大跨度拱桥非线性稳定分析

大跨度拱桥非线性稳定分析
大跨度拱桥非线性稳定分析

浅谈经典系杆拱桥的设计与应用

浅谈经典系杆拱桥的设计与应用 摘要:本文结合经典系杆拱桥发展的现状,通过简要介绍,总结出经典系杆拱桥的结构受力特点、分类方法和计算思路,并且对新的应用技术进行展望,希望对今后的系杆拱桥设计和分析具有参考价值。 关键词:经典系杆拱桥;静动力计算;设计分析 引言 随着科研水平的持续进步和土建材料的不断发展,混凝土和钢结构逐步应用到拱桥结构中。优化材料的应用使拱桥的结构形式变得更为多元[1]。最突出的特点是拱桥突破了上承式结构的限制,将拱圈形式分离成拱肋式,桥面发展为板梁式的结构。伴随着人们对桥梁认识的逐步加深和实践经验的日益积累,拱桥的多种优化形式相继出现,梁拱组合体系就是其中的一种优化形式。梁拱组合体系,是梁与拱的有机结合,车辆荷载直接作用于主梁,梁结构主要承受弯矩,拱结构的刚度较大,主要承受轴向压力,因此材料特性得以充分利用[2]。 1 概述 经典系杆拱桥是指由系杆、桥面系梁(板)、拱结构和吊杆等所组成的组合结构体系。体系中设置系杆来平衡拱脚处对地基产生的水平推力。结构通过系杆承受的拉力来平衡拱脚处的推力,以形成无推力结构。因此在地质条件不好的地区,这种桥型极具竞争力[3]。 经典系杆拱桥的布置形式多样,与桥位所处的环境相搭配时,可设计出既满足承载需要又具有美学价值的样式[4]。 2 经典系杆拱桥受力特点 经典系杆拱桥具有如下特点[5-7]: (1) 经典系杆拱桥作为一种无推力结构,能够有效地降低结构对地基和基础的承载要求。经典系杆拱桥可以修建于地质条件不佳的地区,如软土及深水地基,基础的构造可以设计得相应的简单,从而降低修筑基础的成本。 (2) 经典系杆拱桥的桥面系主要承受弯矩,并将作用在桥面上的荷载通过吊杆传递到拱助上。吊杆材料一般使用合金钢、钢绞线或平行钢丝束。吊杆不仅传递荷载,还具有非保向力作用,有效地提高拱结构的横向稳定性。基于这种特点,吊杆可取代横撑用于敞开式和单拱面拱桥。 (3) 经典系杆拱桥的横向稳定性,通常是由拱助间的横向联结系来提供。横撑的设计形式有多种,其中较为常见的有一字撑、K形撑和X形撑。结构的横向稳定性与横撑的布设形式和数量均有关,合理的横向联结系对经典系杆拱桥的

斜靠式拱桥稳定性分析

斜靠式拱桥稳定性分析 摘要:本文以一座跨径100米的斜靠式拱桥作为工程实例,采用通用程序ANSYS建立空间有限元模型,分别应用线弹性分析方法和考虑几何非线性的方法对该桥进行了成桥阶段的稳定分析。 关键词:斜靠式拱桥、稳定性、线弹性、几何非线性 斜靠式拱桥是由两片竖直拱肋与两片斜靠拱肋两两形成组合拱肋,并与吊杆、桥面系形成的空间结构体系。中间两片竖直拱肋为桥梁的主要承重结构,桥面开阔、畅通,每侧斜靠拱肋与相邻竖直拱肋构成人行桥的空间。这种桥外形独特新颖,富有曲线美和力度感,在桥面宽度大于35m、跨径在40~150m之间的城市景观桥中,是一种颇有竞争力的结构形式。[1] 由于两竖直主拱之间不设横向支撑,桥梁的横向刚度减弱会影响结构的整体稳定性,稳定性问题就成为斜靠式拱桥设计中的关键性问题。 本文的计算模型为一座跨径100m的斜靠式拱桥。该桥在横桥向两主拱肋之间布置21.4m机动车道,主斜拱之间布置非机动车道和人行道,另外还设有弧形的观景平台,桥面宽度从主墩处50.4m变化至跨中处56.4m;桥梁全长111.16m,主拱肋截面为哑铃型,高度为2.7m,斜拱肋截面为圆形,直径1.2m,拱轴线均采用二次抛物线,矢跨比为1/4.5,斜拱倾角为25度,拱肋钢管采用厚14mm的A3钢板,钢管内灌注C40混凝土,主拱与斜拱之间各设11道一字型横撑,横撑顺桥向间隔6m,采用壁厚20mm矩形钢箱截面,主拱和斜拱吊索的纵桥向间距均为3m;梁体为混凝土结构,由系梁、横梁、纵梁、挑梁和桥面板组成。 1有限元模型 该桥有限元模型的主拱肋、斜拱肋、横撑、系梁、横梁、纵梁均采用三维空间梁单元Beam188单元模拟,吊杆和桥面板分别采用linkl0单元和shell63单元来模拟。[2]主拱支座由一个固定支座、一个双向滑动支座和两个单向滑动支座组成,斜拱拱脚处均设双向滑动支座。[3]全桥共有节点1225个,单元2394个。 在考虑材料的非线性效应时,同时计入了主拱肋、斜拱肋和横撑的材料非线性。钢管混凝土材料的本构关系按统一理论取用,钢材采用理想弹塑性应力-应变关系。[4,5] 为方便加载,汽车荷载和人群荷载均用3.5kN/m2的均布荷载来模拟,计算横桥向静风作用时由于缺乏资料,偏与安全风压取900Pa。结构自重由程序自动计入。 本文共分析3种工况,每种工况下分别进行特征值屈曲分析和几何非线性分

