高二上期末复习讲义--直线与圆、线性规划

高二上期末复习讲义--直线与圆、线性规划
高二上期末复习讲义--直线与圆、线性规划

期末复习讲义(二)直线与圆、线性规划

姓名_____________班级____自评完成等第_____

一、课前训练

1、圆(x-2)2+(y+3)2=16的圆心坐标是_________,半径是_____;

圆x 2+y 2-2x+4y=0的圆心坐标是__________,半径是______.

2、若原点和点(1,1)在直线x+y-a=0的两侧,则实数a 的取值范围是_____________.

3、过三点(0,0)、(1,0)、(0,1)的圆的方程是_______________________.

4、过点A(1,-1)、B(-1,1)且圆心在直线x+y-2=0上的圆的方程是_____________________.

5、动圆x 2+y 2-2x-k 2+2k-2=0的半径的取值范围是____________.

6、设动点(x ,y )满足?

??≥≥-++-30)4)(1(x y x y x ,则22y x +的最小值为__________. 二、例题讲评

例题1、(1)已知实数x ,y 满足??

???≤+-≤≥m y x x y y 121,如果目标函数y x z -=有最小值-1,求实

数m 的值;

(2)若A 为不等式组??

???≤-≥≤200x y y x 表示的平面区域,求当a 从-2连续变化到1时,动直线

x+y =a 扫过A 中的那部分区域的面积.

例题2、已知圆O的方程是x2+y2=1,直线l1过点A(3,0),且与圆O相切,

(1)求直线l1的方程;

(2)设圆O与x轴交于点P、Q,M是圆O上异于P、Q的任意一点,过点A且与x轴垂直的直线为l2,直线PM交l2于点E,直线QM交直线l2于点F,求证:以EF为直径的圆C总经过定点,并求出定点的坐标.

例题3、已知圆C过点P(1,1),且与圆M: (x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.

PQ 的最小值;

(1)求圆C的方程;(2)设Q为圆C上的一个动点,求MQ

(3)过点P做两条相异直线分别与圆C相交于A、B,且直线P A和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?说明理由.

三、课后作业

1、圆x 2+y 2=1与圆(x-3)2+y 2=5的位置关系是__________.

2、过圆x 2+y 2=4上一点(1,3)的切线方程是___ .

3、已知实数x,y 满足x 2+y 2=1,则x-y 的取值范围____________.

4、直线y=kx+3与圆(x-2)2+(y-3)2=4相交于点M 、N ,若|MN|32≥,则实数k 的取值范围是______________.

5、已知直线0125:=++a y x l ,圆C :0222=-+x y x .

(1)若l 与圆C 相切,求a 的值;(2)若l 与圆C 相交,求a 的取值范围;

(3)若l 与圆C 相离,求a 的取值范围;(4)若l 被圆C 截得的弦长为

13

10,求a 的值.

6、已知圆x 2+y 2=9的内接三角形ABC ,点A 的坐标是(-3,0),重心G 的坐标是(-12

,-1), (1)求边BC 所在直线的方程;(2)求弦BC 的长度.

考虑如下线性规划问题

考虑如下线性规划问题: Min z=60 x+402x+803x 1 . 3 x+22x+3x≥2 1 4 x+2x+33x≥4 1 2 x+22x+23x≥3 1 x,2x,3x≥0 1 要求:(1)写出其对偶问题; (2)用对偶单纯形法求解原问题; (3)用单纯形法求解其对偶问题; (4)对比(2)与(3)中每步计算得到的结果。 解:(1)设对应于上述约束条件的对偶变量分别为 y,2y,3y;则 1 由原问题和对偶问题,可以直接写出对偶问题为: Max Z’=2 y+42y+33y 1 3 y+42y+23y≤60 1 2 y+2y+23y≤40 1 y+32y+23y≤80 1 y,2y,3y≥0 1 (2)用对偶单纯形法求解原问题(添加松弛变量 x,5x,6x) 4 MaxZ= -60 x-402x-803x+04x+05x+06x 1 -3 x-22x-3x+4x=-2 1 -4 x-2x-33x+5x=-4 1 -2 x-22x-23x+6x=-3 1

1x ,2x ,3x ≥0 建立此问题的初始单纯形表,可见: 从表中可以看到,检验数行对应的对偶问题的解是可行解。因b 列数字为负,故需进行迭代运算。 换出变量的确定,计算min (-2,-4,-3)=-4,故5x 为换出变量。 换入变量的确定,计算得15,40,80/3,故1x 为换入变量。

