费为( ) A.3.71 B.3.97 C.4.24 D.4.77 5、1992年底世界人口数达到54.8亿,若人口的年平均增长率为x%,设2010年底世界人口数为y(亿),那么y与x的函数解析式为( ) A.y=54.8(1+x%)18B.y=54.8(1+x%)19 C.y=54.8(x%)18 D.y=54.8(x%)19 6、今有一组实验数据如表所示: A.u=log2t B.u=2t-2 实用文档

实用文档 C .u =t 2-1 2 D .u =2t -2 7、若x ∈(0,1)则下列结论正确的是( ) A .2x >x 12 >lgx B .2x >lgx>x 12 C .x 12>2x >lgx D .lgx>x 1 2 >2x 8、某商店某种商品进货价为每件40元,当售价为50元时,一个月能卖出500件.通过市场调 查发现,若每件商品的单价每提高1元,则该商品一个月的销售量会减少10件.商店为使销售商品 的月利润最高,应将该商品每件定价为( ) A .70元 B .65元 C .60元 D .55元 9、向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系的图象如图所示,那 么水瓶的形状是( )

2019-2020年高中数学 第三章函数的应用§3.2.2函数模型的应用实例(Ⅲ)教案 新人教A版必修1

2019-2020年高中数学第三章函数的应用§3.2.2函数模型的应用实例 (Ⅲ)教案新人教A版必修1 一、教学目标 1、知识与技能能够收集图表数据信息,建立拟合函数解决实际问题。 2、过程与方法体验收集图表数据信息、拟合数据的过程与方法,体会函数拟合的思想方法。 3、情感、态度、价值观深入体会数学模型在现实生产、生活及各个领域中的广泛应用及其重要价值。 二、教学重点、难点: 重点:收集图表数据信息、拟合数据,建立函数模解决实际问题。 难点:对数据信息进行拟合,建立起函数模型,并进行模型修正。 三、学学与教学用具 1、学法:学生自查阅读教材,尝试实践,合作交流,共同探索。 2、教学用具:多媒体 四、教学设想 (一)创设情景,揭示课题 2003年5月8日,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略数学模型”研究项目,马知恩教授率领一批专家昼夜攻关,于5月19日初步完成了第一批成果,并制成了要供决策部门参考的应用软件。 这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真,结果指出,将患者及时隔离对于抗击非典至关重要、分析报告说,就全国而论,菲非典病人延迟隔离1天,就医人数将增加1000人左右,推迟两天约增加工能力100人左右;若外界输入1000人中包含一个病人和一个潜伏病人,将增加患病人数100人左右;若4月21日以后,政府示采取隔离措施,则高峰期病人人数将达60万人。 这项研究在充分考虑传染病控制中心每日工资发布的数据,建立了非典流行趋势预测动力学模型和优化控制模型,并对非典未来的流行趋势做了分析预测。 本例建立教学模型的过程,实际上就是对收集来的数据信息进行拟合,从而找到近似度比较高的拟合函数。 (二)尝试实践探求新知 例1.某地区不同身高的未成年男性的体重平均值发下表 (身高:cm;体重:kg) 1)根据表中提供的数据,建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重与身高ykg与身高xcm的函数模型的解析式。 2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm ,体重为78kg的在校男生的体重是事正常? 探索以下问题:

函数模型的应用实例(Ⅲ)

函数模型的应用实例(Ⅲ) 一、教学目标 1、知识与技能能够收集图表数据信息,建立拟合函数解决实际问题。 2、过程与方法体验收集图表数据信息、拟合数据的过程与方法,体会函数拟合的思想方法。 3、情感、态度、价值观深入体会数学模型在现实生产、生活及各个领域中的广泛应用及其重要价值。 二、教学重点、难点: 重点:收集图表数据信息、拟合数据,建立函数模解决实际问题。 难点:对数据信息进行拟合,建立起函数模型,并进行模型修正。 三、学学与教学用具 1、学法:学生自查阅读教材,尝试实践,合作交流,共同探索。 2、教学用具:多媒体 四、教学设想 (一)创设情景,揭示课题 2003年5月8日,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略数学模型”研究项目,马知恩教授率领一批专家昼夜攻关,于5月19日初步完成了第一批成果,并制成了要供决策部门参考的应用软件。 这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真,结果指出,将患者及时隔离对于抗击非典

