钆掺杂二氧化钛纳米管光催化降解制药废水

钆掺杂二氧化钛纳米管光催化降解制药废水
钆掺杂二氧化钛纳米管光催化降解制药废水

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界围每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

偶联剂改性对纳米二氧化钛光催化活性的影响杨平霍瑞亭

卿胜兰等:高三阶光学非线性CdS–SiO2复合薄膜的电化学溶胶–凝胶制备及表征? 409 ?第41卷第3期 DOI:10.7521/j.issn.0454–5648.2013.03.23 偶联剂改性对纳米二氧化钛光催化活性的影响 杨平,霍瑞亭 (天津工业大学纺织学院,天津 300387) 摘要:为了提高纳米TiO2颗粒分散性和光催化活性,用醇解法在纳米TiO2颗粒表面接枝硅烷偶联剂和钛酸酯偶联剂。通过Fourier变换红外光谱表征样品表面的官能团,同时测定接枝改性样品表面的羟基数、亲油化度和在有机介质中的分散性能及光催化活性。结果表明:部分偶联剂分子以化学键的形式接枝在纳米TiO2颗粒表面。改性后的纳米TiO2颗粒呈亲油性,表面羟基数急剧减少,亲油化度显著提高。改性纳米TiO2颗粒在有机介质中团聚现象减小,分散稳定性提高,分散后的平均粒径最小可达50nm。改性纳米TiO2颗粒在有机介质中的光催化活性得到显著提高。 关键词:纳米二氧化钛;偶联剂;光催化活性 中图分类号:O643;X7 文献标志码:A 文章编号:0454–5648(2013)03–0409–07 Influence of Coupling Agents Modification on Photocatalysis Activity of Nano-TiO2 YANG Ping,HUO Ruiting (School of Textile, Tianjin Polyester University, Tianjin 300387, China) Abstract: In order to improve the dispersion stability and photocatalysis activity of TiO2 nano-particles, silane coupling agent and titanium coupling agent groups were grafted on the surface of TiO2 nano-particles by an alcolholysis method. The surface bonding property of the TiO2 nano-particles was characterized by Fourier transform infrared spectroscopy. The hydrophobic, content of surface hydroxyl, dispersion stability in the organic solvent and photocatalysis activity of the nano-particles were determined. The results indicate that the molecular of coupling agent are bonded on the surface of TiO2 nano-particles by chemical bonds. The TiO2 nano-particles were lipophilic, the content of surface hydroxyl decreased and the lipophilic degree improved. Also, the aggregation of the modified TiO2 nano-particles with the average size of 50nm was reduced and the dispersion stability was improved, leading to the enhancement of the photocatalysis activity. Key words: nano-titanium dioxide; coupling agent; photocatalysis activity 自Fujishima等[1]发现了锐钛矿型TiO2在光照条件下,可诱导水分子电离出氢氧自由基(?OH)以来,TiO2在光催化方面的研究与应用受到广泛的关注。纳米TiO2因其具有良好的抗紫外、抗菌除臭、催化降解等性能,并且TiO2无毒,具有较好的化学稳定性且廉价易得,因此广泛应用于建筑涂料、功能纺织品、防晒化妆品、污水处理等领域[2–5]。然而,纳米TiO2颗粒比表面积大、表面能高,在液相介质中受粒子间van der Waals力的作用而发生团聚;此外,纳米TiO2具有超亲水性,其在有机相溶液中不易分散,并且分散稳定性差,这成为纳米TiO2使用过程中亟待解决的问题。 提高纳米粉体在有机相介质中的分散性的常用方法是有机表面改性法,主要有聚合物包覆法[6–7]、表面活性剂法[8–9]和偶联剂法[10–11]等,其中,使用偶联剂对粉体进行改性的方法较为普遍。偶联剂是一种由亲水的极性基团和亲油的非极性基团两部分组成的双亲化合物,其分子中的亲水基团与纳米粉体表面的羟基反应,使纳米颗粒表面亲水性转变成亲油性,从而达到改善纳米粉体与有机相液体的相容 收稿日期:2012–10–21。修订日期:2012–11–22。第一作者:杨平(1986—),男,硕士研究生。 通信作者:霍瑞亭(1964—),男,博士,教授。Received date:2012–10–21. Revised date: 2012–11–22. First author: YANG Ping (1986–), male, Master candidate. E-mail: yahoo-xp@https://www.360docs.net/doc/b918972303.html, Correspondent author: HUO Ruiting (1964–), male, Ph.D., Professor. E-mail: huort@https://www.360docs.net/doc/b918972303.html, 第41卷第3期2013年3月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 41,No. 3 March,2013

