第五章-遗传算法工具箱函数【精品毕业设计】(完整版)

第五章-遗传算法工具箱函数【精品毕业设计】(完整版)
第五章-遗传算法工具箱函数【精品毕业设计】(完整版)

第五章遗传算法工具箱函数

本章介绍英国设菲尔德大学开发的遗传算法工具箱函数。

由于MATLAB高级语言的通用性,对问题用M文件编码,与此配对的是MA TLAB先进的数据分析、可视化工具、特殊目的的应用领域工具箱和展现给使用者具有研究遗传算法可能性的一致环境。MATLAB遗传算法工具箱为遗传算法从业者和第一次实验遗传算法的人提供了广泛多样的有用函数。

遗传算法工具箱使用MA TLAB矩阵函数为实现广泛领域的遗传算法建立一套通用工具,这个遗传算法工具是用M文件写成的,是命令行形式的函数,能完成遗传算法大部分重要功能的程序的集合。用户可通过这些命令行函数,根据实际分析的需要,编写出功能强大的MATLAB程序。

5.1 工具箱结构

本节给出GA工具箱的主要程序。表5.1为遗传算法工具箱中的各种函数分类表。

表5.1 遗传算法工具箱中函数分类表

5.1.1 种群表示和初始化

种群表示和初始化函数有:crtbase,crtbp,crtrp。

GA工具箱支持二进制、整数和浮点数的基因表示。二进制和整数种群可以使用工具箱中的crtbp建立二进制种群。crtbase是附加的功能,它提供向量描述整数表示。种群的实值可用crtrp进行初始化。在二进制代码和实值之间的变换可使用函数bs2rv,它支持格雷码和对数编码。

5.1.2 适应度计算

适应度函数有:ranking,scaling。

适应度函数用于转换目标函数值,给每一个个体一个非负的价值数。这个工具箱支持Goldberg的偏移法(offsetting)和比率法以及贝克的线性评估算法。另外,ranking函数支持非线性评估。

5.1.3 选择函数

选择函数有:reins,rws,select,sus。

这些函数根据个体的适应度大小在已知种群中选择一定数量的个体,对它的索引返回一个列向量。现在最合适的是轮盘赌选择(即rws函数)和随机遍历抽样(即sus函数)。高级入口函数select为选择程序,特别为多种群的使用提供了一个方便的接口界面。在这种情况下,代沟是必须的,这就是整个种群在每一代中没有被完全复制,reins能使用均匀的随机数或基于适应度的重新插入。

5.1.4 交叉算子

交叉算子函数有:recdis,recint,reclin,recmut,recombin,xovdp,xovdprs,xovmp,xovsh,xovshrs,xovsp,xovsprs。

交叉是通过给定的概率重组一对个体产生后代。单点交叉、两点交叉和洗牌交叉是由xovsp、xovdp、xovsh函数分别完成的。缩小代理交叉函数分别是:xovdprs、xovshrs和xovsprs。通用的多点交叉函数是xovmp,它提供均匀交换的支持。为支持染色体实值表示,离散的、中间的和线性重组分别由函数recdis、recint、reclin完成。函数recmut提供具有突变特征的线性重组。函数recombin是一高级入口函数,对所有交叉操作提供多子群支持入口。

5.1.5 变异算子

变异算子函数有:mut,mutate,mutbga。

二进制和整数变异操作由mut 完成。实值的变异使用育种机函数mutbga 是有效的。Mutate 对变异操作提供一个高级接口。

5.1.6 多子群支持

多子群支持函数:migrate 。

遗传算法工具箱通过高层遗传操作函数migrate 对多子群提供支持,它的一个功能是在子群中交换个体。一个单一种群通过使用工具箱中函数修改数据结构,使其分为许多子种群,这些子种群被保存在连续的数据单元块中。高层函数如select 和reins 可独立地操作子种群,包含在一个数据结构中的每一子种群允许独自向前衍化。基于孤岛或回迁模式,migrate 允许个体在子种群中迁移。

5.2 遗传算法中的通用函数

在这一节,将详细介绍在MATLAB 中用于遗传算法的各种工具箱函数,对每个函数从功能、语法格式、使用说明以及用法举例等方面进行阐述。关于每个函数的适用信息由在线帮助工具提供。

5.2.1 函数 bs2rv

功能:二进制串到实值的转换

格式:Phen = bs2rv(Chrom,FieldD)

详细说明:Phen = bs2rv (Chrom, FieldD),根据译码矩阵FieldD 将二进制串矩阵Chrom 转换为实值向量。返回矩阵Phen 包含对应的种群表现型。

使用格雷编码的二进制染色体表示被推荐作为量化间隔的规则海明距离,可使遗传搜索减少欺骗,设置量化点间刻度的可选方案是选择线性或对数编码从二进制变换到实值。对数刻度用于决策变量的范围不知道,作为大范围参数的边界时,搜索可用较少的位数,以减少GA 的内存需求和计算量。

矩阵FieldD 有如下结构:

??????????

