Fast parameterized inexact Uzawa method for complex symmetric linear systems

Fast parameterized inexact Uzawa method for complex symmetric linear systems
Fast parameterized inexact Uzawa method for complex symmetric linear systems

Fast parameterized inexact Uzawa method for complex symmetric linear systems

q

Qing-Qing Zheng,Chang-Feng Ma ?

School of Mathematics and Computer Science,Fujian Normal University,Fuzhou 350007,PR China

a r t i c l e i n f o Keywords:

Complex symmetric linear system Iterative methods Correction technique The PIU method

Convergence analysis Numerical experiments

a b s t r a c t

In previous years,Bai and Wang presented a class of parameterized inexact Uzawa (PIU)methods for solving the generalized saddle point problems.In this paper,we consider the same method for iteratively solving the complex symmetric linear systems.Our main contribution is accelerating the convergence of the parameterized inexact Uzawa method by correction technique.First,the corrected model for the PIU method is established and the corrected PIU method is presented.Then we study the convergence property of the cor-rected PIU method.In fact,the corrected PIU method can converge faster than some Uza-wa-type and HSS-like methods.Finally,numerical experiments on a few model problems are presented to illustrate the theoretical results and examine the numerical effectiveness of the new method.

ó2015Elsevier Inc.All rights reserved.

1.Introduction

Let n be a positive integer.We consider the iterative solution of systems of linear equations of the form

Ax ?b ;

A 2C n ?n and x ;b 2C n ;

e1:1T

where A 2C n ?n is a complex symmetric matrix of the form

A ?W ti T e1:2T

and W ;T 2R n ?n are real,symmetric,and positive de?nite matrices.Here and in the sequel,we use i ????????

à1p to denote the

imaginary unit.

Complex symmetric linear systems of this kind arise in many important problems in scienti?c computing and engineering applications.For example,FFT-based solution of certain time-dependent PDEs [1],diffuse optical tomography [2],algebraic eigenvalue problems [3,4],molecular scattering [5],numerical solutions of the complex Helmholtz equation and numerical computations in eddy current problems.For more examples,we refer to [6–12]and the references therein.Hence,there is a strong need for the fast solution of complex symmetric linear systems.

For solving the complex symmetric linear system (1.1)ef?ciently,van derVorst and Mellissen [9]proposed the conjugate orthogonal conjugate gradient (COCG)method,which is regarded as an extension of the Conjugate Gradient (CG)method [13].Relatively complicated but robust methods such as QMR [14],CSYM [15],and Bi-CGCR [16]are also useful.QMR is

https://www.360docs.net/doc/bd19005842.html,/10.1016/j.amc.2015.01.023

0096-3003/ó2015Elsevier Inc.All rights reserved.

q

The Project supported by National Natural Science Foundation of China (Grant Nos.11071041,11201074),Fujian Natural Science Foundation (Grant No.2013J01006),The University Special Fund Project of Fujian (Grant No.JK2013060)and R&D of Key Instruments and Technologies for Deep Resources Prospecting (the National R&D Projects for Key Scienti?c Instruments)under Grant No.ZDYZ2012-1-02-04.?Corresponding author.

E-mail address:macf88@https://www.360docs.net/doc/bd19005842.html, (C.-F.Ma).

derived from the complex symmetric Lanczos method,CSYM is obtained from the idea of QMR and tridiagonalization of A by Householder re?ections,and Bi-CGCR is derived from a particular case in Bi-CG [17]for solving non-Hermitian linear sys-tems.In [18]Sogabe and Zhang extended the conjugate residual (CR)method described in [19,20]to complex symmetric linear systems based on an observation of deriving CG,CR,and COCG.Moreover,Based on the Hermitian and skew-Hermi-tian splitting (HSS)

A ?H tS ;

of the matrix A 2C n ?n ,with

H ?

12eA tA ?Tand S ?1

2

eA àA ?Tbeing the Hermitian and skew-Hermitian parts and A ?being the conjugate transpose of the matrix A 2C n ?n ,we can apply the

HSS iteration method [21]or its preconditioned variant PHSS (i.e.,the preconditioned HSS,see [22])which were proposed by Bai and his co-authors to compute an approximate solution of the linear system (1.1).In addition,the convergence properties of the PHSS method can be found in [23].In [24],Bai,Golub and Ng further generalized the technique for constructing HSS iteration method for solving large sparse non-Hermitian positive de?nite system of linear equations to the normal/skew-Hermitian (NS)splitting obtaining a class of normal/skew-Hermitian splitting (NSS)iteration methods.Theoretical analyses shown that the NSS iteration method converges unconditionally to the exact solution of the system of linear Eq.(1.1).A potential dif?culty with the HSS iteration approach is the need to solve the shifted skew-Hermitian sub-system of linear equations at each iteration step.Hence,Bai,Benzi and Chen presented a modi?cation of the HSS iteration scheme in [25]and some of its basic properties are studied.In [26],the authors proposed a preconditioned variant of the modi?ed HSS (PMHSS)iteration method for solving the complex symmetric systems of linear equations.Moreover,the authors in [27]pre-sented analytical and extensive numerical comparisons of some available numerical solution methods for the complex val-ued linear algebraic systems (1.1).

In this paper,we study the corrected parameterized inexact Uzawa method for solving the complex symmetric linear sys-tem (1.1).We call this new method CPIU method for the sake of simplicity.We also introduce the overall reduction coef?-cient a ei Tto measure the effectiveness of the correction process.If the overall reduction coef?cient a ei T<1is satis?ed in each iteration step,then the corrected PIU method will converge faster than the PIU method.Moreover,suf?cient conditions for the convergence of the CPIU method for the linear system (1.1)are also provided in the paper.

The paper is organized as follows.In Section 2,we introduce the parameterized inexact Uzawa method and establish the corrected PIU model for the Eq.(1.1),then the CPIU method is presented.In Section 3,The corrected PIU model is solved.Moreover,we analyze the convergence property of the CPIU method.In Section 4,some numerical experiments are given to show the ef?ciency of the CPIU method.Finally,some conclusion remarks are proposed in Section 5.

The following notations will be used throughout this paper.We denote the identity matrix and the 0-matrix by I and O ,respectively.?u ;v denote the inner product of vectors u and v .For a matrix A ,we denote the spectral norm of A by k A k 2.And denote the range and the null spaces of A by R eA Tand N eA T,respectively.The conjugate transpose of A is denoted by A H .More-over,the Moore–Penrose inverse of A is de?ned as the unique matrix A twhich satis?es the following four matrix equations:

AA tA ?A ;A tAA t?A t;eAA tTH

?AA t;

eA tA TH

?A tA :

2.The corrected PIU method

Let x ?y tiz and b ?p tiq ,then from (1.1)and (1.2),we can get eW tiT Tey tiz T?p tiq ,which implies that we can obtain the following block two-by-two systems of linear equation

DX ?

W àT T

W

y

z

?

p q

?g :e2:1T

Conversely,from the linear Eq.(2.1),we can get the complex symmetric linear system (1.1).So the complex symmetric linear system (1.1)is formally identical to the above block two-by-two systems of linear Eq.(2.1).Based on the PMHSS precondi-tioning matrix,Bai in [28]constructed a class of rotated block triangular preconditioners for linear system (2.1),and analyze the eigen-properties of the corresponding preconditioned matrices.Moreover,the block two-by-two systems of linear Eq.(2.1)can be formally regarded as a special case of the generalized saddle point problem [29,30].It frequently arises from ?nite element discretizations of elliptic partial differential equation (PDE)-constrained optimization problems such as dis-tributed control problems [31–35]and so on.

Based on the parameterized inexact Uzawa (PIU)iteration method for solving the following generalized saddle point problem

A B B >àC

e y e z

?e p e q

;

e2:2T

12Q.-Q.Zheng,C.-F.Ma /Applied Mathematics and Computation 256(2015)11–19

in this section we derive a corrected PIU iteration method for solving the block two-by-two systems of linear Eq.(2.1).To this end,we ?rst introduce the PIU iteration method proposed in Bai and Wang [36]for the Eq.(2.2).This PIU iteration method is methodically described in the following.

Method 2.1.Given initial vectors e y e0T2R n and e

z e0T2R n and two relaxation factors x ;s with x ;s –0.For k ?0;1;2;...,until the iteration sequence fee y ek T>;e

z ek T>T>

g converges to the exact solution of the saddle point problem (2.2),compute e y ek t1T?e y ek Ttx P à1ee p àA e y ek TàB e z ek TT;e z ek t1T?e z ek Tts Q à1eB >e y ek t1TàC e

z ek Tàe q T;(

where P 2R n ?n and Q 2R n ?n are prescribed symmetric positive de?nite matrices.

If P –A and x ?s ?1then the PIU iteration Method 2.1yields inexact Uzawa method [37–39]for solving the saddle point problems.Here,in this paper we consider the case that P ?Q ?A and x ?1.Based on the above Method 2.1,we can get the following iteration method.

Method 2.2.Given initial vectors y e0T2R n ;z e0T2R n and the relaxation factor s with s –0.For k ?0;1;2;...,until the iter-ation sequence fey ek T>;z ek T>T>

g converges to the exact solution of the saddle point problem (2.1),compute

y ek t1T?W à1ep tTz ek TT;

z ek t1T?z ek Tàs W à1eT >y ek t1TtWz ek Ttq T:

(

Denote X ek T

?

y ek T

z ek T

,then the PIU Method 2.2can be rewritten as X ek t1T?HX ek TtM à1g ;

e2:3T

where

H ?

O

W à1T

O I às W à1eC tTW à1T T

!

and M ?

W O T

1s W

!:

Let N ?M àD ?

O T O

1s à1àáW

,then

D ?M àN e2:4T

de?nes a splitting of the coef?cient matrix D of the block two-by-two systems of linear Eq.(2.1),and the PIU Method 2.2can also be induced by the matrix splitting (2.4).Easily,we see that H ?M à1N is the iteration matrix of the PIU Method 2.2.Therefore,the PIU Method 2.2is convergent if and only if the spectral radius of the iteration matrix H is less than one,i.e.,q eH T<1.See [40–42].