硫氮掺杂碳纳米管

Sulfur e nitrogen doped multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries Yinchuan Li a ,Rui Mi b ,Shaomin Li b ,Xichuan Liu b ,Wei Ren b ,Hao Liu b ,*,Jun Mei a ,**,Woon-Ming Lau b a School of Materials Science and Engineering,Southwest University of Science and Technology,Mianyang 621010,PR China b Chengdu Green Energy and Green Manufacturing Technology R&D Center,Chengdu Development Center of Science and Technology,China Academy of Engineering Physics,Southwest Airport Economic Development Zone,Shuangliu,Chengdu 610207,PR China a r t i c l e i n f o Article history: Received 31October 2013Received in revised form 26February 2014Accepted 6April 2014Available online 11May 2014Keywords:Nitrogen doped Carbon nanotubes Lithium e sulfur batteries Sulfur distribution a b s t r a c t The performance of lithium sulfur (Li/S)battery was greatly improved by the employment of nitrogen doped carbon nanotubes (N-CNTs)based cathode.By manipulating its structure thereby creating more defects,N-CNTs presents better dispersion of sulfur particles on N-CNTs and higher electrical conductivity compared with their non-doped counterpart,which explain the reason why N-CNTs/S composite shows improved performance.The speci?c discharge capacity was maintained at 625mAh g à1and 513mAh g à1after 100cycles at 0.2C and 0.5C,respectively,which was about 2times as that of CNTs.This method is proved to be a promising way to develop cathode materials for lithium sulfur batteries. Copyright a2014,Hydrogen Energy Publications,LLC.Published by Elsevier Ltd.All rights reserved. Introduction The increasing capabilities of portable electronic devices as well as the desire for long driving distances between re-charges of electric vehicles require electrical energy storage systems with high energy density [1].The Lithium/sulfur (Li/S)battery is an attractive and promising candidate among emerging battery technology.It has attracted great interest as potential energy storage devices for electrical vehicles and other applications needing large-scale electricity storage [2].Conventional Li/S cells consist of a lithium metal anode,an organic liquid electrolyte,and a sulfur composite cathode [3].Sulfur is useful in the cathode because assuming complete reaction to Li 2S,it has a theoretical speci?c capacity of 1672mAh g à1,and energy density of 2600Wh Kg à1[4],which is signi?cantly higher than the conventional lithium-ion cathode materials [5]. *Corresponding author .Tel.:t862867076208;fax:t862867076210.**Corresponding author .Tel.:t862867076202. E-mail addresses:mliuhao@https://www.360docs.net/doc/b918972303.html, (H.Liu),meijun12@https://www.360docs.net/doc/b918972303.html, (J. Mei). Available online at https://www.360docs.net/doc/b918972303.html, ScienceDirect journal homepage: https://www.360docs.net/doc/b918972303.html,/locate/he i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 39(2014)16073e 16080 https://www.360docs.net/doc/b918972303.html,/10.1016/j.ijhydene.2014.04.047 0360-3199/Copyright a2014,Hydrogen Energy Publications,LLC.Published by Elsevier Ltd.All rights reserved.

