三乙烯四胺对c-MYC启动子的调节作用

三乙烯四胺对c-MYC启动子的调节作用
三乙烯四胺对c-MYC启动子的调节作用

三乙烯四胺对c-MYC启动子的调节作用

邓小红刘建辉*郑旭煦陈刚郭丽霞

(重庆工商大学药物化学与化学生物学研究中心,重庆,400067)摘要目的探讨三乙烯四胺(triethylene tetramine, TETA)对c-MYC启动子的调节作用。方法构建c-MYC启动子的荧光报告质粒及其突变体,经过序列测定后,转染HEK293细胞24 h后,以终浓度为0 μmol/L, 0.1 μmol/L, 1.0 μmol/L, 10 μmol/L, 100 μmol/L的TETA处理,测定其启动子的转录活性,计算TETA对其转录活性抑制率。结果成功构建c-MYC启动子荧光报告质粒PGL3-Basic/c-MYC NHE III1promoter及其突变体pGL3-Basci/c-MYC NHEIII1 promoter mutant。将二者分别转染细胞后发现,TETA可以剂量依赖的抑制c-MYC 启动子的转录活性,而对突变体的转录活性抑制作用明显下降。结论TETA能通过c-MYC启动子上的超敏元件对其转录活性具有负调节作用。

关键词:TETA;c-MYC启动子;G四链体;转录活性

基金项目:国家自然基金(30600813, 30701020)、教育部新世纪优秀人才计划(NCET-07-0913)以及重庆市科委重点基础项目(CSTC, 2005BA5023)的资助。

作者简介:邓小红,女,在读博士*通讯作者: 刘建辉,男,教授,硕士研究生导师Tel: (023) 62769652Email: jhliu@https://www.360docs.net/doc/cd956013.html,

TETA regulates the transcription of c-MYC promoter by

enhancing the stability of G-quadruplex

DENG Xiao-hong, LIU Jian-hui*, ZHENG Xu-xu, CHEN Gang, GUO Li-xia (Research Center of Pharmaceutical Chemistry & Chemical Biology, Chongqing Technology and Business University, Chongqing, 400067, China)

ABSTRACT: OBJECTIVE To study the effect of triethylene tetramine (TETA) on the transcription of c-MYC promoter. METHODS After the wild and mutant reporter gene plasmids containing the c-MYC NHE III1 sequence were constructed, the two plasmid were transfected into HEK 293 cells. The transfected cells were replated into 96 wells plate, and treated with different concentrations of TETA (0.0 μmol/L, 0.1 μmol/L, 1 μmol/L, 10 μmol/L, 100 μmol/L) for about 6-8h, the luciferase activity was determined with its substrate BrightGlo. The inhibiting rate of TETA on the reporter gene were calculated by the luciferase activity. RESULTS T he luciferase report gene plasmids including pGL3-Basic/c-MYC NHE III1 promoter and its mutant were constructed successfully. And TETA could inhibit the transcription activity of wild reporter gene in a dose-dependent manner, but for the mutated gene, the inhibiting rate was decreased significantly. CONCLUSION TTETA has negative regulatory effect on c-MYC promoter through nuclease hypersensitive element III1.

Key words: Triethylene tetramine;c-MYC promoter;G-quadruplex;transcription

c-MYC是一种重要的转录因子,参与多种生理功能,如在G1/S的过渡、G2/M 的转化中都有作用,与细胞的生长、增殖、分化密切相关。它同时也是一种重要的原癌基因,位于肿瘤发生、发展的多种信号通路的关键交汇点,其蛋白的表达失调与肿瘤的发生、发展密切相关[1,2],过量表达将直接或间接导致肿瘤的发生。研究表明,c-MYC基因的转录85%-90%是由其启动子区的核酸超敏元件III1 (nuclease hypersensitive element III1, NHE III1)所控制[3]。该元件即为G4-DNA结构,一段富含鸟嘌呤的重复序列,该序列在一定条件下可以形成四链螺旋结构。该结构在端粒、免疫球蛋白开关区、基因启动子区等许多具有重要生物学功能的基因组中出现。

目前已有多种小分子化合物显示出对G4-DNA的稳定作用,其中包括酰胺蒽醌类化合物[4-7]、卟啉类化合物等[8-10]。TETA是一种小分子化合物,在中性溶液中带正电,类似于K+,我们前期通过圆二色谱以及热力曲线证明,TETA在体外能够增强人端粒DNA和c-MYC NHE III1启动子序列形成的G4-DNA结构的稳定性[11, 15]本文将研究TETA在细胞内对c-MYC启动子的调节作用,为TETA 的抗肿瘤作用机制提供实验依据。

1. 实验材料

药品和试剂c-MYC启动子质粒Pbv-Del1由美国哈佛医学院Dr. Bert V ogelstein惠赠,限制性内切酶Nhe I和EcoR V购自于TaKaRa公司,c-MYC启动子突变体引物由上海生工合成,突变试剂盒购自于Stratagene公司,Bright- GloTM荧光试剂购自Promega公司,转染试剂Lipofectamine 2000购自Invitrogen 公司。HEK293细胞株,购自中国科学院上海生化细胞所。细胞培养液DMEM、

胎牛血清均购自Hyclone公司,TETA购自于Aldrich公司。

2. 方法

2.1 c-MYC启动子荧光报告质粒的构建

将Pbv-Del 1和PGL3-Basic两种质粒分别都用Nhe I和EcoR V进行双酶切,凝胶电泳后,切胶回收c-MYC启动子2500 bp的片断和酶切后的PGL3-Basic质粒。将此两种酶切后回收产物按1:5比例在4℃下连接过夜,再将连接产物转化于大肠杆菌DH5α中。37℃过夜培养,挑取单克隆菌,并提取其质粒后,用Nhe I和EcoR V进行酶切鉴定,将鉴定结果为阳性的质粒命名为PGL3-Basic/c-MYC promoter。

2.2 c-MYC启动子突变体的构建

根据Gene Bank登录号:AC103819 [gi:22539123]中的c-MYC启动子序列,设计突变引物为,上游: ATGGGGAGGGTG A GGAGGGTGGGGAAGGTGGGG,下游:TTCCCCACCCTCC T CACCCTCCCCA TAAGCGCC。根据Stratagene的突变试剂盒说明,首先以PGL3-Basci/c-MYC promoter质粒为模板进行PCR扩增,再将Dpn I酶加入到扩增产物中,37℃作用1 h后直接转化到XL-bule菌,涂板。37℃过夜培养,挑取单克隆菌,提取质粒后,用Nhe I和EcoR V进行酶切鉴定,将鉴定结果为阳性的质粒送TaKaRa公司测序,将突变成功的质粒命名为PGL3-Basci/c-MYC promoter mutant。

2.3 TETA对c-MYC启动子的调节作用

肿瘤细胞HEK293以1×105/mL接种于6孔板中,待其融合度达到65%~80%

时准备转染。提取的PGL3-Basic/c-MYC promoter和PGL3-Basic/c-MYC promoter mutant两种质粒分别调其浓度为0.5 μg/μL。将此两种质粒分别与脂质体Lipofectamine 2000混合均匀后,转染于HEK293细胞中,置37℃,5%CO2培养箱中培养24 h后,分别以1×106/mL浓度接种于96孔板,100 μL/孔。待细胞贴壁后,约2 h-4 h,加入稀释的TETA,使其终浓度分别为:0 μmol/L , 0.1 μmol/L, 1.0 μmol/L, 10 μmol/L, 100 μmol/L,继续培养6-8 h后,V eritas TURNER BIOSYSTEMS上测定细胞的荧光值。将TETA浓度为0的组设定为control(A),同批测定其它组的值(X)计算抑制率(I),抑制率(I)=(A-X)/A×100%,统计分析,采用origin 7.5软件进行。

