微机电系统的概述

微机电系统的概述
微机电系统的概述

微机电系统的概述

?微机电系统是微米大小的机械系统,其中也包括不同形状的三维平板印刷产生的系统。这些系统的大小一般在微米到毫米之间。在这个大小范围中日常的物理经验往往不适用。比如由于微机电系统的面积对体积比比一般日常生活中的机械系统要大得多,其表面现象如静电、润湿等比体积现象如惯性或热容量等要重要。它们一般是由类似于生产半导体的技术如表面微加工、体型微加工等技术制造的。其中包括更改的硅加工方法如压延、电镀、湿蚀刻、干蚀刻、电火花加工等等。

微机电系统的发展史

?微机电系统是从微传感器发展而来的,已有几次突破性的进展:

70年代微机械压力传感器产品问世

80年代末研制出硅静电微马达

90年代喷墨打印头,硬盘读写头、硅加速度计和数字微镜器件等相继规模化生产

充分展示了微系统技术及其微系统的巨大应用前景

微机电系统的特点

?①和半导体电路相同,使用刻蚀、光刻等制造工艺,不需要组装、调整;

②进一步可以将机械可动部、电子线路、传感器等集成到一片硅板上;

③它很少占用地方,可以在一般的机器人到不了的狭窄场所或条件恶劣的地方使用;

④由于工作部件的质量小,高速动作可能;

⑤由于它的尺寸很小,热膨胀等的影响小;

⑥它产生的力和积蓄的能量很小,本质上比较安全。

微机电系统的优势

?经济利益:

1.大批量的并行制造过程;

2.系统级集成;

3.封装集成;

4.与IC工艺兼容。

技术利益:

1.高精度;

2.重量轻,尺寸小;

3.高效能;

4.材料优势。

微机电系统的应用

?1、在喷墨打印机里作为压电元件;

2、在汽车里作为加速规来控制碰撞时安全气囊防护系统的施用;

3、在汽车里作为陀螺来测定汽车倾斜,控制动态稳定控制系统;

4、在轮胎里作为压力传感器,在医学上测量血压;

5、数字微镜芯片;

6、在计算机网络中充当光交换系统,这是一个与智能灰尘技术的融合。

更多精彩内容,请登入维库电子通(https://www.360docs.net/doc/bf18896284.html,)

微机电系统

微机电系统复习资料 第一章绪论 一、MEMS:特征尺寸在1um~1mm范围内的机械叫做微型机械。 三个特征:微型化(主要体现在体积、重量、耗能、惯性),集成化(体现在将不同功能、敏感、执行元素集成在一起),可批量生产 (特征尺寸、孔腔、沟道、悬臂梁)。 二、代表性器件:数字胃镜(DMD),喷墨打印机的喷头(销量最高),微 静电电机,机械陀螺仪(用于导航)。 三、与微电子产业相比的特征:1、三维可动装置2、多功能(生物、化学、 电能……) 、涉及的材料多4、封装和自组装工艺5、生产工艺和制造技术(制造技 术主要有体微加工技术、表面微加工技术和LIGA,其中LIGA上课没讲) 第二章 一、微型化的标度:表面积/体积比,主要考虑其比值缩小带来的影响,主 要体现在表面力、摩擦力占的主导作用。 二、应力(单位是Pa,压强)、应变 弹性模量=应力/应变 梁发生最大弯曲处:扰度、粘附 数测量:1,几何特征(大小):光学显微镜(光学),台阶仪(机械),扫描电子显微镜(SEM,电学) 2,表面形貌:探针技术(机械探针和光学探针), SEM,原子力显微镜(AFM) 3,应力和应变的测量:1),硅片弯曲,传统的,测 整个硅片,精度低,不可以测弹性模量2),X射线 衍射法(XRD),拉曼光谱法,测量简单,设备昂 贵,精度低3)加载变形和谐振频率法,光路复

杂、精度高、可以测弹性模量 第三章工作原理和敏感材料 一、压阻敏感(应变系数,变阻器) 常见压阻材料(三类):金属应变器(受温度影响小),单晶硅(涉及掺杂),多晶硅(应变系数小于单晶硅,衬底多) 二、压电效应: 定义:在机械压力作用下会产生电荷和电压 起因:晶体中离子电荷的位移变化引起的极化 代表性材料:石英,钛酸钡(BaTiO3),PET 机电耦合性系数: 三、热敏感:喷墨头,热电偶(测温,自供电,不需外接电源),串联形成 热电堆(用于测温),热电阻器(用作加热装置),两种加热材料:铂(金属材料),多晶硅(半导体材料) 四、静电敏感(代表器件:微静电电机) 静电敏感相比于与静电执行的优点: 1,结构简单,只需两个导电表面2,功耗低,依赖于电压差而非电流3.,响应快,转换速度由充放电时间决定。充放电时间—— 平板电容,叉指电容(IDT) 第四章 一、掺杂 两种工艺: 扩散:固溶度——掺杂物在材料中不改变其晶体结构的最大浓度 离子注入:加速离子穿入硅片,晶格碰撞,随机过程 二、等离子体(由电子、离子、带电粒子组成,对外呈中性) 特征:高密度 产生条件:真空 三种应用: 1)制备方面:辅助不同工艺,沉积材料 2)掺杂:辅助不同工艺对基底材料掺杂 3)刻蚀、微加工或移除基底材料 三、材料:1)衬底材料:硅——机械性能、高温稳定,用110面晶向, 较易加工 石英——透光性好,耐高温