大跨度钢筋混凝土拱桥施工工法

大跨度钢筋混凝土拱桥施工工法 1、前言 随着我国公路事业的高速发展,箱形拱桥工量少、自重轻、截面合理,近年来在大跨度钢筋砼拱桥中被广泛应用。我公司先后承建了陕西省境内的包(头)—茂(名)高速公路毛坝至陕川界MC4合同段,渝(重庆)—昆(明)高速公路云南省境内的水富至麻柳湾23合同段等工程项目,均包括大跨度钢筋混凝土拱桥结构。其中水富至麻柳湾23合同段在施工中大力开展科技攻关,不断完善施工工艺,成功的解决了主拱圈下部原地面基础处理和下沉;扣件钢管拼装满堂式拱架的搭设方法和要求;支撑主拱圈底模的1-80 米弧形杆件的材料选择与制作;主拱圈加载程序和下部支撑卸载程序;主拱圈间隔槽的预留位置;合拢温度的选择;混凝土分段和浇注顺序;拱上运输系统的布置;消除拱架形、控制主拱圈变形等关键技术难题,本工法是在总结上述成功经验的基础上形成的。 2、工法特点 公路工程大跨度钢筋混凝土拱桥,近年来的桥跨已经发展到140m现代桥梁,它是集桥梁结构学、结构力学、地质结构学与材料科学等技术为一体,具有很高的技术含量和远景发展。大跨度钢筋混凝土拱桥具有以下特点: 2.1 对原地面进行处理后采用满堂支架系统克服了传统的土牛胎易产生不均匀沉降导致支架下沉引起主拱圈变形开裂及填筑挖出土牛胎增加工程量的弊端,有效防止了拱架下沉拱圈变形,保证了施工质量。 2. 2 支撑体系和模板系统位于稳固的地基上,安全系数高,不易下沉,结构受力合理,支架、模板安装拆卸方便,操作简单,支架和模板适用

范围广,可再利用。 2.3. 拱圈采用钢筋砼分段现浇,整体性强,结构轻盈,自重小,线性美观,减少了砼用量,节约了投资。 2.4. 施工工艺完善、简便,可操作性强,降低劳动强度,便于推广。 2.5.施工速度、施工质量容易得到保证。 3、适用范围 本工法适用于公路大跨度钢筋混凝土箱形拱桥采用现浇的主拱圈,适合拱圈下部为水流不大的山谷、沟壑、坑洼、平地、河流,跨度50~140m 的钢筋混凝土拱桥施工。 4.工艺原理 大跨度钢筋混凝土拱桥设计理念先进,施工技术成熟,具有广阔的市场前景。通过混凝土原材料把关、配合比选定、埋设循环水管、混凝土搅拌、运输、浇注过程的控制,以及后期通过混凝土养护、控制水温以降低混凝土内外温差,防止大体积混凝土出现裂缝,保证大体积混凝土施工质量。 5、施工工艺 5.1 拱架地基处理 将跨径范围左右共宽13m投影面下的沟槽表层植被、浮土与挖基倾倒土全部清除后,纵横方向挖成错台,横向靠近两桥台处尤其近1号台处的自然坡度大,依土质和风化岩石层的具体情况分别处理为不同宽度及外坡的错台,清除错台废方。顺桥向左侧拱架支承面的外缘,施作一浆砌片石挡土墙, 砂浆标号M7.5.基础处理深度依地质情况而定,但不宜小于0.5m。挡墙顶宽0.8m,外坡直立,内侧背坡依挡墙高度定为1:0.3。挡墙高度在2~4 m。

钢管混凝土系杆拱桥特点及稳定性探讨

钢管混凝土系杆拱桥特点及稳定性探讨 摘要:对钢管混凝土系杆拱桥的特点进行了描述,对钢管混凝土系杆拱桥的设计和施工过程中不可忽略的因素——稳定性进行了归纳和总结,并且进一步对稳定性的影响因素进行了探讨。 关键词:钢管混凝土,系杆拱桥,稳定性 1 引言 钢管混凝土拱桥具有跨越能力强的特点,我国已建成的钢管混凝土拱桥有四川旺苍东河大桥、广东高明大桥、广州丫髻沙大桥等。其中跨径110m的四川旺苍东河大桥是我国第一座钢管混凝土拱桥,其结构形式为的下承式预应力钢管混凝土系杆拱桥[1];跨径112.8m、全宽26m的佛陈大桥是我国同类结构中在跨度和宽度上均具有代表性的一座下承式预应力钢管混凝土系杆拱桥。 2 钢管混凝土系杆拱桥特点 钢管混凝土系杆拱桥兼有钢管混凝土结构和系杆拱桥的特点:作为钢管混凝土结构,因钢管内填充了混凝土,增加了钢管壁受压时的稳定性,而且钢管壁对混凝土起套箍作用,使管内混凝土处于三向受压状态,充分发挥了混凝土的抗压强度、提高了混凝土的延性;作为系杆拱桥,系杆拱组合体系将拱肋的推力传给系杆,使体系成为外部静定、内部超静定的结构,系杆和拱肋均有一定的刚度,荷载引起的弯矩在系杆与拱肋之间按刚度分配,它们共同承担体系的轴力和弯矩。 系杆拱桥主要分为有推力和无推力组合体系,无推力系杆拱桥能够较好地适应不良地层和具有较小的建筑高度,主要由拱助、吊杆、系杆(梁)三部份组成。根据上下部分结构的联接方式,系杆拱又可分为两种,一种是上下部之间刚接,一种是简支,如图1所示[2]。 (a )简支形式 (b) 刚接形式 图1 系杆拱形式 3 稳定分析 由结构力学知识可知,拱桥以承受压力为主,拱肋的受力情况为承受一定的弯矩、扭矩和剪力。在对拱桥进行施工和运营时,若拱结构本身的刚度不足会发

世界十大跨径拱桥排行榜

世界十大跨径拱桥排行榜 NO.1朝天门大桥 朝天门大桥进入上部结构施工阶段,与两江隧道一起连接解放碑、江北城、弹子石三大中央商务区 朝天门大桥夜景效果图中港二航局朝天门大桥工程项目部提供 船近重庆城,穿过由“解放碑”桥墩和大桥桥面构成的“城市之门”,繁华的渝中半岛近在眼前。朝天门大桥2008年6月28日竣工通车之后,这样的场景会给每一位坐船上水来重庆的客人留下深刻的印象。 记者昨日从中港二航局朝天门大桥工程项目部获悉,这座被称为重庆又一个标志性建筑的大桥,已正式进入上部结构施工阶段。 号称世界第一拱桥 虽然名叫“朝天门大桥”,但大桥的实际位置是在离朝天门还有1.7公里的溉澜溪青草坪。朝天门大桥从设计之初就定位为重庆的江上门户。“方案最终选定了简洁大气的钢桁架拱桥形式”,项目部负责人说,大桥只有两座主墩,主跨达552米,比世界著名拱桥———澳大利亚悉尼大桥的主跨还要长,成为“世界第一拱桥”。 灯饰要花千万元 解放碑和朝天门,这两张重庆的城市名片,也在大桥上实现了巧妙的融合。“大桥的两个主墩,被设计成解放碑的样子,一剖两半,分成四个柱子,托起大桥。”项目部负责人说。 该方案定名为“城市之门”,已获得市政府批准。“解放碑”桥墩上都有观景台,将成为观赏朝天门两江汇流和山城夜景的绝佳位置。 白天,大桥除桥墩外通体红色;入夜,大桥华灯齐放,倒映于江面上。据悉,仅灯饰工程,预算就在千万元左右。 据介绍,建成后的大桥,分为上下两层。上层为双向六车道,行人可经两侧人行道上桥;下层则是双向轻轨轨道,并在两侧预留了2个车行道,可保证今后大桥车流量增大时的需求。 大桥西接江北区五里店立交,东接南岸区渝黔高速公路黄桷湾立交,全长4.158公里,是主城一条东西向快速干道。 朝天门大桥与规划中的两江过江隧道一起,将把解放碑、江北城、弹子石三个中央商务区构成一张立体的交通网

