三角函数的图像和性质教案

三角函数的图像和性质教案
三角函数的图像和性质教案

审阅签字: 时间:

教务主任签字: 时间:

龙文教育教务处

三角函数的图像与性质

第三节三角函数的图象与性质[备考方向要明了] 考什么怎么考 1.能画出y=sin x,y=cos x,y=tan x的图象, 了解三角函数的周期性. 2.理解正弦函数、余弦函数在区间[0,2π]上的 性质(如单调性、最大值和最小值以及与x轴 的交点等),理解正切函数在区间???? - π 2, π 2内 的单调性. 1.以选择题或填空题的形式考查三角函数的 单调性、周期性及对称性.如2012年新课标 全国T9等. 2.以选择题或填空题的形式考查三角函数的 值域或最值问题.如2012年湖南T6等. 3.与三角恒等变换相结合出现在解答题中.如 2012年北京T15等. [归纳·知识整合] 正弦函数、余弦函数、正切函数的图象和性质 函数y=sin x y=cos x y=tan x 图象 定义域R R? ? ? x??x≠ π 2+kπ,k ∈Z} 值域[-1,1][-1,1]R 单调性 递增区间: ? ? ? ? 2kπ- π 2,2kπ+ π 2(k∈Z) 递减区间: ? ? ? ? 2kπ+ π 2,2kπ+ 3 2 π(k∈Z) 递增区间:[2kπ-π,2kπ] (k∈Z) 递减区间:[2kπ,2kπ+π] (k∈Z) 递增区间: ? ? ? ? kπ- π 2,kπ+ π 2(k∈ Z)

[探究] 1.正切函数y =tan x 在定义域内是增函数吗? 提示:不是.正切函数y =tan x 在每一个区间????k π-π2,k π+π 2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数. 2.当函数y =A sin(ωx +φ)分别为奇函数和偶函数时,φ的取值是什么?对于函数y =A cos(ωx +φ)呢? 提示:函数y =A sin(ωx +φ),当φ=k π(k ∈Z )时是奇函数,当φ=k π+π 2(k ∈Z )时是偶函 数;函数y =A cos(ωx +φ),当φ=k π(k ∈Z )时是偶函数,当φ=k π+π 2 (k ∈Z )时是奇函数. [自测·牛刀小试] 1.(教材习题改编)设函数f (x )=sin ????2x -π 2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π 2的奇函数 D .最小正周期为π 2 的偶函数 解析:选B ∵f (x )=sin(2x -π 2)=-cos 2x , ∴f (x )是最小正周期为π的偶函数. 2.(教材习题改编)函数y =4sin x ,x ∈[-π,π]的单调性是( ) A .在[-π,0]上是增函数,在[0,π]上是减函数

高中数学三角函数的图象与性质题型归纳总结

三角函数的图象与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ω x +φ)或y =A cos(ω x +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4π C .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1- D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f = B .(0)0f = C .'(0)1f = D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数 D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数 D .π最小正周期为2的偶函数

三角函数的图像与性质

三角函数的图像与性质 1.三角函数中的值域及最值问题 a .正弦(余弦、正切)型函数在给定区间上的最值问题 (1)(经典题,5分)函数f (x )=sin ????2x -π4在区间????0,π 2上的最小值为( ) A .-1 B .- 22 C.22 D .0 答案:B 解析:∵x ∈????0,π2,∴-π4≤2x -π4≤3π 4,∴函数f (x )=sin ????2x -π4在区间????0,π2上先增后减.∵f (0)=sin ????-π4=-22, f ????π2=sin ????3π4=2 2, f (0)

三角函数的图象与性质

三角函数的图象与性质 1.(2020·全国Ⅰ卷)设函数f (x )=cos ? ? ???ωx +π6在[-π,π]的图象大致如图,则f (x )的 最小正周期为( ) A.10π 9 B.7π6 C.4π3 D.3π2 解析 由图象知π