3. 结果

3.1c-MYC启动子荧光报告质粒的构建

从Pbv-Del 1质粒上酶切下了c-MYC启动子的全片断,并将其与PGL3-Basic 质粒连接。经过对单克隆菌株质粒的酶切鉴定,发现从PGL3-Basic酶切下大小为2500 bp的DNA 片断,连接成功的质粒总大小为7300 bp左右,从而构建了c-MYC启片动子荧光报告质粒PGL3- Basic /c-MYC promoter (Fig.1, Fig. 2)。

图1. c-Myc基因结构

Fig 1.Structure of c-MYC gene

3.2 c-MYC 启动子突变体的构建

以pGL3- Basic /c-MYC promoter 为模板进行PCR 定点突变,扩增产物转化XL-bule z 菌,挑取到含有PGL3- Basic /c-MYC promoter 突变位点的质粒,经过测序,发现c-MYC 启动子NHEIII 1的G12→A 突变成功 (Fig. 3),由此获得了pGL3-Basci/c-MYC promoter mutant 。

3.3 TETA 对c-MYC 启动子的调节作用

为了考察TETA 对c-MYC NHE III 1启动子转录活性的影响,我们分别用不同浓度的TETA 处理转染了野生型和突变型报告基因质粒的293细胞,结果发现,与对照组相比,加入TETA 的细胞孔的荧光值明显下降;100 μM TETA 作用8小时对报告基因的转录抑制率可以达到66.2%,即使TETA 浓度低至nM 水平,图2. pGL3- Basic /c-myc promoter 的酶切鉴定

Fig. 2 Identifiction of pGL3- Basic /c-Myc promoter

digested with Nhe I and EcoR V

Lane 1: DNA marker DL15000; Lane 2: PGL3- Basic

/c-myc promoter plasmid; Lane3,4: PGL3- Basic

/c-myc promoter plasmid digest by Nhe Iand EcoR V

Lane 5: DNA marker DL2000

图3. PGL3-Basci/c-myc promoter mutant 质粒的酶切鉴定和测序结果

Fig3.Identification of PGL3-Basci/c-Myc promoter mutant digested with Nhe I

and EcoR V (A) and the sequence report (B)

A B

也有明显的抑制作用,0.1μM TETA作用8小时对报告基因的抑制率为30.4%。但是,当我们对c-MYC NHE III1启动子形成G四链体的关键核苷酸突变之后,TETA的这种抑制作用明显下降,0.1和100 μM TETA作用8小时的抑制率分别为4.3%和25.7%,表明TETA对c-MYC NHE III1启动子的转录活性的抑制作用与其稳定该序列形成的G四链体结构有关。实验结果如图4 所示。

图4. TETA

Fig4. Triethylene tetramine inhibits the transcripting activity of c-MYC promoter NHE III1. After the HEK293 cells were transfected with plasmid of wild and mutanted c-MYC NHE III1 promoter for 24 h, the cells were replated in 96 well plate, after the cells attached, indicated concentrations of TETA were added, and continue to incubate for 6-8 h, after that, the luciferase activities were detected with its substrate (Brightglo). All the data are shown as mean ± SD from three independent experiments. **,p<0.01 Vs control.

4.讨论

c-MYC与肿瘤有着密切的联系,其蛋白的过表达将直接或间接导致肿瘤的发生,而c-MYC蛋白的表达水平最主要取决于其启动子的转录活性高低。c-MYC 的启动子属于内启动,包含在外显子1中。经研究发现,c-MYC启动子中存在一段富含鸟嘌呤的重复序列,即G4-DNA结构,其主要控制着该蛋白的转录。实验证实,K+离子存在时,NHE III1区碱基能够形成4种平行结构的G4-DNA

[12,13]。当能够提高G4-DNA稳定的阳离子卟啉化合物TMPyP4作用与肿瘤细胞时,细胞中c-MYC mRNA及蛋白水平均被下调;与之相对应当NHE III1区的DNA序列发生G→A突变时,G4-DNA的稳定性降低,c-MYC启动子的转录活性能提高3倍[14]。Lemarteleur等发现三嗪衍生物9944,阳离子卟啉化合物TMPyP4等多种已报道的通过G4-DNA能够有效的稳定c-MYC启动子NHE III1区形成G4-DNA结构,并有可能在肿瘤细胞中抑制c-MYC基因的转录,从而有可能阻止肿瘤细胞周期的进程。我们前期研究发现,TETA能稳定人端粒DNA 以及c-MYC NHE III1形成的G四链体DNA结构,并能抑制c-MYC基因的表达[15]。但是,我们还没有获得TETA抑制c-MYC表达的直接证据。本文中,我们通过基因定点突变技术,利用报告基因法对TETA调节c-MYC NHE III1启动子的转录活性进行了分析,实验结果表明,TETA可能通过c-MYC启动子的G4-DNA结构对其启动子的转录活性具有调节作用。

本实验构建了c-MYC全长启动子的荧光报告质粒PGL3-Basic/c-MYC NHEIII1promoter,其中包含其P1和P2启动子(图1)。以此质粒为模板,在其启动子的G4-DNA区域内设计一突变位点,将G12突变为A,以破坏其结构,从而改变启动子的转录活性。由于该突变位点位于富含GC区,因此采用QuikChange XL Site-Directed Mutagenesis Kit (Stratagene)试剂盒进行突变,以保证突变成功。经过生物公司测序,我们成功获得突变体质粒PGL3-Basci/c-MYC promoter mutant。将此两种质粒转染HEK293细胞后,我们发现,当加入TETA 作用后,野生型启动子的转录活性明显下降,且呈剂量依赖关系,但对突变体,这种抑制作用明显下降,提示TETA抑制c-MYC基因表达可能与其在体内能与c-MYC启动子的超敏元件相互作用,增加G4-DNA结构的稳定性有关。大量的

研究结果证实,c-MYC NHE III1形成的G4-DNA在不同条件下有不同的结构(图5),主要包括篮式结构和椅式结构[16]。该突变位点为G12,处于形成G四链体结构的关键位置,当其被突变以后,造成其G四链体结构的不稳定,使得G4-DNA松散,从而可能增加了启动子与转录调节因子作用的机会或增加了转录酶通过该区域的机会,从而增加了其转录活性。我们也同时发现,高浓度的TETA 对突变型的c-MYC NHE III1启动子的转录活性仍有一定的抑制作用,这可能是由于其单一位突变不能完全破坏其高级结构,仍能在一定程度上形成G-四链体DNA结构。

图5. 突变位点在G4-DNA结构的示意(Abstract from PNAS, 2002;99(18): 11593–11598) 致谢

本项目得到国家自然基金(30600813, 30701020)、教育部新世纪优秀人才计划(NCET-07-0913)以及重庆市科委重点基础项目(CSTC, 2005BA5023)的资助。

参考文献

[1]RAMIRO AR, JANKOVIC M, CALLEN E, et al.Role of genomic instability and p53 in AID-induced c-MYC-Igh translocations [J]. Nature, 2006, 440(7080): 105-109.

[2]HEMANN MT, BRIC A, TERUYA-FELDSTEIN, et al.Evasion of the p53 tumour surveillance network by tumor-derived MYC mutants [J]. Nature, 2005, 11; 436(7052): 807-811.

[3]GRAND CL, HAP H, MUNOZ RM, et al.The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo [J]. Mol Cancer Ther, 2002, 1:565-573.