Assume X 1;X 2;...;X m are approximate solutions of Eq.(2.1),where m >1is a positive integer and DX i –g ei ?1;2;...;m T.

The basic idea of the correction model for the parameterized inexact Uzawa Method 2.2is:construct a vector b X

which is a better approximate solution of Eq.(2.1)than X i ei ?1;2;...;m T.That is,

k g àD b X k 2

k g àDX i k 2

:e2:5T

The vector b X

that satis?es (2.5)is called the corrected solution of X 1;X 2;...;X m ,and the progress to determine the vector X is called CPIU process.The corrected model for the PIU is presented as follows.The CPIU model.

b X

?a 1X 1ta 2X 2táááta c X m ;a 1ta 2táááta m ?1;

k g àD b X

k 2

?min :e2:6T

With the above CPIU model we can obtain the following detailed methodic description of the CPIU method for the block

two-by-two system of linear Eq.(2.1).The CPIU method.

Give an initial vector X e0T2R 2n ,let k ?0. While

X ek T

1?X ek à1T

For ej ?2;3;...;m T

X ek Tj

?HX ek T

j à1tM à1g

end For

X ek T

?a ek T

1X ek T

1ta ek T

2X ek T

2táááta ek T

m X ek T

m k ?k t1End While

Q.-Q.Zheng,C.-F.Ma /Applied Mathematics and Computation 256(2015)11–1913

Here aekT

i

ei?1;2;...;mTis determined by the k th CPIU progress.

How to solve the above CPIU model will be illustrated detailedly in Section3.From the Eq.(2.5),we can see that if the iteration(2.3)is convergent,i.e.,qeHT<1,then the sequence f XekTg will converge.

3.Analysis for the CPIU method

In this section,we will solve the CPIU model(2.6).Moreover,the suf?cient conditions for the convergence of the CPIU method are also provided.

When the linear system EX?r is consistent,then the vector X02C2n that satis?es k X0k

2?min EX?r k X k

2

is called the min-

imum norm solution of linear system EX?r.When the linear system EX?r is not consistent,then the vector X02C2n that

satis?es k X0k

2?min min k EXàr k

2

k X k

2

is called the minimal norm least squares solution of linear system EX?r.

Lemma3.1.If the linear system EX?r is consistent,then the minimum norm solution X0of EX?r is unique and X0?Etr.

Proof.Firstly,we prove X02ReE HTholds true.If X0R ReE HT,then we can obtain the decomposition X0?X1tX2;X12ReE HT;X22NeET??ReE HT ?;X2–0:

Note X1?X2,we obtain

k X0k2

2?k X1k2

2

tk X2k2

2

>k X1k2

2

:

Because EX1?EX1tEX2?EX0?r,then we get X0is not the minimum norm solution of EX?r.This is a contradiction,so X02ReE HT.

Then we illustrate the uniqueness of minimum norm solution X0.If Z0is another minimum norm solution of EX?r,then Z02ReE HT.So we have

X0àZ02ReE HT??NeDT ?:

Moreover,because EeX0àZ0T?0,then we have X0àZ02NeET.So X0àZ0?0,which implies X0?Z0.

Now we illustrate X0?Etr.Obviously,the general solution of the equation EX?r is

X?EtrteIàEtETy;ey2C nT:

Take y?0,then we obtain that X0?Etr is a solution of EX?r.Because

?eIàEtETy;X0 ?y HeIàEtETH X0?y HeIàEtETEtr?y HeEtàEtEEtTr?0;

then we have

k X k2

2?k X0k2

2

tkeIàEtETy k2

2

P k X0k2

2

;

which implies that X0?Etr is the minimum norm solution of linear system EX?r.The proof is completed.h

Lemma3.2.If the linear system EX?r is not consistent,then the minimal norm least squares solution X0of EX?r is unique and X0?Etr.

Proof.From Lemma3.1,we can demonstrate that the result holds true.h

Together with Lemmas3.1and3.2we prove the following result which show how to solve the CPIU model(2.6).

Theorem3.1.If X1;X2;...;X m are approximate solutions of Eq.(2.1),for k?1;2;3;...,let r k?gàDX k.Denote

b i?r iàr1ei?2;3;...;mT;Q?eb2;b3;...;b mT;e3:1T

y 1?ea2;a3;...;a mT>?àQtr1;a1?1à

X m

i?2

a i:e3:2T

Then b X?a1X1ta2X2táááta m X m is the corrected solution of X1;X2;...;X m.

Proof.Assume b X?b1X1tb2X2tááátb m X m is the corrected solution of X1;X2;...;X m of CPIU model(2.6),where b1tb2tááátb m?1.Then we have

b X?X1tX m

i?2b ieX iàX1T;

14Q.-Q.Zheng,C.-F.Ma/Applied Mathematics and Computation256(2015)11–19

which implies

reb XT?gàD b X?r1tX m

i?2

b ier iàr1T:

From(3.1)and(3.2),we obtain that the above equation can be rewritten as reb XT?r1tQeb2;b3;...;b mT>.This implies that?nding a vector b X which can minimize k reb XTk2is equivalent to?nding y2C mà1which can minimize k r1tQ y k2.

By making use of Lemmas 3.1and 3.2,the minimum norm solution satis?es k y1k2?min k r

1tQ y k2

k y k2is

y1?ea2;a3;...;a mT>?Qtr1.Let a1?1àP m

i?2

a i,then we can obtain that

b X?a1X1ta2X2táááta m X m is the corrected

solution of X1;X2;...;X m of the CPIU model(2.6).

The proof is completed.h

Remark3.1.Take j2f1;2;...;m g,and denote

b

i

?r iàr jei–jT;Q j?eb1;...;b jà1;b jt1;...;b mT;

y j ?ea1;...;a jà1;a jt1;...;a mT>?àQt

j

r j;a1?1à

X m

i?2

a i:

Then from the proof of Theorem 3.1,we can obtain that b X?a1X1ta2X2táááta m X m is the corrected solution of X1;X2;...;X m of the CPIU model(2.6).

Lemma3.3.Let A2R n?n;P2R n?n and Q2R n?n be symmetric positive de?nite,and B2R n?n is nonsingular.When C?d Q with d>0a real constant,then the PIU Method2.1for the generalized saddle point problem(2.2)is convergent,provided that x sat-is?es0

max

and s satis?es

0

d

and s?2dtel maxàd g maxTx <2e2àg max xT;e3:3T

where g max is the largest eigenvalue of the matrix Pà1A,and l max is the largest eigenvalue of the matrix J?Qà1B>Pà1B.

Proof.See Theorem2.2of[36].h

Theorem3.2.If W2R n?n and T2R n?n are symmetric positive de?nite,then the PIU Method2.2for solving the block two-by-two systems of linear Eq.(2.1)is convergent,provided that s satis?es

0Wà1T.

Proof.Let A?C?W;B?àT;P?Q?A and x?1,then we can obtain d?1;Pà1A?I and J?Qà1B>Pà1B?Wà1T>Wà1T. Also from Pà1A?I we have g max?1,then from Lemma3.3,we can get the result directly.h

In order to measure the effect of the CPIU correction process,we introduce the overall reduction coef?cient a?k reXTk2

min16i6m k r i k

2

:e3:5T

From(2.5)we have06a<1.If a?1,then the CPIU process(2.6)is failed.If06a<1,then the CPIU process is successful. And the smaller a is,the better of the effect of the CPIU progress is.In particular,if a?0,then the CPIU process is?nished, i.e.,the corrected solution is the exact solution of Eq.(2.1).

Denote the overall reduction coef?cient of the k th correction progress as aekT,then

aekT?k reX ekTTk

2

min16j6m k rekT

j k 2

;

where rekT

j ?gàDXekT

j

ej?1;2;...;mTand reXekTT?gàDXekT,with XekT

i

ei?1;2;...;mTis the approximate solutions of k th

CPIU progress and XekTis the corrected solution of XekT

1;XekT

2

;...;XekT

m

.

With the overall reduction coef?cient of the k th correction progress aekT,we can get the following result.

Theorem3.3.If W2R n?n and T2R n?n are symmetric positive de?nite,then the CPIU method for solving the block two-by-two systems of linear Eq.(2.1)is convergent,provided that s satis?es

Q.-Q.Zheng,C.-F.Ma/Applied Mathematics and Computation256(2015)11–1915

0Wà1T.Moreover,if aekT<1is satis?ed,then the CPIU method will con-verge faster than the PIU method.

Proof.If0

4.Numerical experiments

In this section,we perform some numerical examples to illustrate the theoretical results and show the effectiveness of the CPIU iteration method for solving the complex symmetric linear system(1.1)in terms of both iteration steps(denoted as IT) and computing time(in s,denoted as CPU),and the norm of the residual(denoted as‘‘RES’’)de?ned by

RES?

??????????????????????????????????????????????????????????????????????????????????????????

k pàWyekTtTzekTk2

2

tk qtTyekTtWzekTk2

2 q

:

In actual computations,the iteration schemes are started from the zero vector and terminated if the current iterations satisfy ERR610à6or the number of the prescribed iteration steps k?500are exceeded,where

ERR?

??????????????????????????????????????????????????????????????????????????????????????????

k pàWyekTtTzekTk2

2

tk qtTyekTtWzekTk2

2 q

??????????????????????????????????????????????????????????????????????????????????????????

k pàWye0TtTze0Tk2

2

tk qtTye0TtWze0Tk2

2 q:

All experiments are performed in MATLAB(version7.4.0.336(R2010b))with machine precision10à16,and all experiments are implemented on a personal computer with2.20GHz central processing unit(Intel(R)Core(TM)i3–2310M),2.00G mem-ory and Win7operating system.

The CPIU iteration method is compared with the preconditioned Uzawa(PU)method[39]and PMHSS[26]methods.For the tests reported in this section we used the optimal values of the parameter s(denoted by s opt)for the CPIU,PU and PMHSS iteration methods.The experimentally found optimal parameters s opt are the ones resulting in the least numbers of iterations for the three methods for each of the numerical examples and for each choice of the spatial mesh-sizes.