????????????ubin lbin scale code ub lb len 这里矩阵的行组成如下:

len 是包含在Chrom 中每个子串长度,注意sum(len )等于length(Chrom)。

lb 和ub 是行向量,分别指明每个变量使用的下界和上界。

code 是二进制行向量,指明子串是怎样编码的,code (i)=1为标准的二进制编码,code (i)=0则为格雷编码。

scale 是二进制行向量,指明每个子串是否使用对数或算术刻度,scale (i) = 0则为算术,scale (i) = 1则为对数。

lbin 和 ubin 是二进制行向量,指明表示范围中是否包含每个边界。选择lbin =0或ubin =

0则从表示范围中去掉边界,lbin =1或ubin = 1则在表示范围中包含边界。

例5.1 函数bs2rv 应用举例。下面的二进制种群Chrom ,由函数crtbp 创建,表示在[-1,10]之间的一组简单变量,程序代码表示如何使用函数bs2rv 将算术表示的格雷码或二进制串表示转换为实值表现型。

Chrom = crtbp(4,8) % 创建任意染色体,如为二进制串

0000011110001001chrom 0010100011011011??????=??????

FieldD = [8; -1; 10; 1; 0; 1; 1]; % 包括边界

Phen = bs2rv(Chrom,FieldD) % 转换二进制到实值,使用算术刻度

0.78439.3961phen 1.07065.2980-?? ? ?= ? ??? FieldD = [8; 1; 10; 1; 1; 0; 0];

% 不包括边界 Phen = bs2rv(Chrom,FieldD) % 转换二进制到实值,使用对数刻度

6.62235.0615phen 2.72771.5236?? ? ?= ? ???

算法说明:bs2rv 作为GA 工具箱的一个M 文件执行,如果使用对数刻度,其范围必须不能包含零。

5.2.2 函数 crtbase

功能:创建基向量

格式:BaseVec = crtbase(Lind, Base)

详细说明:crtbase 产生向量的元素对应染色体结构的基因座,使用不同的基本字符表示建立种群时这个函数可与函数crtbp 联合使用。

BaseV ec = crtbase(Lind, Base)创建长度为Lind 长的向量,它的每个元素由基本字符决定,如果Lind 是向量,BaseVec 的长度为Lind 的总长,如果Base 也是一个长为Lind 长的向量,则BaseVec 是一组由Lind 和基本字符Base 的元素决定长度的基本字符组组成。当描述染色体结构的基因位基本字符时,最后一选项是有用的。

例5.2 函数BaseV ec 应用举例。下面的程序代码为种群创建一有4个基数为8的基本字符{0,1,2,3,4,5,6,7}和6个基数为5的基本字符{0,1,2,3,4}的基本字符向量。

BaseV= crtbase ([4 6], [8 5])

BaseV =

[8 8 8 8 5 5 5 5 5 5]

参见:crtbp ,bs2rv

5.2.3 函数 crtbp

遗传算法MATLAB完整代码(不用工具箱)

遗传算法解决简单问题 %主程序:用遗传算法求解y=200*exp(-0.05*x).*sin(x)在区间[-2,2]上的最大值clc; clear all; close all; global BitLength global boundsbegin global boundsend bounds=[-2,2]; precision=0.0001; boundsbegin=bounds(:,1); boundsend=bounds(:,2); %计算如果满足求解精度至少需要多长的染色体 BitLength=ceil(log2((boundsend-boundsbegin)'./precision)); popsize=50; %初始种群大小 Generationmax=12; %最大代数 pcrossover=0.90; %交配概率 pmutation=0.09; %变异概率 %产生初始种群 population=round(rand(popsize,BitLength)); %计算适应度,返回适应度Fitvalue和累计概率cumsump [Fitvalue,cumsump]=fitnessfun(population); Generation=1; while Generation

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

GATBX遗传算法工具箱函数及实例讲解 基本原理: 遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概 率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。

Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 运用遗传算法工具箱: 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。 以GATBX为例,运用GATBX时,要将GATBX解压到Matlab下的toolbox文件夹里,同时,set path将GATBX文件夹加入到路径当中。 这块内容主要包括两方面工作:1、将模型用程序写出来(.M文件),即目标函数,若目标函数非负,即可直接将目标函数作为适应度函数。2、设置遗传算法的运行参数。包括:种群规模、变量个数、区域描述器、交叉概率、变异概率以及遗传运算的终止进化代数等等。