用水量对溶胶-凝胶法制备氮掺杂纳米二氧化钛的影响

徐驰等:铜/钨酸锆功能梯度薄膜的热应力场特征有限元分析· 97 ·第38卷第1期 用水量对溶胶–凝胶法制备氮掺杂纳米二氧化钛的影响 胡裕龙1,2,刘宏芳1,郭兴蓬1 (1. 华中科技大学化学与化工学院,武汉 430074;2. 海军工程大学理学院,武汉 430033) 摘要:采用两种用水量的溶胶–凝胶工艺制备了氮掺杂二氧化钛(N-TiO2)纳米颗粒粉末,对样品进行了X射线衍射、透射电子显微镜、X射线光电子能谱及紫外–可见漫反射谱分析,并以甲基橙的光催化降解实验研究了样品的可见光催化性能。结果表明:采用用水多的溶胶–凝胶工艺可获得可见光催化活性高的N-TiO2,且N-TiO2的颗粒粒径较小;由于溶胶中过量的N掺杂剂可在N-TiO2前驱体凝胶离心分离时被去除,可进行较低温度的煅烧,易于获得N掺杂浓度较高的N-TiO2。另外,采用用水多的工艺时,氮掺杂剂对TiO2颗粒的氮化及凝胶化过程也有很大的影响,有些含氮化合物作为掺杂剂可能会明显降低N-TiO2的可见光催化活性。 关键词:用水量;溶胶–凝胶法;氮掺杂;二氧化钛;可见光光催化活性 中图分类号:O643.1 文献标志码:A 文章编号:0454–5648(2010)01–0097–08 EFFECT OF WATER DOSAGE ON SYNTHESIS OF NITROGEN DOPED TITANIA NANOPARTICLES BY SOL–GEL METHOD HU Yulong1,2,LIU Hongfang1,GUO Xingpeng1 (1. School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074; 2. College of Science, Naval University of Engineering, Wuhan 430033, China) Abstract: Nitrogen doped titania (N-TiO2) nanoparticles were prepared by sol–gel processes at different water dosages. The particles obtained were characterized by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, and ultravio-let–visible diffuse reflectance spectrum. The visible light photocatalytic activities were evaluated by photocatalytic oxidation of methyl orange. It was found that N-TiO2 with a high visible light photocatalytic activity can be obtained by the sol–gel process at a great amount of water. When a great amount of water was used in the sol–gel process, the as-prepared N-TiO2 had smaller nanocrys-tallite grain size. Since the excess of nitrogen dopant in sol could be removed during the centrifugation process of N-TiO2 precursor gel, the calcination process could be performed at a lower temperature, which facilitates to obtain N-TiO2 at a high nitrogen doping level. Besides, the nitrogen dopant had an effect on nitridation reaction and gelation process of titania nanoparticles during the syn-thesis process at a great amount of water. Some compounds with nitrogen as dopant might depress a visible light photocatalytic activ-ity of the N-TiO2 nanoparticles. Key words: water dosage; sol–gel process; nitrogen doping; titania; visible light photocatalytic activity 溶胶–凝胶技术所需实验设备相对简单,实验条件较容易控制,被广泛用于制备纳米材料。溶胶–凝胶法制备N-TiO2时,通常是通过Ti前驱体水解获得TiO2纳米颗粒溶胶,然后再对TiO2纳米颗粒溶胶进行氮化处理并使溶胶凝胶化。在Ti前驱体水解时,有两种典型的工艺:一是用少量的水,H2O与Ti的摩尔比通常小于5;[1–3]另一种工艺是用较大量的水,典型的是Burda等[4–6]采用的工艺,H2O与Ti的摩尔比约为3000,采用该法制备的TiO2纳米颗粒溶胶进行氮化处理并使溶胶凝胶化后,可获得高的N掺杂浓度。由于目前还没有标准、统一的光催化活性的测试装置及方法,它们之 收稿日期:2009–07–20。修改稿收到日期:2009–10–12。 基金项目:材料化学与服役失效湖北省重点实验室开放基金(200802)和煤燃烧国家重点实验室开放课题(FSKLCC0809)资助项目。第一作者:胡裕龙(1973—),男,博士研究生。 通讯作者:刘宏芳(1968—),女,博士,教授。Received date:2009–07–20. Approved date: 2009–10–12. First author: HU Yulong (1973–), male, postgraduate student for doctor degree. E-mail: huyl1217@https://www.360docs.net/doc/b918972303.html, Correspondent author: LIU Hongfang (1968–), female, Ph.D., professor. E-mail: liuhf2003@https://www.360docs.net/doc/b918972303.html, 第38卷第1期2010年1月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 38,No. 1 January,2010