至关重要、分析报告说,就全国而论,菲非典病人延迟隔离1天,就医人数将增加1000人左右,推迟两天约增加工能力100人左右;若外界输入1000人中包含一个病人和一个潜伏病人,将增加患病人数100人左右;若4月21日以后,政府示采取隔离措施,则高峰期病人人数将达60万人。 这项研究在充分考虑传染病控制中心每日工资发布的数据,建立了非典流行趋势预测动力学模型和优化控制模型,并对非典未来的流行趋势做了分析预测。 本例建立教学模型的过程,实际上就是对收集来的数据信息进行拟合,从而找到近似度比较高的拟合函数。 (二)尝试实践探求新知 例1.某地区不同身高的未成年男性的体重平均值发下表 (身高:cm;体重:kg) 1)根据表中提供的数据,建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重与身高ykg与身高xcm的函数模型的解析式。 2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm ,体重为78kg的在校男

2021年高考数学一轮复习第二章函数的概念及其基本性质.9函数模型及函数的综合应用课时练理

2021年高考数学一轮复习第二章函数的概念及其基本性质2.9函数 模型及函数的综合应用课时练理 1.[xx·衡水二中猜题]汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( ) 答案 A 解析 汽车加速行驶时,速度变化越来越快,而汽车匀速行驶时,速度保持不变,体现在s 与t 的函数图象上是一条直线,减速行驶时,速度变化越来越慢,但路程仍是增加的,故选A. 2.[xx·衡水中学月考]某种电热水器的水箱的最大容积是200升,加热到一定温度可以浴用,浴用时,已知每分钟放水34升,在放水的同时注水,t 分钟注水2t 2升,当水箱内水量达到最小值时,放水自动停止.现在假定每人洗浴用水65升,则该热水器一次至多可供( ) A .3人洗澡 B .4人洗澡 C .5人洗澡 D .6人洗澡 答案 B 解析 设最多用t 分钟,则水箱内水量y =200+2t 2-34t ,当t =17 2时,y 有最小 值,此时共放水34×17 2 =289升,可以供4人洗澡. 3.[xx·枣强中学预测]若函数f (x )=a +|x |+log 2(x 2+2)有且只有一个零点,则实数a 的值是( ) A .-2 B .-1

C .0 D .2 答案 B 解析 将函数f (x )=a +|x |+log 2(x 2 +2)的零点问题转化为函数f 1(x )=-a -|x |的图象与f 2(x )=log 2(x 2+2)的图象的交点问题.因为f 2(x )=log 2(x 2+2)在[0,+∞)上单调递增,且为偶函数,因此其最低点为(0,1),而函数f 1(x )=-a -|x |也是偶函数,在[0,+∞)上单调递减,因此其最高点为(0,-a ),要满足题意,则-a =1,因此a =-1. 4.[xx·冀州中学模拟]某购物网站在xx 年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为( ) A .1 B .2 C .3 D .4 答案 C 解析 为使花钱总数最少,需使每张订单满足“每张订单金额(6折后)满300元时可减免100元”,即每张订单打折前原金额不少于500元.由于每件原价48元,因此每张订单至少11件,所以最少需要下的订单张数为3张,选C. 5. [xx·武邑中学预测]已知函数f (x )=(x -a )2 +(ln x 2 -2a )2 ,其中x >0,a ∈R ,存在x 0使得f (x 0)≤4 5 成立,则实数a 的值为( ) A.15 B.25