由表可知,6x 为换出变量。2x 为换入变量。然后继续画单纯形表: 可得4x 为换出变量,3x 为换入变量。继续做单纯形表:

所以此问题的最优解为X=(11/10,19/30,1/10),此对偶问题的最优解为Y=(16,12,30),原问题的最小值为118/3. (3)MaxZ ’=21y +42y +33y +04y +05y +06y 31y +42y +23y +4y =60 21y +2 y +23y +5y =40 1y +32y +23y +6y =80 1y ,2y ,3y ,4y ,5y ,6y ≥0 然后建立单纯形表,可得 i

高中数学必修二直线与圆测试卷(二)

必修二圆与方程单元测试卷【二】 (测试时间:120分钟 满分:150分) 考生姓名: 考试成绩: 一、选择题(每小题5分,共50分. 以下给出的四个备选答案 中,只有一个正确) 1.直线20x y --=的倾斜角为( ) A .30? ; B .45? ; C. 60? ; D. 90?; 2.将直线3y x =绕原点逆时针旋转90?,再向右平移1个单位,所得到的直线为( ) A.113 3 y x =-+ ; B. 113 y x =-+ ; C.33y x =- ; D.31y x =+; 330x y m -+=与圆22220x y x +--=相切,则实数m 等于( ) A .33-3; B .33-33 C .33; D .3或334.过点(0,1)的直线与圆224x y +=相交于A ,B 两点,则AB 的最小值为( ) A .2 ; B .23 ; C .3 ; D .255.若圆C 的半径为1,圆心在第一象限,且与直线034=-y x 和x 轴都相切,则该圆的标准 方程是( ) A. 1)3 7 ()3(22=-+-y x ; B. 1)1()2(22=-+-y x ; C. 1)3()1(22=-+-y x ; D. 1)1()23 (22=-+-y x ; 6.已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线 10x y --=对称,则圆2C 的方程为( ) A.2(2)x ++2(2)y -=1 ; B.2(2)x -+2(2)y +=1; C.2(2)x ++2(2)y +=1; D.2(2)x -+2(2)y -=1 7.已知圆C 与直线0=-y x 及04=--y x 都相切,圆心在直线 0=+y x 上,则圆C 的 方程为( ) A.22(1)(1)2x y ++-= ; B. 22(1)(1)2x y -++= C. 22(1)(1)2x y -+-= ; D. 22(1)(1)2x y +++= 8.设A 在x 轴上,它到点2,3)P 的距离等于到点(0,1,1)Q -的距离的两倍,那么A 点的坐标是( ) A.(1,0,0)和( -1,0,0) ; B.(2,0,0)和(-2,0,0); C.(12 ,0,0)和(12 -,0,0) ; D.(22,0,0)和(22,0,0) 9.直线012=--y x 被圆2)1(22=+-y x 所截得的弦长为( ) 30 ; B 355230;D 6 55 10.若直线y x b =+与曲线2 34y x x =-有公共点,则b 的取值范围是( ) A.[122-122+123] ; C.[-1,122+ D.[122-,3]; 二、填空题(每小题5分,共25分. 将你认为正确的答案填写在空格上) 11.设若圆422=+y x 与圆)0(06222>=-++a ay y x 的公共弦长为32,则a =______. 12.已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线 1:-=x y l 被该圆所截得的弦长为22,则圆C 的标准方程 为_________ ___. 13.已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线 34110x y +-=与圆C 相 交于A B ,两点,且6AB =,则圆C 的方程 为 . 14.已知直线2310x y +-=与直线40x ay += 平行,则 a = . 15.直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为22,则m 的 倾斜角可以是①15;②30;③45;④60;⑤75. 其中正确答案的序号是 . 三、解答题(本大题共6小题,共75分,解答应写出文字说明.证明过程或演算步骤) 16(1).已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,求圆C 的方程. .(2)求与圆014222=++-+y x y x 同心,且与直线012=+-y x 相切的圆的方程.