MEMS传感器的现状及发展前景

M E M S传感器的现状及 发展前景 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

毕 业 设 计 指 导 课 论 文 MEMS传感器的现状及发展前景 摘要:MEMS传感器是随着纳米技术的发展而兴起的新型传感器,具有很多新的特性,相对传统传感器其具有更大的优势。在追求微型化的当代,其具有良好的发展前景,必将受到各个国家越来越多的重视。文章首先介绍了MEMS传感器的分类和典型应用,然后着重对几个传感器进行了介绍,最后对MEMS传感器的发展趋势与发展前景进行了分析。 关键词:MEMS传感器;加度计;陀螺仪;纳米技术;微机构;微传感器StatusandDevelopmentProspectofMEMSSensors Abstract:MEMSsensorisanewtypeofsensorwiththedevelopmentofnanotechnology.Ithasma nynewfeatures,whichhasagreatadvantageovertraditionalsensors.Inthepursuitofminia turizationofthecontemporary,itsgoodprospectsfordevelopment,willbesubjecttomorea

ndmoreattentioninvariouscountries.Firstly,theclassificationandtypicalapplicatio nofMEMSsensorareintroduced.Then,severalsensorsareintroduced.Finally,thedevelopm enttrendanddevelopmentprospectofMEMSsensorareanalyzed. Keywords:MEMSsensor;accelerometer;gyroscope;nanotechnology;micro- mechanism;micro-sensor 目录 一、引言 MEMS传感器是采用微机械加工技术制造的新型传感器,是MEMS器件的一个重要分支。1962年,第一个硅微型压力传感器的问世开创了MEMS技术的先河,MEMS技术的进步和发展促 进了传感器性能的提升。作为MEMS最重要的组成部分,MEMS传感器发展最快,一直受到各发达国家的广泛重视。美、日、英、俄等世界大国将MEMS传感器技术作为战略性的研究领域之一,纷纷制定发展计划并投入巨资进行专项研究。 随着微电子技术、集成电路技术和加工工艺的发展,MEMS传感器凭借体积小、重量轻、功耗低、可靠性高、灵敏度高、易于集成以及耐恶劣工作环境等优势,极大地促进了传感器的微型化、智能化、多功能化和网络化发展。MEMS传感器正逐步占据传感器市场,并逐渐取代传统机械传感器的主导地位,已得到消费电子产品、汽车工业、航空航天、机械、化工及医药等各领域的青睐。

机电一体化技术综述

机电一体化技术综述 一.机电一体化技术的内容 (一)概念 机电一体化是指在机构得主功能、动力功能、信息处理功能及控制功能上引进电子技术,将机械装置与电子化设计及软件结合起来所构成的系统的总称。 (二)基本特征 机电一体化发展至今也已成为一门有着自身体系的新型学科,随着科学技术的不但发展,还将被赋予新的内容。但其基本特征可概括为:机电一体化是从系统的观点出发,综合运用机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术、电力电子技术、接口技术、信息变换技术以及软件编程技术等群体技术,以智力、动力、结构、运动和感知组成要素为基础,根据系统功能目标和优化组织目标,合理配置与布局各功能单元,在多功能、高质量、高可靠性、低能耗的意义上实现特定功能价值,并使整个系统最优化的系统工程技术。由此而产生的功能系统,则成为一个机电一体化系统或机电一体化产品。 因此,“机电一体化”涵盖“技术”和“产品”两个方面。只是,机电一体化技术是基于上述群体技术有机融合的一种综合技术,而不是机械技术、微电子技术以及其它新技术的简单组合、拼凑。这是机电一体化与机械加电气所形成的机械电气化在概念上的根本区别。机

械工程技术有纯技术发展到机械电气化,仍属传统机械,其主要功能依然是代替和放大的体力。但是发展到机电一体化后,其中的微电子装置除可取代某些机械部件的原有功能外,还能赋予许多新的功能,如自动检测、自动处理信息、自动显示记录、自动调节与控制自动诊断与保护等。即机电一体化产品不仅是人的手与肢体的延伸,还是人的感官与头脑的眼神,具有智能化的特征是机电一体化与机械电气化在功能上的本质区别。 (三)、机电一体化技术五大组成要素与四大原则: 1、五大组成要素: 一个机电一体化系统中一般由结构组成要素、动力组成要素、运动组成要素、感知组成要素、智能组成要素五大组成要素有机结合而成。( (1)机械本体(结构组成要素) 是系统的所有功能要素的机械支持结构,一般包括有机身、框架、支撑、联接等。 (2)动力驱动部分(动力组成要素) 依据系统控制要求,为系统提供能量和动力以使系统正常运行。(3)测试传感部分(感知组成要素) 对系统的运行所需要的本身和外部环境的各种参数和状态进行检测,并变成可识别的信号,传输给信息处理单元,经过分析、处理后产生相应的控制信息。 (4)控制及信息处理部分(职能组成要素)

MEMS微机电系统(Micro-Electro-Mechanical Systems)

MEMS是微机电系统(Micro-Electro-Mechanical Systems)的英文缩写。MEMS 是美国的叫法,在日本被称为微机械,在欧洲被称为微系统,它是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。MEMS是随着半导体集成电路微细加工技术和超精密机械加工技术的发展而发展起来的,目前MEMS加工技术还被广泛应用于微流控芯片与合成生物学等领域,从而进行生物化学等实验室技术流程的芯片集成化。 MEMS主要包括微型机构、微型传感器、微型执行器和相应的处理电路等几部分,它是在融合多种微细加工技术,并应用现代信息技术的最新成果的基础上发展起来的高科技前沿学科。 MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器、微执行器、微型构件、微机械光学器件、真空微电子器件、电力电子器件等在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的应用前景。MEMS技术正发展成为一个巨大的产业,就象近20年来微电子产业和计算机产业给人类带来的巨大变化一样,MEMS也正在孕育一场深刻的技术变革并对人类社会产生新一轮的影响。目前MEMS市场的主导产品为压力传感器、加速度计、微陀螺仪、墨水喷咀和硬盘驱动头等。大多数工业观察家预测,未来5年MEMS器件的销售额将呈迅速增长之势,年平均增加率约为18%,因此对对机械电子工程、精密机械及仪器、半导体物理等学科的发展提供了极好的机遇和严峻的挑战。 MEMS是一种全新的必须同时考虑多种物理场混合作用的研发领域,相对于传统的机械,它们的尺寸更小,最大的不超过一个厘米,甚至仅仅为几个微米,其厚度就更加微小。采用以硅为主的材料,电气性能优良,硅材料的强度、硬度和杨氏模量与铁相当,密度与铝类似,热传导率接近钼和钨。采用与集成电路(IC)类似的生成技术,可大量利用IC生产中的成熟技术、工艺,进行大批量、低成本生产,使性价比相对于传统“机械”制造技术大幅度提高。 完整的MEMS是由微传感器、微执行器、信号处理和控制电路、通讯接口和电源等部件组成的一体化的微型器件系统。其目标是把信息的获取、处理和执行集成在一起,组成具有多功能的微型系统,集成于大尺寸系统中,从而大幅度地提高系统的自动化、智能化和可靠性水平。沿着系统及产品小型化、智能化、集成化的发展方向,可以预见:MEMS会给人类社会带来另一次技术革命,它将对21世纪的科学技术、生产方式和人类生产质量产生深远影响,是关系到国家科技发展、国防安全和经济繁荣的一项关键技术。 制造商正在不断完善手持式装置,提供体积更小而功能更多的产品。但矛盾之处在于,随着技术的改进,价格往往也会出现飙升,所以这就导致一个问题:制造商不得不面对相互矛盾的要求——在让产品功能超群的同时降低其成本。 解决这一难题的方法之一是采用微机电系统,更流行的说法是MEMS,它使得制造商能将一件产品的所有功能集成到单个芯片上。MEMS对消费电子产品的终极影响不仅包括成本的降低、而且也包括在不牺牲性能的情况下实现尺寸