桥梁受力分析

1工程简介 矮寨特大悬索桥是长沙至重庆公路通道湖南省吉首至茶洞高速公路跨越矮寨大峡谷的一座特大型桥梁,为吉茶高速公路的控制性工程,也是中国最大的单跨跨越峡谷的钢桁加劲梁悬索桥。桥型方案为钢桁加劲梁单跨悬索桥,主缆孔跨布置为242+1 176+116m,主梁为钢桁加劲梁,全长1 000.5 m。主桥横向设2%横坡,桥面系宽24.5 m(图1)。 拱式桥 与梁式桥不同,拱桥要承受的是根据其拱形斜向的压缩力而不是弯曲力。拱式桥将拱圈或拱肋作为主要承载结构。这种结构在竖向荷载下,桥墩或桥台将承受水平推力。拱的弯矩和变形都比较小,主要承受压力,故拱式桥用砖、石、混凝土和钢筋混凝土材料建造的比较多。拱式桥受力如图6.9所示。 拱式桥跨越能力大,外形也较美观,因此修建拱桥是经济合理的。但是由于在桥墩或桥台处承受很大的水平推力,因此对桥的下部结构和基础的要求比较高。另外拱桥的施工比梁式桥要困难些。 刚架桥 标准的梁式桥,桥的大梁和桥墩的结构是分开的。刚架桥的外形与梁式桥相似。不过,与梁式桥不同的是,刚架桥的上部结构与下方支脚部分是完全刚结在一起的。刚架桥是梁和柱(或竖墙)整体结合的桥梁结构。在竖向移动荷载作用下,梁部主要受弯,柱脚处有水平推力,受力状态介于梁式桥和拱桥之间。刚

架桥一般可采用T形刚架桥、连续刚架桥、斜腿刚架桥三种类型(图6.15)。T形刚架便于施加预应力,在两个伸臂端上挂梁后可做成很大跨度的刚架,在要跨越深水、深谷、大河急流的大跨桥梁中常被应用。连续刚架桥有较好的抗震性能。斜腿刚架造型轻巧美观,当建造跨越陡峭河岸和深邃峡谷的桥梁时,采用这类刚架型式往往既经济又合理。

大跨度钢筋混凝土拱桥斜拉扣挂法悬臂浇筑施工关键技术

大跨度钢筋混凝土拱桥斜拉扣挂法悬臂浇筑施工关键技术 尹洪明郭军肖沾 (中交一公局四公司广西南宁 530000) 摘要:钢筋混凝土拱桥悬臂施工法分为悬臂拼装法和悬臂浇筑法两大类。悬臂浇筑法主要采用挂篮悬臂浇筑施工,根据国内外目前的工艺技术又可以分为采用塔架斜拉扣挂法和悬臂桁架浇筑法。而悬臂浇筑法施工的拱桥在国内日前仅建成3座,都采用塔架斜拉扣挂法施工,且因为施工情况又存在不同,技术理论不够完善,整体还处在起步阶段,为进一步完善悬臂浇筑拱桥的施工技术,本文以在建的马蹄河特大桥为背景,谈论大跨度塔架斜拉扣挂法悬臂浇筑拱桥的关键施工技术控制。 关键词:悬臂浇筑斜拉扣挂箱拱挂篮索力优化施工技术 0 前言 拱桥是一种以受压为主的结构,受力合理, 外形美观, 是我国公路上广泛采用的一种桥梁体系。随着钢筋混凝土的出现,拱桥的施工技术得到提升,跨越能力增大,大跨度混凝土箱拱造价低廉、施工方便、养护简单,在我国适合贵州、广西、云南等多山地区。制约混凝土箱拱跨度的一个重要因素是施工方法,拱桥的施工方法一般有缆索吊装法、劲性骨架法、转体施工法、悬臂施工法、悬臂施工与劲性骨架组合法等。小跨度箱拱可以采用支架施工或分多个节段吊装,随着跨度增大,山区沟谷多,环境条件限制,提出采用的悬臂施工法更能适应山区拱桥发展。 悬臂法分为悬臂拼装法和悬臂浇筑法,我国钢筋混凝土拱桥发展在20世纪70年代得到提升,伴随无支架缆索吊装技术的成熟和设计方法进步,才逐渐出现了大跨度的钢筋混凝土悬臂拼装拱桥。90年代后先后建造了跨度最大的中承式钢筋混凝土——广西邕林邕江大桥(312m,1996年)和世界第一跨的钢管混凝土劲性骨架钢筋混凝土拱桥——重庆万州长江大桥(420m,1997年)。然而,随着时间发展,国家对工程质量、技术要求更高,悬臂拼装法需要足够大的预制空间和吊装能力,且成拱后拱圈接头多,整体性不高,在进几年开始推广挂篮悬臂浇筑施工的钢筋混凝土拱桥,由于主拱圈采用挂蓝浇筑一次成形、无需分环、工艺简单、整体性好、施工中横向稳定和抗风性能好、运营阶段养护费用低、耐久性好的特点。 而在国外,20世纪60年代就开始采用悬臂浇筑施工拱桥,目前施工技术已经比较成熟,最大跨径由德国2000年建造的WildeGera桥,跨径252m,我国建成挂篮悬浇拱桥仅有三座,2007年净跨150m的白沙沟1#大桥、2009年净跨182m的新密地大桥,2010年净跨165m的木蓬特大桥,以及在建净跨180m的马蹄河特大桥,且都采用斜拉扣挂悬臂浇筑施工。