第二节 二氧化钛光催化影响因素

第二节TiO2光催化影响因素 目前主要针对TiO 2 进行增加表面缺陷结构、减小颗粒大小增大比表面、贵金 属表面沉积、过渡金属离子掺杂、半导体复合、表面光敏化、以及改变TiO 2 形貌和晶型等方法来提高其量子效率以及扩展其光谱响应范围。研制具有高量子产率,能被太阳光谱中的可见光激发的高效半导体光催化剂,探索适合的光催化剂负载技术,是当前解决光催化技术中难题的重点和热点。 表面缺陷结构 通过俘获载流子可以明显压制光生电子与空穴的再结合。在制备胶体和多晶光催化是和制备化学催化剂一样,一般很难制得理想的半导体晶格。在制备过程中,无论是半导体表面还是体内都会出现一些不规则结构,这种不规结构和表面电子态密切相关,可是后者在能量上不同于半导体主体能带上的。这样的电子态就会起到俘获载流子的阱的作用,从而有助于压制电子和空穴的再结合[7]。 颗粒大小与比表面积 研究表明,溶液中催化剂粒子颗粒越小,单位质量的粒子数就越多,体系的比表面积大,越有利于光催化反应在表面进行,因而反应速率和效率也越高。催化剂粒径的尺寸和比表面积的一一对应直接影响着二氧化钛光催化活性的高低。粒径越小,单位质量的粒子数目越多,比表面积也就越大。比表面积的大小是决定反应物的吸附量和活性点多少的重要因素。比表面积越大,吸附反应物的能力就越强,单位面积上的活性点也就越多,发生反应的几率也随之增大,从而提高其光催化活性。当粒子大小与第一激子的德布罗意半径大小相当,即在1-10 nm 时,量子尺寸效应就会变得明显,成为量子化粒子,导带和价带变成分立的能级,能隙变宽,生成光生电子和空穴能量更高,具有更高的氧化、还原能力,而粒径减小,可以减小电子和空穴的复合几率,提到光产率。再者,粒径尺寸的量子化使得光生电子和空穴获得更大的迁移速率,并伴随着比表面积的加大,也有利于提高光催化反应效率。 贵金属沉积的影响 电中性的并相互分开的贵金属的Fermi能级小于TiO 2 的费米(Fermi)能级, 即贵金属内部与TiO 2相应的能级上,电子密度小于TiO 2 导带的电子密度,因此 当两种材料连接在一起时,载流子重新分布,电子就会不断地从TiO 2 向贵金属

选择性氮掺杂的碳纳米管的结构、组成和化学

选择性氮掺杂的碳纳米管的结构、组成和化学 摘要 掺杂有一系列氮含量为(0-10%)的碳纳米管(CNT)通过使用二茂铁,NH3和二甲苯或吡啶在一个浮动催化剂CVD上进行合成的方法。XPS和Raman显微镜用来定量评估掺氮碳纳米管的组成和结构特性(N-CNTs)。XPS分析表明C1s 光谱轨迹随着氮掺杂N1sXPS光谱发生的移位和扩大显示出三种主要类型的氮协调(吡啶,镍铬合金和季),伴随着吡啶型选择率从0增加到4.5%。一阶拉曼光谱出现的五峰由于氮含量不同在峰强度和宽度上有所不同。D和G带集合强度的比例随着氮含量线形变化。用碘滴定的方法来测量所制备的N-CNTs还原位点的数量。这是通过掺杂氮的方法对碳纳米管化学活性有决定性影响的第一份报告。针对规律性增长和CNTs的选择性掺杂氮已经报道的方法,提出了一种新的方法来系统地研究纳米碳组成和结构对化学和电化学活性在应用上的影响。 1 简介 石墨烯晶格中杂原子(硼、硫、磷和氮)掺杂兑SP2碳材料的物化特性有着不同的影响。其中氮的取代掺杂尤其受到重视,因为其对硬度、导电性和化学活性显著改变进行了理论预测和实验观察。掺氮碳材料合成的几种方法已经在应用中,包括溅射沉积、含氮聚合物石墨化和预先形成的碳爆漏在升温过程中已形成反应气体(HCN和NH3)。虽然前两条线路通常制得的材料可以分别用作惰性涂料和吸附剂。后一条线路特别有希望合成可以增强化学反应中电子转移过程的活性碳,可以应用在电池和燃料电池中。虽然许多研究已经评估了掺氮碳的结构组成特性之间的关系,但是掺氮对物理化学特性的影响没有得到充分界定。举个例子,碳表面积、表面功能和石墨化程度由于采用碳材料和前处理及加工过程的不同而有相当大的差异。进一步,掺杂氮的过程是一个采用活化条件的复杂过程(比如反应气体浓度、时间、温度),因此,关于掺氮碳会得到许多不同的甚至相互矛盾的结论。 一个引人注目的替代方案可以使其直接生长和纳米碳进行氮的取代掺杂,这个方法使用到气相前体而不是像传统方法那样使用液相或者固相前体。通过化学气相沉积技术合成的气相纳米碳对于物化性质有着很好的控制能力,比如杂原子掺杂、结晶度和边缘暴露程度。我们实验室之前的报告已经描述在碳纳米管电极上掺氮对于氧化还原和、过氧化氢分解和邻苯二酚氧化反应的影响。在此,我们提出对于采用吡啶和NH3,通过改进的流化催化剂合成碳纳米管进行控制增长