国外MEMS发展大致状况介绍 Microsoft Office Word 97 - 2003 文档

1.1 MEMS概况 1.1.1 MEMS的定义 MEMS是微机电系统(Micro-Electro-Mechanical Systems)的英文缩写。MEMS是美国的叫法,在日本被称为微机械,在欧洲被称为微系统,它是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。MEMS是随着半导体集成电路微细加工技术和超精密机械加工技术的发展而发展起来的,目前MEMS加工技术还被广泛应用于微流控芯片与合成生物学等领域,从而进行生物化学等实验室技术流程的芯片集成化。MEMS主要包括微型机构、微型传感器、微型执行器和相应的处理电路等几部分,它是在融合多种微细加工技术,并应用现代信息技术的最新成果的基础上发展起来的高科技前沿学科。 MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器、微执行器、微型构件、微机械光学器件、真空微电子器件、电力电子器件等在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的应用前景。MEMS技术正发展成为一个巨大的产业,就象近20年来微电子产业和计算机产业给人类带来的巨大变化一样,MEMS也正在孕育一场深刻的技术变革并对人类社会产生新一轮的影响。目前MEMS市场的主导产品为压力传感器、加速度计、微陀螺仪、墨水喷咀和硬盘驱动头等。大多数工业观察家预测,未来5年MEMS器件的销售额将呈迅速增长之势,年平均增加率约为18%,因此对对机械电子工程、精密机械及仪器、半导体物理等学科的发展提供了极好的机遇和严峻的挑战。 微机电系统MEMS(Micro-Electro-Mechanical Systems)是一种全新的必须同时考虑多种物理场混合作用的研发领域,相对于传统的机械,它们的尺寸更小,最大的不超过一个厘米,甚至仅仅为几个微米,其厚度就更加微小。采用以硅为主的材料,电气性能优良,硅材料的强度、硬度和杨氏模量与铁相当,密度与铝类似,热传导率接近钼和钨。采用与集成电路(IC)类似的生成技术,可大量利用IC生产中的成熟技术、工艺,进行大批量、低成本生产,使性价比相对于传统“机械”制造技术大幅度提高。完整的MEMS是由微传感器、微执行器、信号处理和控制电路、通讯接口和电源等部件组成的一体化的微型器件系统。其目标是把信息的获取、处理和执行集成在一起,组成具有多功能的微型系统,集成于大尺寸系统中,从而大幅度地提高系统的自动化、智能化和可靠性水平。 1.1.2 MEMS的相关技术主要有以下几种: 1.微系统设计技术主要是微结构设计数据库、有限元和边界分析、CAD/CAM仿真和模拟技术、微系统建模等,还有微小型化的尺寸效应和微小

微机电系统题目整理

1、M E M S的概念?列举三种以上M E M S产品及应用? 微机电系统(MEMS:Micro Electro-Mechanical System)指微型化的器件或器件组合,把电子功能与机械的、光学的或其他的功能相结台的综合集成系统,采用微型结构(包括集成微电子、微传感器和微执行器;这里“微”是相对于宏观而言),使之能在极小的空间内达到智能化的功效。 微机电系统主要特点在于:(1)能在极小的空间里实现多种功能;(2)可靠性好、重量小且能耗低; (3)可以实现低成本大批量生产。 主要应用领域、产品:压力传感器、惯性传感器、流体控制、数据存储、显示芯片、生物芯片、微型冷却器、硅材油墨喷嘴、通信等。 2、何谓尺度效应?在MEMS设计中,如何利用尺度效应? 当构件缩小到—定尺寸范围时将会出现尺寸效应,即尺寸的减小将引起响应频率、加速度特性以及单位体积功率等—系列性能的变化。构件特征尺寸L与动力学特性关系如表所示。 不同性质的作用力与尺寸的依赖关系不同,从而在微观研究中所占比重有所不同。例如,电磁力与尺寸是L2,L3,L4的关系,幂次较高,从而相对影响铰小;而静电力与尺寸是L0,L-2的关系,幂次较低,影响程度较大。 3、湿法刻蚀和干法刻蚀的概念及其在MEMS中的应用? 刻蚀就其形式来说可分为有掩膜刻蚀和无掩膜刻蚀,无掩膜刻蚀较少使用。有掩膜刻蚀又可分为湿法刻蚀和干法刻蚀。湿法刻蚀一般用化学方法,这种方法刻蚀效率高,成本低,但是其刻蚀精度不高,公害产重(用大量的化学试剂)。干法刻蚀种类很多,有溅射刻蚀、离于铣、反应离子刻蚀和等离子刻蚀等。干法刻蚀中包括了化学反应和物理效应,因此其刻蚀精度较高,且适用于各种材料,包括半导体、导体和绝缘材料。 刻蚀分为湿法到蚀和干法刻蚀。它是独立于光刻的重要的一类微细加工技术,但刻蚀技术经常需要曝光技术形成特定的抗蚀剂膜,而光刻之后一般也要靠刻蚀得到基体上的微细图形或结构,所以刻蚀技术经常与光刻技术配对出现。经常采用的化学异向刻蚀方法又称为湿法刻蚀,它具有独持的横向欠刻蚀特性,可以使材料刻蚀速度依赖于晶体取向的特点得以充分发挥。干法刻蚀是指利用一些高能束进行刻蚀。以往的硅微细加工多采用湿法刻蚀。 4、键合的概念,有几种形式?有何用途? 一个微型机电系统集微传感器、驱动器及处理器于一体,是一个复杂的智能微系统。其制造工艺,有硅表面微加工工艺、硅的体微加工工艺、硅微电子工艺以及非硅材料的微加工工艺。因此,如果把一个微机电系统建筑于同一硅基片上,那它首先不能克服微系统需用硅及作硅材料多样性上的矛盾;其次它无法解决微传感器、微处理器以及微驱动器集成于同一基片结构复杂性的矛盾;最后,在同一基片上无法解决硅表面及体微加工、非硅材料微加工工艺相容性上的矛盾。 如果将整个微机电系统按结构、材料及微加工工艺的不同,分别在不同基片上执行微加工工艺,然后将两片或多片基片在超精密装配设备上对准,并通过键合手段,把它们连接成一完整的微系统,这是获得低成本、高合格率及质量可靠的微系统的唯一途径。因此,键合技术成为微机电系统制作过程中的重要微加工工艺之一,它是微系统组封装技术的重要组成部分。 键合技术主要可分为硅熔融键合(SFB)和静电键合两种。 按界面的材料性质,键合工艺总体上可分为两大范畴,即硅/硅基片的直接键合和硅/硅基片的间接键合,后者又可扩展到硅/非硅材料或非硅材料之间的键合。对于硅/硅间接键合,按键合界面沉积的材料不同,其键合机制也不同,如沉积的是玻璃膜,按不同的玻璃性质,可以进行阳极键合或低温熔融键合;如果沉积的是金膜(或锡膜),则进行共晶键合;用环氧或聚酰亚胺进行直接粘合。此外,还可借助于其他手段,如超声、热压及激光等技术进行键合。