2.9 函数模型及其综合应用-5年3年模拟北京高考

2.9 函数模型及其综合应用 五年高考 考点 函数的实际应用 1.(2013天津,8,5分)已知函数|).|1()(x a x x f +=设关于x 的不等式)()(x f a x f <+的解集为A .若 ,]21 ,21[A ?-则实数a 的取值范围是( ) )0,251.(-A )0,231.(-B )231,0()0,251.(+- C )2 51,.(--∞D 2.(2012北京,8,5分)某棵果树前n 年的总产量S 。与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为 ( ) 5.A 7.B 9.C 11.D 3.(2013湖南.16,5分)设函数,)(x x x c b a x f -+=其中.0,0>>>>b c a c (1)记集合c b a c b a M ,,1),,{(=不能构成一个三角形的三条边长,且a=b},则M c b a ∈),,(所对应的 )(x f 的零点的取值集合为 (2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是 .(写出所有正确结论的序号) ;0)(),1,(>-∞∈?x f x ① ,R x ∈?②使c b a xx x ,,不能构成一个三角形的三条边长; ③若△ABC 为钝角三角形,则),2,1(∈?x 使.0)(=x f 4.(2013课标全国I .21,12分)设函数)(,)(2x g b ax x x f ++=).(d cx e x +=若曲线)(x f y =?和曲 线)(x g y =都过点P(O ,2),且在点P 处有相同的切线.24+=x y (1)求a ,b ,c ,d 的值; (2)若2-≥x 时,),()(x kg x f ≤求k 的取值范围. 5.(2012江苏,17,14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点,已知炮弹发射后的轨迹在方程k x k kx y <+- =22)1(20 1 )0>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;

第17讲 函数模型的应用实例(基础)

函数模型的应用实例 【学习目标】 1.能够找出简单实际问题中的函数关系式,应用指数函数、对数函数模型解决实际问题,并初步掌握数学建模的一般步骤和方法. 2.通过具体实例,感受运用函数建立模型的过程和方法,体会指数函数、对数函数模型在数学和其他学科中的应用. 3.通过函数应用的学习,体会数学应用的广泛性,树立事物间相互联系的辩证观,培养分析问题、解决问题的能力,增强数学的应用意识. 【要点梳理】 要点一、解答应用问题的基本思想和步骤 1.解应用题的基本思想 2.解答函数应用题的基本步骤 求解函数应用题时一般按以下几步进行: 第一步:审题 弄清题意,分清条件和结论,理顺数量关系,初步选择模型. 第二步:建模 在细心阅读与深入理解题意的基础上,引进数学符号,将问题的非数学语言合理转化为数学语言,然后根据题意,列出数量关系,建立函数模型.这时,要注意函数的定义域应符合实际问题的要求. 第三步:求模 运用数学方法及函数知识进行推理、运算,求解数学模型,得出结果. 第四步:还原 把数学结果转译成实际问题作出解答,对于解出的结果要代入原问题中进行检验、评判,使其符合实际背景. 上述四步可概括为以下流程: 实际问题(文字语言)?数学问题(数量关系与函数模型)?建模(数学语言)?求模(求解数学问题)?反馈(还原成实际问题的解答). 要点二、解答函数应用题应注意的问题 首先,要认真阅读理解材料.应用题所用的数学语言多为“文字语言、符号语言、图形语言”并用,往往篇幅较长,立意有创新脱俗之感.阅读理解材料要达到的目标是读懂题目所叙述的实际问题的意义,领悟其中的数学本质,接受题目所约定的临时性定义,理解题目中的量与量的位置关系、数量关系,确立解体思路和下一步的努力方向,对于有些数量关系较复杂、较模糊的问题,可以借助画图和列表来理清它. 其次,建立函数关系.根据前面审题及分析,把实际问题“用字母符号、关系符号”表达出来,建立函数关系.

函数模型及其应用习题课

函数模型及其应用习题课 教学目标:1 掌握根据已知条件建立函数关系式。2培养学生分析问题、解决问题的能力。3 培养学生应用数学的意识。 教学过程: 一.基础练习: 1. 某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……,现 有2个这样的细胞,分裂x 次后得到的细胞个数y 为( ) A .y=21+x B 。y=21-x C 。y=2x D 。y=2x 2. 一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,它的解析式为( ) A . y=20-2x (x ≤10) B y=20-2x (x <10) C y=20-2x (5 ≤x ≤10) D y=20-2x (5

