第11章:数字信号处理中有限字长影响的统计分析

第11章:数字信号处理中有限字长影响的统计分析

第11章:数字信号处理中有限字长影响的统计分析

数字信号处理知识点总结

《数字信号处理》辅导 一、离散时间信号和系统的时域分析 (一) 离散时间信号 (1)基本概念 信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。 连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。 模拟信号:是连续信号的特例。时间和幅度均连续。 离散信号:时间上不连续,幅度连续。常见离散信号——序列。 数字信号:幅度量化,时间和幅度均不连续。 (2)基本序列(课本第7——10页) 1)单位脉冲序列 1,0()0,0n n n δ=?=?≠? 2)单位阶跃序列 1,0 ()0,0n u n n ≥?=?≤? 3)矩形序列 1,01 ()0,0,N n N R n n n N ≤≤-?=?<≥? 4)实指数序列 ()n a u n 5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列 1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。 注意正弦周期序列周期性的判定(课本第10页) 2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓 设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即 ()()i x n x n iL ∞ =-∞ = -∑ 当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠ (4)序列的分解 序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即

数字信号处理的应用和发展前景

数字信号处理的应用与发展趋势 作者:王欢 天津大学信息学院电信三班 摘要: 数字信号处理是应用于广泛领域的新兴学科,也是电子工业领域发展最为迅速的技术之一。本文就数字信号处理的方法、发展历史、优缺点、现代社会的应用领域以及发展前景五个方面进行了简明扼要的阐述。 关键词: 数字信号处理发展历史灵活稳定应用广泛发展前景 数字信号处理的简介 1.1、什么是数字信号处理 数字信号处理简称DSP,英文全名是Digital Signal Processing。 数字信号处理是利用计算机或专用处理设备以数字的形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 DSP系统的基本模型如下: 数字信号处理是一门涉及许多学科且广泛应用于许多领域的新兴学科。它以众多的学科为理论基础,所涉及范围及其广泛。例如,在数学领域、微积分、概率统计、随即过程、数值分析等都是数字信号处理的基本工具;同时与网络理论、信号与系统、控制论、通信理论、故障诊断等学科也密切相关。近年来的一些新兴学科,如人工智能、模式识别、神经网络等,都是与数字信号处理密不可分的。数字信号处理可以说许多经典的理论体系作为自己的理论基础,同时又使自己成为一门新兴学科的理论基础。 1.2、数字信号系统的发展过程 数字信号处理技术的发展经历了三个阶段。 70 年代DSP 是基于数字滤波和快速傅里叶变换的经典数字信号处理, 其系统由分立的小规模集成电路组成, 或在通用计算机上编程来实现DSP 处理功能, 当时受到计算机速度和存储量的限制,一般只能脱机处理, 主要在医疗电子、生物电子、应用地球物理等低频信号处理方面获得应用。 80 年代DSP 有了快速发展, 理论和技术进入到以快速傅里叶变换(FFT) 为主体的现代信号处理阶段, 出现了有可编程能力的通用数字信号处理芯片, 例如美国德州仪器公司(TI公司) 的TMS32010 芯片, 在全世界推广应用, 在雷达、语音通信、地震等领域获得应用, 但芯片价格较贵, 还不能进 入消费领域应用。 90 年代DSP 技术的飞速发展十分惊人, 理论和技术发展到以非线性谱估计为代表的更先进的信号处理阶段, 能够用高速的DSP 处理技术提取更深层的信息, 硬件采用更高速的DSP 芯片, 能实时地完成巨大的计算量, 以TI 公司推出的TMS320C6X 芯片为例, 片内有两个高速乘法器、6 个加法器, 能以200MHZ 频率完成8 段32 位指令操作, 每秒可以完成16 亿次操作, 并且利用成熟的微电子工艺批量生产,使单个芯片成本得以降低。并推出了C2X 、C3X 、C5X 、C6X不同应用范围的系列, 新一代的DSP 芯片在移动通信、数字电视和消费电子领域得到广泛应用, 数字化的产品性能价 格比得到很大提高, 占有巨大的市场。 1.3、数字信号处理的特点