一种基于遗传算法的Kmeans聚类算法

一种基于遗传算法的K-means聚类算法 一种基于遗传算法的K-means聚类算法 摘要:传统K-means算法对初始聚类中心的选取和样本的输入顺序非常敏感,容易陷入局部最优。针对上述问题,提出了一种基于遗传算法的K-means聚类算法GKA,将K-means算法的局部寻优能力与遗传算法的全局寻优能力相结合,通过多次选择、交叉、变异的遗传操作,最终得到最优的聚类数和初始质心集,克服了传统K-means 算法的局部性和对初始聚类中心的敏感性。关键词:遗传算法;K-means;聚类 聚类分析是一个无监督的学习过程,是指按照事物的某些属性将其聚集成类,使得簇间相似性尽量小,簇内相似性尽量大,实现对数据的分类[1]。聚类分析是数据挖掘 技术的重要组成部分,它既可以作为独立的数据挖掘工具来获取数据库中数据的分布情况,也可以作为其他数据挖掘算法的预处理步骤。聚类分析已成为数据挖掘主要的研究领域,目前已被广泛应用于模式识别、图像处理、数据分析和客户关系管理等领域中。K-means算法是聚类分析中一种基本的划分方法,因其算法简单、理论可靠、收敛速 度快、能有效处理较大数据而被广泛应用,但传统的K-means算法对初始聚类中心敏 感,容易受初始选定的聚类中心的影响而过早地收敛于局部最优解,因此亟需一种能克服上述缺点的全局优化算法。遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化搜索算法。在进化过程中进行的遗传操作包括编码、选择、交叉、变异和适者生存选择。它以适应度函数为依据,通过对种群个体不断进行遗传操作实现种群个体一代代地优化并逐渐逼近最优解。鉴于遗传算法的全局优化性,本文针 对应用最为广泛的K-means方法的缺点,提出了一种基于遗传算法的K-means聚类算法GKA(Genetic K-means Algorithm),以克服传统K-means算法的局部性和对初始聚类中心的敏感性。用遗传算法求解聚类问题,首先要解决三个问题:(1)如何将聚类问题的解编码到个体中;(2)如何构造适应度函数来度量每个个体对聚 类问题的适应程度,即如果某个个体的编码代表良好的聚类结果,则其适应度就高;反之,其适应度就低。适应度函数类似于有机体进化过程中环境的作用,适应度高的个体 在一代又一代的繁殖过程中产生出较多的后代,而适应度低的个体则逐渐消亡;(3) 如何选择各个遗传操作以及如何确定各控制参数的取值。解决了这些问题就可以利

MATLAB实验遗传算法与优化设计

实验六 遗传算法与优化设计 一、实验目的 1. 了解遗传算法的基本原理和基本操作(选择、交叉、变异); 2. 学习使用Matlab 中的遗传算法工具箱(gatool)来解决优化设计问题; 二、实验原理及遗传算法工具箱介绍 1. 一个优化设计例子 图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别 代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。微带电极的结构参数如图所示,W 、t 分别是上电极的宽度和厚度,D 是上下电极间距。当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗。根据微带传输线理论,高频工作状态下(假定信号频率1GHz ),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加): 图1 微带线横截面结构以及场分布示意图 {} 28.6821ln 5020.942ln 20.942S W R W D D D t D W D D W W t D W W D e D D παπππ=+++-+++?????? ? ??? ??????????? ??????? (1) 其中πρμ0=S R 为金属的表面电阻率,为电阻率。可见电极的结构参数影响着电极损

耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。此处设计变量有3个:W 、D 、t ,它们组成决策向量[W, D ,t ] T ,待优化函数(,,)W D t α称为目标函数。 上述优化设计问题可以抽象为数学描述: ()()min .. 0,1,2,...,j f X s t g X j p ????≤=? (2) 其中()T n x x x X ,...,,21=是决策向量,x 1,…,x n 为n 个设计变量。这是一个单目标的数学规划问题:在一组针对决策变量的约束条件()0,1,...,j g X j p ≤=下,使目标函数最小化(有时 也可能是最大化,此时在目标函数()X f 前添个负号即可)。满足约束条件的解X 称为可行解,所有满足条件的X 组成问题的可行解空间。 2. 遗传算法基本原理和基本操作 遗传算法(Genetic Algorithm, GA)是一种非常实用、高效、鲁棒性强的优化技术,广 泛应用于工程技术的各个领域(如函数优化、机器学习、图像处理、生产调度等)。遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化算法。按照达尔文的进化论,生物在进化过程中“物竞天择”,对自然环境适应度高的物种被保留下来,适应度差的物种而被淘汰。物种通过遗传将这些好的性状复制给下一代,同时也通过种间的交配(交叉)和变异不断产生新的物种以适应环境的变化。从总体水平上看,生物在进化过程中子代总要比其父代优良,因此生物的进化过程其实就是一个不断产生优良物种的过程,这和优化设计问题具有惊人的相似性,从而使得生物的遗传和进化能够被用于实际的优化设计问题。 按照生物学知识,遗传信息基因(Gene)的载体是染色体(Chromosome),染色体中 一定数量的基因按照一定的规律排列(即编码),遗传基因在染色体中的排列位置称为基因