大跨度拱桥

大跨度拱桥 以承受轴向压力为主的拱圈或拱肋作为主要承重构件的桥梁,拱结构由拱圈(拱肋)及其支座组成。拱桥可用砖、石、混凝土等抗压性能良好的材料建造;大跨度拱桥则用钢筋混凝土或钢材建造,以承受发生的力矩。按拱圈的静力体系分为无铰拱、双铰拱、三铰拱。前二者为超静定结构,后者为静定结构。无铰拱的拱圈两端固结于桥台,结构最为刚劲,变形小,比有铰拱经济,结构简单,施工方便,是普遍采用的形式,但修建无铰拱桥要求有坚实的地基基础。双铰拱是在拱圈两端设置可转动的铰支承,结构虽不如无铰拱刚劲,但可减弱桥台位移等因素的不利影响,在地基条件较差和不宜修建无铰拱的地方,可采用双铰拱桥。三铰拱则是在双铰拱的拱顶再增设一铰,结构的刚度更差些,拱顶铰的构造和维护也较复杂,一般不宜作主拱圈。拱桥按结构形式可分为板拱、肋拱、双曲拱、箱形拱、桁架拱。拱桥为桥梁基本体系之一,一直是大跨径桥梁的主要形式。拱桥建筑历史悠久,20世纪得到迅速发展,50年代以前达到全盛时期。古今中外名桥遍布各地,在桥梁建筑中占有重要地位,适用于大、中、小跨径的公路桥和铁路桥,更因其造型优美,常用于城市及风景区的桥梁建筑。其中按照规范跨度大于四十米的拱桥就称为大跨度拱桥,按照目前技术水平,跨度大于100米的拱桥才称得上大跨度拱桥。在大跨度拱桥中按照拱轴线的型式可分为:圆弧拱桥、抛物线拱桥、悬链线拱桥。 圆弧拱桥:拱圈轴线按部分圆弧线设置的拱桥。优点构造简单,石料规格最少,备料、放样、施工都很简便;缺点是受荷时拱内压力线偏离拱轴线较大,受力不均匀。 如图所示,有一座拱桥圆弧形,它的跨度为60米,拱高为18米,当洪水泛滥到跨度只有30米时,就要采取紧急措施,若拱顶离水面只有4米,即PN=4米时,是否采取紧急措施? 解:不采取紧急措施。其理由如下:设半径OA=∵AB=60 PM=18∴AM=30 OM=18∴在Rt△AOM中,由勾股定理,得:

大跨度中承式钢管混凝土拱桥设计

大跨度中承式钢管混凝土拱桥设计 陈勇勤1,邢 燕2,杨洁琼1,胡亚琴1 (1.浙江省公路水运工程咨询公司,浙江杭州310004;2.大连市政设计院有限责任公司,辽宁大连116011) 摘 要:以大连市开发区滨海路四号桥为例,介绍大跨度中承式钢管混凝土拱桥的总体设计、平面静力分析、空间静力分析、稳定分析和施工工艺的要点。 关键词:拱桥;钢管混凝土结构;系杆拱;桥梁设计中图分类号:U444.22;TU528.59 文献标识码:A 文章编号:1671-7767(2007)03-0018-03 收稿日期:2007-02-01 作者简介:陈勇勤(1975-),女,工程师,1998年毕业于重庆交通学院桥梁工程系,工学学士,2001年毕业于重庆交通学院桥梁与隧道工程专业,工学硕士。 1 工程简介 大连开发区滨海路,是继大连市内滨海路之外 的又一条著名滨海景观旅游线路。滨海路四号桥位于这条旅游线路的中部,桥梁走向南北,背靠山峦,面临黄海。建设单位对该桥的景观要求极高,同时要求尽量降低造价,减少维修养护费用。该设计以美观、靓丽、新颖、独特为出发点,同时兼顾到实用经济、安全合理。该桥的自然条件如下。 (1)水文:桥址与海岸的距离为200m 左右,潮汐对该桥没有影响。 (2)气象:桥位紧靠黄海,历年最大风速为29m/s ,发生在4月;极大风速为48.7m/s ,发生在8 月。通常夏季盛行东南风,其它时节以西北风为主。8月平均最高气温为27.5℃,1月平均气温为-5.5℃,属寒冷地区。最大冻结深度0.5m 。 (3)地质:桥址处为沟谷,设计桥面和谷底的最 大高差约15m ,沟谷边坡坡度为1∶2,谷底为旱地。该地区石英岩广泛分布,地质钻孔由上至下依次为素填土、碎石、强风化石英岩、中风化石英岩。其中,中风化石英岩岩面较浅,岩层稳定,是良好的持力层。 综合考虑地质条件和周围景观环境,在方案设计中,共选择3个方案:自锚式悬索桥、V 形墩连续梁桥、中承式钢管混凝土拱桥。上述方案经开发区有关领导及专家讨论评审,最终选定主拱为160m 跨的中承式钢管混凝土拱桥,采用单索面、异型拱肋。桥面系采用三跨连续梁体系,桥梁全长180m ,主跨150m ,两边跨各15m 。滨海路四号桥布置示意见图1。 图1 滨海路四号桥布置示意 2 总体设计 2.1 主要设计技术标准 (1)桥面宽度:桥面总宽18.5m 。(2)设计速度:60km/h 。 (3)荷载标准:车辆荷载为公路-Ⅰ级;人群荷 载为2.5kN/m 2;温度影响力按年均升温15℃、降温25℃考虑;风载:基本风压强度取750Pa ;地震基本烈度为6度,按7度设防。2.2 拱肋 拱肋中段采用圆端形钢管混凝土[1],肋高1.5m 、宽3.2m 。拱轴线为二次抛物线,抛物线方程为 Y =6.6X 2 /1000(坐标原点位于拱顶中心线位置)。 拱肋两端为人字形,拱轴线为直线,采用直径为2m 的圆形钢管混凝土。中拱肋和边拱肋的拱轴线在相交处相切。 该中承式钢管混凝土拱桥计算跨径160m ,拱肋矢跨比1/4.32,矢高37.036m 。 8 1世界桥梁 2007年第3期