解析 T =2π 1=2π,故①正确. 当x +π3=π2+2k π(k ∈Z ),即x =π 6+2k π(k ∈Z )时,f (x )取得最大值,故②错误. y =sin x 的图象 y =sin ? ?? ?? x +π3的图象,故③正确.故选B. 答案 B 3.(2019·全国Ⅱ卷)下列函数中,以π2为周期且在区间? ???? π4,π2单调递增的是( ) A.f (x )=|cos 2x | B.f (x )=|sin 2x | C.f (x )=cos|x | D.f (x )=sin|x | 解析 易知A ,B 项中函数的最小正周期为π 2;C 中f (x )=cos|x |=cos x 的周期为2π,D 中f (x )=sin|x |=?????sin x ,x ≥0, -sin x ,x <0,由正弦函数图象知,在x ≥0和x <0时,f (x ) 均以2π为周期,但在整个定义域上f (x )不是周期函数,排除C ,D. 又当x ∈? ????π4,π2时,2x ∈? ?? ?? π2,π, 则y =|cos 2x |=-cos 2x 是增函数,y =|sin 2x |=sin 2x 是减函数,因此A 项正确,B 项错误. 答案 A 4.(2020·江苏卷)将函数y =3sin ? ? ???2x +π4的图象向右平移π6个单位长度,则平移后的 图象中与y 轴最近的对称轴的方程是________. 解析 将函数y =3sin ? ? ???2x +π4的图象向右平移π6个单位长度,所得图象的函数解析式为y =3sin ?????? 2? ????x -π6+π4=3sin ? ????2x -π12.令2x -π12=k π+π2,k ∈Z ,得对称轴的方程为x =k π2+7π24,k ∈Z ,分析知当k =-1时,对称轴为直线x =-5π 24,与y 轴最近. 答案 x =-5π 24 5.(2020·北京卷)若函数f (x )=sin(x +φ)+cos x 的最大值为2,则常数φ的一个取值

三角函数的图象与性质

三角函数的图象与性质 ——正弦函数、余弦函数的性质 【教学目标】 1.理解正、余弦函数的定义域、值域、最值、周期性、奇偶性的意义; 2.会求简单函数的定义域、值域、最小正周期和单调区间; 3.掌握正弦函数的周期及求法。(n )si y A x ω?=+ 【教学重点】 正、余弦函数的性质。 【教学难点】 正、余弦函数性质的理解与应用。 【教学过程】 一、讲解新课: (1)定义域: 正弦函数、余弦函数的定义域都是实数集[或], R (,)-∞+∞分别记作: sin y x x ∈R =,cos ,y x x =∈R (2)值域 ,1sin 1x ≤≤--1cos 1 x ≤≤也就是说,正弦函数、余弦函数的值域都是。[ ]-1,1其中正弦函数,sin y x =x ∈R (1)当且仅当,时,取得最大值1。 x 2k 2π π=+k ∈Z (2)当且仅当,时,取得最小值。 x 2k 2π π=+k ∈Z 1-

而余弦函数,cos y x =x ∈R 当且仅当,时,取得最大值1,时,取得最小值。 2x k π=k ∈Z (21)x k π=+k ∈Z 1-(3)周期性 由,()知: sin(2)sin x k x π+=cos(2)cos x k x π+=k ∈Z 正弦函数值、余弦函数值是按照一定规律不断重复地取得的。 一般地,对于函数,如果存在一个非零常数,使得当取定义域内的每一个值()f x T x 时,都有,那么函数f(x)就叫做周期函数,非零常数叫做这个函数的周()()f x T f x +=T 期。 由此可知,,,…,,,…(且)都是这两个函数的周期。2π4π2π-4π-2k πk ∈Z 0k ≠对于一个周期函数 ,如果在它所有的周期中存在一个最小的正数,那么这个最小正()f x 数就叫做 的最小正周期。()f x 注意: 1.周期函数定义域,则必有,且若则定义域无上界;则定义域x ∈M x T M +∈0T >0T <无下界; 2.“每一个值”只要有一个反例,则就不为周期函数(如) ()f x ()()001f x t f x +3.往往是多值的(如,,,…,,,…都是周期)周期中最T sin y x =2π4π2π-4π-T 小的正数叫做的最小正周期(有些周期函数没有最小正周期) ()f x 根据上述定义,可知:正弦函数、余弦函数都是周期函数,(且)都是它的2k πk ∈Z 0k ≠周期,最小正周期是2π (4)奇偶性 由sin()sin x x -=-可知:为奇函数 ()cos x cosx -=sin y x =为偶函数 cos y x =∴正弦曲线关于原点O 对称,余弦曲线关于y 轴对称