硅胶负载氮掺杂二氧化钛的制备及性能的研究

硅胶负载氮掺杂二氧化钛的制备及性能研究 摘要: 利用溶胶-凝胶法,以硅胶为载体、以钛酸四丁酯为钛源、尿素为氮源制备了具有良好性能的“硅胶负载氮掺杂二氧化钛”( NTS) 光催化剂。考察主要硅胶目数对光催化活性的影响。结果表明,在氮投加量为 30%、钛硅比为 1/1、焙烧温度为 500 ℃的条件下,硅胶目数为120-200时制备的 NTS 具有最佳的光催化活性。氮掺杂二氧化钛( NT) 经硅胶负载后,其表面孔结构发生了变化,且热稳定性增加。亚甲基蓝降解实验表明: 与 T、NT 相比,NTS 体现出更高的光催化活性。 关键词: 光催化;TiO2; 氮掺杂; 硅胶;亚甲基蓝降解 The preparation of silica gel nitrogen doped TiO2 and performance research Tingwei Hu,Yang Yan,Lewei Wen,Jinlong Liu (Hubei institute for nationalities ,institute of chemical and environmental engineering ,hubei enshi ) Abstract: Using sol-gel method,silica gel as the carrier and tetrabutyl titanate as titanium source ;urea as nitrogen source was prepared with good performance of “silicon nitrogen doped TiO2 photocatalyst(NTS)”.Studying the effect of main silicon mesh optical catalytic activity.Results showed that the nitrogen additive amount was 30%,titanium silicon ratio of 1/1,calcination

纳米二氧化钛的制备及光催化分析

苏州科技大学 材料科技进展 化学生物与材料工程学院 材料化学专业 题目:纳米二氧化钛的制备及光催化 姓名:吕岩 学号:1020213103 指导老师:刘成宝 起止时间:5月20日——6月8日

纳米二氧化钛的制备及光催化 吕岩 (苏州科技学院,化学与生物工程材料学院,江苏,苏州,215009) 摘要:纳米二氧化钛是种重要的纳米材料,其在众多领域有着广泛的应用。本文主要介绍纳米二氧化钛的多种制备方法,包括化学气相法(化学气相沉积法、化学气相水解法等)、液相法( 溶胶凝胶法、沉淀法、水热合成法等)两大类,并分析了各种工艺的优劣。并介绍纳米二氧化钛光催化反应原理,基本方法,影响因素,及其广泛的应用。通过介绍纳米二氧化钛的制备及光催化的研究,更深刻理解其在生产生活中应用。 关键词:纳米TiO2,制备方法,光催化. The study on preparation of nanometer TiO and photocatalytic 2 Lv Yan (University of Science and Technology of Suzhou,School of Chemical and Biological Engineering Materials,Jiangsu,Suzhou,215009) Abstract: A s an important nanomaterial nanometer TiO2 has wide app lications in many fields, such as environmental production. Preparation methods of nanomaterial TiO2w ere briefly summarized, including chemical gas phase method( CVD and chem ical gas phase hydro lysis method etc. ) and liquid phase method( sol- gelmethod, precipitation method, hydrothermal synthesismethod etc. ). The advan tages and disadvanges o f everym ethod w ere analyzed. Introduce nano TiO2reaction principle, basic method, influence factors, and its wide application. Through the introduction of the preparation of nano TiO2 research, a deeper understanding of its application in the production and living. Key words: nanometer T iO2; preparation method, photocatalysis 引言: 纳米二氧化钛是一种新型的光催化无机功能材料,由于其粒径在1~ 100 nm 之间, 具有粒径小、比表面积大表面活性高、分散性好等特点, 表现出独特的物理化学性质。它具有良好的透明性,紫外线吸收性及熔点低、磁性强、热导性强、高效、无毒、成本低和不造成二次污染等优点等奇异特性;还具有良好的抗菌作用,使用过程中不会发生自身损耗,而且资源丰富,价格低廉,因此在光催化降解废水中的有机物、涂料、精细陶瓷、塑料、催化剂、及化妆品等方面应用广泛,成为新型功能材料研究的热点之一。本文将对纳米二氧化钛的制备及光催化在做一些简单介绍。 1.纳米TiO2的制备 纳米TiO2的制备方法有很多, 归纳起来主要有固相法、气相法和液相法等,