数字信号处理总结与-习题(答案

对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字信号。2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。4、)()(5241 n R x n R x ==,只有 当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是 ()n h n ∞ =-∞ <∞ ∑ 6、用来计算N =16点DFT ,直接计算需要(N 2 )16*16=256_次复乘法,采用基2FFT 算法, 需要__(N/2 )×log 2N =8×4=32 次复乘法。7、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型_和 并联型_四种。8、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并 联型的运算速度最高。9、数字信号处理的三种基本运算是:延时、乘法、加法 10、两个有限长序列 和 长度分别是 和 ,在做线性卷积后结果长度是__N 1+N 2-1_。11、N=2M 点基2FFT ,共有 M 列蝶形, 每列有N/2 个蝶形。12、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对 13、数字信号处理的三种基本运算是: 延时、乘法、加法 14、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。18、单位脉冲响应分别为 和 的两线性系统相串联,其等效系统函数时域及频域表达式分别是h(n)=h 1(n)*h 2(n), =H 1(e j ω )× H 2(e j ω )。19、稳定系统的系统函数H(z)的收敛域包括 单位圆 。20、对于M 点的有限长序列x(n),频域采样不失真的条件是 频域采样点数N 要大于时域采样点数M 。 1、下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( y(n)=x(n 2 ) ) A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法能用于设计FIR 高通滤波4、因果FIR 滤波器的系统函数H(z)的全部极点都在(z = 0 )处。6、已知某序列z 变换的收敛域为|z|<1,则该序列为(左边序列)。7、序列)1() (---=n u a n x n ,则)(Z X 的收敛域为(a Z <。8、在对连续信号均匀 采样时,要从离散采样值不失真恢复原信号,则采样周期T s 与信号最高截止频率f h 应满足关系(T s <1/(2f h ) ) 9、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 (16=N )。10、线性相位FIR 滤波器有几种类型( 4) 。11、在IIR 数字滤波器的设计中,用哪种方法只适 合于片断常数特性滤波器的设计。(双线性变换法)12、下列对IIR 滤波器特点的论述中错误的是( C )。 A .系统的单位冲激响应h(n)是无限长的B.结构必是递归型的C.肯定是稳定的D.系统函数H(z)在有限z 平面(0<|z|<∞)上有极点 13、有限长序列h(n)(0≤n ≤N-1)关于τ= 2 1 -N 偶对称的条件是(h(n)=h(N-n-1))。14、下列关于窗函数设计法的说法中错误的是( D )。A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法不能用于设计FIR 高通滤波器 15、对于傅立叶级数而言,其信号的特点是(时域连续非周期,频域连续非周期)。

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念 0.1信号、系统与信号处理 1?信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号能量信号/功率信号 连续时间信号/离散时间信号/数字信号按自变量与函数值的取值形式不同分类: 2?系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3. 信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理, 而且也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 精选

PrF ADC DSP DAC PoF (1)前置滤波器 将输入信号X a(t )中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次X a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术 ----- D igitalSignalProcessing 另一层是狭义的理解,为数字信号处理器----- DigitalSignalProcesso。 0.5课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号 频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessin)信号对象主要是随机信 号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1 ?按自变量与函数值的取值形式是否连续信号可以分成哪四种类型?