Matlab遗传算法工具箱的应用

文章编号:1006-1576(2005)06-0115-02 Matlab遗传算法工具箱的应用 曾日波 (江西财经大学电子学院,江西南昌 330013) 摘要:Matlab遗传算法(GA)优化工具箱是基于基本操作及终止条件、二进制和十进制相互转换等操作的综合函数库。其实现步骤包括:通过输入及输出函数求出遗传算法主函数、初始种群的生成函数,采用选择、交叉、变异操作求得基本遗传操作函数。以函数仿真为例,对该函数优化和GA改进,只需改写函数m文件形式即可。 关键词:遗传算法;Matlab;遗传算法工具箱;仿真 中图分类号:TP391.9 文献标识码:A Application of Genetic Algorithm Toolbox Based on Matlab ZENG Ri-bo (College of Finance and Economics Electronics, Jiangxi University, Nanchang 330013, China) Abstract: The optimization toolbox of Matlab genetic algorithm (GA) is a excellent generalized function library is to bases on basic operation and terminate term, the inter-conversion between binary system and ten system the system etc. Its step includes: the main function of GA and the creation functions of initial population was calculated through inputting and outputting functions, and the basic functions of genetic operation was computed by choosing, interlacing, and aberrance functions to realize the system. Take the function simulation as an example, the optimization of function and improvement of GA were achieved by modification the file format of m function. Keywords: Genetic algorithm; Matlab; Optimization toolbox; Simulation 1 引言 遗传算法(GA:Genetic Algorithm)是对生物进化过程进行的数学方式仿真。将Matlab引入遗传算法,在Matlab平台上开发遗传算法的优化工具箱(GAOT:Genetic Algorithm for Optimization Toolbox),可更好地认识GA,改进GA。 2 基于Matlab的优化工具箱 遗传算法的优化工具箱(GAOT)是从遗传算法的基本结构出发,考虑到基本操作及终止条件、二进制和十进制的相互转换等操作的综合函数库。 2.1遗传算法主函数 function[x,endPop,bPop,traceInfo]= ga(bounds,evalFN,evalOps,startPop,opts,termFN,termOps, selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps) 输出参数:x-最优解,endPop-最终种群,bPop-最优种群的搜索轨迹。 输入参数:bounds-变量上下界的矩阵,evalFN-适应度函数,evalOps-传递给适应度函数的参数,startPop-初始种群,termFN-终止函数的名称,termOps-传递个终止函数的参数,selectFN -选择函数的名称,selectOps-传递个选择函数的参数,xOverFNs-交叉函数名称表,以空格分开,xOverOps-传递给交叉函数的参数表,mutFNs-变异函数表,mutOps-传递给交叉函数的参数表。 2.2 初始种群的生成函数 function[pop]=initializega (num,bounds,eevalFN,eevalOps,options) 输出参数:pop-生成的初始种群。 输入参数:num-种群中的个体数目,bounds -代表变量的上下界的矩阵,eevalFN-适应度函数,eevalOps-传递给适应度函数的参数,options -选择编码形式(浮点编码或是二进制编码)[precision F_or_B],precision-变量进行二进制编码时指定的精度,F_or_B-为1时选择浮点编码,否则为二进制编码,由precision指定精度)。 2.3 基本遗传操作函数 (1) 选择 function[newPop] = Select(oldPop,options) 参数说明:newPop-由父代种群选出的新的种群,oldPop-当前的种群(即父代种群),options -选择概率。 (2) 交叉 function [c1,c2]=crossover(p1,p2,bounds,ops) 参数说明:p1-第一个父代个体,p2-第二个父代个体,bounds-可行域的边界矩阵,c1、c2-产生的两个新的子代。 (3) 变异 function [child] = Mutation(par,bounds,genInfo,Ops) 变异操作是由一个父代产生单个子代。 3 仿真实例与分析 收稿日期:2005-06-15;修回日期:2005-08-07 作者简介:曾日波(1964-),男,江西人,2000年获华中科技大学工程硕士学位,从事嵌入式系统的应用研究。 ·115·

matlab遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解 最近研究了一下遗传算法,因为要用遗传算法来求解多元非线性模型。还好用遗传算法的工箱予以实现了,期间也遇到了许多问题。借此与大家分享一下。 首先,我们要熟悉遗传算法的基本原理与运算流程。 基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。 Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 其次,运用遗传算法工具箱。 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS 就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。