Example4.1(See[10,25,26]).The system of linear Eq.(1.1)is of the form

Kt3à

???

3

p

s I

!

ti Kt

3t

???

3

p

s I

!

"#

x?b;e4:1Twhere s is the time step-size and K is the?ve-point centered difference matrix approximating the negative Laplacian oper-ator L?àD with homogeneous Dirichlet boundary conditions,on a uniform mesh in the unit square?0;1 ??0;1 with the mesh-size h?1.The matrix K2R n?n possesses the tensor-product form K?I V ltV l I,with V l?hà2tridiag eà1;2;à1T2R l?l.Hence,K is an n?n block-tridiagonal matrix,with n?l2.We take

W?Kt3à

???

3

p

s I;and T?Kt

3t

???

3

p

s I

and the right-hand side vector b with its j th entry?b

j

being given by

?b

j ?

e1àiTj

sejt1T2

;j?1;2;...;n:

In our tests,we take s?h.Furthermore,we normalize coef?cient matrix and right-hand side by multiplying both by h2.For more details,we refer to[10].

With respect to different sizes of the coef?cient matrix,we list IT,CPU and RES about the PU,PMHSS and CPIU(m?8) methods in Table1for Example4.1.By comparing the results in Table1,we observe that the CPIU iteration method outper-forms the PU and PMHSS methods,as it requires much less time and iteration steps to achieve the stopping criterion.

Moreover,we also take m?2;3;4;5;6;7in this numerical experiment to illustrate the special property of the CPIU method.The results for different parameters m of the CPIU iteration method for Example4.1are presented in Table2.From the results of Table2we observe that the iteration steps of the CPIU iteration method become smaller when the parameter m becomes larger which means that the CPIU iteration method converges faster if the parameter m becomes larger.Moreover, the solution that our CPIU iteration method found is more accurate than the other two methods,because the norm of the residual(RES)is more smaller than the PU and PMHSS methods.So we can get a good approximate solutions by taking a proper parameter m in our actual calculation.That illustrates that CPIU iteration method is a very good method for solving the complex symmetric linear systems.

16Q.-Q.Zheng,C.-F.Ma/Applied Mathematics and Computation256(2015)11–19

Example 4.2(See [11,25,26]).The system of linear Eqs.(1.1)is of the form

?eàx 2M tK Tti ex C V tC H T x ?b ;

e4:2T

where M and K are the inertia and the stiffness matrices,C V and C H are the viscous and the hysteretic damping matrices,respectively,and x is the driving circular frequency.We take C H ?l K with l a damping coef?cient,M ?I ;C V ?10I ,and K the ?ve-point centered difference matrix approximating the negative Laplacian operator with homogeneous Dirichlet

boundary conditions,on a uniform mesh in the unit square [0,1]?[0,1]with the mesh-size h ?1

.The matrix K 2R n ?n pos-sesses the tensor-product form K ?I B l tB l I ,with B l ?h à2

tridiag eà1;2;à1T2R l ?l .Hence,K is an n ?n block-tridiagonal

matrix,with n ?l 2

.In addition,we set x ?p ;l ?0:02,and the right-hand side vector b to be b ?e1ti TA 1,with 1being the

vector of all entries equal to 1.As before,we normalize the system by multiplying both sides through by h 2

.In fact,this com-plex symmetric system of linear equation arises in direct frequency domain analysis of an n -degree-of-freedom (n -DOF)lin-ear system.For more details,we refer to [10,40].

With respect to different sizes of the coef?cient matrix,we list IT,CPU and RES about the PU,PMHSS and CPIU (m ?8)methods in Table 3for Example 4.2.By comparing the results in Tables 2,we observe that the CPIU iteration method out-performs the PU and PMHSS methods,as it requires much less time and iteration steps to achieve the stopping criterion.Moreover,we also take m ?2;3;4;5;6;7in this numerical experiment.The results for different parameters m of the CPIU iteration method for Example 4.2are presented in Table 4.As we can see from the results of Table 4,we can always get a good approximate solutions by taking a proper parameter m in our actual calculation.Example 4.3(See [25,26]).The system of linear Eq.(1.1)is of the form eW ti T Tx ?b ,with

T ?I V tV I

and W ?10eI V c tV c I Tt9ee 1e >l te l e >

1T I ;

where V ?tridiag eà1;2;à1T2R l ?l ;V c ?V àe 1e >l àe l e >

12R l ?l ;e 1and e l are the ?rst and the last unit vectors in R l ,respec-tively.We take the right-hand side vector b to be b ?e1ti TA 1,with 1being the vector of all entries equal to 1.

Here T and W correspond to the ?ve-point centered difference matrices approximat-ing the negative Laplacian operator with homogeneous Dirichlet boundary conditions and periodic boundary conditions,respectively,on a uniform mesh in the

unit square ?0;1 ??0;1 with the mesh-size h ?1

.This problem is an arti?cially constructed one,but it is quite challenging for iterative solvers.

Table 1

IT,CPU and RES for PU,PMHSS and CPIU methods for Example 4.1.Method l

8162432PU

s opt

0.1960.2160.2260.210IT 252384164CPU 0.0080.085 1.1677.485RES

5.09e à8 3.94e-8 3.15e à8 2.30e à8PMHSS

s opt

1.091 1.356 1.350 1.120IT 21212121CPU 0.0090.104 1.245 3.099RES

4.33e à8 2.02e à8 3.04e à8 3.20e à7CPIU

s opt

0.1960.2160.2260.210IT 2

2

2

2

CPU 0.0070.0790.056 2.771RES

1.53e à13

3.29e à11

3.57e à10

1.29e à9

Table 2

Numerical results for different parameters m of CPIU method for Example 4.1.l IT CPU RES IT CPU RES IT CPU RES m ?2m ?3m ?48190.0947.80e à870.0598.18e à840.042 1.50e à816230.126 3.84e à890.095 1.71e à850.087 3.85e à924240.875 2.94e à890.633 1.83e à860.606 1.92e à93231 4.007 1.82e à810 3.103 1.12e à86 2.9867.79e à9m ?5m ?6m ?7830.030 1.63e à920.007 3.44e à920.021 1.97e à111630.079 2.68e à930.094 1.46e à1020.089 1.93e à92440.655 1.71e à930.6519.59e à1020.561 1.74e à932

4

2.952

6.34e à9

3

2.869

3.36e à9

3

3.034

3.28e à11

Q.-Q.Zheng,C.-F.Ma /Applied Mathematics and Computation 256(2015)11–19

17

18Q.-Q.Zheng,C.-F.Ma/Applied Mathematics and Computation256(2015)11–19

Table3

IT,CPU and RES for PU,PMHSS and CPIU methods for Example4.2.

Method l8162432 PU s opt0.180.160.450.18 IT215234184164

CPU0.0610.285 5.10418.171

RES 6.09eà87.95eà8 3.32eà8 2.51eà8 PMHSS s opt0.045 1.341 1.0010.150 IT121486331

CPU0.1090.101 2.241 3.145

RES 4.33eà6 2.23eà5 2.04eà5 5.34eà6 CPIU s opt0.180.160.450.18 IT1212

CPU0.0040.0800.056 2.812

RES 6.28eà14 1.02eà13 6.49eà10 6.37eà15

Table4

Numerical results for different parameters m of CPIU method for Example4.2.

l IT CPU RES IT CPU RES IT CPU RES

m?2m?3m?4 8490.0279.82eà8150.0157.53eà850.026 1.79eà8 16560.225 3.65eà8140.122 2.60eà840.086 2.53eà8 24330.976 1.81eà890.676 1.53eà840.568 3.86eà10 3274 6.619 1.46eà812 3.4247.06eà94 2.911 2.40eà9

m?5m?6m?7 820.017 4.85eà820.012 6.71eà1210.0048.15eà12 1620.075 1.68eà820.080 1.73eà1210.068 2.89eà12 2420.519 2.41eà1320.552 2.36eà1310.4917.46eà13 322 2.639 2.44eà92 2.661 2.37eà131 2.493 5.21eà10

Table5

IT,CPU and RES for PU,PMHSS and CPIU methods for Example4.3.

Method l8162432 PU s opt 1.730 2.231 1.7320.510 IT125153284132

CPU0.0640.719 5.133 2.992

RES 1.02eà4 3.45eà5 6.15eà47.30eà4 PMHSS s opt0.1240.156 1.356 1.302 IT23121201135

CPU0.0090.104 1.245 3.099

RES 4.33eà5 2.02eà4 3.04eà6 3.20eà6 CPIU s opt 1.730 2.231 1.7320.510 IT1122

CPU0.0070.0790.0518 2.630

RES7.72eà6 4.77eà7 3.38eà8 3.75eà7

Table6

Numerical results for different parameters m of CPIU method for Example4.3.

l IT CPU RES IT CPU RES IT CPU RES

m?2m?3m?4 8110.009 4.69eà550.008 3.11eà620.007 4.46eà6 16210.125 4.31eà570.99 3.06eà530.083 2.91eà6 24210.747 6.88eà570.623 6.38eà530.548 1.41eà5 3214 3.1787.72eà55 2.787 6.39eà63 2.717 2.04eà6

m?5m?6m?7 820.010 1.69eà1010.005 1.10eà710.007 1.13eà8 1620.079 1.83eà710.072 1.73eà510.076 6.37eà8 2420.526 1.85eà620.542 2.36eà1010.5098.63eà7 322 2.6647.26eà62 2.740 2.08eà91 2.633 4.50eà9

Q.-Q.Zheng,C.-F.Ma/Applied Mathematics and Computation256(2015)11–1919 With respect to different sizes of the coef?cient matrix,we list IT,CPU and RES about the PU,PMHSS and CPIU(m?8) methods in Table5for Example4.3.In addition,The results for different parameters m of the CPIU iteration method are pre-sented in Table6.From the results of Table5we observe that the CPIU iteration method outperforms the PU and PMHSS methods in both iteration steps and computing time.In Table6,it is clearly that we can get a good approximate solutions by taking a proper parameter m in our actual calculation,which further illustrates that CPIU iteration method is a very good method for solving the complex symmetric linear systems.