FPGA在高速数字信号处理中的使用

由于成本、系统功耗和面市时间等原因,许多通讯、视频和图像系统已无法简单地用现有DSP处理器来实现,现场可编程门阵列(FPGA)尤其适合于乘法和累加(MAC)等重复性的DSP任务。本文从FPGA与专用DSP器件的运算速度和器件资源的比较入手,介绍FPGA 在复数乘法、数字滤波器设计和FFT等数字信号处理中应用的优越性,值得(中国)从事信号处理的工程师关注。 Chris Dick Xilinx公司 由于在性能、成本、灵活性和功耗等方面的优势,基于FPGA的信号处理器已广泛应用于各种信号处理领域。近50%的FPGA产品已进入各种通信和网络设备中,例如无线基站、交换机、路由器和调制解调器等。FPGA提供了极强的灵活性,可让设计者开发出满足多种标准的产品。例如,万能移动电话能够自动识别GSM、CDMA、TDMA或AMPS等不同的信号标准,并可自动重配置以适应所识别的协议。FPGA所固有的灵活性和性能也可让设计者紧跟新标准的变化,并能提供可行的方法来满足不断变化的标准要求。 复数乘法 复数运算可用于多种数字信号处理系统。例如,在通讯系统中复数乘积项常用来将信道转化为基带。在线缆调制解调器和一些无线系统中,接收器采用一种时域自适应量化器来解决信号间由于通讯信道不够理想而引入的干扰问题。量化器采用一种复数运算单元对复数进行处理。用来说明数字信号处理器优越性能的指标之一就是其处理复数运算的能力,尤其是复数乘法。 一个类似DSP-24(工作频率为100MHz)的器件在100ns内可产生24×24位复数乘积(2个操作数的实部和虚部均为24位精度)。复数乘积的一种计算方法需要4次实数乘法、1次加法和1次减法。一个满精度的24×24实数管线乘法器需占用348个逻辑片。将4个实数乘法器产生的结果组合起来所需的2个48位加法/减法器各需要24个逻辑片(logic slice)。这些器件将工作在超过100MHz的时钟频率。复数乘法器采用一条完全并行的数据通道,由4×348+2×24=1440个逻辑片构成,这相当于Virtex XCV1000 FPGA所提供逻辑资源的12%。计算一个复数乘积所需的时间为10ns,比DSP结构的基准测试快一个数量级。为了获得更高的性能,几个完全并行的复数乘法器可在单个芯片上实现。采用5个复数乘法器,假设时钟频率为100MHz,则计算平均速率为每2ns一个复数乘积。这一设计将占用一个XCV1000器件约59%的资源。 这里应该强调的一个问题是I/O,有这样一条高速数据通道固然不错,但为了充分利用它,所有的乘法器都须始终保持100%的利用率。这意味着在每一个时钟来临时都要向这些单元输入新的操作数。 除了具有可实现算法功能的高可配置逻辑结构外,FPGA还提供了巨大的I/O带宽,包括片上和片外数据传输带宽,以及算术单元和存储器等片上部件之间的数据传输带宽。例如,XCV1000具有512个用户I/O引脚。这些I/O引脚本身是可配置的,并可支持多种信号标准。实现复数乘法器的另一种方法是构造一个单元,该单元采用单设定或并行的24x24实数乘法器。这种情况下,每一个复数乘法需要4个时钟标识,但是FPGA的逻辑资源占用率却降到了最低。同样,采用100MHz系统时钟,每隔40ns可获得一个新的满精度复数乘积,这仍是DSP结构基准测试数据的2.5倍。这一设定方法需要大约450个逻辑片,占一个XCV1000器件所有资源的3.7%(或XCV300的15%)。 构造一条能够精确匹配所需算法和性能要求的数据通道的能力是FPGA技术独特的特性之一。而且请注意,由于FPGA采用SRAM配置存储器,只需简单下载一个新的配置位流,同样的FPGA硬件就可适用于多种应用。FPGA就像是具有极短周转时间的微型硅片加工厂。

数字信号处理学习心得体会

数字信号处理学习心得 体会

数字信号处理学习心得 一、课程认识和内容理解 《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。 数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下: 第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。 第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。 第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。 第四单元的课程我们重点理解基 2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂基FFT算法。 第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响

应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。 第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。 第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器 二、专业认识和未来规划 通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。 对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层数越多,要做的越稳定就越难,这可是非常有难度的,如果学好了学精了,也是非常好找工作的。也可以从事软件方面,这实际上要我们具备比较好的模电和数电的

数字信号处理(吴镇扬)第一章习题解答

第1章 离散时间信号与系统 1. 解:由题意可知 165 w π= 则周期为:22585168 5 N k k w πππ = ?= ?= ?= 其中k 为整数,且满足使N 为最小整数。 2. (1)解:由题意可知 37 w π= 则周期为:2214314337 N k k w πππ= ?=?= ?= (2)解:由题意可知 1211,4 7 w w ππ= = 则 12281814 N k k w πππ= ?= ?=?= 2221411417 N k k w πππ = ?= ?=?= 则所求周期N 为:1N 和2N 的最小公倍数,即为:56 3. 解:(1) n 幅值 (2)