出必精品:雷英杰《Matlab遗传算法工具箱及应用》Sheffield大学gatbs工具箱所有算例下载及调试说明

出必精品:雷英杰《Matlab遗传算法工具箱及应用》 Sheffield大学gatbs工具箱所有算例下载及调试说明 这段时间对雷英杰编著《Matlab遗传算法工具箱及应用》涉及Sheffield大学gatbs工具箱的所有算例进行了调试,并修正了一些算例源码中的错误,具体注释可见附件,几点说明如下: 1.附件结构: gatbx.rar: (1)gatbx-origin.zip; (2)gatbx-toolbox.rar; (3)gatbx-example.rar 2.调试所用Matlab版本是6.5,gatbx-toolbox是调试过程中使用的工具箱,有些热心的研友已经提供了该工具箱,之所以再贴一遍,是因为6.5版本下调试该工具箱会出现一些错误提示,在该版本中已经进行了改正,使用该工具箱只需要将压缩包下的gatbx和gatbx\Test_fns加入到Matlab搜索路径即可,另外gatbx-origin是Sheffield大学提供的原始版本的工具箱,未做任何改动,两者可做比较之用 3.gatbx-example是算例调试源码和各算例的调试说明,大家可以对照原书进行比较 4.窃以为gatbx工具箱较之Matlab7新版下的gads工具箱更能让人熟悉和了解遗传算法的原理和计算过程,虽然在可视化方面不及gads 5.学习遗传算法如果首先用熟相关工具箱的话,能够先培养信心,然后更有兴趣去专研和了解具体的算法,如果就用现有的工具箱就能解决问题的话,不了解其详细的算法也未尝不可,毕竟不是每个研友都能向see_moonlight那样开发自己的工具箱吧, 最后感谢see_moonlight斑竹的大力支持和鼓励,在此谨致谢意~

【实用资料】Matlab遗传算法工具箱简介.pdf

Matlab遗传算法工具箱 基于Matlab平台的遗传算法(GA)工具箱主要有:美国北卡罗来纳大学开发的GAOT、英国谢菲尔德大学开发的GATBX以及GADS(Genetic Algorithm and Direct Search Toolbox)遗传算法与直接搜索工具箱。遗传算法与直接搜索工具箱的界面如图所示: GADS工具箱用户界面 (1)Solver(求解器):用于选择需要的算法。 (2)Problem:需要解决的问题。包括: 1)Fitness function:需要最小化的适应度函数,填写的格式为:@objfun,其中objfun.m是编写适应度函数的M文件,返回一个具体数值。 2)Number of variables:适应度函数的自变量的数目,此处表示优化设计的设计变量个数。 (3)Constraints约束。 1)Linear inequalities线性不等式约束,表示为:* ,填写矩阵A和向 A x b 量b的信息。

2)Linear equalities 线性等式约束,表示为:*Aeq x beq ,填写矩阵Aeq 和向量beq 的信息。 3)Bounds :填写独立变量的取值范围。在Lower 中填写变量的取值下界,Upper 中填写变量的取值上界,均以向量形式表示。 4)Nonlinear constraint function 非线性约束函数,编写非线性约束函数的M 文件nonlcon.m ,则在此处填写@nonlcon 。 (4)Run solver and view results 运行求解器并观察结果。点击Start 即可开始运行。Current iteration 中将显示当前运行的代数。Final point 栏中显示最优解对应的变量的取值。 (5)Option 部分是遗传算法参数的设定。 1)Population 种群参数设定。 Population type 种群类型,设定适应度函数的输入数据类型。工具箱提供了 两种输入类型:双精度、串位,用户还可以编写M 文件自定义输入数据的类型。 Population size 种群规模,定义每一代种群的个体数量。种群规模越大,遗传算法的运行速度越慢。 Creation function 创建函数,用于创建初始种群。 Initial population 初始种群,如果不指定初始种群,则系统将运用创建函数创建初始种群。 Initial scores 初始得分,如果此处没有定义初始得分,则系统应用适应度函数来计算初始得分。 Initial range 初始范围,用于指定初始种群中的各变量的上下限。初始范围用一个矩阵表示,该矩阵行数为2,列数为变量的个数。其中第一行描述初始种群中变量的取值下限,第二行描述初始种群中变量的取值上限。 2)Fitness scaling 适应度测量,包括:Rank 排序尺度变换、Proportional 比例尺度变换、Top 顶级尺度变换、Shift linear 线性转换尺度变换以及Custom 用户自定义。 3)Selection 选择,工具箱提供了以下几种选择函数:Stochastic uniform 随机 均匀分布、 Remainder 剩余、Uniform 均匀分布、Roulette 轮盘赌选择、Tournament 锦标赛选项、Custom 用户自定义。 4)Reproduction 再生参数,需设定可生存到下一代的精英个数Elite count ,以及下一代由交叉产生的部分所占比例Crossover fraction 。