1不等式与线性规划-拔高难度-讲义

不等式与线性规划 知识讲解 一、不等式的定义 1.定义:用不等号(><≠, ,≥,,…)连接的式子叫不等式 2.同解不等式变形:一个不等式变形为另一个不等式时,如果这两个不等式是同解不等 式,那么这种变形叫做同解不等式变形. 3.不等式的性质 1)a b b a >?<(反身性或对称性) 2)a b >,b c a c >?>(传递性) 3)a b a c b c >?+>+ 4),a b c d >>,则a c b d +>+. 5)a b >,0c >,则ac bc >;如果a b >,0c <,则ac bc <. 6)00a b c d >>>>, ,则ac bd >. 7)0a b >>,则(,1)n n a b n n +>∈>N . 8)0a b >> ,1)n n +∈>N 二、不等式的解法 1.一元二次不等式的解集如下表

2.分式不等式的解法 1) () 0()()0()f x f x g x g x >??> 2) () 0()()0()f x f x g x g x ≥??≥且()0g x ≠ 3) ()()() (00()[()()]0)()()f x f x ag x a a g x f x ag x g x g x ->≠?>?-> 3.无理不等式的解法 12()0 ()()0()[()] f x g x g x f x g x ?≥?>?≥??>?或()0 ()0f x g x ≥??时,||ax b c ax b c +>?+>或ax b c +<-,||ax b c c ax b c +?∈,||ax b c x φ+

高中数学必修二直线与圆方面的知识点

高中数学必修二直线与圆方面的知识点 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

高中数学必修2知识点——直线与圆 整理 徐福扬 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0

人教新课标版数学高一- 人教数学必修2能力提升 4-2-3 直线与圆的方程的应用

一、选择题 1.一辆卡车宽1.6m,要经过一个半圆形隧道(半径为3.6m)则这辆卡车的平顶车篷篷顶距地面高度不得超过() A.1.4m B.3.5m C.3.6m D.2.0m [答案] B [解析]圆半径OA=3.6,卡车宽1.6,∴AB=0.8, ∴弦心距OB= 3.62-0.82≈3.5. 2.与圆x2+y2-ax-2y+1=0关于直线x-y-1=0对称的圆的方程是x2+y2-4x+3=0,则a=() A.0 B.1 C.2 D.3 [答案] C [解析]x2+y2-4x+3=0化为标准形式为(x-2)2+y2=1,圆心为(2,0), ∵(2,0)关于直线x-y-1=0对称的点为(1,1), ∴x2+y2-ax-2y+1=0的圆心为(1,1).

∵x 2+y 2-ax -2y +1=0,即为(x -a 2)2+(y -1)2=a 24,圆心为(a 2, 1),∴a 2=1,即a =2. 3.直线2x -y =0与圆C :(x -2)2+(y +1)2=9交于A 、B 两点,则△ABC (C 为圆心)的面积等于( ) A .2 5 B .2 3 C .4 3 D .4 5 [答案] A [解析] ∵圆心到直线的距离d =|4+1|5 =5, ∴|AB |=29-d 2=4,∴S △ABC =12×4×5=2 5.. 4.点P 是直线2x +y +10=0上的动点,直线PA 、PB 分别与圆x 2+y 2=4相切于A 、B 两点,则四边形PAOB (O 为坐标原点)的面积的最小值等于( ) A .24 B .16 C .8 D .4 [答案] C [解析] ∵四边形PAOB 的面积S =2×12|PA |×|OA |= 2OP 2-OA 2=2 OP 2-4,∴当直线OP 垂直直线2x +y +10=0时, 其面积S 最小. 5.若直线ax +by =1与圆x 2+y 2=1相交,则点P (a ,b )的位置是( )

简单的线性规划问题附答案

简单的线性规划问题 [学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一 线性规划中的基本概念 1.目标函数的最值 线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是z b , 当z 变化时,方程表示一组互相平行的直线. 当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤 在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,

可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域. (2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案. 知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题 例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题 例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题 例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小? 2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.