[4]HAQ I, LADBURY JE, CHOWDHRY BZ, et al.Molecular anchoring of duplex and triplex DNA by disubstituted anthracene-9, 10-diones:calorimetric, UV melting, and competition dialysis studies [J]. J Am Chem Soc, 1996, 18: 10693-10701.

[5]PERRY PJ, GOW AN SM, RESZKA AP, et al.1,4-and 2,6-Disubstituted amidoanthracene-9,10-dione derivatives as inhibitors of human telomerase [J]. J Med Chem 1998, 41:3253-3260.

[6]PERRY PJ, RESZKA AP, WOOD AA, et al.Human telomerase inhibition by region-isomeric disubstituded amidoanthracene-9,10-diones [J]. J Med Chem, 1998, 41: 4873-4884.

[7]NEILDLE S, READ MA, G-quadruplexes as therapeutic targets[J]. Biopolymers,

2001, 56: 195-208.

[8]Wheelhouse RT, Sun D, Han H, Han FX, and Hurley LH.WHEELHOUSE RT, SUN D, HAN H, et al. Cationic porphyries as telomerase inhibitors: the interaction of tetra-(N-methyl-4-pyridyl) porphine with quadruplex DNA[J]. J Am Chem Soc, 1998, 120: 3261-3262.

[9]ALEXANDRINE M, SONIA F, CORINE V, et al.Porphyrin-aminoquinoline conjugates as telomerase inhibitors [J]. Org Biomol Chem, 2003, 1:921-927. [10]IZBICKA E, WHEELHOUSE RT, RAYMOND E, et al.Effects of cationic porphyries as G-quadruplex interactive agents in human tumor cells [J]. Cancer Res, 1999, 59:639-644.

[11]YIN F, Liu JH, PENG XJ. Triethylene tetraamine: a novel telomerase inhibitor[J]. Bioorg Med Chem Let, 2003, 13: 3923-3926.

[12]SEENISAMY J, REZLER EM, POWELL TJ, et al.The cynamic character of the G-quadruplex element in the c-MYC promoter and modification by TMPyP4 [J]. J Am Chem Soc, 2004, 126: 8702-8709.

[13]PHAN AT, MODI YS, PATEL DJ. Propeller-type parallel-stranded G-quadruplexes in the human c-MYC promoter [J].J Am Chem Soc, 2004, 126:8710-8716.

[14]SIDDIQUI-JAIN A, GRAND CL, BEARSS DJ, et al.Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress

c-MYC transcription [J]. Proc Nat Acad Sci, 2002, 99:11593-11598.

[15]YIN F, LIU JH, DENG XH, et al.Effects of triethylene tetraamine on the G-quadruplex structure in the human c-MYC promoter[J]. J Biochem2007, 141:669-674.

[16]SIMONSSON T, PECINKA P, KUBISTA M, DNA tetraplex formation in the control region of c-MYC.[J] Nucleic Acids Res, 1998, 26, 1167–1172

二乙烯三胺检测方法

二乙烯三胺检测 二乙烯三胺质量标准 本标准适用于二氯乙烷氨化法生产的粗品,经过分馏而获得的二乙烯三胺。主要用途为环氧树脂固化剂、合成离子交换树脂、涂料和助剂等的工业原料。 分子式:NH2CH2CH2NHCH2CH2NH2 分子量:103.17(按1979年国际原子量) 一、技术要求 二乙烯三胺应符合下列要求 项目指标项目指标 外观无色至浅黄色液体灼烧残渣,% ≤0.10 含量,% ≥90.0馏程(101325Pa)185-210℃,% ≥90.0 氯化物(Cl),% ≤0.05 二、检验方法 1、外观的测定 目测。 2、含量测定 2.1 试剂及仪器 溴酚蓝指示剂:0.1%的20%乙醇溶液;氯化钙水溶液:c(CaCl2)=4.5mol/L;锥形烧瓶(250ml);量杯(50ml);滴定管(50ml,0.10ml刻度)。 2.2 测定步骤 准确称取试样0.25g(称准至0.0002g)加入已先置有50ml4.5mol/L氯化钙水溶液的250ml 锥形烧瓶中。加入溴酚蓝指示剂4-6滴,然后用0.5mol/L盐酸标准溶液滴定至呈明显示的黄色为止。同时作一空白试验。 2.3 计算 二乙烯三胺的含量X1(%),按式(1)计算: X1=(V*c*34.39)/m*100 (1) 式中V——盐酸标准溶液的耗用体积数,ml; c——盐酸标准溶液的摩尔浓度; m——试样质量,mg; 34.39——每毫滴定液相当乙烯三胺的毫克数。 3、氯化物的测定 3.1 试剂 硝酸:(试剂二级)相对密度1.15;氯化物标准溶液(1ml等于0.01ml氯);硝酸银溶液:c(AgNO3)=0.1mol/L。 3.2 仪器 容量瓶(500ml);吸管(10ml,0.1ml刻度);纳氏比色管(50ml)。 3.3 测定步骤

三乙烯四胺对c-MYC启动子的调节作用解读

三乙烯四胺对c-MYC启动子的调节作用 邓小红刘建辉*郑旭煦陈刚郭丽霞 (重庆工商大学药物化学与化学生物学研究中心,重庆,400067)摘要目的探讨三乙烯四胺(triethylene tetramine, TETA)对c-MYC启动子的调节作用。方法构建c-MYC启动子的荧光报告质粒及其突变体,经过序列测定后,转染HEK293细胞24 h后,以终浓度为0 μmol/L, 0.1 μmol/L, 1.0 μmol/L, 10 μmol/L, 100 μmol/L的TETA处理,测定其启动子的转录活性,计算TETA对其转录活性抑制率。结果成功构建c-MYC启动子荧光报告质粒PGL3-Basic/c-MYC NHE III1promoter及其突变体pGL3-Basci/c-MYC NHEIII1 promoter mutant。将二者分别转染细胞后发现,TETA可以剂量依赖的抑制c-MYC 启动子的转录活性,而对突变体的转录活性抑制作用明显下降。结论TETA能通过c-MYC启动子上的超敏元件对其转录活性具有负调节作用。 关键词:TETA;c-MYC启动子;G四链体;转录活性 基金项目:国家自然基金(30600813, 30701020)、教育部新世纪优秀人才计划(NCET-07-0913)以及重庆市科委重点基础项目(CSTC, 2005BA5023)的资助。 作者简介:邓小红,女,在读博士*通讯作者: 刘建辉,男,教授,硕士研究生导师Tel: (023) 62769652Email: jhliu@https://www.360docs.net/doc/cd956013.html,

TETA regulates the transcription of c-MYC promoter by enhancing the stability of G-quadruplex DENG Xiao-hong, LIU Jian-hui*, ZHENG Xu-xu, CHEN Gang, GUO Li-xia (Research Center of Pharmaceutical Chemistry & Chemical Biology, Chongqing Technology and Business University, Chongqing, 400067, China) ABSTRACT: OBJECTIVE To study the effect of triethylene tetramine (TETA) on the transcription of c-MYC promoter. METHODS After the wild and mutant reporter gene plasmids containing the c-MYC NHE III1 sequence were constructed, the two plasmid were transfected into HEK 293 cells. The transfected cells were replated into 96 wells plate, and treated with different concentrations of TETA (0.0 μmol/L, 0.1 μmol/L, 1 μmol/L, 10 μmol/L, 100 μmol/L) for about 6-8h, the luciferase activity was determined with its substrate BrightGlo. The inhibiting rate of TETA on the reporter gene were calculated by the luciferase activity. RESULTS T he luciferase report gene plasmids including pGL3-Basic/c-MYC NHE III1 promoter and its mutant were constructed successfully. And TETA could inhibit the transcription activity of wild reporter gene in a dose-dependent manner, but for the mutated gene, the inhibiting rate was decreased significantly. CONCLUSION TTETA has negative regulatory effect on c-MYC promoter through nuclease hypersensitive element III1. Key words: Triethylene tetramine;c-MYC promoter;G-quadruplex;transcription