基于遗传算法的智能组卷策略的研究综述Word版

《基于遗传算法的智能组卷策略的研究》综述 姓名刘春晓 学号 2015216104 专业计算机技术 班级 3班 天津大学计算机科学与技术学院 2016年 6 月

基于遗传算法的智能组卷策略的研究综述 摘要随着计算机技术的日益发展和成熟,手工组卷已经不能满足现代的教学要求,组卷智能化在提高教学质量方面发挥着很重要的作用。文章对组卷策略进行了梳理,对比和总结,主要介绍了遗传算法的优点,从遗传算法的基本流程、编码方式、适应度函数和遗传算子方面进行了归纳。接着分析了目前智能组卷策略研究的不足和挑战,最后总结了未来的研究设想。 关键词智能组卷;遗传算法;适应度函数;遗传算子 1引言 在计算机技术发展飞速的今天,计算机应用已经慢慢的渗透到人类生活的方方面面,计算机的辅助教学功能也逐渐得到大家的重视。传统的手工组卷受到人为因素的干扰,导致考试的效率低下,组卷智能化已经成为不可或缺的一项研究。 近几年,智能优化算法倍受人们关注,如人工神经网络、遗传算法,为解决复杂问题提供了新的方法,并在诸多领域取得了成功。组卷问题是一个在一定约束条件下的多目标参数优化问题,针对传统的组卷算法具有组卷速度慢、成功率较低、试卷质量不高等缺点。 智能组卷算法在计算机辅导教学过程中之所以受到重视,是因为它把人工智能技术运用到了组卷中,能够智能的设计试卷的结构和内容,包括试卷的难易度,知识点,题型和题量等,使生成的试卷质量比较高。 遗传算法(Genetic Algorithm ,GA)基于达尔文的进化论和孟德尔的自然遗传学说,是通过模拟遗传选择和自然淘汰的生活进化的随机搜索和全局优化算法(张建国 2009:1)。由于该算法有智能的搜索技术和收敛性质,可以较好的满足智能组卷的要求。所以本系统选用遗传算法作为组卷算法,以试题章节、试题数量、试题知识点、试题题型、试题难度分布、试题曝光度、覆盖度、试题分数分配等约束为组卷条件,使试卷有更好的区分度。 基于遗传算法的智能组卷系统实现了组卷智能化,优化了其他组卷算法的不足,使教学更加自动化和公平化,提高了组卷效率。 2研究现状分析 在系统开发之前,应该首先选择适合本系统的组卷算法,组卷算法的选取对试卷的质量影响颇大。只有相对好的算法才能提高组卷的效率和成功率。组卷实质上就是在复杂的约束条件下的多目标求最优解的问题,保证试卷能够满足教学要求。随着计算机技术和人工智能理论的飞速发展,各种组卷策略层出不穷,选择适合的算法对系统运行有极其重要的作用。分析各种组卷算法的优缺点,找到最优的组卷算法是该系统开发的任务之一。这里我们就现阶段组卷算法进行分析和总结。 现阶段比较成熟的组卷算法有随机选取法、回溯试探法和遗传算法。随机选取法生成的试题重复率较高,难以达到预期效果。回溯试探法是一种有条件的深度优化法,对于状态类型和题量较小的题库系统而言,组卷成功率高,但占用内

最新最全的遗传算法工具箱及说明

最新最全的遗传算法工具箱Gaot_v5及说明 Gaot_v5下载地址:https://www.360docs.net/doc/c843795.html,/mirage/GAToolBox/gaot/gaotv5.zip 添加遗传算法路径: 1、 matlab的file下面的set path把它加上,把路径加进去后在 2、 file→Preferences→General的Toolbox Path Caching里点击update Toolbox Path Cache更新一下,就OK了

遗传算法工具箱Gaot_v5包括许多实用的函数,各种算子函数,各种类型的选择方式,交叉、变异方式。这些函数按照功能可以分成以下几类:

主程序 ga.m提供了 GAOT 与外部的接口。它的函数格式如下: [x endPop bPop traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts,termFN,termOps, selectFn,selectOps,xOverFNs,xOverOps,mutFNs,mutOps) 输出参数及其定义如表 1 所示。输入参数及其定义如表 2 所示。 表1 ga.m的输出参数 输出参数 定义 x 求得的最好的解,包括染色体和适应度 endPop 最后一代染色体(可选择的) bPop 最好染色体的轨迹(可选择的) traceInfo 每一代染色体中最好的个体和平均适应度(可选择的) 表2 ga.m的输入参数 表3 GAOT核心函数及其它函数

核心函数: (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数 【输出参数】 pop--生成的初始种群 【输入参数】 num--种群中的个体数目 bounds--代表变量的上下界的矩阵 eevalFN--适应度函数 eevalOps--传递给适应度函数的参数 options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如 precision--变量进行二进制编码时指定的精度 F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数 【输出参数】 x--求得的最优解 endPop--最终得到的种群 bPop--最优种群的一个搜索轨迹 【输入参数】