二氧化钛光催化剂

Ti O2纳米颗粒的制备及表征 在关于有关Ti O2纳米颗粒的研究中,制备方法的研究是很多的,同时,采用溶胶-凝胶法合成纳米Ti O2的文献报道比较多,通常采用溶胶-凝胶法合成的前驱物为无定形结构的,经过进一步的热处理后或者水热晶化才能得到晶型产物[49]。烧结过程能促使晶型转变,但是往往引起颗粒之间的团聚和颗粒的生长[50]。一般情况下,在大于300℃温度烧结处理得 到锐钛矿型Ti O2、大于600℃的温度烧结处理得到金红石型Ti O2。Ti O2的很多种性质取决于颗粒尺寸和晶化度。优化制备条件,得到分散性良好,催化性能好的光催化剂是很有研究意义的。 实验原理 溶胶-凝胶法是从材料制备的湿化学法中发展起来的一种新方法,是以金属醇盐或无机 盐为原料,其反应过程是将金属醇盐或无机盐在有机介质中进行水解、缩聚反应,使溶液形成溶胶,继而形成凝胶。凝胶经陈化、干燥、煅烧、研磨得到粉体产品。其中由于较多研究者以醇盐为原料,故也将其称为醇盐水解法。在溶胶-凝胶法中,溶胶通常是指固体分散在 液体中形成胶体溶液,凝胶是在溶胶聚沉过程中的特定条件下,形成的一种介于固态和液态间的冻状物质,是由胶粒组成的三维空间网状结构,网络了全部或部分介质,是一种相当稠厚的物质。 本文中,钛酸四丁酯(Ti(OC4H9)4)在水中水解,并发生缩聚反应,生成含有氢氧化钛(Ti(OH)4)粒子的溶胶溶液,反应继续进行变成凝胶,反应方程式如下: 水解Ti(OC4H9)4+4 H2O →Ti (OH)4+ 4HO C4H9 (2-1) 缩聚2Ti (OH)4→[Ti (OH)3]2O+H2O (2-2) 总反应式表示为: Ti(OC4H9)4+ 2H2O→Ti O2 + 4 C4H10O (2-3) 上式表示反应物全部参加反应的情况,实际上,水解和缩聚的方式随反应条 件的变化而变化。反应过程为: (1) 水解反应:可能包含对金属离子的配位,水分子的氢可能与OR 基的氧通过氢键引起 水解。 (2) 缩聚反应:在溶液中,原钛酸和负一价的原钛酸反应,生成钛酸二聚体,此二聚体进 一步作用生成三聚体、四聚体等多钛酸。在形成多钛酸时Ti-O-Ti 键也可以在链的中部形成,这样可得到支链多钛酸,多钛酸进一步聚合形成胶态Ti O2,这就是通常所说的 Ti O2溶胶的胶凝过程[53]。 本论文选用价格较低、使用较为普遍的钛酸四丁酯(Ti(OC4H9)4)作为钛源,选用乙醇为 溶剂,乙醇在钛酸四丁酯的水解反应过程中并不直接参与水解和缩聚反应,但它作为溶剂对体系起着稀释作用,它在Ti(OC4H9)4分子与水分子周围均形成由乙醇分子组成的包覆层, 阻碍反应物分子的碰撞,并在溶胶粒子周围形成“溶剂笼”,从而阻碍了溶胶粒子的生长以及溶胶团簇间的键合,使得干燥后的干凝胶能保持疏松多孔的状态,经焙烧后所得粒子比表面积较大。此外,在制备溶胶的过程中还要加入适量的冰乙酸,冰乙酸在反应过程中可能有两种作用:一是抑制水解,二是使胶体粒子带有正电荷,阻止胶粒凝聚,从而避免干凝胶粒尺寸过大。根据上述机理分析和本实验室前人研究的基础上,确定制备Ti O2溶胶的各物料组分摩尔比为Ti(OC4H9)4:HAc:H2O:Et OH:(NH4)2CO3 =1:2:15:18:X,其中X值变化的范围是0~4,加入碳酸铵的目的是使反应过程中产生气体和微小的固体载体,但又不会对生成的Ti O2造成掺杂等影响,使颗粒分散更均匀,细小。