线性规划讲义

简单的线性规划问题 高考要求: 能用平面区域表示二元一次不等式组,会从实际情境中抽象出一些简单的二元线性规划问题,并能加以 解决。 知识梳理: 1.线性规划的基本概念: (1)二元一次不等式组是一组对变量y x ,的约束条件,这组约束条件都是关于y x ,的一次不等式,所以又 称为线性约束条件。 (2)by ax z +=),(R b a ∈是欲达到最大值或最小值所涉及的变量y x ,的解析式,叫做目标函数。由 于 by ax z +=又是y x ,的一次解析式,所以又叫线性目标函数。 (3)求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条 件的解),(y x 叫做可行解,由所有可行解组成的集合叫做可行域。分别使目标函数by ax z +=取得最大值或 最小值的可行解叫做这个问题的最优解。 2.基本思想:数形结合 高考热点: 热点1:平面区域问题 1.设集合A ={),(y x |x ,y ,y x --1是三角形的三边长},则A 所表示的平面区域(不含边界的阴影部分)是 ( ) 热点2:目标函数的最值问题 2.若变量y x ,满足不等式组?? ? ??≥+≥-≥+-0203052y x x y x ,求下列目标函数的最值: (1)y x z 2+= (2)y x z +=3 (3)y x z -=3 (4)1 1 ++=x y z (5)22)1()1(+++=y x z 小结: 拓展延伸: (6)若),(y x M 为D 上的动点,点A 的坐标为)1,3(-,则z OM OA =? 的最大值为 (7)已知向量)3,(z x +=,),2(z y -=,且b a ⊥,则z 的取值范围是 (8)y x z 2+= (9)y x z 2+= (10)若y x ,在上述不等式组所表示的区域内变动,且t x y +=2,则实数t 的取值范围是 热点3:已知最优解逆向求解参数值或范围 3.(2010. 浙江理7)若实数x ,y 满足不等式组330,230,10,x y x y x my +-≥?? --≤??-+≥? 且x y +的最大值为9,则实 数m =( ) (A )2- (B )1- (C )1 (D )2 变式1:若上述不等式组中1=m ,使目标函数y ax z +=取最大值的最优解有无穷多个时,a 的值为 。若最优解只有一个时,a 的取值范围是 。 变式2:若原题中不等式组不变,且目标函数y mx z +=的最大值为9,则a 的值为 。

高中数学必修二测试题七(直线与圆)

高中数学必修二测试题七 班级 姓名 座号 一、选择题(每小题5分,共50分. 以下给出的四个备选答案中,只有一个正确) 1. 1.直线20x y --=的倾斜角为( ) A .30? ; B .45? ; C. 60? ; D. 90?; 2.将直线3y x =绕原点逆时针旋转90?,再向右平移1个单位,所得到的直线为( ) A.1133y x =-+ ; B. 113 y x =-+ ; C.33y x =- ; D.31y x =+; 30y m -+=与圆2 2 220x y x +--=相切,则实数m 等于( ) A .-; B .- C D .4.过点(0,1)的直线与圆22 4x y +=相交于A ,B 两点,则AB 的最小值为( ) A .2 ; B .; C .3 ; D .5.若圆C 的半径为1,圆心在第一象限,且与直线034=-y x 和x 轴都相切,则该圆的标准 方程是( ) A. 1)3 7()3(22=-+-y x ; B. 1)1()2(2 2=-+-y x ; C. 1)3()1(2 2=-+-y x ; D. 1)1()2 3(22=-+-y x ; 6.已知圆1C :2 (1)x ++2 (1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方 程为( ) A.2 (2)x ++2 (2)y -=1 ; B.2 (2)x -+2 (2)y +=1; C.2 (2)x ++2 (2)y +=1; D.2 (2)x -+2 (2)y -=1 7.已知圆C 与直线0=-y x 及04=--y x 都相切,圆心在直线0=+y x 上,则圆C 的 方程为( ) A.2 2 (1)(1)2x y ++-= ; B. 2 2 (1)(1)2x y -++= C. 2 2 (1)(1)2x y -+-= ; D. 2 2 (1)(1)2x y +++= 8.设A 在x 轴上,它到点P 的距离等于到点(0,1,1)Q -的距离的两倍,那么A 点的坐标是( ) A.(1,0,0)和( -1,0,0) ; B.(2,0,0)和(-2,0,0); C.(12,0,0)和(1 2 -,0,0) ; D.(,0,00,0)

(完整word)高中数学必修二直线与圆的综合问题精选

直线与圆 一.解答题(共10小题) 1.已知直线x﹣y+3=0与圆心为(3,4)的圆C相交,截得的弦长为2. (1)求圆C的方程; (2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为常数k(k>0).若动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程. 2.已知直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径. (1)求圆C的方程; (2)已知直线m:y=x+n被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦与圆心构成三角形CDE.若△CDE 的面积有最大值,求出直线m:y=x+n的方程;若△CDE的面积没有最大值,说明理由. 3.已知M(4,0),N(1,0),曲线C上的任意一点P满足:?=6|| (Ⅰ)求点P的轨迹方程; (Ⅱ)过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设=λ1,=λ2,试问λ1+λ2是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由. 4.已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,记圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程; (Ⅱ)设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点,求△QMN面积的最大值.