三角函数的图像和性质(1)

第2章第3节 三角函数的图像和性质(1) 主备人: 审核人: . 班级 姓名 . 【教学目标】 ① 了解三角函数的周期性. ② 能画出y =sinx ,y =cosx ,y =tanx 的图象,并能根据图象理解正弦函数、余弦函数在[0,2π], 正切函数在? ?? ??-π2,π2上的性质. ③ 了解三角函数 y =Asin (ωx+φ)的实际意义及其参数A 、ω、φ对函数图象变化的影响. 【重点难点】 1.重点:能画出y =sinx ,y =cosx ,y =tanx 的图象,并能根据图象理解正弦函数、余弦函数在[0, 2π],正切函数在? ?? ??-π2,π2上的性质. 2.难点:y =sinx ,y =cosx ,y =tanx 性质的熟练运用。 【教学过程】 一. 基础自测: 1. 函数13sin()24y x π=+ 的最小正周期为______________; 2.函数21sin -= x y 的定义域为 . 3.函数)4cos(2π +=x y 的单调减区间为 . 三.典型例题 例1.求下列函数的定义域: (1)tan 4y x π??=- ??? ; (2)y =

例2.求下列函数的值域 (1)2()sin 2,[ ,]63f x x x ππ=∈; (2)2()64sin cos f x x x =--; (3)2sin 1sin 2x y x += -; (4)sin cos 2sin cos 2,y x x x x x R =+++∈ 例3.已知函数sin(2)3y x π =+,求(1)周期; (2)当x 分别为何值时函数取得最大值,最小值;(3)单调增区间,单调减区间;(4)对称轴、对称中心. 例4.设函数的最小正周期为. (Ⅰ)求的值.(Ⅱ)若函数的图像是由的图像向右平移 个单位长度得到,求的单调增区间. 22()(sin cos )2cos (0)f x x x x ωωωω=++>23 πω()y g x =()y f x =2 π()y g x =

三角函数的图像与性质

一、选择题 1.函数y =sin 2x +sin x -1的值域为( ) A .[-1,1] B .[-5 4,-1] C .[-5 4,1] D .[-1,5 4 ] [答案] C [解析] 本题考查了换元法,一元二次函数闭区间上的最值问题,通过sin x =t 换元转化为t 的二次函数的最值问题,体现了换元思想和转化的思想,令t =sin x ∈[-1,1],y =t 2 +t -1,(-1≤t ≤1),显然-5 4 ≤y ≤1,选C. 2.(2011·山东理,6)若函数f (x )=sin ωx (ω>0)在区间[0,π 3]上单调递增, 在区间[π3,π 2 ]上单调递减,则ω=( ) A .3 B .2 C.32 D.2 3 [答案] C [解析] 本题主要考查正弦型函数y =sin ωx 的单调性 依题意y =sin ωx 的周期T =4×π3=43π,又T =2π ω, ∴2πω=43π,∴ω=32 .

故选C(亦利用y =sin x 的单调区间来求解) 3.(文)函数f (x )=2sin x cos x 是( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数 D .最小正周期为π的偶函数 [答案] C [解析] 本题考查三角函数的最小正周期和奇偶性. f (x )=2sin x cos x =sin2x ,最小正周期T =2π 2=π, 且f (x )是奇函数. (理)对于函数f (x )=2sin x cos x ,下列选项中正确的是( ) A .f (x )在(π4,π 2)上是递增的 B .f (x )的图像关于原点对称 C .f (x )的最小正周期为2π D .f (x )的最大值为2 [答案] B [解析] 本题考查三角函数的性质.f (x )=2sin x cos x =sin2x ,周期为π,最大值为1,故C 、D 错;f (-x )=sin(-2x )=-2sin x ,为奇函数,其图像关 于原点对称,B 正确;函数的递增区间为???? ??k π-π4,k π+π4,(k ∈Z)排除A. 4.函数y =sin2x +a cos2x 的图像关于直线x =-π 8对称,则a 的值为 ( )