3.2.2几种函数模型的应用举例

第三章 函数的应用 3.2.2几种函数模型的应用举例 【导学目标】 1.通过实例感受一次函数、二次函数、指数函数、对数函数以及幂函数的广泛应用,体会解决实际问题中建立函数模型的过程,从而进一步加深对这些函数的理解与应用; 2.初步了解对统计数据表的分析与处理. 【自主学习】 1、根据散点图设想比较接近的可能的函数模型: ①一次函数模型:()(0);f x kx b k =+≠ ②二次函数模型:2()(0);g x ax bx c a =++≠ ③指数函数模型:()x f x a b c =+g (0,a b ≠>0,1b ≠) ④对数函数模型:()log a f x m x b =+g (0,m ≠01a a >≠且) ⑤幂函数模型:12 ()(0);h x ax b a =+≠ 2、一般函数模型应用题的求解方法步骤: 1) 阅读理解,审清题意:逐字逐句,读懂题中的文字叙述,理解题中所反映的实际问题,明白已知什么,所求什么,从中提炼出相应的数学问题。 2)根据所给模型,列出函数表达式:合理选取变量,建立实际问题中的变量之间的函数关系,而将实际问题转化为函数模型问题。 3)运用所学知识和数学方法,将得到的函数问题予以解答,求得结果。 4)将所解得函数问题的解,翻译成实际问题的解答。 在将实际问题向数学问题的转化过程中,能画图的要画图,可借助于图形的直观性,研究两变量间的联系. 抽象出数学模型时,注意实际问题对变量范围的限制. 【典型例题】 例1:某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元. 销售单价与日均销售量的关系如下表所示: 请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?

第9讲函数的应用

第9讲函数的应用 【2013年高考会这样考】 1.考查二次函数模型的建立及最值问题. 2.考查分段函数模型的建立及最值问题. 3.考查指数、对数、幂函数、“对勾”型函数模型的建立及最值问题. 【复习指导】 函数模型的实际应用问题,主要抓好常见函数模型的训练,解答应用问题的重点在信息整理与建模上,建模后利用函数知识分析解决问题. 基础梳理 1.常见的函数模型及性质 (1)几类函数模型 ①一次函数模型:y=kx+b(k≠0). ②二次函数模型:y=ax2+bx+c(a≠0). ③指数函数型模型:y=ab x+c(b>0,b≠1). ④对数函数型模型:y=m log a x+n(a>0,a≠1). ⑤幂函数型模型:y=ax n+b. (2)三种函数模型的性质 一个防范 特别关注实际问题的自变量的取值范围,合理确定函数的定义域.

四个步骤 (1)审题:深刻理解题意,分清条件和结论,理顺其中的数量关系,把握其中的数学本质; (2)建模:由题设中的数量关系,建立相应的数学模型,将实际问题转化为数学问题; (3)解模:用数学知识和方法解决转化出的数学问题; (4)还原:回到题目本身,检验结果的实际意义,给出结论. 双基自测 1.(人教A 版教材习题改编)从1999年11月1日起,全国储蓄存款征收利息税,利息税的税率为20%,由各银行储蓄点代扣代收,某人2011年6月1日存入若干万元人民币,年利率为2%,到2012年6月1日取款时被银行扣除利息税138.64元,则该存款人的本金介于( ). A .3~4万元 B .4~5万元 C .5~6万元 D .2~3万元 解析 设存入的本金为x ,则x ·2%·20%=138.64,∴x =1 386 40040=34 660. 答案 A 2.(2012·新乡月考)某产品的总成本y (万元)与产量x (台)之间的函数关系是y =3 000+20x -0.1x 2(0<x <240,x ∈N *),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是( ). A .100台 B .120台 C .150台 D .180台 解析 设利润为f (x )(万元),则f (x )=25x -(3 000+20x -0.1x 2)=0.1x 2+5x -3 000≥0,∴x ≥150. 答案 C 3.有一批材料可以围成200米长的围墙,现用此材料在一边靠墙的地方围成一块矩形场地(如图),且内部用此材料隔成三个面积相等的矩形,则围成的矩形场地的最大面积为( ). A .1 000米2 B .2 000米2 C .2 500米2 D .3 000米2