二乙烯三胺生产技术及市场行情研究报告

二乙烯三胺生产技术及市场行情研究报 告 出版日期:2013-9-5 目录 第一部分:有机化工行业概述 (1) 第一节:有机化工行业范围、基本原料和用途介绍 (1)

第二节:化工市场跌宕起伏,有机化工产品表现上佳 (2) 第三节:生物基有机化工产业正在兴起 (3) 第二部分:二乙烯三胺生产技术及市场行情研究报告目录 (5) 第三部分:研究方法、数据来源和编写资质 (9) 第一部分:有机化工行业概述 第一节:有机化工行业范围、基本原料和用途介绍 有机化工是有机化学工业的简称,又称有机合成工业。是以石油、天然气、煤等为基础原料,主要生产各种有机原料的工业。 基本有机化工的直接原料包括氢气、一氧化碳、甲烷、乙烯、乙炔、丙烯、碳四以上脂肪烃、苯、二乙烯三胺、二乙烯三胺、乙苯等。从原油、石油馏分或低碳烷烃的裂解气、炼厂气以及煤气,经过分离处理,可以制成用于不同目的的脂肪烃原料;从催化重整的重整汽油、烃类裂解的裂解汽油以及煤干馏的煤焦油中,可以分离出芳烃原料;适当的石油馏分也可直接用作某些产品的原料;由湿性天然气可以分离出甲烷以外的其他低碳烷烃;从煤气化和天然气、炼厂气、石油馏分或原油的蒸气转化或部分氧化可以制成合成气;由焦炭制得的碳化钙,或由天然气、石脑油裂解均能制得乙炔。此外,还可从农林副产品获得原料。 基本有机化工产品的品种繁多,按化学组成可分类如表。这种划分具有一定的灵活性,因很多物质含有两种以上的特定元素或两种以上的基团,它们常又按其主要特点划入某一类。 基本有机化工产品也可按所用原料分类: ①合成气系产品(见合成气)。 ②甲烷系产品(见甲烷)。 ③乙烯系产品(见乙烯)。 ④丙烯系产品(见丙烯)。 ⑤C4以上脂肪烃系产品(见碳四馏分;碳五馏分)。

三乙烯四胺(TETA)

分子量146.24 浅黄色粘稠液体。凝固点12℃。沸点278℃。密度0.9818g/cm3。闪点115℃(开杯)。自燃点337.78℃。折射率1.4986。溶于水、乙醇和酸,微溶于乙醚。挥发性低,吸湿性强,呈强碱性。能吸收空气中的二氧化碳。可燃,接触明火和高热有发生燃烧的危险。腐蚀性强,能刺激皮肤粘膜、眼睛和呼吸道,并引起皮肤过敏、支气管哮喘等症状。 应用合成树脂工业用作环氧树脂固化剂和用于制造聚酰胺树脂和离子交换树脂。橡胶工业用于制造橡胶促进剂。电镀工业用于制造无氰电镀扩散剂和光亮剂。炼油工业用作油品净化分散剂。油脂工业用于制造润滑油添加剂。 CAS: 112-24-3 分子式: C6H18N4 分子量: 146.23 沸点: 267℃ 熔点: -35-268℃ 中文名称: 三乙烯四胺;三亚乙基四胺;二缩三乙二胺;三乙撑四胺;三乙四胺 英文名称: Triethylene tetramine;2-Ethanediamine, N,N'-bis(2-aminoethyl)-1;n,n'-bis(2-aminoethyl)-2-ethanediamine;1,4,7,10-tetraazadecane;1,8-diamino-3,6-diazaoctane;3,6-diazaoctane-1,8-diamine;araldite hardener hy 951;araldite hy 951 性质描述: 具有强碱性和中等粘性的黄色液体,其挥发性低于二亚乙基三胺,但其性质相近似。沸点266-267℃(272℃),157℃(2.67kPa),凝固点12℃,相对密度(20、20℃)0.9818,折射率(nD20)1.4971,闪点143℃,自燃点338℃。溶于水和乙醇,微溶于乙醚。易燃。 生产方法: 其生产方法为二氯乙烷氨化法。将1,2-二氯乙烷和氨水送入管式反应器中于150-250℃温度和392.3kPa压力下进行热压氨化反应。反应液以碱中和,得到混合游离胺,经浓缩同时除去氯化钠,然后将粗品减压蒸馏,截取195-215℃之间的馏分,即得成品。此法同时联产乙二胺;二亚乙基三胺;四亚乙基五胺和多亚乙基多胺,可通过控制精馏塔温度蒸馏胺类混合液,截取不同馏分进行分离而得。 用途: 除作溶剂外,还用于制造环氧树脂固化剂;橡胶助剂;乳化剂;表面活性剂;润滑油添加剂;燃料油清净分散剂;气体净化剂;无氰电镀扩散剂;光亮剂;去垢剂;软化剂;金属螯合剂以及合成聚酰胺树脂和离子交换树脂等。

二乙烯三胺行业现状分析及市场前景

2014-2017年二乙烯三胺市场现状调研分析及发展前景报告 编号:1338977 行业市场研究是当前应用最为广泛地咨询服务,一份专业地行业市场研究分析报告地主要包括以下几个方面:

注:以上内容地数据和研究分析部分,在报告中地比例各占50%. 作为通用型调研报告,行业市场研究注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性地思路和参考. 一份有价值地二乙烯三胺行业市场研究报告,可以完成对二乙烯三胺行业系统、完整地调研分析工作,使决策者在阅读完二乙烯三胺行业研究报告后,能够清楚地了解二乙烯三胺行业现状和整体地发展情况,确保了决策方向地正确性和科学性. 中国产业调研网基于多年对客户需求地深入了解,全面系统地研究二乙烯三胺行业现状及二乙烯三胺发展前景,注重信息地时效性,从而更好地把握二乙烯三胺市场变化和二乙烯三胺行业发展趋势. 《2014-2017年二乙烯三胺市场现状调研分析及发展前景报告》是目前二乙烯三胺领域最专业和最全面系统地深度市场研究报告.报告首先介绍了二乙烯三胺地背景知识,包括二乙烯三胺地相关概念、分类、应用、产业链结构、产业概述,国际市场动态分析,国内市场动态分析,宏观经济环境分析及经济形势对二乙烯三胺行业地影响,二乙烯三胺行业国家政策及规划分析,二乙烯三胺产品技术参数,生产工艺技术,产品成本结构等;接着统计了全球及中国主要企业二乙烯三胺产能产量成本价格毛利产值毛利率等详细数据,同时统计了这些企业二乙烯三胺产品客户应用产能市场地位企业联系方式等信息,然后对这些企业相关数据进行汇总统计和总结分析,得到全球及中国二乙烯三胺产能市场份额,产量市场份额,供应量 需求量供需关系,进口量出口量消费量等数据统计,同时介绍全球及中国二乙烯三胺2009-2018年产能产量售价成本毛利产值毛利率等,之后分析了二乙烯三胺产业上游原料下游客户及产业调查分析,并介绍二乙烯三胺营销渠道,行业发展趋势及投资策略建议,最后还采用案例地模式分析了二乙烯三胺新工程SWOT分析和投资可行性研究.总体而言,这份是专门针对二乙烯三胺产业地深度报告,研究中心采用客观公正地方式对二乙烯三胺产业地发展走势进行了深度分析阐述,为客户进行竞争分析,发展规划,投资决策提供支持和依据,本工程在运作过程中得到了众多二乙烯三胺产业链各个环节技术人员及营销人员地支持和帮助,在此一并表示谢意. 第一章二乙烯三胺产业概述 1.1 二乙烯三胺定义 1.2 二乙烯三胺分类及应用 1.3 二乙烯三胺产业链结构 1.4 二乙烯三胺产业概述 第二章二乙烯三胺行业国内外市场分析