5.Conclusions

Based on the parameterized inexact Uzawa method for solving the saddle point problems and the correction technique, we have established and analyzed a class of correction parameterized inexact Uzawa method iteration methods for solving an important class of complex symmetric linear systems.Numerical experiments have shown that these methods may yield satisfactory results when applied to linear systems of practical interest.How to choosing the optimal parameters is an open problem and needs further research.

References

[1]D.Bertaccini,Ef?cient solvers for sequences of complex symmetric linear systems,Electron.Trans.Numer.Anal.18(2004)49–64.

[2]S.R.Arridge,Optical tomography in medical imaging,Inverse Probl.15(1999)41–93.

[3]G.Moro,J.H.Freed,Calculation of ESR spectra and related Fokker–Planck forms by the use of the Lanczos algorithm,J.Chem.Phys.74(1981)

3757–3773.

[4]D.Schmitt,B.Steffen,T.Weiland,2D and3D computations of lossy eigenvalue problems,IEEE Trans.Magn.30(1994)3578–3581.

[5]B.Poirier,Effecient preconditioning scheme for block partitioned matrices with structured sparsity,Numer.Linear Algebra Appl.7(2000)715–726.

[6]A.Bendali,Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary?nite element method,

https://www.360docs.net/doc/bd19005842.html,put.43(167)(1984)29–68.

[7]S.H.Christiansen,Discrete Fredholm properties and convergence estimates for the electric?eld integral equation,https://www.360docs.net/doc/bd19005842.html,put.73(245)(2004)

143–167.

[8]J.K.Cullum,R.A.Willoughby,A QL procedure for computing the eigenvalues of complex symmetric tridiagonal matrices,SIAM J.Matrix Anal.Appl.17

(1996)83–109.

[9]M.Clemens,T.Weiland,Iterative methods for the solution of very large complex symmetric linear systems of equations in electrodynamics,

Technische Hochschule Darmstadt,2002.

[10]O.Axelsson,A.Kucherov,Real valued iterative methods for solving complex symmetric linear systems,Numer.Linear Algebra Appl.7(2000)197–218.

[11]M.Benzi,D.Bertaccini,Block preconditioning of real-valued iterative algorithms for complex linear systems,IMA J.Numer.Anal.28(2008)598–618.

[12]D.D.Day,M.A.Heroux,Solving complex-valued linear systems via equivalent real formulations,SIAM https://www.360docs.net/doc/bd19005842.html,put.23(2001)480–498.

[13]M.R.Hestenes,E.Stiefel,Methods of conjugate gradients for solving linear systems,J.Res.Nat.Bur.Stand.49(1952)409–436.

[14]R.W.Freund,Conjugate gradient-type methods for linear systems with complex symmetric coef?cient matrices,SIAM https://www.360docs.net/doc/bd19005842.html,put.13(1992)

425–448.

[15]A.Bunse-Gerstner,R.St?ver,On a conjugate gradient-type method for solving complex symmetric linear systems,Linear Algebra Appl.287(1999)

105–123.

[16]M.Clemens,T.Weiland,Comparison of Krylov-type methods for complex linear systems applied to high-voltage problems,IEEE Trans.Mag.34(5)

(1998)3335–3338.

[17]R.Fletcher,Conjugate gradient methods for inde?nite systems,Lecture Notes in Mathematics,vol.506,Springer,Berlin,1976.pp.73–89.

[18]T.Sogabe,S.L.Zhang,A COCR method for solving complex symmetric linear systems,https://www.360docs.net/doc/bd19005842.html,put.Appl.Math.199(2007)297–303.

[19]G.H.Golub,C.F.Van Loan,Matrix Computations,third ed.,The Johns Hopkins University Press,Baltimore,1996.

[20]Y.Saad,Iterative Methods for Sparse Linear Systems,second ed.,SIAM,Philadelphia,PA,2003.

[21]Z.-Z.Bai,G.H.Golub,M.K.Ng,Hermitian and skew-Hermitian splitting methods for non-Hermitian positive de?nite linear systems,SIAM J.Matrix

Anal.Appl.24(2003)603–626.

[22]Z.-Z.Bai,G.H.Golub,J.-Y.Pan,Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semide?nite linear

systems,Numer.Math.98(2004)1–32.

[23]Z.-Z.Bai,G.H.Golub,C.-K.Li,Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive

semide?nite matrices,https://www.360docs.net/doc/bd19005842.html,put.76(2007)287–298.

[24]Z.-Z.Bai,G.H.Golub,M.K.Ng,On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations,Numer.Linear

Algebra Appl.14(2007)319–335.

[25]Z.-Z.Bai,M.Benzi,F.Chen,Modi?ed HSS iteration methods for a class of complex symmetric linear systems,Computing87(2010)93–111.

[26]Z.-Z.Bai,M.Benzi,F.Chen,On preconditioned MHSS iteration methods for complex symmetric linear systems,Numer.Algorithms56(2011)297–317.

[27]O.Axelsson,M.G.Neytcheva,B.Ahmad,A comparison of iterative methods to solve complex valued linear algebraic systems,Numer.Algorithms66

(2014)811–841.

[28]Z.-Z.Bai,Rotated block triangular preconditioning based on PMHSS,Sci.China Math.56(2013)2523–2538.

[29]M.Benzi,G.H.Golub,A preconditioner for generalized saddle point problems,SIAM J.Matrix Anal.Appl.26(2004)20–41.

[30]M.Benzi,G.H.Golub,J.Liesen,Numerical solution of saddle point problems,Acta Numer.14(2005)1–137.

[31]J.L.Lions,Optimal Control of Systems Governed by Partial Differential Equations,Springer,Berlin,Germany,1968.

[32]https://www.360docs.net/doc/bd19005842.html,ss,M.Vallejos,A.Borzi,C.C.Douglas,Implementation and analysis of multigrid schemes with?nite elements for elliptic optimal control problems,

Computing84(2009)27–48.

[33]T.Rees,H.S.Dollar,A.J.Wathen,Optimal solvers for PDE-constrained optimization,SIAM https://www.360docs.net/doc/bd19005842.html,put.32(2010)271–298.

[34]T.Rees,M.Stoll,Block-triangular preconditioners for PDE-constrained optimization,Numer.Linear Algebra Appl.17(2010)977–996.

[35]Z.-Z.Bai,Block preconditioners for elliptic PDE-constrained optimization problems,Computing91(2011)379–395.

[36]Z.-Z.Bai,Z.-Q.Wang,On parameterized inexact Uzawa methods for generalized saddle point problems,Linear Algebra Appl.428(2008)2900–2932.

[37]Z.-Z.Bai,B.N.Parlett,Z.-Q.Wang,On generalized successive overrelaxation methods for augmented linear systems,Numer.Math.102(2005)1–38.

[38]J.H.Bramble,J.E.Pasciak,A.T.Vassilev,Analysis of the inexact Uzawa algorithm for saddle point problems,SIAM J.Numer.Anal.34(1997)1072–1092.

[39]H.C.Elman,G.H.Golub,Inexact and preconditioned Uzawa algorithms for saddle point problems,SIAM J.Numer.Anal.31(1994)1645–1661.

[40]A.Feriani,F.Perotti,V.Simoncini,Iterative system solvers for the frequency analysis of linear mechanical systems,Comput.Methods Appl.Mech.Eng.

190(2000)1719–1739.

[41]R.S.Varga,Matrix Iterative Analysis,Prentice-Hall,Englewood Cliffs,NJ,1962.

[42]D.M.Young,Iterative Solutions of Large Linear Systems,Academic Press,New York,1971.

法国化妆品品牌排名

法国化妆品品牌排名 在西方的化妆品中,法国化妆品的地位相当于东方的韩国,所以法国化妆品品牌排名也受到很多女性的关心。对于法国来说也是出名的浪漫之都,化妆品也是这个地方不可或缺的一部分,是不是开始感兴趣了,跟着时尚女人网小编一起来看看法国化妆品品牌排名吧!一定让你大开眼界。 法国化妆品品牌排名一 兰蔻,创办于1935年,是根据法国中部的一个城市而命名的,创办人觉得每一个女人就像是玫瑰一样,所欲选择了“兰蔻”这个被玫瑰环绕的城市来命名。 法国化妆品品牌排名二 香奈儿的创始人出生在法国,当时是一个非常平常的巴黎少女,父亲只是个流动的商人,她和姐姐相依为命长大,创立香奈儿是改变了她和不少女性的一个壮举。 |

法国化妆品品牌排名三 迪奥的创始人在1947年成立了属于自己的时装店,在之后的日子里,他的不断发展成为世界著名的时装设计师。 | 法国化妆品品牌排名四

薇姿在法国的名气很大,创立于1931年,薇姿的实验室表示,要一直努力的了解人类的皮肤,永远的和医院合作,这是他们的使命。 | 法国化妆品品牌排名五 碧欧泉起源于法国,是欧洲三大化妆品品牌之一,该品牌一贯主张的健康理念一直受到全球女性的追捧,所以称为了世界知名的品牌。 |

法国化妆品品牌排名六 欧莱雅同样起源于法国,展示了法国的成熟气质和优雅的感觉,平时注重自我形象的人都会选择这款,这是姐姐泉眼品牌与高品质的产品。 | 法国化妆品品牌排名七 雅漾是法国皮尔法伯医药集团下的护肤产品,结合的药品的精华,主要在药店和健康馆销售,有兴趣的女性也可以尝试一下。 | 法国化妆品品牌排名八

依云是法国历史上很悠久的品牌,这是一个法国小镇的名字,在2001年出现化妆品的系列,是纯天然的化妆品系列。 本文来自时尚女人https://www.360docs.net/doc/bd19005842.html,/New/NewsContent_4754.html