机电一体化介绍

机电一体化介绍 现代科学技术的不断发展,极大地推动了不同学科的交叉与渗透,工程领域的技术改造与革命。在机械工程领域,由于微电子技术和计算机技术的迅速发展及其向机械工业的渗透所形成的机电一体化,使机械工业的技术结构、产品结构、功能与构成、生产方式及管理体系发生了巨大变化,使工业生产由“机械电气化”迈入以“机电一体化”为特征的发展阶段。 1 机电一体化概述 机电一体化是指在机构的主功能、动力功能、信息处理功能和控制功能上引进电子技术,将机械装置与电子化设计及软件结合起来所构成的系统的总称。 机电一体化发展至今已经成为一门有着自身体系的新型学科,随着科学技术的不断发展,还将被赋予新的内容。但其基本特征可概括为:机电一体化是从系统的观点出发,综合运用机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术及电力电子技术,根据系统功能目标要求,合理配置与布局各功能单元,在多功能、高质量、高可靠性、低能耗的意义上实现特定功能价值,并使整个系统最优化的系统工程技术。由此而产生的功能系统,则成为一个机电一体化系统或机电一体化产品。因此,“机电一体化”涵盖“技术”和“产品”两个方面。机电一体化技术是基于上述群体技术有机融合的一种综合技术,而不是机械技术、微电子技术及其它新技术的简单组合、拼凑。这是机电一体化与机械加电气所形成的机械电气化在概念上的根本区别。机械工程技术由纯技术发展到机械电气化,仍属传统机械,其主要功能依然是代替和放大的体系。但是,发展到机电一体化后,其中的微电子装置除可取代某些机械部件的原有功能外,还被赋予许多新的功能,如自动检测、自动处理信息、自动显示记录、自动调节与控制、自动诊断与保护等。也就是说,机电一体化产品不仅是人的手与肢体的延伸,还是人的感官与头脑的延伸,智能化特征是机电一体化与机械电气化在功能上的本质区别。 2 机电一体化的发展状况 机电一体化的发展大体可以分为三个阶段:(1)20世纪60年代以前为第一阶段,这一阶段称为初级阶段。在这一时期,人们自觉不自觉地利用电子技术的初步成果来完善机械产品的性能。特别是在第二次世界大战期间,战争刺激了机械产品与电子技术的结合,这些机电结合的军用技术,战后转为民用,对战后经济的恢复起到了积极的作用。那时,研制和开发从总体上看还处于自发状态。由于当时电子技术的发展尚未达到一定水平,机械技术与电子技术的结合还不可能广泛和深入发展,已经开发的产品也无法大量推广。(2)20世纪70—80年代为第二阶段,可称为蓬勃发展阶段。这一时期,计算机技术、控制技术、通信技术的发展,为机电一体化的发展奠定了技术基础。大规模、超大规模集成电路和微型计算机的出现,为机电一体化的发展提供了充分的物质基础。这个时期的特点是:mechatronics一词首先在日本被普遍接受,大约到20世纪80年代末期在