5.已知动圆P过定点且与圆N:相切,记动圆圆心P的轨迹为曲线 C. (Ⅰ)求曲线C的方程; (Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由. 6.如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且.固定边AB, 在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系. (Ⅰ)求曲线Γ的方程; (Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围. 7.已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上. (Ⅰ)求C点的轨迹Γ的方程; (Ⅱ)已知过P(0,﹣2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值.

(完整版)简单的线性规划问题(附答案).doc

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 名称意义 约束条件关于变量 x, y 的一次不等式 (组 ) 线性约束条件关于 x, y 的一次不等式 (组 ) 目标函数欲求最大值或最小值的关于变量x, y 的函数解析式线性目标函数关于变量 x,y 的一次解析式 可行解满足线性约束条件的解(x, y) 可行域由所有可行解组成的集合 最优解使目标函数取得最大值或最小值的可行解 线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z= ax+ by (b≠ 0)对应的斜截式直线方程是y=-a z ,在 y 轴上的截距是 z ,b x+ b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时,z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤 在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域. (2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

高考数学一轮复习第6章不等式第2讲二元一次不等式(组)与简单的线性规划问题讲义理(含解析).pdf

第 2 讲 二元一次不等式(组)与简单的线性规划问题 [考纲解读] 1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(重点) 2.从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(难点) [考向预测] 从近三年高考情况来看,本讲是高考必考内容.预测2020 年的考查,主要命题方向为:在约束条件下求目标函数的最值或根据最值情况求参数,同时能用线性规划解决实际问题.试题以客观题形式呈现,属中档题型. 1.二元一次不等式(组)表示的平面区域 2.线性规划相关概念 3.重要结论 (1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线; 特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)

或(1,0)来验证. (2)利用“同号上,异号下”判断二元一次不等式表示的平面区域: 对于Ax+By+C>0 或Ax+By+C<0,则有 ①当B(Ax+By+C)>0 时,区域为直线Ax+By+C=0 的上方; ②当B(Ax+By+C)<0 时,区域为直线Ax+By+C=0 的下方. (3)最优解和可行解的关系 最优解必定是可行解,但可行解不一定是最优解.最优解有时唯一,有时有多个. 4.利用线性规划求最值,用图解法求解的步骤 (1)作可行域; (2)将目标函数进行变形; (3)确定最优解; (4)求最值. 1.概念辨析 (1)不等式Ax+By+C>0 表示的平面区域一定在直线Ax+By+C=0 的上方.( ) (2)线性目标函数取得最值的点一定在可行域的顶点或边界上.( ) (3)线性目标函数的最优解可能是不唯一的.( ) (4)目标函数z=ax+by(b≠0)中,z的几何意义是直线ax+by-z=0 在y轴上的截距.( ) 参考答案 (1)× (2)√ (3)√  (4)× 2.小题热身 (1)不等式组Error!表示的平面区域是( )

高中数学必修二直线与圆的综合问题

直线与圆一.解答题(共10小题) 1.已知直线x﹣y+3=0与圆心为(3,4)的圆C相交,截得的弦长为2. (1)求圆C的方程; (2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为常数k(k>0).若动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程. 2.已知直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径. (1)求圆C的方程; (2)已知直线m:y=x+n被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦与圆心构成三角形CDE.若△CDE 的面积有最大值,求出直线m:y=x+n的方程;若△CDE的面积没有最大值,说明理由. 3.已知M(4,0),N(1,0),曲线C上的任意一点P满足:?=6|| (Ⅰ)求点P的轨迹方程; (Ⅱ)过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设=λ1,=λ2,试问λ1+λ2是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由. 4.已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,记圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程; (Ⅱ)设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N 两个不同的点,求△QMN面积的最大值. 5.已知动圆P过定点且与圆N:相切,记动圆圆心P的轨迹为曲线C. (Ⅰ)求曲线C的方程; (Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由. 6.如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且.固定边AB, 在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C 的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系. (Ⅰ)求曲线Γ的方程; (Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围.7.已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上. (Ⅰ)求C点的轨迹Γ的方程; (Ⅱ)已知过P(0,﹣2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值. 8.已知圆M:x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线E的方程; (2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1,k2,满足k1k2=4,求△ABC面积的最大值. 9.已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M,N两点. (1)求k的取值范围; (2)请问是否存在实数k使得(其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由.