三角函数的图像与性质优秀教案

三角函数图像与性质复习 教案目标: 1、掌握五点画图法,会画正余弦、正切函数图象以及相关的三角函数图象及性质。 2、深刻理解函数的定义和正弦、余弦、正切函数的周期性。 重点:五点作图法画正余弦函数图象,及正余弦函数的性质,及一般函数) sin(?ω+=x A y 的图象。 难点:一般函数)sin(?ω+=x A y 的图象与性质。 【教案内容】 1、引入: 有个从未管过自己孩子的统计学家,在一个星期六下午妻子要外出买东西时,勉强答应照看一下4个年幼好动的孩子。当妻子回家时,他交给妻子一张纸条,上写:“擦眼泪11次;系鞋带15次;给每个孩子吹玩具气球各5次,每个气球的平均寿命10秒钟;警告孩子不要横穿马路26次;孩子坚持要穿过马路26次;我还想再过这样的星期六0次。” 2、三角函数知识体系及回忆正余弦函数的概念和周期函数: 正弦函数: 余弦函数: 周期函数: 注意: 最小正周期: 一般函数)sin(?ω+=x A y 中:A 表示 ,ω表示 及频率: ,相位: 。 正切函数: 3、三角函数的图象:

值域:tan ;tan .2 2 22 x x x x x x π π π π < → →+∞>- →-→-∞当且时,当且时, 单调性:对每一个k Z ∈,在开区间(,)22 k k π π ππ- +内,函数单调递增. 对称性:对称中心:( ,0)()2 k k Z π ∈,无对称轴。 五点作图法的步骤: (由诱导公式画出余弦函数的图象) 【例题讲解】

例1 画出下列函数的简图 (1)1sin y x =+[0,2]x π∈(2)cos y x =-[0,2]x π∈ (3)2sin y x =[0,2]x π∈ 例2 (1)方程lg sin x x =解得个数为( ) A. 0 B. 1 C. 2 D. 3 (2)3[, ]22x ππ ∈- 解不等式3 sin 2 x ≥- 4([,])33x ππ∈- 例3已知函数()cos(2)2sin()sin()3 4 4 f x x x x π π π =-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间[,]122 ππ - 上的值域。 例4已知函数()sin(),f x A x x R ω?=+∈(其中0,0,02 A π ω?>><< )的周期为π, 且图象上一个最低点为2( ,2)3 M π -. (Ⅰ)求()f x 的解读式;(Ⅱ)当[0, ]12 x π∈,求()f x 的最值. 例5写出下列函数的单调区间及在此区间的增减性: (1)1tan()26 y x π=-;(2)tan(2)4y x π =-. 【过手练习】 1、函数sin(2)3 y x π =+ 图像的对称轴方程可能是() A .6x π =- B .12 x π =- C .6x π = D .12 x π = 2、已知函数)0)(sin(2>+=ωφωx y 在区间[0,2π]的图像 如下,那么ω=() A. 1 B. 2 C. 1/2 D. 3 1 3、函数()cos 22sin f x x x =+的最小值和最大值分别为

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

三角函数的图像与性质 教案

三角函数的图象与性质   教学目标 1.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质. .熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、 2 重点难点 重点是通过复习,能运用四种三角函数的性质研究复合三角函数的性质及图象的特点,特别是三角函数的周期性,是需要重点明确的问题. 难点是,在研究复合函数性质时,有些需要先进行三角变换,把问题转化到四种三角函数上,才能进行研究,这就增加了问题的综合性和难度. 教学过程 三角函数的图象与性质是三角函数的核心问题,要熟练、准确地掌握.特别是三角函数的周期性,反映了三角函数的特点,在复习“三角函数的性质与图象”时,要牢牢抓住“三角函数周期性”这一内容,认真体会周期性在三角函数所有性质中的地位和作用.这样才能把性质理解透彻. 一、三角函数性质的分析 .三角函数的定义域 1 函数y=cotx的定义域是x≠π或(kπ,kπ+π)(k∈Z),这两种表示法都需要掌握.即角x不能取终边在x轴上的角. (2)函数y=secx、y=cscx的定义域分别与y=tanx、y=cotx相同. 求下列函数的定义域: 例1

π](k∈Z) . 形使函数定义域扩大. 到.注意不要遗漏.