英美文学专业开题报告

英美文学专业开题报告 引导语:各民族的文学中都有许多惊险、恐怖的故事,但似乎没有哪一种文学像英美文学那样不仅创作出数量众多、质量优秀的恐怖文学作品,而且还形成了一个持续发展、影响广泛的哥特传统。以下 是的为大家找到的英美文学专业开题报告。希望能够帮助到大家! 论文题目theApplicationandInnovation 一、选题的意义和研究现状 1.选题的目的、理论意义和现实意义长时期以来,人们视艾米莉?勃朗特为英国文学中的“斯芬克斯”。关于她本人和她的作品都有很多难解之谜,许多评论家从不同的角度、采用不同的方法去研究,得出了不同的结论,因而往往是旧谜刚解,新谜又出,解谜热潮似永无休止。 本文立足于欧美文学中的哥特传统研究《呼啸山庄》的创作源泉,指出艾米莉?勃朗特在主题、人物形象、环境刻画、意象及情节构造等方面都借鉴了哥特传统,同时凭借其超乎寻常的想象力,将现实 与超现实融为一体,给陈旧的形式注入了激烈情感、心理深度和新鲜 活力,达到了哥特形式与激情内容的完美统一,使《呼啸山庄》既超越了哥特体裁的“黑色浪漫主义”,又超越了维多利亚时代的“现实主义”,从而展现出独具一格、经久不衰的艺术魅力。 2.与选题相关的国内外研究和发展概况 各民族的文学中都有许多惊险、恐怖的故事,但似乎没有哪一种文学像英美文学那样不仅创作出数量众多、质量优秀的恐怖文学作品,而且还形成了一个持续发展、影响广泛的哥特传统

(Gothictradition)。哥特文学现在已经成为英美文学研究中的一个重要领域。对哥特文学的认真研究开始于20世纪二三十年代,到70年代以后,由于新的学术思潮和文学批评观念的影响,该研究出现了前所未有而且日趋高涨的热潮。 根据在国际互联网上的搜索,到2000年9月为止,英美等国的学者除发表了大量关于哥特文学的论文外,还至少出版专著达184部,其中1970年以后为126部,仅90年代就达59部,几乎占总数的三分之一。当然,近年来哥特文学研究的状况不仅在于研究成果迅速增加,更重要的是它在深度和广度方面都大为拓展,并且把哥特传统同英美乃至欧洲的历史、社会、文化和文学的总体发展结合起来。 二、研究方案 1.研究的基本内容及预期的结果(大纲)研究的基本内容:本文立足于欧美文学中的哥特传统研究《呼啸山庄》的创作源泉,指出艾米莉?勃朗特在主题、人物形象、环境刻画、意象及情节构造等方面都借鉴了哥特传统,同时凭借其超乎寻常的想象力,将现实与超现实融为一体,给陈旧的形式注入了激烈情感、心理深度和新鲜活力,达到了哥特形式与激情内容的完美统一,使《呼啸山庄》既超越了哥特体裁的“黑色浪漫主义”,又超越了维多利亚时代的“现实主义”,从而展现出独具一格、经久不衰的艺术魅力。 预期的结果(大纲): 1.ASurveyofGothic1.1DefinitionofGothic 1.2theOriginofGothicNovels

初中语文古文赏析曹操《短歌行》赏析(林庚)

教育资料 《短歌行》 《短歌行》赏析(林庚) 曹操这一首《短歌行》是建安时代杰出的名作,它代表着人生的两面,一方面是人生的忧患,一方面是人生的欢乐。而所谓两面也就是人生的全面。整个的人生中自然含有一个生活的态度,这就具体地表现在成为《楚辞》与《诗经》传统的产儿。它一方面不失为《楚辞》中永恒的追求,一方面不失为一个平实的生活表现,因而也就为建安诗坛铺平了道路。 这首诗从“对酒当歌,人生几何”到“但为君故,沉吟至今”,充分表现着《楚辞》里的哀怨。一方面是人生的无常,一方面是永恒的渴望。而“呦呦鹿鸣”以下四句却是尽情的欢乐。你不晓得何以由哀怨这一端忽然会走到欢乐那一端去,转折得天衣无缝,仿佛本来就该是这么一回事似的。这才是真正的人生的感受。这一段如是,下一段也如是。“明明如月,何时可掇?忧从中来,不可断绝。越陌度阡,枉用相存。契阔谈宴,心念旧恩。月明星稀,乌鹊南飞。绕树三匝,何枝可依。”缠绵的情调,把你又带回更深的哀怨中去。但“山不厌高,海不厌深”,终于走入“周公吐哺,天下归心”的结论。上下两段是一个章法,但是你并不觉得重复,你只觉得卷在悲哀与欢乐的旋涡中,不知道什么时候悲哀没有了,变成欢乐,也不知道什么时候欢乐没有了,又变成悲哀,这岂不是一个整个的人生吗?把整个的人生表现在一个刹那的感觉上,又都归于一个最实在的生活上。“我有嘉宾,鼓瑟吹笙”,不正是当时的情景吗?“周公吐哺,天下归心”,不正是当时的信心吗? “青青子衿”到“鼓瑟吹笙”两段连贯之妙,古今无二。《诗经》中现成的句法一变而有了《楚辞》的精神,全在“沉吟至今”的点窜,那是“青青子衿”的更深的解释,《诗经》与《楚辞》因此才有了更深的默契,从《楚辞》又回到《诗经》,这样与《鹿鸣》之诗乃打成一片,这是一个完满的行程,也便是人生旅程的意义。“月明星稀”何以会变成“山不厌高,海不厌深”?几乎更不可解。莫非由于“明月出天山”,“海上生明月”吗?古辞说:“枯桑知天风,海水知天寒”,枯桑何以知天风,因为它高;海水何以知天寒,因为它深。唐人诗“一叶落知天下秋”,我们对于宇宙万有正应该有一个“知”字。然则既然是山,岂可不高?既然是海,岂可不深呢?“并刀如水,吴盐胜雪”,既是刀,就应该雪亮;既是盐,就应该雪白,那么就不必问山与海了。 山海之情,成为漫漫旅程的归宿,这不但是乌鹊南飞,且成为人生的思慕。山既尽其高,海既尽其深。人在其中乃有一颗赤子的心。孟子主尽性,因此养成他浩然之气。天下所以归心,我们乃不觉得是一个夸张。 .

完善版美国文学期末重点

2014 Final Exam Study Guide for American Literature Class Plan of Final Exam 1.Best Choice Question 10% 2.True or False Question 10% 3.Definition 10% 4.Give Brief Answers to Questions 30% 5.Critical Comments 40% American Literature Review Poe’s Poetic Ideas; Major Ideas in Emerson’s “Nature”; Whitman’s Style; Formal Features of Dickinson’s Poetry; Analysis of “Miniver Cheevy” by Edwin Arlington Robinson; Comment on “Stopping by Woods on a Snowy Evening” by Robert Frost; Naturalistic reading of Sister Carrie by Theodore Dreiser; The Theme and Techniques in Eliot’s “The Waste Land”; Theme and Technique in The Great Gatsby by Fitzgerald; Comment on Hemingway’s style and theme in A Farewell to Arms; Analysis of “Dry September” by William Faulkner; Literary terms: Transcendentalism American Naturalism The Lost Generation The Jazz Age Free Verse The Iceberg Analogy

高中语文文言文曹操《短歌行(对酒当歌)》原文、翻译、赏析

曹操《短歌行【对酒当歌】》原文、翻译、赏析译文 原文 面对美酒应该高歌,人生短促日月如梭。对酒当歌,人生几何? 好比晨露转瞬即逝,失去的时日实在太多!譬如朝露,去日苦多。 席上歌声激昂慷慨,忧郁长久填满心窝。慨当以慷,忧思难忘。 靠什么来排解忧闷?唯有狂饮方可解脱。何以解忧?唯有杜康。 那穿着青领(周代学士的服装)的学子哟,你们令我朝夕思慕。青青子衿,悠悠我心。 正是因为你们的缘故,我一直低唱着《子衿》歌。但为君故,沉吟至今。 阳光下鹿群呦呦欢鸣,悠然自得啃食在绿坡。呦呦鹿鸣,食野之苹。 一旦四方贤才光临舍下,我将奏瑟吹笙宴请宾客。我有嘉宾,鼓瑟吹笙。 当空悬挂的皓月哟,你运转着,永不停止;明明如月,何时可掇? 我久蓄于怀的忧愤哟,突然喷涌而出汇成长河。忧从中来,不可断绝。 远方宾客踏着田间小路,一个个屈驾前来探望我。越陌度阡,枉用相存。 彼此久别重逢谈心宴饮,争着将往日的情谊诉说。契阔谈讌,心念旧恩。 明月升起,星星闪烁,一群寻巢乌鹊向南飞去。月明星稀,乌鹊南飞。 绕树飞了三周却没敛绕树三匝,何枝

翅,哪里才有它们栖身之 所? 可依? 高山不辞土石才见巍 峨,大海不弃涓流才见壮阔。(比喻用人要“唯才是举”,多多益善。)山不厌高,水不厌深。 只有像周公那样礼待贤 才(周公见到贤才,吐出口 中正在咀嚼的食物,马上接 待。《史记》载周公自谓: “一沐三握发,一饭三吐哺, 犹恐失天下之贤。”),才 能使天下人心都归向我。 周公吐哺,天 赏析 曹操是汉末杰出的政治家、军事家和文学家,他雅好诗章,好作乐府歌辞,今存诗22首,全是乐府诗。曹操的乐府诗多描写他本人的政治主张和统一天下的雄心壮志。如他的《短歌行》,充分表达了诗人求贤若渴以及统一天下的壮志。 《短歌行》是政治性很强的诗作,主要是为曹操当时所实行的政治路线和政策策略服务的,但是作者将政治内容和意义完全熔铸在浓郁的抒情意境之中,全诗充分发挥了诗歌创作的特长,准确而巧妙地运用了比兴手法,寓理于情,以情感人。诗歌无论在思想内容还是在艺术上都取得了极高的成就,语言质朴,立意深远,气势充沛。这首带有建安时代"志深比长""梗概多气"的时代特色的《短歌行》,读后不觉思接千载,荡气回肠,受到强烈的感染。 对酒当歌,人生几何? 譬如朝露,去日苦多。 慨当以慷,幽思难忘。 何以解忧,唯有杜康。 青青子衿,悠悠我心。 但为君故,沈吟至今。 呦呦鹿鸣,食野之苹。 我有嘉宾,鼓瑟吹笙。 明明如月,何时可掇? 忧从中来,不可断绝。 越陌度阡,枉用相存。 契阔谈,心念旧恩。 月明星稀,乌鹊南飞, 绕树三匝,何枝可依? 山不厌高,海不厌深, 周公吐哺,天下归心。 《短歌行》是汉乐府的旧题,属于《相和歌?平调曲》。这就是说它本来是一个乐曲的名称,这种乐曲怎么唱法,现在当然是不知道了。但乐府《相和歌?平调曲》中除了《短歌行》还有《长歌行》,唐代吴兢《乐府古题要解》引证古诗“长歌正激烈”,魏文帝曹丕《燕歌行》“短歌微吟不能长”和晋代傅玄《艳歌行》“咄来长歌续短歌”等句,认为“长歌”、“短