大跨度钢筋混凝土拱桥施工工法

大跨度钢筋混凝土拱桥施工工法 (杨忠领) (中铁十六局集团五公司河北唐山 063030) 摘要:本工法成功的解决了主拱圈下部原地面基础处理和下沉;满堂脚手架的搭设方法和要求;支撑主拱圈底模的1-80米弧形杆件的材料选择与制作;主拱圈加载程序和下部支撑卸载程序;主拱圈间隔槽的预留位置;合拢温度的选择;混凝土分段和浇注顺序;拱上运输系统的布置;消除拱架变形、控制主拱圈变形等关键技术难题,对类似工程的施工有一定的借鉴作用。 关键词:大跨度钢筋混凝土拱桥工法 一、前言 箱形拱圬工量少、自重轻、截面合理,近年来在大跨度钢筋砼拱桥中被广泛应用。国道318线甘孜境段二郎山至康定公路改造工程滴水岩大桥为1-80m悬链线钢筋混凝土箱形拱桥,是全线的控制工程。主拱圈正拱斜置,跨度80m,厚度1.4m,宽8.96m,矢跨比1/6,是全桥结构受力最复杂,施工难度最大的部位。拱上结构为空腹式,共设8孔腹拱,腹拱圈为等截面圆弧拱,净跨5.5m,横墙厚度0.8m。0#桥台下部为明挖扩大基础,拱座以上台身为引桥式桥台,引桥为1-13m预应力空心板桥,1#桥台为重力式U形桥台,基础为明挖扩大基础。中铁十六局集团五公司在施工中大力开展科技攻关,不断完善施工工艺,成功的解决了主拱圈下部原地面基础处理和下沉;满堂脚手架的搭设方法和要求;支撑主拱圈底模的1-80米弧形杆件的材料选择与制作;主拱圈加载程序和下部支撑卸载程序;主拱圈间隔槽的预留位置;合拢温度的选择;混凝土分段和浇注顺序;拱上运输系统的布置;消除拱架变形、控制主拱圈变形等关键技术难题,大跨度钢筋混凝土拱圈施工技术研究获集团公司科技进步奖,本工法是在总结上述成功经验的基础上形成的。 二、工法特点 1.对原地面进行处理后采用满堂支架系统克服了传统的土牛胎易产生不均匀沉降导致支架下沉引起主拱圈变形开裂及填筑挖出土牛胎增加工程量的弊端,有效防止了拱架下沉拱圈变形,保证了施工质量。 2.支撑体系和模板系统位于稳固的地基上,安全系数高,不易下沉,结构受力合理,支架、模板安装拆卸方便,操作简单,支架和模板适用范围广,可再利用。 3.拱箱采用钢筋砼预制件组装,底板、纵缝、边腹板、顶板采用现浇,整体性强,结构轻盈,自重小,线性美观,减少了砼用量,节约了投资。 4.施工工艺完善、简便,可操作性强,降低劳动强度,便于推广。 5.施工速度快,施工质量容易得到保证, 三、适用范围 本工法适用于公路大跨度钢筋混凝土箱形拱桥采用预制与现浇相结合的主拱圈施工、适合拱圈下部为水流不大的沟壑、坑洼、平地。主拱圈下部为河流时不适用。 四、施工工艺 (一)、拱架地基处理 在跨径范围左右共宽13米投影面下的沟槽表层植被,浮土与挖基倾倒土全部清除后,纵横方向

双幅大跨度钢管拱桥横移式缆索吊机吊装斜拉扣挂施工工法

双幅大跨度钢管拱桥 横移式缆索吊机吊装斜拉扣挂施工工法 1、前言 大跨度拱桥无支架法施工,可根据具体的桥梁结构形式、周围的地理环境因地制宜的采用缆索吊机的方式吊装,扣挂体系亦有多种形式。对于钢管拱桥,钢管拱各吊装节段用高强螺栓临时连接,简化了安装程序,降低了劳动强度,加快了拼装速度,提高了缆索吊机的工作效率,因此采用缆索吊装这种优势更为明显。为此,在吸取各方面的实践经验和在集团公司内外专家的指导下,我单位在东莞水道大桥施工中,经过共同研究,多方优化,针对双幅拱桥自行设计了2×80T可滑移式缆索吊机和塔扣分离的扣挂系统,采用了双幅大跨度钢管拱桥缆索吊装斜拉扣挂施工工法,制定了详细的施工工艺和操作规程,获得了成功。 2、工法特点 2.1在工厂内进行钢管拱肋的分段加工和预拼装工作,采用陆路和水路运抵施工现场,易于保证结构复杂的钢管拱肋的加工质量。 2.2缆索吊装和扣索塔斜拉扣挂自成体系,安装过程中互不干扰,受力明确,计算简便。 2.3扣挂体系中,采用塔顶过鞍和张拉转换系统,减少了高空作业的同时,使扣索调整工艺简单、方便快捷。 2.4施工中采用了左右侧拱肋对称安装固定,然后再安装横撑的施工顺序,有助于安装过程中的安全稳定。 2.5钢管拱肋接头在焊接前采用了等强度外法兰板连接方式,可有效的应对台风到来时的不利影响。 2.6钢管拱线形控制采用大型有限元通用软件模拟钢管拱的受力状况进行计算,并以自编程序予以复核的方式,使钢管拱的线形控制从理论上得到了保证。 2.7对原桥台基础进行加固处理,作为缆索吊机的后锚;在边拱拱顶设置预埋件,直接利用边拱的自重平衡扣索索力,利用拱座作为扣塔的基础,做到了经济、安全、实用。 3、适用范围 本法普遍适用于跨越深水、深谷、航运繁忙的河道上的拱型桥梁,尤其适用于平原地区边拱设计较为强大的大跨度飞燕式双幅钢管砼系杆拱桥拱肋的拼装架设。 4、工艺原理 深谷或通航河就是针对需要跨越深水、本工法采用可横移式缆索吊机吊装斜拉扣挂法, 道的大跨双幅拱桥施工中,由于无法采用支架或拱架用量过大的情况下而采用的。施工前,针对设计图纸所确定的拱肋分段重量,进行缆索吊机的设计安装,每一节段采用缆索吊机吊装就位后,通过扣挂体系临时固定和微调,进而完成所有拱段的安装,实现合龙。安装过程中,按提前计算拟定的各节段预抬标高值进行设置,达到对拱肋的安装线型进行控制的目的。安装完一幅拱肋后,通过预先设置的横移滑道横移缆索吊机,安装另一幅钢管拱肋。 5、工艺流程及操作要点 5.1工艺流程