. (3)满足下列条件的x的结果,要熟记(用图形更便于记住它的结果)

是 [ ] 所以选C. 2.三角函数的值域 (1)由|sinx|≤1、|cosx|≤1得函数y=cscx、y=secx的值域是 |cscx|≥1、|secx|≥1. (2)复合三角函数的值域问题较复杂,除了代数求值域的方法都可以适用外,还要注意三角函数本身的特点,特别是经常需要先进行三角变换再求值域.

必修4三角函数的图像与性质

§1.4.1正弦函数、余弦函数的图象 学习目标:1.能借助正弦线画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象. 2.能熟练运用“五点法”作图. 学习重点:运用“五点法”作图 学习难点:借助于三角函数线画y=sinx的图象 学习过程: 一、情境设置 遇到一个新的函数,画出它的图象,通过观察图象获得对它的性质的直观认识是研究函数的基本方法,那么,一般采用什么方法画图象? 二、探究研究 问题1. 在直角坐标系内把单位圆十二等分,分别画出对应角的正弦线. 问题2. 在相应坐标系内,在x轴表示12个角(实数表示),把单位圆中12个角的正弦线进行右移. 问题3. 通过刚才描点(x0,sinx0),把一系列点用光滑曲线连结起来,能得到什么? 问题4. 观察所得函数的图象,五个点在确定形状是起关键作用,哪五个点? 问题5.如何作y=sinx,x∈R的图象(即正弦曲线)? 问题6.用诱导公式cosx=________(用正弦式表示),y=cosx的图象(即余弦曲线)怎样得到? 问题7. 关键五个点.三、例题精讲 例1:用“五点法”画下列函数的简图 (1)y=1+sinx ,x∈[]π2,0 (2) y=-cosx,x∈[]π2,0 思考:(1)从函数图象变换的角度出发,由y=sinx,x∈[]π2,0的图象怎样得到y=1+sinx ,x∈[]π2,0的图像?由y=cosx,x∈[]π2,0的图象怎样得到y=-cosx, ,x∈[]π2,0的图像? 四、巩固练习 1、在[0,2π]上,满足 1 sin 2 x≥的x取值范围是( ). A.0, 6 π ?? ?? ?? B.5, 66 ππ ?? ?? ?? C.2, 63 ππ ?? ?? ?? D.5, 6 π π ?? ?? ?? 2、 用五点法作) y=1-cosx, x∈[]π2,0的图象. 3、结合图象,判断方程x sinx=的实数解的个数. 五、课堂小结 在区间] 2,0 [π上正、余弦函数图象上起关键作用的五个点分别是它的最值点及其与坐标轴的交点(平衡点).函数的图象可通过描述、平移、对称等手段得到. 六、当堂检测 1、观察正弦函数的图象,以下4个命题: (1)关于原点对称(2)关于x轴对称(3)关于y轴对称(4)有无数条对称轴其中正确的是

三角函数的图像与性质题目及答案

1.函数 f (x )=sin 2x +3?图象的对称轴方程可以为 ( D ) A .x = B .x = C .x = D .x = 2.函数 y =sin x +3?cos 6-x ?的最大值及最小正周期分别为 ( A ) A .1,π B. ,π C .1, D .1,2π 3.函数 y =2sin x -4?cos 4-x ?是( C ) A .[-1,1] B .[- ,-1] C .[- ,1] D .[-1, ] A .f(x)在( , )上是递增的 B .f(x)的图像关于原点对称 A .k π (k ∈Z) B .k π +π (k ∈Z)C .k π + (k ∈Z) D .k π - (k ∈Z) [2k π + ,2k π + ](k ∈ z ) __________________. 高三理科数学周测十六(三角函数的图像与性质) ? π? ? ? 5π π π π 12 3 6 12 ? π? ?π ? ? ? ? ? 1 π 2 2 ? π? ?π ? ? ? ? ? A .周期为 2π 的奇函数 B .周期为 π 的奇函数 C .周期为 π 的偶函数 D .周期为 π 的非奇非偶函数 4.函数 y =sin2x +sinx -1 的值域为(C ) 5 5 5 4 4 4 5.对于函数 f(x)=2sinxcosx ,下列选项中正确的是( B ) π π 4 2 C .f(x)的最小正周期为 2π D .f(x)的最大值为 2 6.函数 f(x)= 3cos(3x -θ )-sin(3x -θ )是奇函数,则 θ 等于( D ) π π 6 3 3 7. 若 f (sin x )=3-cos2x ,则 f (cos x )=( C ) A 、3-cos2x 8.函数 f ( x ) = x sin( x - 5 π 2 B 、3-sin2x C 、3+cos2x D 、3+sin2x ) 是( B ) A.偶函数 B.奇函数 C.非奇非偶函数 D.既奇又偶函数 9. 在 (-π , π ) 内是增函数, 且是奇函数的是( A ) . x x x A. y = sin B. y = cos C. y = - sin D. y = sin 2 x 2 2 4 1 . 函 数 y = 2s x i - 1 n 的 定 义 域 是 _______ π 5π 6 6 2.函数 y = a + b sin x (b > 0) 的最大值是 3 ,最小值是- 1 ,则a =_____ 1 , 2 2 2 1 / 2