机电一体化概述汇总

单元一机电一体化概述 1. 1. 1机电一体化的定义 “机电一体化是在机械主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总称。”“机电一体化”是将机械技术、微电子技术、信息技术等多门技术学科在系统工程的基础上相互渗透、有机结合而形成和发展起来的一门新的边缘技术学科。 1. 1. 3机电一体化的内容 机电一体化包含了技术和产品两方面的内容,首先是指机电一体化技术,其次是指机电一体化产品。 1. 1. 4机电一体化的特点 机电一体化产品的显著特点是多功能、高效率、高智能、高可靠性,同时又具有轻、薄、细、小、巧的优点,其目的是不断满足人们生产生活的多样性和省时、省力、方便的需求。 1. 2机电一体化系统的基本组成 1. 2. 1机电一体化系统的功能组成 传统的机械产品主要是解决物质流和能量流的问题,而机电一体化产品除了解决物质流和能量流以外,还要解决信息流的问题。机电一体化系统的主要功能就是对输入的物质、能量与信息(即所谓工业三大要素)按照要求进行处理,输出具有所需特性的物质、能量与信息。 机电一体化系统的主功能包括变换(加工、处理)、传递(移动、输送)、储存(保持、积蓄、记录)三个目的功能。主功能也称为执行功能,是系统的主要特征部分,完成对物质、能量、信息的交换、传递和储存。机电一体化系统还应具备动力功能、检测功能、控制功能、构造功能等其他功能。 加工机是以物料搬运、加工为主,输入物质(原料、毛坯等)、能量(电能、液能、气能等)和信息(操作及控制指令等),经过加工处理,主要输出改变了位置和形态的物质的系统(或产品)。 动力机,其中输出机械能的为原动机,是以能量转换为主,输入能量(或物质)和信息,输出不同能量(或物质)的系统(或产品)。 信息机是以信息处理为主,输入信息和能量,主要输出某种信息(如数据、图像、文字、声音等)的系统(或产品)。 1. 2. 2机电一体化系统的构成要素 机电一体化系统一般由机械本体、传感检测、执行机构、控制及信息处理、动力系统等五部分组成,各部分之间通过接口相联系。 1.机械本体 机械本体包括机械结构装置和机械传动装置。机械结构是机电一体化系统的机体,用于支撑和连接其他要素,并把这些要素合理地结合起来,形成有机的整体。 2.动力部分 动力部分是按照系统控制要求,为系统提供能量和动力,去驱动执行机构工作以完成预定的主功能。 3.传感检测部分 传感检测部分是对系统运行中所需要的自身和外界环境的各种参数及状态进行检测,然后变成可识别信号,传输到信息处理单元,并且经过分析、处理后产生相应的控制信息。 4.执行机构 执行机构是运动部件在控制信息的作用下完成要求的动作,实现产品的主功能。 5.控制及信息单元 控制及信息单元将来自各传感器的检测信息和外部输入命令进行处理、运算和决策,根据信息处理结果,按照一定的程序和节奏发出相应的指令,控制整个系统有目的地运行。 1. 2. 3机电一体化系统接口概述 机电一体化系统由许多要素或子系统构成,各要素或子系统之间必须能顺利地进行物质、能量和信息的传递与交换。各要素或各子系统相接处必须具备一定的联系条件,这些联系条件称为接口。接口设计的总任务是解决功能模块间的信号匹配问题,根据划分出的功能模块,在分析研究各功能模块输入/输出关系

机电一体化典型实例

. 8 机电一体化系统典型实例 8.1 机器人 8.1.1 概述 机器人是能够自动识别对象或其动作,根据识别,自动决定应采取动作的自动化装置。 它能模拟人的手、臂的部分动作,实现抓取、搬运工件或操纵工具等。它综合了精密机械技 术、微电子技术、检测传感技术和自动控制技术等领域的最新成果,是具有发展前途的机电 一体化典型产品。机器人技术的应用会越来越广,将对人类的生产和生活产生巨大的影响。 可以说,任何一个国家如不拥有一定数量和质量的机器人,就不具备进行国际竞争所必需的 工业基础。 机器人的发展大致经过了三个阶段。 第一代机器人为示教再现型机器人,为了让机器人 完成某项作业,首先由操作者将完成该作业所需的各种知识(如运动轨迹、作业条件、作业 顺序、作业时间等)通过直接或间接的手段,对机器人进行示教,机器人将这些知识记忆下 来,然后根据再现指令,在一定的精度围,忠实地重复再现各种被示教的动作。第二代机器 人通常是指具有某种智能(如触觉、力觉、视觉等)的机器人,即由传感器得到的触觉、听 觉、视觉等信息经计算机处理后,控制机器人完成相应的操作。第三代机器人通常是指具有 高级智能的机器人,其特点是具有自学习和逻辑判断能力,可以通过各类传感器获取信息, 经过思考做出决策,以完成更复杂的操作。 一般认为机器人具备以下要素:思维系统(相当于脑),工作系统(相当于手),移动系 统(相当于脚),非接触传感器(相当于耳、鼻、目)和接触传感器(相当于皮肤)(图8-1)。 如果对机器人的能力评价标准与对生物能力的评价标准一样,即从智能、机能和物理能三个 方面进行评价,机器人能力与生物能力具有一定的相似性。图8-2是以智能度、机能度和物 理能度三座标表示的“生物空间”,这里,机能度是指变通性或通用性以及空间占有性等;物 理能度包括力、速度、连续运行能力、均一性、可靠性等;智能度则指感觉、知觉、记忆、 运算逻辑、学习、鉴定、综合判断等。把这些概括起来可以说,机器人是具有生物空间三座 标的三元机械。某些工程机械有移动性,占有空间不固定性,因而是二元机械。计算机等信 息处理机,除物理能之外,还有若干智能,因而也属于二元机械。而一般机械都只有物理能, 所以都是一元机械。 8.1.2 机器人的组成及基本机能 信息处理机 图8-2生物空间 图8-1机器人三要素