外国文学名著鉴赏期末论文

外国文学名著鉴赏期末论文院—系:数学学院 科目:外国文学名著鉴赏(期末论文)班级: 08级数学与应用数学A班 姓名:沈铁 学号: 200805050149 上课时段:周五晚十、十一节课

奋斗了,才有出路 ——读《鲁宾逊漂游记》有感小说《鲁宾逊漂游记》一直深受人们的喜爱。读完这篇小说,使我对人生应该有自己的一个奋斗历程而受益匪浅。当一个人已经处于绝境的时候,还能够满怀信心的去面对和挑战生活,实在是一种可贵的精神。他使我认识到,人无论何时何地,不管遇到多大的困难,都不能被困难所吓倒,我们要勇敢的面对困难,克服困难,始终保持一种积极向上、乐观的心态去面对。在当今社会只有努力去奋斗,才会有自己的出路! 其实现在的很多人都是那些遇到困难就退缩,不敢勇敢的去面对它。不仅如此,现在很多人都是独生子女,很多家长视子女为掌上明珠,不要说是冒险了,就连小小的家务活也不让孩子做,天天总是说:“我的小宝贝啊,你读好书就行了,其它的爸爸妈妈做就可以了。”读书固然重要,但生活中的小事也不能忽略。想一想,在荒无人烟的孤岛上,如果你连家务活都不会做,你能在那里生存吗?读完这部著作后,我不禁反问自己:“如果我像书中的鲁宾逊那样在大海遭到风暴,我能向他那样与风暴搏斗,最后逃离荒岛得救吗?恐怕我早已经被大海所淹没;如果我漂流到孤岛,能活几天?我又能干些什么?我会劈柴吗?会打猎做饭吗?我连洗洗自己的衣服还笨手笨脚的。”我们应该学习鲁宾逊这种不怕困难的精神,无论何时何地都有坚持地活下去,哪怕只有一线希望也要坚持到底,决不能放弃!我们要像鲁宾

逊那样有志气、有毅力、爱劳动,凭自己的双手创造财富,创造奇迹,取得最后的胜利。这样的例子在我们的生活中屡见不鲜。 《史记》的作者司马迁含冤入狱,可它依然在狱中完成《史记》一书,他之所以能完成此书,靠的也是他心中那顽强的毅力,永不放弃的不断努力的精神。著名作家爱迪生从小就生活在一个贫困的家庭中,可是他从小就表现出了科学方面的天赋。长大后爱迪生着力于电灯的发明与研究,他经过了九百多次的失败,可它依然没有放弃,不断努力,最后终于在第一千次实验中取得了成功。 鲁宾逊在岛上生活了二十八年,他面对了各种各样的困难和挫折,克服了许多常人无法想象的困难,自己动手,丰衣足食,以惊人的毅力,顽强的活了下来。他自从大船失事后,找了一些木材,在岛上盖了一间房屋,为防止野兽,还在房子周围打了木桩,来到荒岛,面对着的首要的就是吃的问题,船上的东西吃完以后,鲁宾逊开始打猎,有时可能会饿肚子,一是他决定播种,几年后他终于可以吃到自己的劳动成果,其实学习也是这样,也有这样一个循序渐进的过程,现在的社会,竞争无处不在,我们要懂得只有付出才会有收获,要勇于付出,在战胜困难的同时不断取得好成绩。要知道只有付出,才会有收获。鲁宾逊在失败后总结教训,终于成果;磨粮食没有石磨,他就用木头代替;没有筛子,就用围巾。鲁宾逊在荒岛上解决了自己的生存难题,面对人生挫折,鲁宾逊的所作所为充分显示了他坚毅的性格和顽强的精神。同样我们在学习上也可以做一些创新,养成一种创新精神,把鲁宾逊在荒岛,不畏艰险,不怕失败挫折,艰苦奋斗的精

一线化妆品品牌

中国十大名牌化妆品榜中榜(化妆品品牌,名牌化妆品) 欧莱雅L'OREAL(于1907年法国,世界化妆品行业的领先者,中国驰名商标,欧莱雅集团) 雅芳A VON(于1886年美国纽约,世界十大品牌品牌,世界上最大的美容化妆品公司之一) 妮维雅NIVEA(于1911年德国汉堡,欧洲全球护肤专家,BDF(拜尔斯道夫)公司旗下品牌) 玫琳凯Marykay(于1963年美国,世界上最大的护肤品和彩妆品直销企业之一,玫琳凯公司) 玉兰油OLAY(于1950年代,世界上最大最著名的护肤品牌之一,宝洁公司旗下品牌) DHC蝶翠诗(1972年日本,跨化妆品/医药保健/翻译出版/美容院/水疗领域的综合性企业) 露得清(分别创立于1954年和1992年美国,著名化妆品品牌,强生公司旗下品牌) 薇姿Vichy(于1931年法国,将药房专销护肤品的概念带入中国,欧莱雅集团旗下品牌) 旁氏POND'S(于1846年美国,1987年由联合利华收购,联合利华的成功典范之一,护肤佳品) ZA姬芮(真皙)(资生堂(1872年东京)和卓多姿(1932年纽约)合作创建,美颜产品的前沿) 八大高端化妆品品牌榜中榜 迪奥Dior(Christian dior始于1946年法国,代表高贵典雅生活风格精华的品牌) 香奈儿(尔)***el(于1913年法国巴黎,旗下产品繁多,法国著名奢侈品牌,巴黎***el集团) 雅诗兰黛Estee Lauder(于1946年美国纽约,全球领先的化妆品品牌,美国雅诗兰黛公司) 兰蔻Lancome(于1935年创于法国,全球知名的高端化妆品品牌,法国国宝级化妆品牌) 资生堂/欧珀莱AUPRES(于1872年日本,中国名牌,欧珀莱属于资生堂Shiseido集团旗下品牌) 倩碧Clinique(于1968年美国,世界顶级化妆品品牌,一线牌子,美国雅诗兰黛集团旗下品牌) 碧欧泉Biotherm(于1950年法国,欧洲三大时尚护肤品牌之一,属L'Oreal化妆品集团) 安娜苏Anna Sui(有彩妆,护肤品和香水,其中化妆品1998年在日本诞生,时尚设计的领先品牌) 十大大众化妆品品牌榜中榜/名牌化妆品 小护士(于1992年,国内著名化装品牌,欧莱雅集团在中国收购的第一个本土品牌) 隆力奇(中国名牌,中国驰名商标,民族品牌,技术力量先进的日化企业,江苏隆力奇集团) 大宝Dabao(中国名牌,中国驰名商标,北京市著名商标,强生旗下品牌,北京大宝公司) 丁家宜TJOY(中国药科大学丁家宜教授始于1987年,民族品牌,苏州珈侬生化有限公司) 李医生(始于1991年澳洲,受消费者喜爱的日化品牌,西婷美容保健有限公司) 美体小铺(The face shop,于1976年英国,天然/活性健康化妆品,国际化妆品品牌) 佰草集Herborist(国内最著名的化妆品企业,民族品牌,上海家化旗下中草药中高档护理品) 相宜本草(于1999年上海,民族品牌,上海名牌,高新技术企业,中华本草美容护肤品品牌) 自然堂CHCEDO(于2001年中国,中国著名品牌,民族品牌,上海市名牌产品,伽蓝集团) 采诗Caisy(大型日化公司,大众化妆品品牌,民族品牌,广州市采诗化妆品有限公司) 2010年国际化妆品排行榜 1 香奈儿(尔)***el (于1913年法国巴黎,旗下产品繁多,法国著名奢侈品牌,***el集团) 2 雅诗兰黛Estee Lauder (于1946年美国纽约,全球领先的化妆品品牌,美国雅诗兰黛公司) 3 兰蔻Lancome (于1935年创于法国,全球知名的高端化妆品品牌,法国国宝级化妆品牌) 4 迪奥Dior (于1913年法国巴黎,华丽与高雅的代名词,著名时尚奢侈消费品品牌) 5 娇兰Guerlain (于1828年法国,以香水起家的巴黎皇室贵族保养品品牌,法国娇兰集团)