最新单纯形法解线性规划问题

一、用单纯形第Ⅰ阶段和第Ⅱ阶段解下列问题 s.t. 解:1)、将该线性问题转为标准线性问题 一、第一阶段求解初始可行点 2)、引入人工变量修改约束集合 取人工变量为状态变量,问题变量和松弛变量为决策变量,得到如下单纯形表,并是所有决策变量的值为零,得到人工变量的非负值。 2 -2 -1 1 2 1 1 -1 -1 1 2 -1 -2 1 2 5 -2 -4 1 -1 1 5 0 0 0 0 0 3)、对上述单纯形表进行计算,是目标函数进一步减小,选为要改变的决策变量,计算改变的限值。 2 -2 -1 1 2 1 1 1 -1 -1 1 0 2 -1 -2 1 2 0 5 -2 -4 1 -1 1 5 1 0 0 0 0 0 0 1 0 0 0 4)、由于,为人工变量,当其到达零值时,将其从问题中拿掉保证其值不会再变。同时将以改变的决策变量转换为状态变量。增加的值使目标函数值更小。 1 -3 1 1 1 0 1 1 -1 1

1 -3 1 1 1 0 0 0 0 0 0 0 0 5)使所有人工变量为零的问题变量的值记为所求目标函数的初始可行点,本例为, 二、第二阶段用单纯形法求解最优解 -2 2 1 0 1 1 -1 0 -2 1 2 1 5 1 3 要使目标函数继续减小,需要减小或的值,由以上计算,已经有两个松弛变量为零,因此或不能再减小了,故该初始可行点即为最优解。

2、求解问题 s.t. 如果目标函数变成,确定使原解仍保持最优的c值范围,并把目标函数最 大值变达成c的函数。 解:先采用单纯形法求解最优解,再对保持最优解时C值的范围进行讨论。 1)将问题华为标准线性问题 s.t. 2)用单纯形表表示约束条件,同时在不引入人工变量的前提下,取松弛变量得初始值为零值,求解初始解和最优解 10 -1 -1 -1 10 -20 1 5 1 -20 -2 -1 -1 0 0 0 0 要使目标函数继续减小,可以增大,增大的限值是10。 10 -1 -1 -1 10 0 -20 1 5 1 -20 -10 -2 -1 -1 0 -20 0 0 0 10 0 0 3)转轴。将为零的松弛变量和决策变量交换进行转轴 10 -1 -1 -1 10 -10 4 0 -1 -10 0 -20 1 1 2 -20

高中数学专题讲义-线性规划

【例1】 设O 为坐标原点,(1,1)A ,若点B 满足2222101212x y x y x y ?+--+????≥≤≤≤≤, 则OA OB ?u u u v u u u v 的最小值为( ) A .2 B .2 C .3 D .22+ 【例2】 已知变量,x y 满足120x y x y ????-? ≥≤≤,则x y +的最小值为( ) A .2 B .3 C .4 D .5 【例3】 不等式组0,10, 3260x x y x y ??--??--?≥≥≤所表示的平面区域的面积等于 . 典例分析 线性规划

【例4】设变量,x y满足约束条件 3 1 x y x y + ? ? -- ? ≥ ≥ ,则目标函数2 z y x =+的最小值为() A.1B.2C.3D.4 【例5】设变量,x y满足 0, 10 3260 y x y x y ? ? -- ? ?-- ? ≥ ≥ ≤ ,则该不等式组所表示的平面区域的面积等 于,z x y =+的最大值为. 【例6】目标函数2 z x y =+在约束条件 30 20 x y x y y +- ? ? - ? ? ? ≤ ≥ ≥ 下取得的最大值是________. 【例7】下面四个点中,在平面区域 4 y x y x <+ ? ? >- ? 内的点是() A.(0,0)B.(0,2)C.(3,2) -D.(2,0) -

【例8】已知平面区域 1 ||1 (,)0,(,) 1 y x y x x y y M x y y x ?? + ? ?? -+ ? ?? ??? Ω== ?????? ? ?? ????? ? ?? ≤ ≤ ≥ ≥ ≤ ,向区域Ω内 随机投一点P,点P落在区域M内的概率为() A.1 4 B. 1 3 C. 1 2 D. 2 3 【例9】若x,y满足约束条件 30 03 x y x y x + ? ? -+ ? ? ? ≥ ≥ ≤≤ ,则2 z x y =-的最大值为. 【例10】已知不等式组 y x y x x a ? ? - ? ? ? ≤ ≥ ≤ ,表示的平面区域的面积为4,点() , P x y在所给平面区 域内,则2 z x y =+的最大值为______.