matlab自带优化工具箱遗传算法中文解释

matlab自带优化工具箱遗传算法中文解释 problem setup and results设置与结果 problem fitness function适应度函数 number of variable变量数 constraints约束 linear inequalities线性不等式,A*x<=b形式,其中A是矩阵,b是向量 linear equalities线性等式,A*x=b形式,其中A是矩阵,b是向量 bounds定义域,lower下限,upper上限,列向量形式,每一个位置对应一个变量 nonlinear constraint function非线性约束,用户定义,非线性等式必须写成c=0形式,不等式必须写成c<=0形式 integer variable indices整型变量标记约束,使用该项时Aeq和beq必须为空,所有非线性约束函数必须返回一个空值,种群类型必须是实数编码 run solver and view results求解 use random states from previous run使用前次的状态运行,完全重复前次运行的过程和结果 population population type编码类型 double vector实数编码,采用双精度 bitstring二进制编码对于生成函数和变异函数,只能选用uniform和custom,对于杂交函数,只能使用 scattered singlepoint,twopoint或custom不能使用hybrid function和nonlinear constraint function custom 自定义 population size:种群大小 creation function:生成函数,产生初始种群 constraint dependent:约束相关,无约束时为uniform,有约束时为feasible population uniform:均匀分布 feasible population :自适应种群,生成能够满足约束的种群 initial population:初始种群,不指定则使用creation function生成,可以指定少于种群数量的种群,由creation function完成剩余的 initial scores:初始值,如果不指定,则有计算机计算适应度函数作为初始值,对于整型约束不可用,使用向量表示 initial range:初始范围,使用向量矩阵表示,第一行表示范围的下限,第二行表示上限 fitness scaling:适应度尺度 rank:等级。将适应度排序,然后编号 proportional:按比例 top:按比例选取种群中最高适应度的个体,这些个体有等比例的机会繁衍,其余的个体被淘汰 shift linear:线性转换

matlab工具箱遗传算法使用方法

简单的遗传算法可以使用Matlab自带的遗传算法工具箱,但是要从Matlab2010版本之后才会自带这个工具箱,且调用命令也有变化,分别是gatool和optimtool。GUI界面如下图所示: 1、problem setup and results设置与结果 (1)Solver:求解程序,选择要用的求解程序(遗传算法,遗传算法多目标等) (2)problem: 1)fitness function适应度函数,求最小,这里的使用度函数要自己编写,书写格式是“@函数名”。 2)number of variable变量数,必须是整数,即,使用这个GUI界面的适应度函数的变量必须是[1*n]的向量,而不能是[m*n]的矩阵。 3)constraints约束 4)linear inequalities线性不等式,A*x<=b形式,其中A是矩阵,b是向量 5)linear equalities线性等式,A*x=b形式,其中A是矩阵,b是向量 6)bounds定义域,lower下限,upper上限,列向量形式,每一个位置对应一个变量 7)nonlinear constraint function非线性约束,用户定义,非线性等式必须写成c=0形式,不等式必须写成c<=0形式 8)integer variable indices整型变量标记约束,使用该项时Aeq和beq必须为空,所有非线性约束函数必须返回一个空值,种群类型必须是实数编码 举例,若是想让第一个、第三个、第五个变量保持是整数的话,则直接在此处填写[1 3 5] 9)run solver and view results求解 use random states from previous run使用前次的状态运行,完全重复前次运行的过程和结果 2、population (1)population type编码类型 1)double vector实数编码,采用双精度。整数规划的种群类型必须是实数编码。 2)bitstring二进制编码。对于生成函数和变异函数,只能选用uniform和custom,对于杂交函数,只能使用scattered singlepoint,twopoint或custom不能使用hybrid function和

引用 matlab遗传算法工具箱函数及实例讲解

引用 matlab遗传算法工具箱函数及实例讲解 郭玲霞 https://www.360docs.net/doc/c843795.html,/purplelily88 2008-10-21 16:52:52 引用 matlab遗传算法工具箱函数及实例讲解 2008-10-20 23:04 郭玲霞 看文章 核心函数: (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数 【输出参数】 pop--生成的初始种群 【输入参数】 num--种群中的个体数目 bounds--代表变量的上下界的矩阵 eevalFN--适应度函数 eevalOps--传递给适应度函数的参数 options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如 precision--变量进行二进制编码时指定的精度 F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function [x,endPop,bPop,traceInfo] = ga (bounds,evalFN,evalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数 【输出参数】 x--求得的最优解 endPop--最终得到的种群 bPop--最优种群的一个搜索轨迹 【输入参数】 bounds--代表变量上下界的矩阵 evalFN--适应度函数 evalOps--传递给适应度函数的参数 startPop-初始种群 opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0] termFN--终止函数的名称,如['maxGenTerm'] termOps--传递个终止函数的参数,如[100] selectFN--选择函数的名称,如['normGeomSelect'] selectOps--传递个选择函数的参数,如[0.08]