钢管混凝土拱桥稳定性的计算理论简述

论文关键词:钢管混凝土拱桥稳定性非线性 论文摘要:钢管混凝土拱桥作为一种承受压力的空间曲杆体系,不可避免的涉及到稳定问题。随着钢管混凝土跨径不断的增大,对于其稳定性计算必须考虑非线性的影响,本文主要是介绍当拱桥稳定性计算理论及非线性分析理论。 随着钢管混凝土组合材料研究不断深入,施工工艺的大幅度改进,钢管混凝土拱桥在全世界范围内,特别是在我国得到了广泛的应用。据不完全统计,自从1990年我国第一座钢管混凝土拱桥建成以来到目前为止,我国已建或在建钢管混凝土拱桥有200多座。钢管混凝土拱桥之所以发展如此迅速,主要具有如下特点:(1)施工方便,节省费用;(2)有较成熟的施工技术作支撑;(3)跨越能力大,适应能力强;(4)造型优美,体现了民族特色;(5)大直径钢管卷制工业化,有力地促进了我国钢管混凝土拱桥的发展。 随着钢管混凝土拱桥的跨径的增大,刚度越来越柔,作为以受压为主的结构,稳定成为制约其发展的关键因素之一。不少学者根据不同的拱桥形式在不同的参数下,提出了不同的假设,推导出了很多简化的稳定公式。这些稳定公式将为有限元发展提供了理论基础。本文主要是对拱桥稳定计算理论进行简单的阐述。 1 稳定计算理论 1.1 概述 稳定问题是桥梁工程常常遇到的问题,与强度问题同等重要。但是,结构的稳定问题不问于强度问题,结构的失稳与材料的强度没有密切的关系。结构失稳是指结构在外力增加到某一量值时,稳定性平衡状态开始伤失,稍有挠动,结构变形迅速增大,从而使结构失去正常工作能力的现象。在桥梁工程中,总是要求其保持稳定平衡,也即沿各个方向都是稳定的。 在工程结构中,构件、部件及整个结构体系都不允许发生失稳。屈曲不仅使工程结构发生过大的变形,而且往往导致结构的破坏。现代工程结构中,不断利用高强轻质材料,在大跨度和高层结构中,稳定向题显得尤为突出。 根据上程结构失稳时平衡状态的变化特征,存在若干类稳定问题。土建工程结构中,主要是下列两类: (1)第一类稳定问题(分枝点失稳):以小位移理论为基础。 (2)第二类稳定问题(极值点失稳):以大位移非线性理论的基础。 实际工程中的稳定问题一般都表现为第二类问题,但是,由于第一类稳定问题是特征值问题,求解方便,在许多情况下两类问题的临界值又相差不大,因此研究第一类稳定问题仍有着重要的工程意义。 研究压杆屈曲稳定问题常用的方法有静力平衡法((eular方法)、能量法(timosheko方法)、缺陷法和振动法。 静力平衡法:是从平衡状态来研究压杆屈曲特征的,即研究荷载达到多大时,弹性系统可以发生失稳的平衡状态,其实质是求弹性系统的平衡路径(曲线)的分支点所对应的荷载值(临界荷载)。 能量法:表示当弹性系统的势能为正定时,平衡是稳定的;当势能为不正定时,平衡是不稳定的;当势能为0时,平衡是中性的,即临界状态。 缺陷法:认为完善而无缺陷的力学中心受压直杆是不存在的。由于缺陷的影响,杆件开始受力时即产生弯曲变形,其值要视其缺陷程度而定。在一般条件下,缺陷总是很小的,弯曲变形不显著,只是当荷载接近完善系统的临界值时,变形才迅速增大,由此确定其失稳条件。 振动法从动力学的观点来研究压杆稳定问题,当压杆在给定的压力下,受到一定的初始扰动后,必将产生自由振动,如果振动随时间的增加是收敛的,则压杆是稳定的。 以上四种方法对于欧拉压杆而言,得到的临界荷载是相同的。如果仔细研究一下可以发

大跨度钢管拱的应用

大跨度钢管拱的应用 1 前 言 钢管混凝土拱桥的发展与应用在我国仅有十余年的历史,但发展很快,已遍及全国广大地区,目前已经建成的就达20余座,在建的也有20余座。这主要是因为钢—混凝土组合材 料的优越性决定的。关于钢管拱肋的加工、拼装和成拱工艺,对此类结构的施工技术、施工 规范、质检和监理程序与指标、施工定额及管理等方面的研究和经验虽然有所积累,但仍不多见。广泛交流施工经验,研究制定和完善该类桥梁统一可行的规范规程,探讨其施工经济技术指标,是目前建造此类桥梁急待解决的课题之一。本文结合秭归龙潭河大桥的施工实践, 主要对钢管拱加工与现场预拼施工工艺和技术作简要介绍,以期能抛砖引玉,供同仁参考。 2 工程概况 秭归龙潭河大桥位于湖北省秭归县,是三峡工程秭归移民区交通复建工程蒲(庄河)文(化)公路上的一座特大桥。全长280.40 m,孔跨布置为(20+20+208+20) m,桥幅布置为净 -9 m+2×1.0 m人行道。该桥由铁道部专业设计院设计,湖北省公路建设总公司(湖北省路 桥公司)施工。 本桥主跨为208 m的中承式钢管混凝土拱桥,主拱为双肋桁式无铰拱,矢高40.530 m,矢跨比1/4.935。拱轴线采用以悬链线为基础的三次样条曲线。变截面主拱肋上下弦管中 心间距拱脚处为 4.439 m,拱顶处为 2.2 m。两条主拱肋横桥向中心距为11.60 m。全跨共 设11道横撑和6道X形撑,且均为空钢管构成的桁式梁。每条钢管拱分19节段加工制作、预拼和空中焊接。每节段一般长度为12 m(拱脚段14.4 m,合龙段 4.297 m),重量为20~30 t。全桥钢管拱总重928 t,其中主拱管重785 t,横撑(X形撑)重128 t,其余约15 t。主拱架设采用缆索吊装法施工,最大设计吊装重量为30 t。 3 钢管拱工厂加工制作 钢管拱的加工制作和现场安装质量直接决定着桥梁的功能和使用寿命。因此,应选择有资质、有能力、有经验和有条件的生产厂家在工厂内加工制作。当工厂内拼装场地和运输条 件受到限制时,也可以选择工厂加工与现场预拼相结合的办法。 3.1 选材 钢材质量是钢管质量的基础。本桥设计采用16Mn、16Mnq、A3钢材,其机械性能和化学 成分指标应符合文献[6]的标准。施工采用武钢生产的优质钢材。由监理工程师和施工单 位负责人对每批进场的钢材作质量检查,验证出厂合格证书和材质试验报告单。其它焊接加工材料应满足设计和文献[3]中的要求。 3.2 钢管卷制 根据施工图设计线形、座标表、预拱度表等文件资料,在工厂内预拼台座上将钢管拱(包括主拱管、缀板、腹杆、斜撑、横撑和X形撑)以1:1比例放出施工大样,量取各构件的设 计下料尺寸,并对部分单元构件制作纸样。然后对主拱管 2.0 m设计基本管节进行卷制。基 本管节必须是整块钢板沿钢板压延方向卷制而成,采用半自动氧割机下料、滚床卷板机卷 制。卷制前,应根据设计和规范要求将与钢管纵缝和环缝相对应的板边分别开好坡口,采用纵向氧吹双面坡口。纵缝在设置的专用夹具上分3次焊接。成形的钢管,要采用纠圆机整体 校圆。在无应力状态下管口椭圆度控制在 3 mm误差以内。 3.3 焊接 焊接施工以文献[3]的规定为标准。焊缝均按设计要求全部做超声波探伤检查和X射线抽样检查(抽样率大于5%)。焊缝质量应达到二级质量标准的要求。焊接施工前,必须做