论述微机电系统mems原理应用以及发展趋势

论述危机电系统(MEMS)原理应用以及发展趋势 090920413 贾猛机制四班首先,我们了解什么叫MEMS。 MEMS是微机电系统(Micro-Electro-Mechanical Systems)的英文缩写。MEMS是美国的叫法,在日本被称为微机械,在欧洲被称为微系统,它是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。MEMS是随着半导体集成电路微细加工技术和超精密机械加工技术的发展而发展起来的,目前MEMS加工技术还被广泛应用于微流控芯片与合成生物学等领域,从而进行生物化学等实验室技术流程的芯片集成化。 MEMS发展的目标在于,通过微型化、集成化来探索新原理、新功能的元件和系统,开辟一个新技术领域和产业。MEMS可以完成大尺寸机电系统所不能完成的任务,也可嵌入大尺寸系统中,把自动化、智能化和可靠性水平提高到一个新的水平。21世纪MEMS将逐步从实验室走向实用化,对工农业、信息、环境、生物工程、医疗、空间技术、国防和科学发展产生重大影响。 微机电系统基本上是指尺寸在几厘米以下乃至更小的小型装置,是一个独立的智能系统,主要由传感顺、作动器(执行器)和微能源三大部分组成。微机电系统涉及物理学、化学、光学、医学、电子工程、材料工程、机械工程、信息工程及生物工程等多种学科和工程技术。微机电系统的制造工艺主要有集成电路工艺、微米/纳米制造工艺、小机械工艺和其他特种加工工种。微机电系统在国民经济和军事系统方面将有着广泛的应用前景。主要民用领域是医学、电子和航空航天系统。美国已研制成功用于汽车防撞和节油的微机电系统加速度表和传感器,可提高汽车的安全性,节油10%。仅此一项美国国防部系统每年就可节约几十亿美元的汽油费。微机电系统在航空航天系统的应用可大大节省费用,提高系统的灵活性,并将导致航空航天系统的变革。例如,一种微型惯性测量装置的样机,尺度为2厘米×2厘米×0.5厘米,重5克。在军事应用方面,美国国防部高级研究计划局正在进行把微机电系统应用于个人导航用的小型惯性测量装置、大容量数据存储器件、小型分析仪器、医用传感器、光纤网络开关、环境与安全监测用的分布式无人值守传感等方面的研究。该局已演示以微机电系统为基础制造的加速度表,它能承受火炮发射时产生的近10.5个重力加速度的冲击力,可以为非制导弹药提供一种经济的制导系统。设想中的微机电系统的军事应用还有:化学战剂报警器、敌我识别装置、灵巧蒙皮、分布式战场传感器网络等。 MEMS的特点是: 1)微型化:MEMS器件体积小、重量轻、耗能低、惯性小、谐振频率高、响应时间短。 2)以硅为主要材料,机械电器性能优良:硅的强度、硬度和杨氏模量与铁相当,密度类似铝,热传导率接近钼和钨。 3)批量生产:用硅微加工工艺在一片硅片上可同时制造成百上千个微型机电装置或完整的MEMS。批量生产可大大降低生产成本。 4)集成化:可以把不同功能、不同敏感方向或致动方向的多个传感器或执行器集成于一体,或形成微传感器阵列、微执行器阵列,甚至把多种功能的器件集成在一起,形成复杂的微系统。微传感器、微执行器和微电子器件的集成可制造出可靠性、稳定性很高的MEMS。 5)多学科交叉:MEMS涉及电子、机械、材料、制造、信息与自动控制、物理、化学和生物等多种学科,并集约了当今科学技术发展的许多尖端成果。 MEMS发展现状及市场规模:MEMS技术发展日新月异,各种新产品不断涌现。随着新微机电系统和微系统产品的诞生和不断发展,这些产品的市场扩展非常迅速,MEMS产品在商业市场的每个方面都将占据主导地位。根据市场研究机构The Information Network预估,2008年全球MEMS应用市场将成长11%,市场规模可达78亿美元,其中MEMS在消费电子应用比例可近五成,规模将为35亿美元,预估到2012年全球MEMS应用市场规模将达154亿美元,其中MEMS消费电子应用规模可成长至71亿美元。iSuppli的报告则指出,手机将会是MEMS 下一阶段最具潜力的应用市场,成长预期可超过PC周边和汽车感测领域;到2012年MEMS在手机领域的应用规模将达8.669亿美元,约为2007年3.048亿美元的3倍,出货量达2.009亿颗,是2007年的4倍。市调机构Yole Development的报告更为乐观,其预计2012年MEMS零组件在手机应用市场规模可望达到25亿美元。

机电系统概述

机电控制技术综述 机电控制是在以大规模集成电路和微型计算机为代表的微电子技术高速发展并逐步向传统机械工业渗透的过程中形成的新概念。机电可能告知实现了机械技术与微电子,信息,软件等技术的有机结合,及大地扩展了机械系统的发展空间。 1.机电控制系统的发展历史 大体上可以分为三个阶段: a 20世纪60年代以前为第一阶段,第一阶段称为初级阶段。在这一时期,人们自觉不自觉地利用电子技术的初步成果来完善机械产品的性能。特别是在第二次世界大战期间,战争刺激了机械产品与电子结束的结合。那时,胭脂盒开发总体上看来处于自发状态。由于但是电子技术的发展尚未达到一定的水平,机械技术与电子技术的结合还不可能广泛和深入发展,已经开发的产品也无法大量推广。 b 20世纪70-80年代为第二阶段,可称为机电控制技术蓬勃发展阶段。这一时期,计算机技术,控制技术,通信技术的发展,为机电控制技术的发展奠定了技术基础。大规模,超规模集成电路和微型计算机的出现,为机电控制技术的发展提供了充分的物质基础。大约到20世纪80年代末期在世界范围内得到比较广泛的承认;机电控制技术和产品得到极大的发展;各国均开始对机电控制技术和产品给予很大的关注和支持。 C 20世纪90年代为后期,开始了机电控制技术向智能化方向买进的新阶段,机电控制技术进入深入发展时期。一方面,光学,通信技术等进入机电控制技术,微细加工技术也加入机电控制技术中崭露头脚,出现了光机电控制技术和为机电控制技术等分支;另一方面,对机电控制系统的建模设计,分析和集成设计,机电控制技术的学科体系和发展趋势都进行了深入研究。同时,人工智能技术,神经网络技术及光纤技术等领域取得的巨大进步,为机电控制技术开辟了发展的广阔天地。 随着相关技术的发展,机电控制技术将向着智能化,网络化一体化方向发展。典型的系统如数控加工中心,数控机床,工业机器人。物料自动传输与识别系统等,以及以这些系统为基础二主城的更大更复杂的系统如柔性制造系统(FMS),计算机集成制造系统(CIMS)等现代制造系统。 纵观国内外机电控制技术的发展现况和高新技术的发展方向,机电控制技术吵着这几个方向发展:绿色化智能化网络化微型化模块化。 2.机电控制系统的基本要素 常见的机电控制系统应包括机械本体、传动装置、检测传感部分、执行装置、驱动部分、控制和信息处理单元及接口等基本要索。 2.1机械本体 机械本体是机电控制系统所有功能元素的机械支持部分,包括机身、框架和机械连接等。 2.2传动装置 传动装置的主要功能是传递转矩和转速,因此,除要求具有较高的定位精度外,还应具有良好的动态响应特性。常用的传动装置包括齿轮传动装置、带传动装置、链传动装置、挠性传动装置、间歓传动装置和轴系传动装置等。