高中数学必修二单元测试:直线与圆word版含答案

“直线与圆”单元测试 一、选择题 1.直线 3x +y -3=0的倾斜角为( ) A. π6 B.π3 C.2π3 D.5π6 解析:选C ∵直线3x +y -3=0可化为y =-3x +3, ∴直线的斜率为-3, 设倾斜角为α,则tan α=-3, 又∵0≤α<π,∴α=2π3 . 2.如图,直线l 1,l 2,l 3的斜率分别为 1, 2, 3,则必有( ) A . 1< 2< 3 B . 3< 1< 2 C . 3< 2< 1 D . 1< 3< 2 解析:选D 由图可知 1<0, 2>0, 3>0,且 2> 3,所以 1< 3< 2. 3.经过点(1,0),且圆心是两直线x =1与x +y =2的交点的圆的方程为( ) A .(x -1)2+y 2=1 B .(x -1)2+(y -1)2=1 C .x 2+(y -1)2=1 D .(x -1)2+(y -1)2=2 解析:选B 由????? x =1,x +y =2,得????? x =1,y =1, 即所求圆的圆心坐标为(1,1), 又由该圆过点(1,0),得其半径为1, 故圆的方程为(x -1)2+(y -1)2 =1. 4.过直线2x -y +4=0与x -y +5=0的交点,且垂直于直线x -2y =0的直线方程是( ) A .2x +y -8=0 B .2x -y -8=0 C .2x +y +8=0 D .2x -y +8=0 解析:选A 设过直线2x -y +4=0与x -y +5=0的交点的直线方程为2x -y +4+λ(x -y +5)=0,即(2+λ)x -(1+λ)y +4+5λ=0, ∵该直线与直线x -2y =0垂直,

高一数学必修二直线与圆练习题

一、选择题 1.若直线x =1的倾斜角为α,则α( ) A .等于0 B .等于4π C .等于2π D .不存在 2.原点到直线x +2y -5=0的距离为( ) A .1 B .3 C .2 D .5 3.经过圆x 2+2x +y 2=0的圆心C ,且与直线x +y =0垂直的直线方程是( ) A .x +y +1=0 B .x +y -1=0 C .x -y +1=0 D .x -y -1=0 4.圆x 2+y 2-2x =0和x 2+y 2+4y =0的位置关系是( ) A .相交 B .外切 C .相离 D .内切 5.若过点A (4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 的斜率的取值范围为 ( ) A .]3,3[- B .)3,3(- C .]33,33[- D .)3 3,33(- 6.曲线0222222=-++y x y x 关于( ) A .直线2=x 轴对称 B .直线y =-x 轴对称 C .点)2,2(-中心对称 D .点)0,2(-中心对称 7.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴相切,则该圆的标准方程是( ) A .(x -2)2+(y -1)2=1 B .1)37 ()3(2 2=-+-y x C .(x -1)2+(y -3)2=1 D .1)1()23 (2 2=-+-y x 8.设A 、B 是x 轴上的两点,点P 的横坐标为2,且||||PB PA =,若直线PA 的方程为01=+-y x ,则直线PB 的方程是 ( ) A .05=-+y x B .012=--y x C .042=--y x D .072=-+y x

高一数学必修二圆与方程知识点整理

高一数学必修二圆与方程 知识点整理 LELE was finally revised on the morning of December 16, 2020

高一数学必修二《圆与方程》知识点整理 一、标准方程 1.求标准方程的方法——关键是求出圆心(),a b 和半径r ①待定系数:往往已知圆上三点坐标,例如教材119P 例2 ②利用平面几何性质 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件方程形式 圆心在原点()2220x y r r +=≠ 过原点()()()22 22220x a y b a b a b -+-=++≠ 圆心在x 轴上()()2220x a y r r -+=≠ 圆心在y 轴上()()2220x y b r r +-=≠ 圆心在x 轴上且过原点()()2220x a y a a -+=≠ 圆心在y 轴上且过原点()()2220x y b b b +-=≠ 与x 轴相切()()()2220x a y b b b -+-=≠ 与y 轴相切()()()22 20x a y b a a -+-=≠ 与两坐标轴都相切()()()2220x a y b a a b -+-==≠ 二、一般方程 1.220Ax By Cxy Dx Ey F +++++=表示圆方程则 2.求圆的一般方程一般可采用待定系数法:如教材122P 例r 4 3.2240D E F +->常可用来求有关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值