大跨径钢管拱桥施工监控

大跨径钢管拱桥施工监控 摘要:秦皇岛市先锋路南延伸跨大汤河大桥,是秦皇岛市上跨大汤河的一座交 通兼景观桥梁。为确保质量在可控制的状态内,建设单位引入了监控单位。本次 桥梁建设工程,全方位引入了监控机制,本次桥梁建设工程,全方位引入了监控 机制,本文对该桥型的施工监控做了简要介绍。对监控主要内容、施工监测过程、施工控制安排等方面进行了全面分析。本次施工完全按照设计要求进行,从而使工 程施工质量达到设计和规范要求。结果表明,施工控制所采用的计算模型、监测方 法和控制方法是科学的。尤其是在2-5主跨施工中,监控单位对桥梁的主梁及主 拱应力、吊杆张拉等项目进行了全程的监控。本文基于此工程实践,探讨大跨径 钢管拱桥施工监控实践以及操作流程,强调监控工作的关键环节。 关键词:桥梁钢管拱吊索监控 Long-span steel tube arch bridge construction control baorui (qinhuangdao municipal construction group Co., LTD. In hebei qinhuangdao 066000) Pick to: pioneer road across the large extended qinhuangdao peasants bridge, qinhuangdao is on the peasants across a big traffic and bridge landscape. To ensure quality in control in the state, the construction unit into the control unit. The bridge construction engineering, all-round introduced monitoring mechanism, the bridge construction engineering, all-round introduced monitoring mechanism, this paper analyzes the construction supervision of the form do are briefly introduced. To monitor the main contents, construction monitoring process, the construction control arrangement, etc are fully analyzed. This construction completely according to the design demand and the engineering construction quality to achieve the design and specification. The results show that the construction control of the calculation model, monitoring methods and control method is scientific. Especially in 2-5 main construction, monitoring unit of the bridge girder and the arch stress, the tension and the monitoring of the whole project. This paper based on the engineering practice, this paper discusses the steel tube arch bridge long-span construction supervision practice, as well as the operation process, emphasizes the key link of monitoring work. Keywords: bridge steel tube arch sling monitoring 工程施工监控,是保证工程质量的重要措施之一。秦皇岛市先锋路南延伸跨大汤河大桥,是秦皇岛市上跨大汤河的一座交通兼景观桥梁,该桥梁的受力体系为国内首创。为确保施工 全程明确桥梁的受力状态,由监控单位对该桥梁进行了全程的监控,本次桥梁建设工程,全 方位引入了监控机制,本文对该桥型的施工监控做了简要介绍。对监控主要内容、施工监测 过程、施工控制安排等方面进行了全面分析。本次施工完全按照设计要求进行,从而使工程施 工质量达到设计和规范要求。结果表明,施工控制所采用的计算模型、监测方法和控制方法是 可行的。 本人担任该项工程的技术负责人,在施工期间对监控有了一些了解,知道了桥梁监控的 必要性,对桥梁的监控项目有一些简单的了解,在此与大家共同分享。 一、工程概况 秦皇岛市先锋路南延伸跨大汤河大桥是一座交通兼景观功能的桥梁。该桥为辐条式桥拱 组合的结构体系,全桥共划分为4部分,分别为主桥、南引桥、北引桥和人行梯道。 主桥采用39+90+39=168米跨径双向预应力箱型断面主梁,中跨采用梁拱组合体系,放射 状吊杆形式,边跨采用连续梁结构配孔,主桥中央分隔带4米宽,用于设置拱肋,中墩与主 梁采用铰接形式。主梁采用变截面形式,梁底曲线为二次抛物线,根部的3.5米变化到端部 和跨中的1.8米,主梁横断面为单箱5室,腹板厚0.6米,箱室净宽4.975米,顶板厚0.25

实用文档之大跨度钢筋混凝土拱桥斜拉扣挂法悬臂浇筑施工关键技术

实用文档之"大跨度钢筋混凝土拱桥斜拉扣挂法悬臂浇筑施 工关键技术" 尹洪明郭军肖霑 (中交一公局四公司广西南宁 530000) 摘要:钢筋混凝土拱桥悬臂施工法分为悬臂拼装法和悬臂浇筑法两大类。悬臂浇筑法主要采用挂篮悬臂浇筑施工,根据国内外目前的工艺技术又可以分为采用塔架斜拉扣挂法和悬臂桁架浇筑法。而悬臂浇筑法施工的拱桥在国内日前仅建成3座,都采用塔架斜拉扣挂法施工,且因为施工情况又存在不同,技术理论不够完善,整体还处在起步阶段,为进一步完善悬臂浇筑拱桥的施工技术,本文以在建的马蹄河特大桥为背景,谈论大跨度塔架斜拉扣挂法悬臂浇筑拱桥的关键施工技术控制。 关键词:悬臂浇筑斜拉扣挂箱拱挂篮索力优化施工技术 0 前言 拱桥是一种以受压为主的结构,受力合理, 外形美观, 是我国公路上广泛采用的一种桥梁体系。随着钢筋混凝土的出现,拱桥的施工技术得到提升,跨越能力增大,大跨度混凝土箱拱造价低廉、施工方便、养护简单,在我国适合贵州、广西、云南等多山地区。制约混凝土箱拱跨度的一个重要因素是施工方法,拱桥的施工方法一般有缆索吊装法、劲性骨架法、转体施工法、悬臂施工法、悬臂施工与劲性骨架组合法等。小跨度箱拱可以采用支架施工或分多个节段吊装,随着跨度增大,山区沟谷多,环境条件限制,提出采用的悬臂施工法更能适应山区拱桥发展。 悬臂法分为悬臂拼装法和悬臂浇筑法,我国钢筋混凝土拱桥发展在20世纪70年代得到提升,伴随无支架缆索吊装技术的成熟和设计方法进步,才逐渐出现了大跨度的钢筋混凝土悬臂拼装拱桥。90年代后先后建造了跨度最大的中承式钢筋混凝土——广西邕林邕江大桥(312m,1996年)和世界第一跨的钢管混凝土劲性骨架钢筋混凝土拱桥——重庆万州长江大桥(420m,1997年)。然而,