01 24 3 n 幅度 4. 解:由题意得: 123123 8,2,6,102, 2, 2s s s s ππππΩ=Ω=Ω=Ω=Ω>ΩΩ<ΩΩ<Ω 1/4s T = 根据采样定理,只有信号对1()a x t 采样没有频率混叠。 11()() () cos 2(/4) cos 24 cos 2 a a n n x n x t t nT t t n n n δπδππ∞ =-∞ ∞ =-∞ =-=-==∑ ∑ t 幅度

22()() () cos 6(/4) cos 64 3cos 2 a a n n x n x t t nT t t n n n δπδππ∞ =-∞ ∞ =-∞ =-=--=-=-∑ ∑ t 幅度 33()() () cos10(/4) cos104 5cos 2 a a n n x n x t t nT t t n n n δπδππ∞ =-∞ ∞ =-∞ =- =-==∑ ∑ t 幅度

基于TMS320C6455的高速数字信号处理系统设计

基于TMS320C6455的高速数字信号处理系统设计 摘要:针对高速实时数字信号处理系统设计要求,本文提出并设计了基于dsp+fpga结构的高速数字信号处理系统,采用ti公司目前单片处理能力最强的定点dsp芯片tms320c6455为系统主处理器,fpga作为协处理器。详细论述了dsp外围接口电路的应用和设计,系统设计电路简洁、实现方便,可靠性强。 关键词:tms320c6455 fpga 数字信号处理系统设计 design of high-speed digital signal processing system based on tms320c6455 cao jingzhi,he fei,li qiang,ren hui,qin wei (department of tool development,china petroleum logging co.,ltd shaan xi xi’an 710077) abstract:according to the design needs of high-speed real-time digital signal processing system.the paper puts forward a design of high-speed digital signal processing system based on dsp+fpga structure,adopting ti company fixed-point dsp chip tms320c6455,the currently strongest capacity monolithic processor,for system main processor,and fpga as coprocessor.this paper describs the application and design of dsp periphery circuit interface in detail.the system design has simple circuit and realize convenient, reliability.

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念。 0.1信号、系统与信号处理 1.信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号 能量信号/功率信号 连续时间信号/离散时间信号/数字信号 按自变量与函数值的取值形式不同分类: 2.系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3.信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2 数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理,而且

也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 (1)前置滤波器 将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3 数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4 数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。 0.5 课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessing)。信号对象主要是随机信号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1.按自变量与函数值的取值形式是否连续信号可以分成哪四种类型? 2.相对模拟信号处理,数字信号处理主要有哪些优点? 3.数字信号处理系统的基本组成有哪些?

数字信号处理学习心得

数字信号处理学习心得 XXX ( XXX学院XXX班) 一、课程认识和内容理解 《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。 数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下: 第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。 第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。 第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。 第四单元的课程我们重点理解基2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂

基FFT算法。 第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。 第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。 第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器 二、专业认识和未来规划 通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。 对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层

数字信号处理课程总结(全)

数字信号处理课程总结 以下图为线索连接本门课程的内容: ) (t x a ) (t y a ) (n x 一、 时域分析 1. 信号 ? 信号:模拟信号、离散信号、数字信号(各种信号的表示及关系) ? 序列运算:加、减、乘、除、反褶、卷积 ? 序列的周期性:抓定义 ? 典型序列:)(n δ(可表征任何序列)、)(n u 、)(n R N 、 n a 、jwn e 、)cos(θ+wn ∑∞ -∞ =-= m m n m x n x )()()(δ 特殊序列:)(n h 2. 系统 ? 系统的表示符号)(n h ? 系统的分类:)]([)(n x T n y = 线性:)]([)]([)]()([2121n x bT n x aT n bx n ax T +=+ 移不变:若)]([)(n x T n y =,则)]([)(m n x T m n y -=- 因果:)(n y 与什么时刻的输入有关 稳定:有界输入产生有界输出 ? 常用系统:线性移不变因果稳定系统 ? 判断系统的因果性、稳定性方法 ? 线性移不变系统的表征方法: 线性卷积:)(*)()(n h n x n y = 差分方程: 1 ()()()N M k k k k y n a y n k b x n k === -+ -∑∑