氮掺杂二氧化钛光催化剂的研究进展

林仕伟等:尖晶石型化合物的制备及光催化性能 · 535 · 第38卷第3期 氮掺杂二氧化钛光催化剂的研究进展 胡裕龙1,2,刘宏芳1,郭兴蓬1 (1. 华中科技大学化学与化工学院,武汉 430074;2. 海军工程大学理学院,武汉 430033) 摘要:纯纳米二氧化钛禁带较宽,只能在紫外光下激发。拓宽二氧化钛的光谱响应范围,实现可见光激发,是二氧化钛基光催化材料面临的主要问题。氮掺杂二氧化钛具有良好的可见光催化活性,是具有可见光响应的二氧化钛基光催化材料的典型代表,近十年来受到了广泛关注。本文综述氮掺杂二氧化钛可见光响应机理和提高光催化活性方面的研究进展,提出今后值得关注与研究的方向。 关键词:二氧化钛;氮掺杂;可见光;光催化活性;综合评述 中图分类号:O643.1 文献标志码:A 文章编号:0454–5648(2010)03–0535–07 RESEARCH PROGRESS ON NITROGEN DOPED TITANIA PHOTOCATALYST HU Yulong1,2,LIU Hongfang1,GUO Xingpeng1 (1. School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology,Wuhan 430074; 2. College of Science, Naval University of Engineering, Wuhan 430033, China) Abstract: The pristine titania nanomaterial can only be excited by ultraviolet light because of its wide band-gap. Extending the opti-cal response to the visible light spectrum is one of the most important aspects to the TiO2-based photocatalyst. Nitrogen-doped titania has high visible light photocatalytic activity, which is representative of TiO2-based photocatalyst with reactivity under visible light, and has received enormous attention from scientists and engineers in the past decade. In the current review, the recent progress in research on the origins of visible light responses and the improvement of photocatalytic activity of nitrogen-doped titania are dis-cussed in detail, and urgent issues for future research and development are proposed. Key words: titania; nitrogen doping; visible light; photocatalytic activity; review 纳米二氧化钛(TiO2)具有化学稳定、无毒及光催化活性好的特点,已在许多方面获得了应用。纯纳米TiO2的不足是禁带较宽(3.2eV),只在紫外光照射下才有光催化活性,没有可见光光催化活性,因此需要对TiO2进行改性研究,以拓宽TiO2的光谱响应范围,把吸收边红移至可见光区,使其具有可见光催化活性。在TiO2的改性研究中,掺杂TiO2的研究占有很大部分。第一代掺杂研究主要是对TiO2进行金属掺杂。虽然TiO2经大部分金属/金属氧化物或金属离子掺杂后,能够显著降低带隙能级,实现可见光激发,但也促进电子–空穴的再结合,进而降低其光催化的活性。针对金属掺杂TiO2性能的不足,第二代掺杂研究主要是对TiO2进行非金属掺杂。2001年Asahi等[1]报道N置换TiO2晶格中少量O后具有可见光活性,掀起N掺杂研究的热潮,随后又进行了B、C、S、P、Cl及F等非金属元素掺杂TiO2的研究,其中研究最为广泛的是N掺杂TiO2(N-TiO2)。本文综述N-TiO2可见光响应机理和提高光催化活性方面研究的最新进展。 1 N-TiO2可见光响应的机理 任何材料的光学响应主要由自身的电子结构决定,而纳米材料电子结构又与其化学成分、原子排列及物理尺度等紧密相关。由于纳米颗粒尺寸很小, 收稿日期:2009–05–19。修改稿收到日期:2009–08–05。 基金项目:煤燃烧国家重点实验室开放基金(FSKLCC0809)和材料化学与服役失效湖北省重点实验室开放基金(200802)资助项目。第一作者:胡裕龙(1973—),男,博士研究生。 通信作者:刘宏芳(1968—),女,博士,教授。Received date:2009–05–19. Approved date: 2009–08–05. First author: HU Yulong (1973–), male, postgraduate student for doctor degree. E-mail: huyl1217@https://www.360docs.net/doc/b918972303.html, Correspondent author: LIU Hongfang (1968–), female, Doctor, professor. E-mail: liuhf2003@https://www.360docs.net/doc/b918972303.html, 第38卷第3期2010年3月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 38,No. 3 March,2010

相关文档
最新文档