知识讲解_三角函数的图象和性质_基础

高考复习正弦、余弦的图象和性质 【考纲要求】 1、会用“五点法”画出正弦函数、余弦函数的简图;熟悉基本三角函数的图象、定义域、值域、奇偶性、单调性及其最值;理解周期函数和最小正周期的意义. 2、理解正弦函数、余弦函数在区间[0,2]π的性质(如单调性、最大和最小值、与x 轴交点等),理解正切函数在区间(,)22 ππ -的单调性. 【知识网络】 【考点梳理】 考点一、“五点法”作图 在确定正弦函数sin y x =在[0,2]π上的图象形状时,最其关键作用的五个点是(0,0),( ,1)2 π, (,0)π,3( ,-1)2 π ,(2,0)π 考点二、三角函数的图象和性质 名称 sin y x = cos y x = tan y x = 定义域 x R ∈ x R ∈ {|,} 2 x x k k Z π π≠+ ∈ 值 域 [1,1]- [1,1]- (,)-∞+∞ 图象 奇偶性 奇函数 偶函数 奇函数 单 单调增区间: 单调增区间: 单调增区间: 应用 三角函数的图象与性质 正弦函数的图象与性质 余弦函数的 图象与性质 正切函数的 图象与性质

要点诠释: ①三角函数性质包括定义域、值域、奇偶性、单调性、周期性、最大值和最小值、对称性等,要结合图象记忆性质,反过来,再利用性质巩固图象.三角函数的性质的讨论仍要遵循定义域优先的原则,研究函数的奇偶性、单调性及周期性都要考虑函数的定义域. ②研究三角函数的图象和性质,应重视从数和形两个角度认识,注意用数形结合的思想方法去分析问题、解决问题. 考点三、周期 一般地,对于函数()f x ,如果存在一个不为0的常数T ,使得当x 取定义域内的每一个值时,都有 (+)=()f x T f x ,那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的 最小正数,叫做最小正周期(函数的周期一般指最小正周期). 要点诠释: 应掌握一些简单函数的周期: ①函数sin()y A x ω?=+或cos()y A x ω?=+的周期2T π ω = ; ②函数tan()y A x ω?=+的周期T πω = ; ③函数sin y x =的周期=T π;

三角函数的图象与性质知识点汇总

三角函数的图象与性质 、知识网络 基弃变换 三、知识要点 (一)三角函数的性质 1、定义域与值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y = sinx , y = tanx ; 偶函数:y= cosx. (2) -'’ 一 -‘:型三角函数的奇偶性 (i)g (x)=* (x€ R) g (x )为偶函数 ' 二二—「二: O卫址1(徴 + ? =/win(-徴+@)(x亡卫)U sin ocrcos(p= 0(x白应) cos (p二 0 o(p= jt/r-hy e 7) 由此得 同理,旨(对二話乞山(伽+洌0€丘)为奇函数O 寻炉=七兀3€2). (ii)u'■■ ' '''「:;::「' ■?■. 八为偶函数' ..为奇函数

O S (<3X + 炉)+丘 的周期为 竺 kl 7T y = / tan (阪 + + 上丿=/cot (血+饲 + 上 的周期为 (2)认知 -I ' ' : " '型函数的周期 7T -;1 1 - - ■ : - 1 的周期为 门; 71 均同它们不加绝对值时的周期相同,即对 J 的解析式施加绝对值后, y = sin z|+|co3J : 的最小正周期为