3. 序列信号如何得来? ) (t x a ) (n x 抽样 ? 抽样定理:让)(n x 能代表)(t x a ? 抽样后频谱发生的变化? ? 如何由)(n x 恢复)(t x a ? )(t x a = ∑ ∞ -∞ =--m a mT t T mT t T mT x ) ()] (sin[ ) (π π 二、 复频域分析(Z 变换) 时域分析信号和系统都比较复杂,频域可以将差分方程变换为代数方程而使分析简化。 A . 信号 1.求z 变换 定义:)(n x ?∑∞ -∞ =-= n n z n x z X )()( 收敛域:)(z X 是z 的函数,z 是复变量,有模和幅角。要其解析,则z 不能取让)(z X 无穷大的值,因此z 的取值有限制,它与)(n x 的种类一一对应。 ? )(n x 为有限长序列,则)(z X 是z 的多项式,所以)(z X 在z=0或∞时可 能会有∞,所以z 的取值为:∞<

高速实时数字信号处理系统技术探析

高速实时数字信号处理系统技术探析  (毛二可院士 龙腾副教授)    高速实时数字信号处理(DSP)技术取得了飞速的发展,目前单片DSP芯片的速度已经可以达到每秒16亿次定点运算(1600MIPs到4800MIPs);最近TI宣布1GHz DSP已经准备投产。其高速度、可编程、小型化的特点将使信息处理技术进入一个新纪元。一个完整的高速实时数字信号处理系统包括多种功能模块,如DSP、ADC、DAC等等。本文的内容主要是分析高速实时数字信号处理系统的产生、特点、构成、以及系统设计中的一些问题,并对其中的主要功能模块分别进行了分析。  一、高速实时数字信号处理概述  1.信号处理的概念  信号处理的本质是信息的变换和提取,是将信息从各种噪声、干扰的环境中提取出来,并变换为一种便于为人或机器所使用的形式。从某种意义上说,信号处理类似于"沙里淘金"的过程:它并不能增加信息量(即不能增加金子的含量),但是可以把信息(即金子)从各种噪声、干扰的环境中(即散落在沙子中)提取出来,变换成可以利用的形式(如金条等等)。如果不进行这样的变换,信息虽然存在,但却是无法利用的;这正如散落在沙中的金子无法直接利用一样。  2.高速实时数字信号处理的产生  早期的信号处理主要是采用模拟的处理方法,包括运算放大电路、声表面波器件(SAW)以及电荷耦合器件(CCD)等等。例如运算放大电路通过不同的电阻组配可以实现算术运算,通过电阻、电容的组配可以实现滤波处理等等。模拟处理最大的问题是不灵活、不稳定。其不灵活体现在参数修改困难,需要采用多种阻值、容值的电阻、电容,并通过电子开关选通才能修改处理参数。其不稳定主要体现为对周围环境变化的敏感性,例如温度、电路噪声等都会造成处理结果的改变。  解决以上问题最好的方法就是采用数字信号处理技术。数字信号处理可以通过软件修改处理参数,因此具有很大的灵活性。由于数字电路采用了二值逻辑,因此只要环境温度、电路噪声的变化不造成电路逻辑的翻转,数字电路的工作都可以不受影响地完成,具有很好的稳定性。因此,数字信号处理已经成为信号处理技术的主流。  数字信号处理的主要缺点是处理量随处理精度、信息量的增加而成倍增长,解决这一问题的方法是研究高速运行的数字信号处理系统;这就是本文所探讨的主题:高速实时数字信号处理的理论与技术。 3.高速实时数字信号处理特点   高速实时数字信号处理的特点:  首先是高速度,其处理速度可以达到数百兆量级。

数字信号处理 第一章知识总结

数字信号处理第一章总结

1.1 引言 (3) 1.2 时域离散信号 (3) 1)离散信号: (3) 2)常用序列: .................................................................... 错误!未定义书签。 3)正弦序列: (3) 4)周期序列: (4) 1.3 时域离散系统 (4) 1.3.1 线性系统 (4) 1.3.2 时不变系统 (5) 1.3.3 线性时不变系统输入与输出之间的关系 (5) 1.3.4 系统的因果性和稳定性 (5) 1.4 时域离散系统的输入输出描述法——线性常系数差分方程 (6) 1.4.1线性常系数差分方程: (6) 1.4.2线性常系数差分方程的求解 (6) 1.5 模拟信号数字处理方法 (7)