课标通用版2020版高考数学大一轮复习第二章函数概念与基本初等函数第11讲函数模型及其应用检测文

第11讲 函数模型及其应用 [基础题组练] 1.如图,在不规则图形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把图形ABCD 分成两部分,设AE =x ,左侧部分面积为y ,则y 关于x 的大致图象为( ) 解析:选D.因为左侧部分面积为y ,随x 的变化而变化,最初面积增加得快,后来均匀增加,最后缓慢增加,只有D 选项适合. 2.某市家庭煤气的使用量x (m 3 )和煤气费f (x )(元)满足关系f (x )= ? ????C ,0A .已知某家庭今年前四个月的煤气费如下表: A .12.5元 B .12元 C .11.5元 D .11元 解析:选 A.由题意得C =4.将(25,14),(35,19)代入f (x )=4+B (x -A ),得 ?????4+B (25-A )=14,4+B (35-A )=19,解得? ????A =5,B =12 .所以f (x )=? ? ???4,05.故当x =22时,f (22)=12.5.故选A. 3.成都市某物流公司为了配合“北改”项目顺利进行,决定把三环内的租用仓库搬迁到北三环外重新租地建设.已知仓库每月占用费y 1与仓库到车站的距离成反比,而每月车载货物的运费y 2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y 1,y 2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站( ) A .5千米处 B .4千米处 C .3千米处 D .2千米处 解析:选A.设仓库应建在离车站x 千米处.因为仓库每月占用费y 1与仓库到车站的距

《函数模型的应用实例》说课稿

《函数模型的应用实例》说课稿 一、教材分析 “加强数学应用,形成和发展学生的数学应用意识”是新课标数学教育教学的基本理念之一,为此,新课标实验教材(人教A版)特将“函数的应用”独立成章,其中“函数模型的应用实例”是本章教材的核心内容.从教材体系和内容分析,本小节教材内容彰显如下三个特点: (1)教材围绕具体实例展开研究,各例题涉及的实际问题既有社会性,又具有浓郁的生活气息,在情感上体现了一种亲和力,易于学生理解和接受. (2)在知识层面上本节教材没有新增内容,要求学生运用已有函数知识,体会建立函数模型的过程,感受函数在生产、生活、科学、社会等领域中的广泛应用,理解函数是描述客观世界变化规律的基本数学模型,培养数学建模能力. (3)本小节教材是上小节“几类不同增长的函数模型”的延续和发展.上小节主要学习如何根据给定的几个函数模型,通过比较其增长速度,选择合适的函数模型解决实际问题.本小节要求根据背景材料中的有关信息,建立函数模型解决实际问题,体现了更高层次的能力要求. 本小节是一节例题教学课,教材共安排了4个例题(例3~例6),大致分为两类,其中例3和例5是根据图、表信息建立确定的函数模型解决实际问题,例4和例6是建立函数模型对样本数据进行拟合,再根据拟合函数模型解决实际问题.本小节分两个教学课时,本节课是第一课时.我将以教材例3和例5为基础,分别在图形和数表两种不同应用情境中,引导学生自主建立函数模型来解决实际问题. 二、教学目标分析 知识与技能目标: 1.通过例3的教学,使学生能根据图象信息建立分段函数模型;通过例5的教学,使学生能根据表格提供的数据抽象出函数模型; 2.学生在根据图表信息建立函数模型后,要求会利用所建立的函数模型解决实际问题,体现函数建模的应用价值; 3.解决数学应用性问题,是培养学生阅读理解、抽象概括、数据处理、语言

2020高考数学一轮复习第2章函数导数及其应用第9讲函数模型及其应用学案

【2019最新】精选高考数学一轮复习第2章函数导数及其应用第9讲 函数模型及其应用学案 板块一知识梳理·自主学习 [必备知识] 考点1 常见的函数模型 [必会结论] “f(x)=x+(a>0)”型函数模型 形如f(x)=x+(a>0)的函数模型称为“对勾”函数模型: (1)该函数在(-∞,-]和[,+∞)上单调递增,在[-,0]和(0,]上单调递减. (2)当x>0时,x=时取最小值2, 当x<0时,x=-时取最大值-2. [考点自测] 1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数y=2x的函数值比y=x2的函数值大.( ) (2)幂函数比一次函数增长速度快.( ) (3)指数函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题 中.( ) (4)对数函数增长模型比较适合于描述增长速度平缓的变化规律.( ) (5)某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,若按 九折出售,则每件商品仍能获利.( )