MEMS传感器的发展说课讲解

MEM传感器的现状及应用0引言 MEMS (微电子机械系统)传感器是利用集成电路技术工艺和微机械加工方法将基于各种物理效应的机电敏感元器件和处理电路集成在一个芯片上的传感器。20世纪60年代霍尼韦尔研究中心和贝尔实验室研制出首个硅隔膜压力传感器和应变计开创了MEMS技术的先河。此后,MEMS技术的快速发展使得MEMS 传感器受到各发达国家的广泛关注,与此同时,美国、俄国、日本等世界大国将MEMS传感器技术作为战略性的研究领域之一,纷纷制定相关的计划并投入巨资进行专项研究。 MEMS传感器具有体积小、质量轻、功耗低、灵敏度咼、可靠性咼、易于集成以及耐恶劣工作环境等优势,从而促进了传感器向微型化、智能化、多功能化和网络化的方向发展。步入21世纪以后,MEMS传感器正逐步占据传感器市场,并逐步取代传统机械传感器的主导地位,在消费电子产品、汽车工业、航空航天、机械、化工及医药等各领域备受青睐。 1 MEMS专感器的分类及原理 MEMS传感器种类繁多,按照测量性质可以分为物理MEMS传感器、化学MEMS传感器、生物MEMS传感器。按照被测的量又可分为加速度、角速度、压力、位移、流量、电量、磁场、红外、温度、气体成分、湿度、pH值、离子浓度、生物浓度及触觉等类型的传感器。目前,MEMS压力传感器、MEMS加 速度计、MEMS陀螺仪等已在太空卫星、运载火箭,航空航天设备、飞机、各种车辆、生物医学及消费电子产品等领域中得到了广泛的应用。 MEMS传感器主要由微型机光电敏感器和微型信号处理器组成。前者功能与传统传感器相同,主要区别在于用MEMS工艺实现传统传感器的机光电元器

件的同时对敏感元件输出的数据进行各种处理,以补偿和校正敏感元件特性不理想和影响量引入的失真,进而恢复真实的被测量。 待测量 / : 基片/ :——------- -------------- 图1.1 MEMS传感器原理图 MEMS传感器主要用于控制系统。利用MEMS技术工艺将MEMS传感器、MEMS执行器和MEMS控制处理器都集中在一个芯片上,则所构成的系统称为MEMS芯片控制系统。微控制处理器的主要功能包括A/D和D/A转换,数据处理和执行控制算法;微执行器将电信号转换成非电量,使被控对象产生平动、转动、 声、光、热等动作。 2 MEMS专感器的典型应用 2.1 MEMS压力传感器 MEMS压力传感器一般采用压阻力敏原理,即被测压力作用于敏感元件引起电阻变化,利用恒流源或惠斯顿电桥将电阻变化转化成电压,是目前应用最为 广泛的传感器之一,其性能由测量范围、测量精度、非线性和工作温度决定。这种传感器以单晶硅作材料,并采用MEMS技术在材料中间制成力敏膜片,然后在膜片上扩散杂质形成四只应变电阻,再以惠斯顿电桥的方式将应变电阻连接成电路,来获得高灵敏度。从信号检测方式来划分,MEMS压力传感器可分为压 阻式、电容式和谐振式等; 2.1.1 MEMS压力传感器在汽车上的应用 MEMS传感器是在汽车上应用最多的微机电传感器。汽车上MEMS压力传感器可用于测量气囊贮气压力、燃油压力、发动机机油压力、进气管道压力、空气过

机电系统概况

王家岭煤矿机电系统概况 一、供电系统(运转队负责) 1、地面供电系统 王家岭矿井地面建有两座110KV变电站,分别是位于王家岭工业广场110KV变电站及碟子沟风井场地110KV变电站。采用两回路110kV 电源供电,两回供电电源分别取自侯家庄220kV变电站的上下母线。两回110kV电源线路均采用LGJ-300架空线路,采用铁塔共杆架设,采用JLB40-95型避雷线、FD/5 型防震锤,线路全长8.47km。两回电源线路均为王家岭矿专用,线路上未分接任何负荷。 (1)王家岭110KV变电站 王家岭工业广场110KV变电站安装两台主变型号:SZ10-M-20000/110.站内110kV母线均采用上、下母分段接线形式,110kV配电装置采用户内布置。变电所安装有一套国电南自的综合自动化控制系统,对变电站内开关和主变进行集中监测、监控。110kV部分安装有上海西安高压电器研究所有限责任公司生产的型号ZF23-126六氟化硫开关,共7个间隔,其中2个进线间隔、2个出线间隔、1个母联间隔,2个主变间隔,无备用开关。其中两个出线间隔为碟子沟110KV变电站提供双回路电源。10kV室安装有32台北京中煤电气有限公司生产的KYN28A-12型开关柜,两段单母线布置。王家岭工业广场110KV变电站10KV馈出线路:综合办公楼地下室配电室两回路线路,综采设备库一

回路线路,工业广场变电所两回路线路,主皮带驱动机房两回路线路,选煤厂两回路线路,加压泵房一回路线路,电厂启动电源一回路线路,生活给水工程一回路线路。 (2)碟子沟110KV变电站 碟子沟风井场地110KV变电站,两回110kV电源线路均引自王家岭110kV变电站110KV部分的上下母线采用铁塔共杆架设,架空输电导线为LGJ-120,采用JLB40-95型避雷线、FD/5 型防震锤,线路全长约13.42km,线路上未分接任何负荷。碟子沟风井场地110KV变电站内安装有两台型号为:SZ10-M-20000/110型主变压器,其中一台工作,一台冷备用。站内110kV母线均采用单母线分段接线型式。110kV配电装置采用户内布置。安装有上海西安高压电器研究所有限责任公司生产的ZF23-126型六氟化硫开关,110kV间隔共5个,其中2个进线间隔、1个母联间隔,2个主变间隔,无备用开关。碟子沟风井场地110KV 变电站10kV室安装有35台北京中煤电气有限公司KYN28A-12型开关,两段单母线布置。碟子沟110KV变电站10KV馈出线路:主通风机房两回路线路,空压机房两回路线路,瓦斯抽房站两回路线路,变频站两回路线路,热风炉房两回路线路,生活区一回路线路,井下中央变电所两回路线路,121盘区变电所动力四回路线路,局扇两回路线路,强排泵两回路线路。