摘要:信号通常是一个自变量或几个自变量的函数。如果仅有一个自变量,则称为以维信号;如果有两个以上的自变量,则称为多维信号。通常把信号看做时间的函数。实际中遇到的信号一般是模拟信号,对它进行等间隔采样便可以得到时域离散信号。 关键词:模拟信号;等间隔采样;时域离散信号 1.1 引言 信号分为三类:1)模拟信号:自变量和函数值都是连续的。 2)时域离散信号:自变量离散,函数值连续。 它来源于对数字信号的采样。 3)数字信号:自变量和函数值都是离散的。 它是幅度化的时域离散信号。 1.2 时域离散信号 离散信号:模拟信号(时域连续)经过“采样”变成时域离散信号,公式是: x(n)=x a (nT),-∞<n <∞ 这里,x(n)称为时域离散信号,式中的n 取整数,显然,x (n )是一串有序的数字的集合,因此时域离散信号也可以称为序列。 时域离散信号有三种表示方法: (1)用集合符号表示序列 (2)用图形表示序列 (3)用公式表示序列 常用典型序列(时域离散信号): 1)单位采样信号:0 001n ≠=???=n n )(δ 2)单位阶跃信号:0001n u <≥? ??=n n )( 3)(n R N =u )(n -u )(N n -:(N 是矩形序列的长度) 实指数序列:a n x =)(n )(n u ,a 为实数。 3正弦序列:)s i n ()(n n x ω=,ω是“数字域频率” 如果正弦序列是由模拟信号)sin()(t t x a Ω=对比 两个)(n x 的表达式,可得

数字信号处理(英文版)课后习题答案4

(Partial) Solutions to Assignment 4 pp.81-82 Discrete Fourier Series (DFS) Discrete Fourier Transform (DFT) , k=0,1,...N-1 , n=0,1,...N-1 Discrete Time Fourier Transform (DTFT) is periodic with period=2πFourier Series (FS)

Fourier Transform (FT) ---------------------------------------------------- 2.1 Consider a sinusoidal signal Q2.1 Consider a sinusoidal signal that is sampled at a frequency s F =2 kHz a). Determine an expressoin for the sampled sequence , and determine its discrete time Fourier transform b) Determine c) Re-compute ()X from ()X F and verify that you obtain the same expression as in (a) a). ans: = where and

Using the formular: b) ans: where c). ans: Let be the sample function. The Fourier transform of is Using the relationship or

2020年信号处理知识点总结

第一章信号 1.信息是消息的内容,消息是信息的表现形式,信号是信息的载体 2.信号的特性:时间特性,频率特性 3.若信号可以用确定性图形、曲线或数学表达式来准确描述,则该信号为确定性信号 若信号不遵循确定性规律,具有某种不确定性,则该信号为随机信号 4.信号分类:能量信号,一个信号如果能量有限;功率信号,如果一个信号功率是有限的 5.周期信号、阶跃信号、随机信号、直流信号等是功率信号,它们的能量为无限 6.信号的频谱有两类:幅度谱,相位谱 7.信号分析的基本方法:把频率作为信号的自变量,在频域里进行信号的频谱分析 第二章连续信号的频域分析 1.周期信号频谱分析的常用工具:傅里叶三角级数;傅里叶复指数 2.利用傅里叶三角级数可以把周期信号分解成无穷多个正、余弦信号的加权和 3频谱反映信号的频率结构,幅频特性表示谐波的幅值,相频特性反映谐波的相位 4.周期信号频谱的特点:离散性,谐波性,收敛性

5.周期信号由无穷多个余弦分量组成 周期信号幅频谱线的大小表示谐波分量的幅值 相频谱线大小表示谐波分量的相位 6.周期信号的功率谱等于幅值谱平方和的一半,功率谱反映周期信号各次谐波的功率分配关系,周期信号在时域的平均功率等于其各次谐波功率之和 7.非周期信号可看成周期趋于无穷大的周期信号 8.周期T0增大对频谱的影响:谱线变密集,谱线的幅度减少 9.非周期信号频谱的特点:非周期信号也可以进行正交变换;非周期信号完备正交函数集是一个无限密集的连续函数集;非周期信号的频谱是连续的; 非周期信号可以用其自身的积分表示 10.常见奇异信号:单位冲激信号,单位直流信号,符号函数信号,单位阶跃信号 11.周期信号的傅里叶变换:周期信号:一个周期绝对可积?傅里叶级数?离散谱 非周期信号:无限区间绝对可积?傅里叶变换?连续谱12.周期信号的傅立叶变换是无穷多个冲激函数的线性组合 脉冲函数的位置:ω=nω0 , n=0,±1,±2, ….. 脉冲函数的强度:傅里叶复指数系数的2π倍 周期信号的傅立叶变换也是离散的; 谱线间隔与傅里叶级数谱线间隔相同