常温固化环氧涂料的胺类固化剂

常温固化环氧涂料的胺类固化剂 常温固化环氧涂料的胺类固化剂可分为反应型固化剂和催化型固化剂,其中,通常可用于常温固化环氧涂料的反应型固化剂包括以下一些: 一、脂肪族多元胺类 如乙二胺、二乙烯三胺、三乙烯四胺、四乙烯五胺、己二胺、多乙烯多胺等等。 脂肪胺类固化剂的特点 (1)活性高,可室温固化。 (2)反应剧烈放热,适用期短; (3)一般需后固化。室温固化7d左右,再经2h/80~100℃后固化,性能更好; (4)固化物的热变形温度较低,一般为80~90 ℃; (5)固化物脆性较大; (6)挥发性和毒性较大。 因而,它们通常并不直接用作涂料的固化剂,而是要通过加成或缩合反应引入新的分子结构进行改性后使用。 二、脂环族多元胺类 脂环胺为分子结构里含有脂环(环己基、杂氧、氮原子六元环)的胺类化合物。多数为低粘度液体,适用期比脂肪胺长,固化物的色度、光泽优于脂肪胺和聚酰胺;中温固化,价格高,透明性好,耐候性好,固化物的机械强度高;改性后的产品可室温固化。 最常见的为异佛尔酮二胺(脂环胺)。然而,它们通常也并不直接用作涂料的固化剂,而是要通过加成或缩合反应引入新的分子结构进行改性后使用。 三、芳香族多元胺类 间苯二胺 间苯二甲胺 4,4’二胺基二苯基甲烷(DDM)

4,4’二胺基二苯砜(DDS) 芳族多元胺固化剂的特点 优点:固化物耐热性、耐化学性、机械强度均比脂肪族多元胺好。(分子中含一个或多个苯环) 缺点: (1)活性低,大多需加热后固化。 原因:与脂肪族多元胺相比,氮原子上电子云密度降低,使得碱性减弱,同时还有苯环的位阻效应; (2)大多为固体,其熔点较高,工艺性较差。 芳香胺无法直接作为涂料的常温固化剂,而是要进行液化后,可作为中底涂的固化剂。如,芳族多元胺与单缩水甘油醚反应生成液态加成物。如590、T-31、H-113固化剂等。 四、聚酰胺 由二聚植物油脂肪酸和脂肪胺缩聚而成,如:9,11-亚油酸与9,12-亚油酸二聚反应,然后与2分子DETA进行酰胺化反应。 聚酰胺固化剂的特点 (1)挥发性和毒性很小; (2)与EP相容性良好; (3)化学计量要求不严,用量可在40~100phr间变化; (4)对固化物有很好的增韧效果; (5)放热效应低,适用期较长。 缺点:固化物的耐热性较低,耐化学性和耐溶剂型较差,粘度大,固化反应活性也不高,低温固化性差,必要时可和其他高活性固化剂并用或加入促进剂。 五、聚醚胺类 聚醚胺(PEA):是一类主链为聚醚结构,末端活性官能团为胺基的聚合物。端氨基聚醚具有以下结构:x, y = 0- n。聚醚胺是通过聚乙二醇、聚丙二醇或者乙二醇/丙二醇共聚物在高温高压下氨化得到的。通过选择不同的聚氧化烷基结构,可调节聚醚胺的反应活性、韧性、

二亚乙基三胺安全技术说明书

一、标识 中文名:二亚乙基三胺;二乙烯三胺英文名:Diethylenetriamine 分子式:C 4H 13 N 3 相对分子量:103.17CAS号:111-40-0 危险类别:第8.2类碱性腐蚀品化学类别: 二、主要组成与性状 主要成分: 外观与性状:无色或黄色透明液体,略有氨的气味 主要用途: 用凭据这羧络合指示剂、气体净化剂、环氧树脂固化剂,也用于合成橡胶 三、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害蒸气或雾对鼻、喉和粘膜有腐蚀性,可引起支气管炎、化学性肺炎或肺水肿。蒸气、雾或液体对眼有强烈腐蚀性,重者可导致失明。皮肤接触可造成灼伤;对皮肤有致敏性。口服灼伤口腔和消化道,出现剧烈腹痛、恶心、呕吐和虚脱。慢性影响:本品有明显的致敏作用。 四、急救措施 皮肤接触:脱去并隔离被污染的衣服和鞋。对少量皮肤接触,避免将物质播散面积扩大。 眼睛接触:如果皮肤或眼睛接触该物质,应立即用清水冲洗至少20min。 吸入:移患者至空气新鲜处,就医。如果患者呼吸停止,给予人工呼吸。如果患者食入或吸入该物质不要用口对口进行人工呼吸;可用单向阀小型呼吸器或其他适当的医疗呼吸器。如果呼吸困难,给予吸氧。 食入:注意患者保暖并且保持安静。吸入、食入或皮肤接触该物质可引起迟发反应。确保医务人员了解该物质相关的个体防护知识,注意自身防护。 五、燃爆特性与消防 燃烧性:闪点(℃):99℃开杯;98℃闭 杯 引燃温度(℃):358℃ 爆炸下限(%)2.0爆炸上限(%)6.7 最小点火能(mJ):最大爆炸压力(MPa): 危险特性:遇明火、高热可燃。与氧化剂能发生强烈反应。若遇高热,容器内压增大,有开裂和爆炸的危险。 灭火剂:雾状水、二氧化碳、泡沫、干粉、砂土。 六、泄漏应急处理