高中英语选修课:英语文学欣赏 Sister Carrie 学生版讲义资料

Chapter III WEE QUESTION OF FORTUNE--FOUR-FIFTY A WEEK Once across the river and into the wholesale district, she glanced about her for some likely door at which to apply. As she contemplated the wide windows and imposing signs, she became conscious of being gazed upon and understood for what she was--a wage-seeker. She had never done this thing before, and lacked courage. To avoid a certain indefinable shame she felt at being caught spying about for a position, she quickened her steps and assumed an air of indifference supposedly common to one upon an errand. In this way she passed many manufacturing and wholesale houses without once glancing in. At last, after several blocks of walking, she felt that this would not do, and began to look about again, though without relaxing her pace. A little way on she saw a great door which, for some reason, attracted her attention. It was ornamented by a small brass sign, and seemed to be the entrance to a vast hive of six or seven floors. "Perhaps," she thought, "They may want some one," and crossed over to enter. When she came within a score of feet of the desired goal, she saw through the window a young man in a grey checked suit. That he had anything to do with the concern, she could not tell, but because he happened to be looking in her direction her weakening heart misgave her and she hurried by, too overcome with shame to enter. Over the way stood a great six- story structure, labelled Storm and King, which she viewed with rising hope. It was a wholesale dry goods concern and employed women. She could see them moving about now and then upon the upper floors. This place she decided to enter, no matter what. She crossed over and walked directly toward the entrance. As she did so, two men came out and paused in the door. A telegraph messenger in blue dashed past her and up the few steps that led to the entrance and disappeared. Several pedestrians out of the hurrying throng which filled the sidewalks passed about her as she paused, hesitating. She looked helplessly around, and then, seeing herself observed, retreated. It was too difficult a task. She could not go past them. So severe a defeat told sadly upon her nerves. Her feet carried her mechanically forward, every foot of her progress being a satisfactory portion of a flight which she gladly made. Block after block passed by. Upon streetlamps at the various corners she read names such as Madison, Monroe, La Salle, Clark, Dearborn, State, and still she went, her feet beginning to tire upon the broad stone flagging. She was pleased in part that the streets were bright and clean. The morning sun, shining down with steadily increasing warmth, made the shady side of the streets pleasantly cool. She looked at the blue sky overhead with more realisation of its charm than had ever come to her before. Her cowardice began to trouble her in a way. She turned back, resolving to hunt up Storm and King and enter. On the way, she encountered a great wholesale shoe company, through the broad plate windows of which she saw an enclosed executive

曹操《短歌行》其二翻译及赏析

曹操《短歌行》其二翻译及赏析 引导语:曹操(155—220),字孟德,小名阿瞒,《短歌行 二首》 是曹操以乐府古题创作的两首诗, 第一首诗表达了作者求贤若渴的心 态,第二首诗主要是曹操向内外臣僚及天下表明心迹。 短歌行 其二 曹操 周西伯昌,怀此圣德。 三分天下,而有其二。 修奉贡献,臣节不隆。 崇侯谗之,是以拘系。 后见赦原,赐之斧钺,得使征伐。 为仲尼所称,达及德行, 犹奉事殷,论叙其美。 齐桓之功,为霸之首。 九合诸侯,一匡天下。 一匡天下,不以兵车。 正而不谲,其德传称。 孔子所叹,并称夷吾,民受其恩。 赐与庙胙,命无下拜。 小白不敢尔,天威在颜咫尺。 晋文亦霸,躬奉天王。 受赐圭瓒,钜鬯彤弓, 卢弓矢千,虎贲三百人。 威服诸侯,师之所尊。 八方闻之,名亚齐桓。 翻译 姬昌受封为西伯,具有神智和美德。殷朝土地为三份,他有其中两分。 整治贡品来进奉,不失臣子的职责。只因为崇侯进谗言,而受冤拘禁。 后因为送礼而赦免, 受赐斧钺征伐的权利。 他被孔丘称赞, 品德高尚地位显。 始终臣服殷朝帝王,美名后世流传遍。齐桓公拥周建立功业,存亡继绝为霸 首。

聚合诸侯捍卫中原,匡正天下功业千秋。号令诸侯以匡周室,主要靠的不是 武力。 行为磊落不欺诈,美德流传于身后。孔子赞美齐桓公,也称赞管仲。 百姓深受恩惠,天子赐肉与桓公,命其无拜来接受。桓公称小白不敢,天子 威严就在咫尺前。 晋文公继承来称霸,亲身尊奉周天王。周天子赏赐丰厚,仪式隆重。 接受玉器和美酒,弓矢武士三百名。晋文公声望镇诸侯,从其风者受尊重。 威名八方全传遍,名声仅次于齐桓公。佯称周王巡狩,招其天子到河阳,因 此大众议论纷纷。 赏析 《短歌行》 (“周西伯昌”)主要是曹操向内外臣僚及天下表明心 迹,当他翦灭群凶之际,功高震主之时,正所谓“君子终日乾乾,夕惕若 厉”者,但东吴孙权却瞅准时机竟上表大说天命而称臣,意在促曹操代汉 而使其失去“挟天子以令诸侯”之号召, 故曹操机敏地认识到“ 是儿欲据吾著炉上郁!”故曹操运筹谋略而赋此《短歌行 ·周西伯 昌》。 西伯姬昌在纣朝三分天下有其二的大好形势下, 犹能奉事殷纣, 故孔子盛称 “周之德, 其可谓至德也已矣。 ”但纣王亲信崇侯虎仍不免在纣王前 还要谗毁文王,并拘系于羑里。曹操举此史实,意在表明自己正在克心效法先圣 西伯姬昌,并肯定他的所作所为,谨慎惕惧,向来无愧于献帝之所赏。 并大谈西伯姬昌、齐桓公、晋文公皆曾受命“专使征伐”。而当 今天下时势与当年的西伯、齐桓、晋文之际颇相类似,天子如命他“专使 征伐”以讨不臣,乃英明之举。但他亦效西伯之德,重齐桓之功,戒晋文 之诈。然故作谦恭之辞耳,又谁知岂无更讨封赏之意乎 ?不然建安十八年(公元 213 年)五月献帝下诏曰《册魏公九锡文》,其文曰“朕闻先王并建明德, 胙之以土,分之以民,崇其宠章,备其礼物,所以藩卫王室、左右厥世也。其在 周成,管、蔡不静,惩难念功,乃使邵康公赐齐太公履,东至于海,西至于河, 南至于穆陵,北至于无棣,五侯九伯,实得征之。 世祚太师,以表东海。爰及襄王,亦有楚人不供王职,又命晋文登为侯伯, 锡以二辂、虎贲、斧钺、禾巨 鬯、弓矢,大启南阳,世作盟主。故周室之不坏, 系二国是赖。”又“今以冀州之河东、河内、魏郡、赵国、中山、常 山,巨鹿、安平、甘陵、平原凡十郡,封君为魏公。锡君玄土,苴以白茅,爰契 尔龟。”又“加君九锡,其敬听朕命。” 观汉献帝下诏《册魏公九锡文》全篇,尽叙其功,以为其功高于伊、周,而 其奖却低于齐、晋,故赐爵赐土,又加九锡,奖励空前。但曹操被奖愈高,心内 愈忧。故曹操在曾早在五十六岁写的《让县自明本志令》中谓“或者人见 孤强盛, 又性不信天命之事, 恐私心相评, 言有不逊之志, 妄相忖度, 每用耿耿。

化妆品品牌大全

国际顶级化妆品公司排行 1.法国欧莱雅集团(L'Oreal Groug) 顶级品牌 HR(赫莲娜) 二线产品 Lancome(兰蔻)、Biotherm(碧欧泉) 三线或三线以下产品 LOreal Pairs(欧莱雅)、kiehls(契尔氏) Garnier(卡尼尔)、羽西、小护士 彩妆品牌 shu unemura(植村秀)、Maybelline(美宝莲) 香水品牌 Giorgio Armani(阿玛尼)、Parfums(纪梵希) Ralph Lauren(拉尔夫·劳伦)、Polo(保罗)、cacharel(卡夏尔) 2.宝洁公司(The Procter & Gamble) 顶级品牌 SK-II(Maxfactor)蜜丝佛陀 二线产品 Olay(玉兰油)、lllume(伊奈美) 男士品牌 Boss Skin 彩妆品牌

Cover girl(封面女郎) 亚洲第一彩妆品牌 ANNA SUI(安娜苏) 香水品牌 ANNA SUI(安娜苏)、Escada(艾斯卡达)、Dunhill(登喜路) Lanvin(朗万)、Paul Smith(保罗史密斯) 3.美国雅诗兰黛(Estee Lauder Cos Inc) 顶级品牌 La Mer(海蓝之谜) 一线品牌 雅诗兰黛 二线品牌 Clinique(倩碧) 彩妆品牌 Bobbi Brown(芭比波朗)、M.A.C(魅可) 香水品牌 Tommy Hilfiger(唐美希绯格)、DKNY(唐可娜儿)、Aramis(雅男儿) 4.日本资生堂(Shiseido Co Ltd) 顶级品牌 IPSA(茵芙莎) 中国专售

AUPRES(欧珀莱)、Za(姬芮) 香水品牌 三宅一生 5.法国LVMH集团 护肤品牌 Guerlain(娇兰)、Chiristian Dior(迪奥) 纪梵希(Givenchy)、CLARINS(娇韵诗) 彩妆品牌 Makeup forvever(浮生若梦)、BENEFIT、SEPHORA(丝芙兰) 香水品牌 KENZO(高田贤三)、fendi(芬迪) DOLCE&GABBANA(杜嘉班纳)、CalvinKlein(CK)、LOEWE 6.英国联合利华(Unilever) 护肤品牌 Elizabeth Arden(伊丽莎白.雅顿) 7.法国Chanel(香奈儿)集团