三角函数图像及其性质

【本讲教育信息】 一.教学内容: 三角函数的图象与性质 二.教学目的: 了解三角函数的周期性,知道三角函数y=A sin(ωx+φ), y=A cos(ωx+φ)的周期为。 能画出y=sin x,y=cos x,y=tan x的图象,并能根据图象理解正弦函数、 余弦函数在[0,2π],正切函数在(-,)上的性质(如单调性、最大值和 最小值、图象与x轴的交点等)。 了解三角函数y=A sin(ωx+φ)的实际意义及其参数A,ω,φ对函数图象变化的影响;会画出y=A sin(ωx+φ)的简图,能由正弦曲线y=sin x 通过平移、伸缩变换得到y=A sin(ωx+φ)的图象。 会用三角函数解决一些简单的实际问题,体会三角函数是描述周期变化现 象的重要函数模型。 三.教学重点:三角函数的性质与运用 教学难点:三角函数的性质与运用。 四.知识归纳 1.正弦函数、余弦函数、正切函数的图像 2.三角函数的单调区间: 的递增区间是, 递减区间是; 的递增区间是,

递减区间是, 的递增区间是, 3.函数 最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该 图象与直线的交点都是该图象的对称中心。 4.由y=sinx的图象变换出y=sin(ωx+)的图象一般有两个途径,只有区别 开这两个途径,才能灵活进行图象变换 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.无论哪种变形,请切记每一个变换总是对字母x而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少. 途径一:先平移变换再周期变换(伸缩变换) 先将y=sinx的图象向左(>0)或向右(<0=平移||个单位,再将图象上各点的横坐标变为原来的倍(ω>0),便得y=sin(ωx+)的图象。 途径二:先周期变换(伸缩变换)再平移变换。 先将y=sinx的图象上各点的横坐标变为原来的倍(ω>0),再沿x轴向左(>0)或向右(<0=平移个单位,便得y=sin(ωx+)的图象。 5.由y=Asin(ωx+)的图象求其函数式: 给出图象确定解析式y=Asin(ωx+)的题型,有时从寻找“五点”中的 第一零点(-,0)作为突破口,要从图象的升降情况找准第一个零点的位置. 6.对称轴与对称中心: 的对称轴为,对称中心为; 的对称轴为,对称中心为; 对于和来说,对称中心与零点相联系,对称轴与最值点联系。 7.求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A、的正负。利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; 8.求三角函数周期的常用方法: 经过恒等变形化成“、”的形式,再利用周期公式,另外还有图像法和定义法。 9.五点法作y=Asin(ωx+)的简图: 五点取法是设x=ωx+,由x 取0、、π、、2π来求相应的x 值及对应

最全三角函数的图像与性质知识点总结

三角函数的图像与性质 一、 正弦函数、余弦函数的图像与性质 二、正切函数的图象与性质 定义域 {|,}2 x x k k Z π π≠ +∈ 函数 y =sin x y =cos x 图 象 定义域 R R 值域 [-1,1] [-1,1] 单调性 递增区间:2,2() 2 2k k k Z ππππ??-+∈??? ? 递减区间:32,2()2 2k k k Z ππππ??++∈??? ? 递增区间:[2k π-π,2k π] (k ∈Z ) 递减区间:[2k π,2k π+π] (k ∈Z ) 最 值 x =2k π+π 2(k ∈Z )时,y max =1; x =2k π-π 2(k ∈Z )时,y min =-1 x =2k π(k ∈Z )时,y max =1; x =2k π+π(k ∈Z ) 时,y min =-1 奇偶性 奇函数 偶函数 对称性 对称中心:(k π,0)(k ∈Z )(含原点) 对称轴:x =k π+π 2,k ∈Z 对称中心:(k π+π 2,0)(k ∈Z ) 对称轴:x =k π,k ∈Z (含y 轴) 最小正周期 2π 2π