gatbx遗传算法工具箱之gaSVMcgForClass详细例子讲解

遗传算法 1.遗传算法的简单原理 遗传算法(Genetic Algorithm, GA)是一种基于自然群体遗传演化机制的高效探索算法,它摒弃了传统的搜索方式,模拟自然界生物进化过程,采用人工进化的方式对目标空间进行随机化搜索。它将问题域中的可能解看作是群体的一个个体或染色体,并将每一个体编码成符号串形式,模拟达尔文的遗传选择和自然淘汰的生物进化过程,对群体反复进行基于遗传学的操作(遗传,交叉和变异),根据预定的目标适应度函数对每个个体进行评价,依据适者生存,优胜劣汰的进化规则,不断得到更优的群体,同时以全局并行搜索方式来搜索优化群体中的最优个体,求得满足要求的最优解。 我们先通过一个例子来了解遗传算法的原理:假定我们要求函数2 = f x x () 的极大值,其中x为自然数,031 ≤≤。现在,我们将每一个数看成一个生命体, x 通过进化,我们看谁能最后生存下来,谁就是我们所寻找的数。 ①.编码:我们将每一个数作为一个生命体,那么必须给其赋予一定的基因,这个过程叫做编码。我们可以把变量x编码成5位长的二进制无符号整数表示形式,比如13 x=可表示为01101的形式,也就是说,数13的基因为01101。 ②.初始群体的生成:由于遗传的需要,我们必须设定一些初始的生物群体,让其作为生物繁殖的第一代,需要说明的是,初始群体的每个个体都是通过随机方法产生的,这样便可以保证生物的多样性和竞争的公平性。 ③.适应度评估检测:生物的进化服从适者生存,优胜劣汰的进化规则,因此,我们必须规定什么样的基因是“优”的,什么样的基因是“劣”的,在这里,我们称 为适应度 ...。显然,由于我们要求的最大值,因此,能使函数值较大的基因是优的,使函数值较小的基因是劣的,因此,我们可以将原函数2 =定义为适应度函 f x x () 数,用来衡量某一生物体的适应程度。 ④.选择:接下来,我们便可以进行优胜劣汰的过程,这个过程在遗传算法里叫做选择。注意,选择应该是一个随机的过程,基因差的生物体不一定会被淘汰,只是其被淘汰概率比较大罢了,这与自然界中的规律是相同的。因此,我们可以采取赌轮的方式来进行选择。 ⑤.交叉操作:接下来进行交叉繁殖,随机选出两个生物体,让其交换一部分基因,这样便形成了两个新的生物体,为第二代。 ⑥.变异:生物界中不但存在着遗传,同时还存在着变异,在这里我们也引入变异,使生物体的基因中的某一位以一定的概率发生变化,这样引入适当的扰动,能避免局部极值的问题。 以上的算法便是最简单的遗传算法,通过以上步骤不断地进化,生物体的基因便逐渐地趋向最优,最后便能得到我们想要的结果。 2.遗传算法的步骤

遗传算法工具箱函数集合

GA Tool Function of Sheffield University 一、种群初始化函数crtbp、crtrp、crtbase 1.函数crtbp:创建二进制种群 [Chrom,Lind,BaseV]=crtbp(Nind,Lind*维度);多维函数需要乘以维度[Chrom,Lind,BaseV]=crtbp(Nind,BaseV) BaseV = crtbase([Nind,Lind],[a,b]) Nind种群中个体的数量,Lind指定个体或者染色体的长度; 2.函数crtrp:创建实值原始种群 Chrom=crtrp(Nind,FieldDR);FieldDR为2*Nvar的矩阵,第一行表示取值的下界,第二行表示取值的上界;其中Nvar向量的长度即为染色体的长度。 3.实用函数bs2rv:二进制串到实值的转换 Phen=bs2rv(Chrom,FieldD) FieldD=[len, lb, ub, code, scale, lbin, ubin] FieldD=[rep(len(Chrom),[1,维度]); rep([lb;ub],[1,维度]); rep([code;scale;lbin;ubin],[1,维度])]; 多维情形 len表示染色体的长度; lb,ub分别为变量取值的上下界; code(i)=1为标准的二进制编码,code(i)=0为格雷编码; scale(i)=0为算术刻度,scale(i)=1为对数刻度; lbin,ubin表示取值是否含有边界,取零去掉边界,取1含有边界; 二、适应度计算函数ranking、scaling 1.基于排序的适应度分配 FitV=ranking(ObjV, RFun, SUBPOP) Rfun(1)线性排序标量在[1 2]间,default=2;非线性排序在[1, length(ObjV)-2],这一值是指定选择的压差; Rfun(2)指定排序方法,0为线性排序(默认),1为非线性排序 SUBPOP指明ObjV中子种群的数量,默认为1 2.线性适应度计算scaling 线性比率不适合目标函数返回负的适应度值的情形 FitnV = scaling(ObjV,Smul) 三、选择高级函数select: SelCh=select(SEL_F, Chrom, FitnV) SelCh=select(SEL_F, Chrom, FitnV, GGAP) SelCh=select(SEL_F, Chrom, FitnV, GGAP, SUBPOP)

相关文档
最新文档