_嘉莉妹妹_中自然主义赏析

目的。笔者曾进行了这方面的一个实验;对乐理、视唱程度相当的A、B两个班,在讲小调式时,A班此时视唱只唱小调式作品,边唱边分析;B班只在乐理课上选一些典型作品作简单分析,而视唱课对小调作品概不介绍,结果发现A班大部分同学对小调式的特点掌握清晰、分析作品透彻,而B班多数同学对小调式作品的分析仍感糊涂。 (二)乐理和视唱由同一老师任教,选用乐理与视唱进度相当、联系密切的教材。 两门课由同一老师任教,这样就使老师对两门课的进度有更好的把握,从而做到在教学内容上的衔接,使乐理教学与视唱教学融为一体。现在有些院校已开始了这方面的尝试,如河南的黄河科技学院,商丘师院等。据笔者了解,由同一个老师任教班级学生的乐理视唱学习效果明显好于非同一教师任教的班级。 教材的选择对教学影响极大,原来的视唱教材极少有乐理内容,而乐理教材中的谱例也不多。目前新的教材已改变了这种状况,现在视唱教材中有了很好的理论知识讲授,如许敬行、孙虹编著,高教出版社出版的《视唱练习》。乐理教材有了更多的谱例,如贾方爵编著、 西南师大出版社出版的《基本乐理》。选用此种联系密切的教材, 教师在教学的过程中更易做到理论联系实际,学生在自学时也更易理解。 (三)加强乐理、视唱教学与其他科目的横向联系 音乐中的许多课程,如欣赏、民族民间音乐、合唱、音乐史等的学习对学生综合专业素质的提高有很大帮助,对它们的学习与对乐理和视唱的学习又能达到互相促进的目的。在乐理学教学中,学生最易迷惑的就是调式调性的判断,而进行调式判断时首先要靠听觉分辨作品的五声性和西方性。但如何能够分辨其是五声性作品还是西方调式体系作品,靠的是学生对音乐的基本鉴赏力。这就要求学生平时在欣赏课上要认真去听、去辨别,而欣赏老师也应该对不同体裁的音乐作品进行详细的讲解,并引导学生去辨别。经过这样长期的训练,学生对于不同地域、不同风格的音乐作品都有了了解和掌握,辨别调式的问题自然迎刃而解。同样,民族民间课程的学习对于学生了解和掌握各民族的音乐风格、特点起重要作用。经过同学们对民歌、戏曲等曲型片断的实际训练,在视唱这些有特点的作品时,其音乐风格的把握就会更好一些,因律制原因产生的音准问题也会大大减少,学生对民族风格的视唱会唱得更有味,把握得更准确。在这方面,如果乐理和视唱课需要,可会同其他科目的教师对教学进度、教学内容作一些适当的调整,使之与乐理、视唱教学相适应。如有必要,也可请这方面的专家,就某一问题进行一次讲座,以加深同学们对某些问题的理解。教师亦可有目的地向学生介绍一些此方面的书籍,让学生去阅读;介绍一些音响资料,让学生有目的地听,从而拓宽学生的知识面,进而更好地学习和掌握乐理和视唱。 总之,视唱与乐理相结合并密切联系相关科目的教学方法,不仅可以使学生增加对音乐理论的感性认识,加强视唱时的理论指导,更增加了视唱课的趣味性,使乐理不再枯燥,视唱课不再单调。 当然,加强乐理、视唱与其他科目教学的联系并不是说这些课程什么地方都可以互融。有些乐理知识如音律很难让学生唱出来。但这并不能否认加强视唱、乐理与其他学科教学联系的必要性。 作者简介:刘建坤,商丘师范学院音乐系教师。 一、美国自然主义的产生 内战之后,美国处于一段相对和平的时期,资本主义经济蓬勃发展。然而,在经济发展的背后,人们却普遍产生了一种悲观情绪,传统的理想主义被抛弃,宇宙的在规律性和机械性中蕴涵的漠然性使其变成了人类的敌人,至少已经不是人类慈祥的朋友。斯蒂芬?克莱恩(Stephen Crane(1871-1900))的一首小诗God is cold[1] 便生动地反映了这种状况: 一个人对宇宙说:/“阁下,我存在的!”/“不过,”传来宇宙的回答,/“你的存在虽是事实,却/并没有使我产生义务感。” 对这一思潮起决定性作用的是达尔文的进化论(Theory of Evolution)。达尔文认为:影响生物进化的因素有三种,即:自然选择、性的选择及个体有生之期获得特性的遗传。进化论的诞生,是对传统神学及理想主义神学的全盘否定,它取消了上帝设计师和创造者的地位,进而强调人类产生过程的机械性,以及人类进化过程的因果循环性。受其影响,悲观、忧郁的新自然哲学应运而生。新自然哲学指出,自然是一座对人类遭遇无动于衷的庞大机器,人类在自然中必然要为生存而相互竞争,而且,部分人的毁灭是人类进步中不可避免的现象。 悲观的新自然哲学在文学中的反映就是产生悲观宿命的自然主义文学。英国哲学家赫伯特?斯宾塞(HerbertSpencer)的“社会达尔文主义” (Social Darwinism)以及美国内战后的社会状况,对自然主义在美国的产生和发展起了极大的作用。当时的主要作家往往把人置于庞大的自然和社会背景中,从而显示其渺小、脆弱以及无可奈何。 "生存"是人类活动的最高目标,道德规范对于实际生活已经毫无意义。 在美国自然主义文学中,最为突出的代表是西奥多?德莱塞。 二、德莱塞在美国文学史上的地位 西奥多?德莱塞 [Theodore Dreiser (1871-1945)]是美国现代小说的先驱和代表作家,被认为是同海明威、福《嘉莉妹妹》是美国自然主义文学大师西奥多?德莱塞的处女作和成名作。自然主义在书中 主要表现为作者对失败者的深刻同情。 《嘉莉妹妹》中 自然主义赏析 文/姚晓鸣 编辑:冯彬彬 69 美与时代 2003.11下

[法国护肤品适合中国人吗]适合在法国买的护肤品有哪些(2)(Word可编辑版)

[法国护肤品适合中国人吗]适合在法国买 的护肤品有哪些(2) (最新版) -Word文档,下载后可任意编辑和处理- 法国购买护肤品的地方推荐 Choice1:【百货公司】 百货公司是大而全的代名词。一般的百货公司都可以囊括大部分的名牌化妆品和护肤品。所以目标是名牌的消费者大可认定一家百货公司,即可搜罗到几乎所有你想要的宝贝。在百货公司中售卖的美妆品牌都有一个独立的专柜,专柜小姐对本品牌的产品特点非常的熟悉,可以根据您的需求做出个性化的推荐。在减价销售期间,百货公司中的各个美妆品牌常常会推出优惠大礼包,超值的组合绝对不能错过。另外在百货公司购物还有一个好处就是,可以享受百货公司提供的优惠和服务,比如礼品包装、参加购物抽奖活动等。 到巴黎必逛的百货公司当属闻名遐迩老佛爷和春天百货,这两家店比邻而居,都位于加尼叶歌剧院附近,一家没逛过瘾可以迅速杀进另一家,一定能满足你购物的欲望。此外,巴黎市政府旁边的BHV也是一座大型的综合性百货公司,路过的话不妨进去看看。

如何到达: 去老佛爷和春天百货,可以乘坐地铁7号、9号线到Chaussee d' Antin La Fayette站。 到BHV,可乘坐地铁1号或11号线,到Hotel de ville站下,从地铁的BHV百货出口即有通道通向商场地下一层。 Choice2:【品牌专卖店】 百货公司的货物虽全,但若只逛百货公司,难免会错过一些遗珠。比如法国的几家以纯天然原料著称的化妆品品牌,它们大多不会在百货公司里设置专柜,而是开设自己的独立连锁专卖店,例如YVES ROCHER和L'OCCITANE等。 在品牌专卖店购买化妆品最好办理相关品牌的会员积分卡,可以享受更多优惠,如YVES ROCHER就采用会员积分制度,只要在YVES ROCHER购买产品时办理一张会员积分卡,就可以将本次的消费积分登记上去。当积分达到一定的额度,即可获赠礼品并享有其他优惠。 在新年和大减价期间,各个品牌专卖店也会推出很多活动。其中YVES ROCHER的大减价就非常实在,是少数对旗下所有化妆品都进行打折的品牌,折扣力度可达五折,在此期间购买是最划算不过的了。L'OCCITANE的各专卖店则会推出一些限定特惠产品和套装礼品盒。特惠产品虽然种类有限,但价格都相当诱人。值得一提的是它的礼品盒,包装精致大方,是馈赠亲友的佳品。 如何到达: 各品牌专卖店分布很广,您可以提前在官网上查找地址,也可以

短歌行赏析介绍

短歌行赏析介绍 说道曹操, 大家一定就联想到三国那些烽火狼烟岁月吧。 但是曹操其实也是 一位文学 大家,今天就来分享《短歌行 》赏析。 《短歌行》短歌行》是汉乐府旧题,属于《相和歌辞·平调曲》。这就是说 它本来是一个乐曲名称。最初古辞已经失传。乐府里收集同名诗有 24 首,最早 是曹操这首。 这种乐曲怎么唱法, 现在当然是不知道。 但乐府 《相和歌·平调曲》 中除《短歌行》还有《长歌行》,唐代吴兢《乐府古题要解》引证古诗 “长歌正激烈”, 魏文帝曹丕 《燕歌行》 “短歌微吟不能长”和晋代傅玄 《艳 歌行》 “咄来长歌续短歌”等句, 认为“长歌”、 “短歌”是指“歌声有长短”。 我们现在也就只能根据这一点点材料来理解《短歌行》音乐特点。《短歌行》这 个乐曲,原来当然也有相应歌辞,就是“乐府古辞”,但这古辞已经失传。现在 所能见到最早《短歌行》就是曹操所作拟乐府《短歌行》。所谓“拟乐府”就是 运用乐府旧曲来补作新词,曹操传世《短歌行》共有两首,这里要介绍是其中第 一首。 这首《短歌行》主题非常明确,就是作者希望有大量人才来为自己所用。曹 操在其政治活动中,为扩大他在庶族地主中统治基础,打击反动世袭豪强势力, 曾大力强调“唯才是举”,为此而先后发布“求贤令”、“举士令”、“求逸才 令”等;而《短歌行》实际上就是一曲“求贤歌”、又正因为运用诗歌 形式,含有丰富抒情成分,所以就能起到独特感染作用,有力地宣传他所坚 持主张,配合他所颁发政令。 《短歌行》原来有“六解”(即六个乐段),按照诗意分为四节来读。 “对酒当歌,人生几何?譬如朝露,去日苦多。慨当以慷,忧思难忘。何以 解忧,唯有杜康。” 在这八句中,作者强调他非常发愁,愁得不得。那么愁是什么呢?原来他是 苦于得不到众多“贤才”来同他合作, 一道抓紧时间建功立业。 试想连曹操这样 位高权重人居然在那里为“求贤”而发愁, 那该有多大宣传作用。 假如庶族地主 中真有“贤才”话, 看这些话就不能不大受感动和鼓舞。 他们正苦于找不到出路

相关文档
最新文档