(6)当x>4时,恒有2x>x2>log2x.( ) 答案(1)×(2)×(3)√(4)√(5)√(6)√2.[2018·长沙模拟]小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( ) 答案C 解析出发时距学校最远,先排除A,中途堵塞停留,距离没变,再排除D,堵塞 停留后比原来骑得快,因此排除B. 3.[课本改编]已知某矩形广场的面积为4万平方米,则其周长至少为( ) B.900米 A.800米 D.1200米 C.1000米 答案A 解析设这个广场的长为x米,则宽为米,所以其周长为l=2≥800,当且仅当 x=,即x=200时取等号.4.[课本改编]某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获 利10%(相对进货价),则该家具的进货价是( ) B.105元 A.118元 D.108元 C.106元 答案D 解析设进货价为a元,由题意知132×(1-10%)-a=10%·a,解得a=108. 5.[2018·抚顺模拟]某种动物繁殖量y(只)与时间x(年)的关系为y=alog3(x+ 1),设这种动物第2年有100只,则到第8年它们发展到的只数为________. 答案200 解析∵alog33=100,∴a=100,y=100log39=200. 6.调查表明,酒后驾驶是导致交通事故的主要原因,交通法规规定,驾驶员在驾 驶机动车时血液中酒精含量不得超过0.2 mg/mL.某人喝酒后,其血液中酒精含量将上升到0.8 mg/mL,在停止喝酒后,血液中酒精含量以每小时50%的速度减少,则至少经 过________小时他才可以驾驶机动车.(精确到小时) 答案2 解析设n小时后才可以驾车,由题意得0.8(1-50%)n=2,0.5n=,即n=2,即 至少经过2小时后才可以驾驶机动车.

高一数学《函数模型及其应用》练习题及答案

1.某公司为了适应市场需求,对产品结构做了重大调整.调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与产量x的关系,则可选用() A.一次函数 B.二次函数 C.指数型函数 D.对数型函数 解析:选D.一次函数保持均匀的增长,不符合题意; 二次函数在对称轴的两侧有增也有降; 而指数函数是爆炸式增长,不符合“增长越来越慢”; 因此,只有对数函数最符合题意,先快速增长,后来越来越慢. 2.某种植物生长发育的数量y与时间x的关系如下表: x123… y138… 则下面的函数关系式中,能表达这种关系的是() A.y=2x-1 B.y=x2-1 C.y=2x-1 D.y=1.5x2-2.5x+2 解析:选D.画散点图或代入数值,选择拟合效果的函数,故选D. 3.如图表示一位骑自行车者和一位骑摩托车者在相距80km的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息: ①骑自行车者比骑摩托车者早出发了3小时,晚到1小时; ②骑自行车者是变速运动,骑摩托车者是匀速运动; ③骑摩托车者在出发了1.5小时后,追上了骑自行车者. 其中正确信息的序号是() A.①②③ B.①③ C.②③ D.①② 解析:选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了1.5小时后,追上了骑自行车者,正确. 4.长为4,宽为3的矩形,当长增加x,且宽减少x2时面积,此时 x=________,面积S=________. 解析:依题意得:S=(4+x)(3-x2)=-12x2+x+12 =-12(x-1)2+1212,∴当x=1时,Smax=1212.

专题3.9 函数的应用(一)(精讲精析篇)(解析版)

专题3.9函数的应用(一)(精讲精析篇) 提纲挈领 点点突破 数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程. 主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,求解结论,验证结果并改进模型,最终解决实际问题. 数学模型构建了数学与外部世界的桥梁,是数学应用的重要形式.数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力. 在数学建模核心素养的形成过程中,积累用数学解决实际问题的经验. 学生能够在实际情境中发现和提出问题;能够针对问题建立数学模型;能够运用数学知识求解模型,并尝试基于现实背景验证模型和完善模型;能够提升应用能力,增强创新意识. 现阶段主要研究一次函数型、二次函数型、分式函数型及分段函数型 热门考点01 一次函数型 y=kx+b (k>0)在定义域是增函数,其图象直线上升. 【典例1】(2020·云南省高一期末)小张经营某一消费品专卖店,已知该消费品的进价为每件40元,该店每月销售量(百件)与销售单价x(元/件)之间的关系用下图的一折线表示,职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.