微纳机电系统

微纳机电系统 一.引言 微/纳米科学与技术是当今集机械工程、仪器科学与技术、光学工程、生物医学工程与微电子工程所产生的新兴、边缘、交叉前沿学科技术。微/纳米系统技术是以微机电系统为研究核心,以纳米机电系统为深入发展方向,并涉及相关微型化技术的国家战略高新技术。微机电系统(Micro Electro Mechanical System, MEMS ) 和纳机电系统(Nano Electro Mechanical System, NEMS )是微米/纳米技术的重要组成部分,逐渐形成一个新的技术领域。MEMS已经在产业化道路上发展,NEMS还处于基础研究阶段。 从微小化和集成化的角度,MEMS (或称微系统)指可批量制作的、集微型机构、微型传感器、微型执行器以及信号处理和控制电路,直至接口、通讯和电源等于一体的微型器件或系统。而NEMS(或称纳系统) 是90年代末提出来的一个新概念,是继MEMS 后在系统特征尺寸和效应上具有纳米技术特点的一类超小型机电一体的系统,一般指特征尺寸在亚纳米到数百纳米,以纳米级结构所产生的新效应(量子效应、接口效应和纳米尺度效应) 为工作特征的器件和系统。 二.微纳系统的意义、应用前景 由于微/纳机电系统是一门新兴的交叉和边缘学科,学科还处于技术发展阶段,在国内外尚未形成绝对的学科和技术优势;微/纳米技术还是一项支撑技术,它对应用背景有较强的依赖性,目前它的主要应用领域在惯导器件、军事侦察、通信和生物医学领域,以及微型飞机和纳米卫星等产品上。 2.1.重要的理论意义和深远的社会影响 微/纳米系统技术是与其它广泛学科具有互动作用的重要的综合技术,涉及学科领域广泛。微/纳米系统技术是认识和改造微观世界的高新技术,微/纳米系统是结构集成化、功能智能化的产物。微/纳米系统表现出的智能化程度高、实现的功能趋于多样化。例如,微机电系统不仅涉及到微电子学、微机械学、微光学、微动力学、微流体学、微热力学、材料学、物理学、化学和生物学等广泛学科领域,而且会涉及从材料、设计、制造、控制、能源直到测试、集成、封装等一系列的技术环节。 微/纳米系统技术的发展以之为基础,反过来也将带动相关学科和技术的发展。世界上著名的大学,如美国麻省工学院、加州大学伯克利分校、卡麦基隆大学,以及圣地亚国家实验室等无不把发展微/纳米技术作为重要的研究方面。我国一些著名大学尽管研究方向侧重不一,但也无一例外地重点发展微/纳米技术,实现学科群跨越式发展。 2.2.巨大的经济效益 微机电系统在美、欧、日等发达国家已经形成了一个新兴产业,仅美国微机电系统2005年的商业产值预计可达650亿美元。以控制汽车安全气囊展开的微加速度计为例,估计未来几年内,由分立组件构成的传统加速度计将全部被微加速度计所代替。传统加速度计的单件成本超过50美元,而基于MEMS技术的同类微加速度计的单件成本仅为5到10美元。相比之下,微加速度计更小、更轻、更可靠,功能更趋于完善。 2.3.国防建设的要求 现代军事装备正朝着微型化、集成化、高精度方向发展,微机电系统充分适应了这一趋势,特别是在活动空间狭小,操作精度要求高,功能高度集成的航空航天等领域有广阔的应用潜力。微型飞机( UAV)在未来战争中日益显示出特殊地位,成为最具发展潜力的现代作战武器之一;利用微机械数组进行机翼流体状态检测,并通过微致动来实现宏观飞行控制有望改变传统飞机的模式,并改善其机动性能;微型喷射技术可以有效地实现导弹、卫星等航空

MEMS封装技术的发展与应用

MEMS封装技术的发展与应用 一、MEMS技术的发展状况 1.1 MEMS概述 MEMS是微机电系统(Micro-Electro-Mechanical Systems)的英文缩写。它是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。MEMS技术是以微电子、微机械和材料科学科学为基础,研究、设计、制造具有特定功能的微型装置的一门学科。MEMS器件与传感器集成技术经过十几年的发展,目前已相当成熟。但是封装的制造成本目前仍是制约MEMS产品市场进一步扩大的关键因素。 MEMS器件由于其应用环境的复杂而和很难与一般的封装方法相适应。通常,MEMS 器件的封装应满足下列要求: 1)封装应对传感器芯片提供一个或多个环境接口 2)封装对传感器芯片,尤其是那些对应力特别敏感的传感器带来的应力要尽可能小3)封装与封装材料不应对应用环境造成不良影响 4)封装应保护传感器及电子器件免遭不利环境的影响 5)封装必须提供与外界的通道,可通过电接触或无线的方法 通常情况下,可将各种封装方法分为三类:晶片级封装方法、单芯片封装和多芯片模块与微系统封装。 1.2 封装技术现状 1.2.1 晶片级封装 过去十几年中晶片贴合技术备受关注,国外已经开发了多种硅-硅、玻璃-硅和玻璃-玻璃贴合方法。早期的硅-硅贴合方法只能用于较高的温度,最近几年不断有低温方法出现,目前已可在120~400℃下实现牢固而可靠的贴合。因此可采用双极和CMOS工艺完成。玻璃-硅贴合通常采用阳极氧化。当只有一层玻璃介质层时可采用30~60V的低电压。当使用含碱量低的低熔点玻璃时,可用融化玻璃的方法实现镜片贴合,并完全与CMOS工艺兼容,如果在实际贴合之前用热处理的方法去除玻璃种的气泡,就可形成密封性能极好的高真空腔。晶片-晶片贴合的其他选择还包括采用粘结剂和易熔方法等。贴合期间在接触点上施加压力还可实现晶片之间的电互连。 另一种晶片级封装的方法是在一排生化传感器上制作一些微型Si3N4帽,用于保护化学传感器的寿命界面,从而达到延长传感器寿命的目的。还可以在晶片上制作流量敏感器和微泵的进出通道。可用晶片金属化技术通过服饰空实现晶片有源面与背面的连接。采用这种方法可使背面接触很容易地与有源面隔离开,芯片很容易的安装到任何载体上或任何屏蔽中,而不会妨碍进出通道。 1.2.2 单芯片封装

相关文档
最新文档