三、三角函数图像的平移变换和伸缩变换 1. 由x y sin =的图象得到)sin(?ω+=x A y (0,0A ω>>)的图象 注意:定要注意平移与伸缩的先后顺序,否则会出现错误。 2. )sin(?ω+=x A y (0,0A ω>>)的性质 (1)定义域、值域、单调性、最值、对称性: 将?ω+x 看作一个整体,与相应的简单三角函数比较得出; (2)奇偶性:只有当?取特殊值时,这些复合函数才具备奇偶性: )sin(?ω+=x A y ,当π?k =时为奇函数,当2 ππ?±=k 时为偶函数; (3)最小正周期:ω π2=T

三角函数的图像和性质知识点及例题讲解

三角函数的图像和性质 1、用五点法作正弦函数和余弦函数的简图(描点法): 正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (2 3π ,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的图像中,五个关键点是:(0,1) (2π,0) (π,-1) (2 3π,0) (2π,1) 2 sin y x = cos y x = tan y x = 图 象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最 值 当 22 x k π π=+ 时, max 1y =;当22x k ππ=- 时,min 1y =-. 当2x k π=时, max 1y =;当2x k ππ=+ 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单 调 性 在2,22 2k k π πππ?? - + ??? ? 上是增函数; 在32,22 2k k ππππ? ?++??? ? 上是减函数. 在[]2,2k k πππ-上是增函 数; 在[]2,2k k πππ+上是减函数. 在,2 2k k π πππ? ? - + ?? ? 上是增函数. 对称 性 对称中心(),0k π 对称轴2 x k π π=+ 对称中心,02k π π??+ ?? ? 对称轴x k π= 对称中心,02k π?? ??? 无对称轴 函 数 性 质

例作下列函数的简图 (1)y=|sinx|,x ∈[0,2π], (2)y=-cosx ,x ∈[0,2π] 例利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合: 21sin )1(≥ x 21 cos )2(≤ x 3、周期函数定义:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:()()f x T f x +=,那么函数()y f x =就叫做周期函数,非零常数T 叫做这个函数的周期。 注意: 周期T 往往是多值的(如sin y x = 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做 ()y f x =的最小正周期(有些周期函数没有最小正周期)sin y x =, cos y x =的最小正周期为2π (一 般称为周期) 正弦函数、余弦函数:ωπ= 2T 。正切函数:π ω 例求下列三角函数的周期: 1? y=sin(x+3 π ) 2? y=cos2x 3? y=3sin(2x +5π) 4? y=tan3x 例求下列函数的定义域和值域: (1)2sin y x =- (2)y =(3)lgcos y x =

三角函数的图像与性质知识点总结

三角函数的图像与性质 知识点总结 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

三角函数的图像与性质一、正弦函数、余弦函数的图像与性质 函数y=sin x y=cos x 图 象 定义域R R 值域[-1,1][-1,1] 单调性 递增区间: 2,2() 22 k k k Z ππ ππ ?? -+∈ ?? ?? 递减区间: 3 2,2() 22 k k k Z ππ ππ ?? ++∈ ?? ?? 递增区间:[2kπ-π, 2kπ] (k∈Z) 递减区间:[2kπ,2kπ+ π] (k∈Z) 最值x=2kπ+ π 2 (k∈Z)时,y max =1; x=2kπ(k∈Z)时,y max=1; x=2kπ+π(k∈Z) 时,y min

二、正切函数的图象与性质

三、三角函数图像的平移变换和伸缩变换 1. 由x y sin =的图象得到)sin( ?ω+=x A y (0,0A ω>>)的图象

注意:平移变换或伸缩变换都是针对自变量x 而言的,因此在用这样的变换法作图 象时一定要注意平移与伸缩的先后顺序,否则会出现错误。 2. )sin(?ω+=x A y (0,0A ω>>)的性质 (1)定义域、值域、单调性、最值、对称性: 将?ω+x 看作一个整体,与相应的简单三角函数比较得出; (2)奇偶性:只有当?取特殊值时,这些复合函数才具备奇偶性: )sin(?ω+=x A y ,当π ?k =时为奇函数,当2 ππ?±=k 时为偶函数; (3)最小正周期:ω π2=T 3. y =A sin(ωx +φ), x ∈[0,+∞) (0,0A ω>>)中各量的物理意义 (1) A 称为振幅; (2)2T πω =称为周期; (3) 1f T = 称为

相关文档
最新文档