微波制备改性的三乙烯四胺氧化石墨烯

Carbohydrate Polymers 131(2015)280–287 Contents lists available at ScienceDirect Carbohydrate Polymers j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c a r b p o l Microwave preparation of triethylenetetramine modi?ed graphene oxide/chitosan composite for adsorption of Cr(VI) Huacai Ge ?,Ziwei Ma College of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510640,China a r t i c l e i n f o Article history: Received 13February 2015 Received in revised form 4June 2015Accepted 6June 2015 Available online 16June 2015 Keywords: Graphene oxide Modi?ed chitosan Microwave Adsorption Cr(VI) a b s t r a c t A novel triethylenetetramine modi?ed graphene oxide/chitosan composite (TGOCS)was successfully synthesized by microwave irradiation (MW)method and compared with one prepared by conventional heating.This composite was characterized by FTIR,XRD,SEM,BET and elemental analysis.Adsorption of Cr(VI)on the composite was studied.The experimental results indicated that the product obtained by MW had higher yield and uptake than one obtained by the conventional and uptake of TGOCS for Cr(VI)was higher than that of the recently reported adsorbents.The effects of various variables on adsorption of Cr(VI)by TGOCS were further researched.The highest adsorption capacity of 219.5mg g ?1was obtained at pH 2.Adsorption followed pseudo-second-order kinetic model and Langmuir isotherm.The capacity increased as increasing temperature.The adsorbent could be recyclable.These results have important implications for the application expansion of microwave preparation and the design of new effective composites for Cr(VI)removal in ef?uents. ?2015Elsevier Ltd.All rights reserved. 1.Introduction Chromium (VI)(Cr(VI))has been commonly used in a number of industrial processes,such as leather tanning,electroplating,metal polishing,paint manufacturing,and textile coloring (Bhattacharya,Naiya,Mandal,&Das,2008;Li et al.,2013;Ouaissa,Chabani,Amrane,&Bensmaili,2013).Due to its high toxicity and bioac-cumulation,the Cr(VI)from ef?uents must be removed.Various methods of removing Cr(VI)have been developed,such as chem-ical precipitation (Carlos,Violeta,&Bryan,2012),adsorption (Hu et al.,2011;Huang,Yang,&Liu,2013),electrodeposition (Golder,Samanta,&Ray,2011),membrane systems (Gherasim &Bourceanu,2013),and ion exchange process (Rengaraj,Joo,Kim,&Yi,2003).Among these methods,adsorption is one of the most economically favorable and a technically easy method (Hu et al.,2011). Chitosan (CS),a bio-adsorber,is a biocompatible polysaccha-ride obtained from deacetylation of chitin (Ge &Wang,2014).It can chemically or physically entrap various metal ions due to the presence of amine and hydroxyl groups that can serve as the chelating and reaction sites (Ayd?n &Aksoy,2009;Ge &Fan,2011;Repo,Koivula,Harjula,&Sillanp??,2013;Wang &Ge,2015).Therefore,chitosan presents as a very promising starting mate-rial for chelating resins (Kandile &Nasr,2009).Several metals are ?Corresponding author.Tel.:+862087112900;fax:+862022236337.E-mail address:chhcge@https://www.360docs.net/doc/cd956013.html, (H.Ge). preferentially adsorbed in acidic media while chitosan can dis-solve in acid condition.To overcome this problem,chitosan must be chemically modi?ed with different crosslinking reagents,such as epichlorohydrin and glutaraldehyde (Ge &Huang,2010;Ngah,Endud,&Mayanar,2002).However,the adsorption capacity of crosslinked chitosan would be largely reduced due to the con-sumption of amine groups and hydroxyl groups after chemical modi?cation.Hence,the crosslinked chitosan must be further mod-i?ed to improve the adsorption performance (Ge,Chen,&Huang,2012;Wu,Li,Wan,&Wang,2012;Zhang,Xia,Liu,&Zhang,2015).Graphene,which can be prepared from the low cost material graphite,is intensively investigated as adsorbents for heavy metal ions (Chowdhury &Balasubramanian,2014;Jabeen et al.,2011).Graphene oxide (GO)obtained by the oxidation of graphene con-tains a wide range of oxygen functional groups both on the basal planes and at the edges of GO sheets,such as –COOH,and –OH.These functional groups are essential for the high sorption of heavy metal ions,and allows GO to participate in a wide range of bond-ing interactions (Guo et al.,2014;Zhang et al.,2014).However,GO is a nano-material with high dispersibility in aqueous solution (Cheng et al.,2013)and has the potential toxicity in environment (Sanchez,Jachak,Hurt,&Kane,2011).These problems may restrict the practical applications of GO as an adsorbent.To overcome these problems,various methods have been investigated,such as for-mation of ethylenediamine modi?ed GO and magnetic graphene nanocomposites (Wang et al.,2014;Zhu et al.,2011).However,these methods revealed low adsorption capacity due to the reduced https://www.360docs.net/doc/cd956013.html,/10.1016/j.carbpol.2015.06.0250144-8617/?2015Elsevier Ltd.All rights reserved.

三乙烯四胺(TETA)化学品安技术说明-书

化学品安全技术说明书 第一部分化学品及企业标识 化学品中文名称:三亚乙基四胺 化学品俗名或商品名:三乙烯四胺 化学品英文名称: Triethylenetetramine 国家应急电话:(0532)3889090;(0532)3889191 第二部分成分/组成信息 化学品名称:三亚乙基四胺纯品 有害物成分 浓度98% CAS No. 112-24-3 三亚乙基四胺 第三部分危险性概述 危险性类别:第8.2类碱性腐蚀品 侵入途径:吸入食入经皮吸收 健康危害::吸入本品蒸气或雾对鼻、喉和呼吸道有刺激作用,高浓度吸入可引 起头痛、恶心、呕吐和昏迷,蒸气、液体或雾对眼有强烈腐蚀作用,重者可致失 明,皮肤接触可发生灼伤;对皮肤有强致敏作用;口服液体灼伤消化道, 慢性影响:有明显的致敏作用。 环境危害:对环境有危害,对水体可造成污染。 燃爆危险:遇明火、高热或与氧化剂接触,有引起燃烧的危险,燃烧时,放出有 毒气体,能腐蚀铜及其合金。 第四部分急救措施 皮肤接触:脱去并隔离被污染的衣服和鞋。用肥皂和清水清洗皮肤。注意患者保 暖并且保持安静,确保医务人员了解该物质相关的个体防护知识,注意自身防护。 眼睛接触:立即翻开上下眼睑,用流动清水或生理盐水冲洗至少15分,就医。

吸入:迅速脱离现场至空气新鲜处,呼吸困难时给输氧,呼吸停止时,立即进行人工呼吸,就医, 食入:误服者立即漱口,给饮牛奶或蛋清。就医。 第五部分消防措施 危险特性:遇明火、高热可燃,与氧化剂能发生强烈反应。 有害燃烧产物:氧化氮、一氧化碳、二氧化碳。 灭火方法:用水喷射逸出液体,使其稀释成不燃性混合物,并用雾状水保护消防人员。 灭火剂:水、抗溶性泡沫、干粉、二氧化碳、砂土。 第六部分泄漏应急处理 应急处理:疏散泄漏污染区人员至安全区,禁止无关人员进入污染区建议应急处理人员戴自给式呼吸器,穿化学防护服,不要直接接触泄漏物,在确保安全情况下堵漏,用沙土、干燥石灰或苏打灰混合,然后收集运至废物处理场所处置,也可以用大量水冲洗,经稀释的洗水放入废水系统,如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。 第七部分操作处置与储存 操作处置注意事项:密闭操作,加强通风,操作人员必须经过专门培 训,严格遵守操作规程, 建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护 眼镜,穿防毒物渗透工 作服,戴橡胶耐油手套,远离火种、热源、工作场所严禁吸烟,使用 防爆型的通风系统和设 备,防止蒸气泄漏到工作场所空气中,避免与氧化剂接触,灌装时应 注意流速(不超过8m/s), 且有接地装置,防止静电积聚,搬运时要轻装轻卸,防止包装及容器 损坏,倒空的容器可能 残留有害物。 储存注意事项:储存于阴凉、通风的仓间内,远离火种、热源,防止阳光曝晒,包装要求密封,不可与空气接触,应与氧化剂、酸类分开存放,搬运时应轻装轻卸,防止包装和容器损坏。 第八部分接触控制/个体防护