线性规划问题及其数学模型

第二章 线性规划的对偶理论与灵敏度分析习题 1. 写出下列线性规划问题的对偶问题。 (1)????? ? ?≥=++≤++≥++++=无约束 3213213213213 21,0,5343 32243422min x x x x x x x x x x x x x x x z (2) ????? ? ?≤≥≤++≥-+-=++++=0 ,0,8374355 22365max 3213213213213 21x x x x x x x x x x x x x x x z 无约束 (3)?? ??? ??? ???==≥=====∑∑∑∑====) ,,1;,,1(0) ,,1(),,1(min 1 111n j m i x n j b x m i a x x c z ij m i j ij n j i ij m i ij n j ij (4)???????????=≥++==<=<=∑∑∑===),,,,1(0),,2,1() ,,1(min 1 211111n n j x m m m i b x a m m i b x a x c z j n j i j ij n j i j ij n j j j 无约束 2. 判断下列说法是否正确,为什么? (1)如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; (2)如果线性规划的对偶问题无可行解,则原问题也一定无可行解; ( 3)在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目标函数值一定不超过其对偶问题可行解的目标函数值; (4)任何线性规划问题具有唯一的对偶问题。 3. 已知某求极大化线性规划问题用单纯形法求解时的初始单纯形表及最终单纯形表如下表所示,求表中各括弧内未知数的值。

最新高中数学线性规划问题教案资料

高中数学线性规划问题 一.选择题(共28小题) 1.(2015?马鞍山一模)设变量x,y满足约束条件:,则z=x﹣3y的最小值() A.﹣2 B.﹣4 C.﹣6 D.﹣8 2.(2015?山东)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣3 3.(2015?重庆)若不等式组,表示的平面区域为三角形,且其面积等于,则m的值为() A.﹣3 B.1 C.D.3

4.(2015?福建)变量x,y满足约束条件,若z=2x﹣y的最大值为2,则实数m等于() A.﹣2 B.﹣1 C.1 D.2 5.(2015?安徽)已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1 B.﹣2 C.﹣5 D.1 6.(2014?新课标II)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10 B.8 C.3 D.2 7.(2014?安徽)x、y满足约束条件 ,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为() A.或﹣1 B.2或 C.2或1 D.2或﹣1

8.(2015?北京)若x,y满足,则z=x+2y的最大值为() A.0 B.1 C.D.2 9.(2015?四川)设实数x,y满足,则xy的最大值为() A.B.C.12 D.16 10.(2015?广东)若变量x,y满足约束条件,则z=3x+2y的最小值为() A.4 B.C.6 D. 11.(2014?新课标II)设x,y满足约束条件,则z=x+2y的最大值为()A.8 B.7 C.2 D.1 12.(2014?北京)若x,y满足且z=y﹣x的最小值为﹣4,则k的值为()A.2 B.﹣2 C.D.﹣

简单的线性规划问题附答案

简单的线性规划问题附 答案 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

简单的线性规划问题 [学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一 线性规划中的基本概念 知识点二1.目标函数的最值 线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是z b ,当z 变 化时,方程表示一组互相平行的直线. 当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤 在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域. (2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案. 知识点三 简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;

(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题 例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小 ②产品安排问题 例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A 、B 、C 三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大 ③下料问题 例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小 2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一 求线性目标函数的最值 例1 已知变量x ,y 满足约束条件???? ? y ≤2,x +y ≥1, x -y ≤1,则z =3x +y 的最大值为( ) A .12 B .11 C .3 D .-1 答案 B 解析 首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y =-3x +z 经过点A 时,z 取得最大值.由? ?? ?? y =2, x -y =1? ?? ?? x =3, y =2,此时z =3x +y =11. 跟踪训练1 (1)x ,y 满足约束条件???? ? x +y -2≤0,x -2y -2≤0, 2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一... ,则实数a 的值为( ) 或-1 B .2或1 2

相关文档
最新文档