(1)把y 表示为x 的函数; (2)当销售价为每件50元时,该店正好收支平衡(即利润为零),求该店的职工人数; (3)若该店只有20名职工,问销售单价定为多少元时,该专卖店可获得最大月利润?(注:利润=收入-支出) 【答案】(1)() ()2140,4060150,60802 x x y x x ?-+≤≤? =?-+<≤??(2)30名员工(3)销售单价定为55或70元时,该专卖店月 利润最大 【解析】 (1)当4060x ≤≤时,设y ax b =+, 由题意得点()()40,60,60,20在函数的图象上, ∴40606020a b a b +=??+=?,解得2 140a b =-??=? , ∴当4060x ≤≤时,2140y x =-+. 同理,当6080x <≤时,1 502 y x =- +. ∴所求关系式为()()2140,40601 50,6080.2 x x y x x ?-+≤≤? =?-+<≤?? (2)设该店有职工m 名, 当x=50时,该店的总收入为()()()4010010021404040000y x x x -?=-+-=元, 又该店的总支出为1000m+10000元, 依题意得40000=1000m+10000, 解得:m=30. 所以此时该店有30名员工. (3)若该店只有20名职工,

第2章第9讲 函数模型及其应用

第9讲函数模型及其应用 基础知识整合 1.常见的函数模型 函数模型函数解析式 一次函数型f(x)=ax+b(a,b为常数,a≠0) 二次函数型f(x)=ax2+bx+c(a,b,c为常数,a≠0) 指数函数型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0) 对数函数型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0) 幂函数型f(x)=ax n+b(a,b为常数,a≠0) 2.指数、对数及幂函数三种增长型函数模型的图象与性质 函数 性质 y=a x(a>1)y=log a x(a>1)y=x n(n>0) 在(0,+∞) 上的增减性 □01单调递增□02单调递增□03单调递增增长速度越来越快越来越慢相对平稳 图象的变化 随x的增大逐渐表 现为与□04y轴平行 随x的增大逐渐表 现为与□05x轴平行 随n值变化而各有 不同值的比较 存在一个x0,当 x>x0时,有 log a x

上单调递减. (2)当x >0时,x =a 时取最小值2a , 当x <0时,x =-a 时取最大值-2a . 1.(2019·嘉兴模拟)为了预防信息泄露,保证信息的安全传输,在传输过程中需要对文件加密,有一种加密密钥密码系统(Private -Key Cryptosystem),其加密、解密原理为:发送方由明文→密文(加密),接收方由密文→明文(解密).现在加密密钥为y =kx 3,若明文“4”通过加密后得到密文“2”,则接收方接到密文“1 256 ”,解密后得到的明文是( ) A .12 B .14 C .2 D .18 答案 A 解析 由已知,可得当x =4时,y =2,所以2=k ·43,解得k =243=1 32,故y =132x 3.令y =132x 3=1256,即x 3=18,解得x =1 2.故选A . 2.在某个物理实验中,测量得变量x 和变量y 的几组数据,如下表: x 0.50 0.99 2.01 3.98 y -0.99 0.01 0.98 2.00 则对x ,y 最适合的拟合函数是( ) A .y =2x B .y =x 2-1 C .y =2x -2 D .y =log 2x 答案 D 解析 根据x =0.50,y =-0.99,代入各选项计算,可以排除A ;根据x =2.01,y =0.98,代入其余各选项计算,可以排除B ,C ;将各数据代入函数y =log 2x ,可知满足题意.故选D . 3.(2019·山东烟台模拟)某城市对一种售价为每件160元的商品征收附加税,

相关文档
最新文档