含酰胺结构的硅胶键载二乙烯三胺螯合微粒的合成及其吸附性能_王明华

离子交换与吸附, 2008, 24(5): 408 ~ 417 ION EXCHANGE AND ADSORPTION 文章编号:1001-5493(2008)05-0408-10 含酰胺结构的硅胶键载二乙烯三胺螯合微粒的 合成及其吸附性能* 王明华曲荣君**纪春暖陈厚孙昌梅 鲁东大学化学与材料科学学院,烟台 264025 摘要:硅胶与γ-氨丙基三甲氧基硅烷 (APTS) 进行硅烷化反应,然后与丙烯酸甲酯 (MA) 进 行迈克尔加成反应引入酯基,最后与二乙烯三胺 (DETA) 反应生成氨基结尾的酰胺基硅胶, 其结构经红外光谱、元素分析、热重分析 (TG) 和X射线衍射仪 (XRD) 表征。元素分析表明, I、II、III的氨基含量分别为1.992mmol/g、1.699mmol/g、3.416mmol/g。研究了该硅胶微粒对 重金属离子Ag+、Hg2+、Cu2+的吸附容量、吸附动力学、等温吸附过程等静态吸附性能。结果 表明,对3种离子的吸附量分别为0.71mmol/g、0.46mmol/g、0.35mmol/g。动力学吸附过程为 液膜扩散控制,吸附过程符合Langmuir或Freundlich模型。 关键词:含酰胺基硅胶微粒;合成;吸附;Ag+;Hg2+;Cu2+ 中国分类号:O647.3 文献标识码:A 1 前言 采用螯合树脂法从废水中回收或脱除金属离子[1~8],此法具有很多的优点,如树脂可多次重复利用、生产成本低等。目前使用的螯合树脂大部分是以合成高分子为载体制备的,由于其存在机械性能较低、热稳定性较差、与金属化学键合力较弱以及吸附时间较长、成本高等缺点,所以科学家们仍在不断寻找更好的吸附剂[9]。其中硅胶以其热稳定性好、机械强度高、孔结构及表面积比较容易控制等优点而被广泛研究,特别是硅胶表面含有大量活性硅羟基,可以很容易地进行表面化学键合或改性,因而受到越来越多的关注[10,11]。多乙烯多胺具有很强的金属离子螯合能力,常常被用作螯合功能基来修饰硅胶。一般的修饰方法是先在硅胶表面接枝含有C-Cl或环氧基(如3-氯丙基三乙氧基硅烷或3-环氧丙基三甲氧基硅烷) 等活性基团,然后与多胺反应得到相应的螯合吸附剂[12,13]。文献[12]曾制备了MCM-41和SBA-15型硅胶负载多乙烯多胺吸附剂,并研究了其对砷酸盐的吸附性能。其研究结果中有3点结论对该类吸附剂的设计有启示作用:1) 吸附剂结构存在着明显的“偶数效应”,即多胺分子中具有偶数氮原子数的(如乙二胺、三乙烯四胺、五乙烯六胺等) 显 * 收稿日期:2007年10月21日 项目基金:山东省自然科学基金 (No.Y2005F11,Y2007B19),鲁东大学科研基金 (LY20072902) 作者简介:王明华(1976~), 女, 山东省人, 硕士研究生. ** 通讯联系人: rongjunqu@https://www.360docs.net/doc/cd956013.html,

二乙烯三胺

二乙烯三胺安全技术说明书 第一部分化学品标识 化学品中文名称:二亚乙基三胺化学品俗名或商品名:二乙烯三胺 第二部分成分/组成信息 有害物成分二亚乙基三胺纯品浓度 99% CAS No. 111-40-0 第三部分危险性概述 危险性类别:第 8.2 类碱性腐蚀品 侵入途径:吸入、食入、经皮吸收 健康危害:蒸气或雾对鼻、喉和粘膜有腐蚀性,可引起支气管炎、化学性肺炎或肺水肿,蒸气、雾或液体对眼有强烈腐蚀性,重者可导致失明,皮肤接触可造成灼伤;对皮肤有致敏性,口服灼伤口腔和消化道,出现, 剧烈腹痛、恶心、呕吐和虚脱。慢性影响:有明显的致敏作用。 环境危害:对环境有危害,对水体可造成污染。 燃爆危险:若遇高热,容器内压增大,有开裂和爆炸的危险。 第四部分急救措施 皮肤接触:脱去污染的衣着,用肥皂水及清水彻底冲洗,若有灼伤,就医。 眼睛接触:立即翻开上下眼睑,用流动清水或生理盐水冲洗至少 15 分,就医。吸入:迅速脱离现场至空气新鲜处,保持呼吸道通畅,保暖并休息,呼吸困难时给输氧,呼吸停止时,立即进行人工呼吸,就医。 食入:误服者立即漱口,饮牛奶或蛋清,就医。 第五部分消防措施 危险特性:遇明火、高热可燃。与氧化剂接触猛烈反应,能与硝酸形成爆炸性混合物。 有害燃烧产物:氧化氮、一氧化碳、二氧化碳。 灭火方法:消防人员必须佩戴过滤式防毒面具(全面罩)或隔离式呼吸器、穿全身防火防毒服,在上风向灭火。尽可能将容器从火场移至空旷处,喷水保持火场容器冷却,直至灭火结束,处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。 灭火剂:雾状水、泡沫、干粉、二氧化碳、砂土。 第六部分泄漏应急处理 应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入,切断火源,建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服,尽可能切断泄漏源,防止流入下水道、排洪沟等限制性空间。 小量泄漏:用砂土、蛭石或其它惰性材料吸收,也可以用大量水冲洗,洗水稀释后放入废水系统。 大量泄漏:构筑围堤或挖坑收容,用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 第七部分操作处置与储存 操作处置注意事项:密闭操作,加强通风,操作人员必须经过专门培训,严格遵守操作规程,建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿防毒物渗透工作服,戴橡胶耐油手套,远离火种、热源、工作场所严禁吸烟,使用防爆型的通风系统和设备,防止蒸气泄漏到工作场所空气中,避免与氧化剂接触,灌装时应注意流速(不超过 5m/s),且有接地装置,防止静电积聚,搬运时要轻装轻卸,防止包装及容器损坏,倒空的容器可能残留有害物。 储存注意事项:储存于阴凉、通风库房,远离火种、热源,仓温不宜超过30℃。保持容器密封,应与氧化剂、食用化学品分开存放,切忌混储,采用防爆型照明、通风设施,禁止使用易产生火花的机械设备和工具,储区应备有泄漏应急处理设备和合适的收容材料。

环氧树脂固化剂——改性胺的特性

环氧树脂固化剂——改性胺的特性 (1)反应机理 H 2 H CH CH 2 R N O R N CH 2 OH CH + H R N CH 2 OH CH CH O CH 2 R N CH 2 CH 2 OH CH OH CH +H 2 H 2R N N OH CH OH CH CH 2 CH 2 N R N CH 2 CH 2 OH CH OH CH 催化剂(或促进剂):质子给予体 促进顺序:酸≥酚≥水>醇(催化效应近似正比于酸度) (2)脂肪胺类固化剂的特点 ● 活性高,可室温固化。 ● 反应剧烈放热,适用期短; ● 一般需后固化。室温固化7d 左右,再经2h/80~100℃后固化,性能更好; ● 固化物的热变形温度较低,一般为80~90 ℃; ● 固化物脆性较大; ● 挥发性和毒性较大。

(3)常用脂肪族固化剂 ● 乙二胺 H 2 H 2N CH 2 CH 2N ● 二乙烯三胺 H H 2H 2N CH 2CH 2N CH 2 CH 2 N 简 称DETA ● 三乙烯四胺 H H 2H 2H N CH 2CH 2N CH 2CH 2N CH 2CH 2N 简称 TETA ● 四乙烯五胺 H H 2H 2H H N CH 2CH 2N CH 2CH 2N CH 2CH 2N CH 2CH 2N 简称TEPA 简称 胺当量 适用期 标准固化条件 HDT/℃ 优点 缺点 DETA 20.6 20min 常温*4d ,100℃*30min 90-125 粘度低、室温固 化、力学性能均衡 适用期短、白化 现象、毒性、(分子量越小毒性越大) TETA 24.4 20-30min 常温*4d ,100℃*30min 98-124 TEPA 27.1 20-40min 常温*7d ,100℃*30min 115