数字信号处理第三章总结

3.4系列的Z 变换与连续信号的拉普拉斯变 换、傅里叶变换的关系 序列的Z 变换与连续信号的拉普拉斯变换、傅里叶变换的关系 拉普拉斯变换 拉普拉斯逆变换 傅里叶变换 傅里叶逆变换 序列x(n)的Z 变换 逆Z 变换 抽样信号的拉普拉斯变换 []?∞ ∞--==dt e t x t x LT s X st a )()()([]? ∞ +∞ --==j j st a dt e t x s X LT t x σσ)()()(1 Ω +=j s σ[]?∞ ∞ -Ω-==Ωdt e t x t x FT j X t j )()()([]?∞ ∞-Ω-Ω Ω=Ω=d e j X j X FT t x t j )()()( 1Ω =j s ()()n n X z x n z ∞ -=-∞ =∑ ,2,1,0,)(21)(1 ±±==?-n dz z z X j n x c n π()()()()()∑∑? ?∑?∞ -∞ =-∞ -∞=∞ ∞ --∞ ∞--∞ -∞=∞∞ --∧ ∧∧ = -=-==??????=n nsT a n st a st n a st a a a e nT x dt e nT t nT x dt e nT t nT x dt e t x t x LT s X δδ)()()(

抽样序列的z 变换为 3.4.1拉氏变换与Z 变换变换的关系就是复变量s 平面到复变量z 平面的映射: 令 s=σ+j Ω, z=re j ω 得到: re j ω =e (σ+j Ω)T =e σT e j ΩT , 因而 r=e σT , ω=ΩT 3.4.2 ω= ΩT Ω=0 、π/T 、3π/T 、 Ω0与ω的对应关系 Ω变化时与ω的对应关系 s 平面到z 平面的映射是多值映射。 (傅里叶变换是拉普拉斯变换在虚轴的特例,即s =j Ω,因而映射 到z 平面上为单位圆,代入 抽样序列的z 变换 sT e z =()[]()∑∞ -∞ =-= =n n z n x n x ZT z X ) (()e ?() (e )(2.89) sT sT a z X z X X s ===

1第一章 数字信号处理和DSP系统

实验实训中心
DSP实习创新设计
实验实训中心
gcsxzx.hbut.edu.cn

推荐教材及学习网站
推荐教材
《TMS320C55X 系列DSP 指令系统、开发工具与编程指南》 译:李海森 清华大学出版社 《TMS320C55X DSP 原理及应用》 主编 汪春梅 电子工业出版社 主编:汪春梅
实验实训中心
学习网站
www.ti.com www ti com cn www.ti.com.cn www.seeddsp.com www.61ic.com TI公司网站 TI公司中国网站 合众达公司网站 论坛

DSP实习创新设计 实习创新设计
实验实训中心
第1章 数字信号处理和DSP系统
肖 飞

授 课 内 容
一、实时数字信号处理技术的发展 二、数字信号处理器的应用 三、数字信号处理器的特点 数字信号处 的特点 四 德州仪器公司的DSP产品 四、德州仪器公司的 五、DSP芯片的选择 五 片的选择 六、DSP应用系统设计流程 七、DSP软件开发流程
实验实训中心

实验实训中心
1 1 实时数字信号处理技术的发展 1.1
典型实时数字信号处理系统的基本部件
A 输入
抗混叠 滤波器
A
ADC
D
数字信 号处理
D
DAC
A
抗镜像 滤波器
A 输出
DAC 数/模转换器(Digital-to-Analog Converter) ADC 模/数转换器(Analog-to-Digital A l t Di it l Converter C t ) 抗混叠滤波器 抗镜像滤波器 (Anti-aliasing g filter) (Anti-image filter)

相关文档
最新文档