二乙烯三胺MSDS

1.物质的理化常数 2.对环境的影响 一、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:蒸气或雾对鼻、喉和粘膜有腐蚀性,可引起支气管炎、化学性肺炎或肺水肿。蒸气、雾或液体对眼有强烈腐蚀性,重者可导致失明。皮肤接触可造成灼伤;对皮肤有致敏性。口服灼伤口腔和消化道,出现剧烈腹痛、恶心、呕吐和虚脱。慢性影响:本品有明显的致敏作用。 二、毒理学资料及环境行为 毒性:属低毒类。 急性毒性:LD501080mg/kg (大鼠经口);1090mg/kg(兔经皮) 危险特性:遇明火、高热可燃。与氧化剂能发生强烈反应。若遇高热,容器内压增大,有开裂和爆炸的危险。 燃烧(分解)产物:氧化氮、一氧化碳、二氧化碳。 3.现场应急监测方法 4.实验室监测方法

水杨酸分光光度法(GB/T14378-93,水质) 纳氏试剂比色法《化工企业空气中有害物质测定方法》,化学工业出版社 5.环境标准 美国(1982)车间卫生标准 4mg/m3(皮) 前苏联地面水中最高容许浓度 0.2mg/L 6.应急处理处置方法 一、泄漏应急处理 疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,切断火源。应急处理人员戴自给式呼吸器,穿化学防护服。不要直接接触泄漏物,在确保安全情况下堵漏。喷水雾可减少蒸发但不要使水进入储存容器内。用砂土、蛭石或其它惰性材料吸收,然后收集运至废物处理场所。也可以用大量水冲洗,经稀释的洗液放入废水系统。如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。 废弃物处置方法:用焚烧法。废料同易燃溶剂掺和后焚烧,焚烧系统要装置后燃烧室。焚烧炉排出的气体要通过洗涤器除去有害成分。 二、防护措施 呼吸系统防护:可能接触其蒸气时,佩戴防毒面具。紧急事态抢救或撤离时,建议佩戴自给式呼吸器。 眼睛防护:戴化学安全防护眼镜。 防护服:穿防腐工作服。 手防护:戴橡皮手套。 其它:工作现场严禁吸烟、进食和饮水。工作后,淋浴更衣。实行就业前和定期的体检。 三、急救措施 皮肤接触:脱去污染的衣着,用肥皂水及清水彻底冲洗。若有灼伤,就医。眼睛接触:立即翻开上下眼睑,用流动清水或生理盐水冲洗至少15分钟。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。保暖并休息。呼吸困难时给输氧。呼吸停止时,立即进行人工呼吸。就医。 食入:误服者立即漱口,饮牛奶或蛋清。就医。 灭火方法:雾状水、二氧化碳、泡沫、干粉、砂土。

常用的胺改性

常用的胺有乙二胺、二乙烯三胺、三乙烯四胺、间苯二胺、间苯二甲胺(MxDA)、二氨基二苯基甲烷(DDM);常用的叔胺类有咪唑、2-甲基咪唑等;常用的环氧化物有环氧乙烷、环氧丙烷、环氧氯丙烷、缩水甘油醚和环氧树脂等。此类改性方法在改性胺中占据极其重要地位。以下就加成反应所需原料的不同分别加以阐述。 1.1缩水甘油醚与胺系化合物的加成 正-丁基缩水甘油醚与二乙烯三胺加成反应得到593固化剂,与1,3-二氨基环己烷改性得的固化剂具有极好的粘接性和延伸率。苯基缩水甘油醚和己基、辛基缩水甘油醚与乙醇胺、二乙醇胺反应可制得固化性能优良、韧性较好的改性乙醇胺固化剂。由甲酚类缩水甘油醚与低级脂肪胺如二乙烯三胺、三乙烯四胺反应得到的改生产物价格低廉、性能良好,可以广泛应用于一般粘接、防腐、玻璃钢制作等方面。丁基缩水甘油醚与二氨基二苯基甲烷反应得到的改性胺固化剂P-4000(AD型)环氧树脂,具有强度高、热变形温度高(达125℃)的特点。以烯丙基缩水甘油醚改性三乙撑甲胺得到的固化剂可用于沥青环氧的固化,用于建筑物防漏、粘接、公路交通,具有优良的耐湿性、耐腐蚀住。三溴苯基缩水甘油醚或溴代甲酚类缩水甘油醚与低级脂肪胺如二乙烯三胺加成反应得到阻燃固化剂,其溴含量大于25%,与树脂固化后具有一定的阻燃性。 由2-甲基咪唑与丁基缩水甘油醚基缩水甘油醚反应得到固化剂704,705.传统生产方法得到的产品外观为棕褐色粘稠液体.外观不理想,采用无水乙醇作溶剂反应得到的产品为红棕色粘稠液体,外观更适合作固化剂使用。值得注意的是上列改性例子中由于胺的高度活泼性,应采用滴加缩水甘油醚以控制反应,避免放热过剧,产生暴沸、冲料事故.而且产品色泽较浅.还应注意缩水甘油醚采用单环氧基团的,否则反应难以控制,增链反应剧烈,产物粘度极大。 1.2 环氧树脂与胺系的加成反应 环氧树脂-胺加成物采用环氧树脂和过量的乙二胺(或己二胺、二乙烯三胺等)加热回流反应,脱除过量的胺制得。分为液态(溶液型)和固态两种。环氧树脂常采用60l(E—20).此类改性方法目前已被淘汰,不再使用。 1.3 环氧氯丙烷与胺类的反应 间苯二甲胺(MxPA)与环氧氯丙烷(ECH)反应,脱除HCl后得到链状多胺,其结构式为: 式中n=l~3,此类固化剂具有良好的耐药品性、粘接性、耐胺闪蒸性,树脂固化物柔韧性高.粘接剂剥离强度高。WR-112型固化剂也具有类似结构,如下式: 式中n1=2~4,n 2=l~3。此固化剂可以水下、带水、带锈固化,主要用作防腐涂层.固化后的涂膜有很好的柔韧性、冲击强度、耐溶剂性、耐腐蚀性。 1.4 环氧乙烷、环氧丙烷与胺的加成反应 环氧乙烷、环氧丙烷与低级脂肪族多元伯胺加成反应得到的固化剂既可常温固化,又可中温固化。此类改性胺毒性较低,工艺性能好,固化时放热峰值低.适用期较长.对空气中水汽和C02敏感性低。典型的固化剂如β-羟乙基乙二胺(120固比剂)、β-羟乙基二乙烯三胺、β-羟乙基己二胺、羟甲基己二胺等。 2.Michael双键加成反应 常用的双键类化合物如丙烯睛、丙烯酸酯、丙烯腈等。主要的改性物为丙烯睛。它可以与乙二胺、己二胺、二乙烯三胺反应.生成改性产物。典型的例子如丙烯睛与二乙烯三胺三胺加成反应得到59l固化剂,此固化剂缺点是有刺激性气味,毒性较大;由间苯二甲胺与丙烯睛改性得到A-50固化剂.毒性较低,其LD50=1450mg/kg。此外,由间苯二甲胺、丙烯腈、环氧化物综合改性得到固化性能较好的黄色透明液体793固化剂。 3. 胺类的自身缩合反应 典型的例子为问苯二甲胺的缩聚反应。间苯二甲胺在催化剂存在条件下于180~200℃下缩

相关文档
最新文档