钢管混凝土拱桥稳定性分析例说

钢管混凝土拱桥;稳定性;有限元 钢管混凝土结构是指将混凝土填充入圆钢管内形成应力比较大的区域出现塑性变形,结构的变形很快增大。的混凝土结构,其本质上属于套箍混凝土。随着跨径的当荷载达到一定数值时,即使荷载不再增加,甚至在减少不断增大,对于以承受压力为主的拱桥结构其稳定安全性荷载的情况下结构变形也自行迅速增大而致使结构破坏。和极限承载力问题显得日益突出。桥梁结构的稳定性是关这个荷载值实际上是结构的极限荷载,也称临界荷载或压系到其安全与经济的主要问题之一,它与强度问题有同等溃荷载。拱在不同的结构形式和不同的荷载情况下,丧失重要的意义。本文以某钢管混凝土拱桥为研究对象,采用第一类稳定和丧失第二类稳定都有发生的可能,在有些情MIDAS有限元分析程序,建立了该桥的空间有限元计算模况下,丧失两类稳定性的区别只有理论上的意义。实际上型,计算了该桥的稳定安全系数,对其失稳特征进行了分的结构稳定问题都属于第二类,但是,因为第一类稳定问析,根据分析结果,提出了提高其稳定性的措施。题的力学情况比较单纯明确,在数学上作为求本征值问题 也比较容易处理,而它的临界荷载又近似的代表相应第 1 拱桥稳定性的理论分析二类稳定问题的上限,所以在拱桥分析中,第一类稳定拱桥结构的稳定性问题一直是国内外研究的一个热问题仍具有重要的工程意义。与中心压杆的临界荷载相点。结构失稳是指结构在外力增加到某一量值时,稳定类似,拱的第一类稳定问题在数学上是一个齐次方程的性平衡状态开始丧失,稍有挠动,结构变形迅速增大,特征值问题。第二类稳定的临界荷载是一个非线性塑性使结构失去正常工作能力的现象。桥梁结构的失稳现象问题,是几何非线性和材料非线性共同作用的结果。在表现为结构的整体失稳或局部失稳。局部失稳是指部分实际工程中,拱桥一般都是在施工阶段发生失稳,并且结构的失稳或个别构件的失稳。局部失稳常常导致整个多数为第一类失稳。 结构体系的失稳。钢筋混凝土拱桥和圬工拱桥,一般情况下由于跨度较 拱桥的失稳可分为平衡分支失稳(第一类)和极值点失小,拱肋截面相对较大,稳定问题并不突出,材料的强度稳(第二类)两类。对于比较柔细的拱,当其所受到的荷载和架设方法是控制因素,通常把拱肋等效为一压杆进行稳达到一定临界值时,拱就有可能丧失平衡状态,拱轴在其定性检算。对于大跨度钢管混凝土拱桥,这种方法显然只竖向平面内偏离初始受压的对称变形状态,向其反对称的能作为初步设计阶段的简单估算,只有采用有限元方法进平面挠屈,这时拱不但承受压力还承受一定的弯矩,这就行空间分析才能真实反映结构的稳定性能。 是拱的平面内屈曲;另一种就是拱轴线侧倾出竖平面,转1.1 第一类稳定问题的有限元分析向空间弯扭的变形状态,这就是拱的侧倾。它们具有共同1. 线弹性有限元分析的特点,都是由于拱的平衡状态出现了分支,使原来的平大跨度空间拱桥一般可简化为三维杆系结构,拱肋衡形式成为不稳定形式,而且开始出现新的平衡形式,通等构件模拟为空间梁单元。在T.L列式下,结构的整体平称为拱的第一类稳定问题。

车速对大跨度钢管混凝土拱桥车桥耦合振动的影响分析

Technology&EconomyinAreasofCommunications (TEAC)2006年第3期(总第35期) 交通科技与经济 钢管混凝土结构早在19世纪80年代就已经出现,钢管混凝土技术最早是在前苏联、美国、日本以及西欧等国家得到较好的发展与应用。在我国,钢管混凝土材料已被广泛应用于建筑行业。在桥梁工程方面,钢管混凝土材料也被广泛采用,主要应用于大跨径拱桥,已经建成数量可观的钢管混凝土拱桥,在特殊情况下也被用为桥墩材料。 钢管混凝土组合材料,结合两种不同力学性质材料的优点,具有独特的工作特点:弹性工作而塑性破坏,承载力高而极限压缩变形大。其应力应变关系接近于钢材的性能。这种材料应用于拱桥,与钢筋混凝土拱桥相比,增大了拱桥的跨径,而且使桥梁结构轻盈,提高了桥梁的观赏性,这种桥型的优点在城市桥梁中表现的尤为突出。 随着国民经济的不断发展,交通量显著增长,车辆轴重不断加重,车辆数不断增加,车辆密度也随之提高,与此同时,对桥梁结构的稳定与振动性能的要求也随之提高。随着跨度的增大,研究人员开始对钢管混凝土拱桥的动力性能也进行研究,对移动荷载作用下桥梁与车辆的动态响应也十分关注,从古典的弹簧质点体系到现代车桥相互作用理论,已经进行了不少研究,提出了一个较为综合的模型来模拟桥梁与汽车共同作用组成的系统,但在实际应用时有一定的局限性。 1车桥耦合振动 在车辆动荷载作用下或者风力、地震、地面运动作用下,桥梁结构产生的振动会增大结构所受的内力,可能引起结构的局部疲劳损伤,或者会影响桥梁行车的舒适性与安全性,甚至使桥梁完全破坏。所以,桥梁的设计计算中都包含有车辆荷载动力作用的内容;对于大跨度的吊桥、斜拉桥以及大跨度的拱桥还需要通过理论计算和模型实验,来保证架设时 和建成后的动力稳定性、行车舒适性和安全性。 桥梁结构振动,是伴随着外作用输入(车辆动荷载、风力、地震波)和摩擦损耗(材料的内摩擦和连接及支承的摩擦),结构体系的变形能量和运动能量相互转换的周期过程。体系振动受到外作用输入影响的多少,与它固有频率和输入作用的频率之比密切相关。 同样,车辆的振动,也是伴随着外作用的输入 (路面、桥面对行驶车辆的作用力)和摩擦损耗,体系的变形能量和运动能量相互转化的过程。其振动受到外作用输入影响的多少,也与其固有频率和输入作用的频率之比密切相关。 车桥耦合振动,就是当车辆行驶通过桥梁时,伴随着车辆与桥梁之间的作用力作为外作用,同时对车辆体系和桥梁结构输入,车辆和桥梁产生的相互影响、 相互制约的振动。在车桥耦合振动中,车辆任意时刻的振动情况都会改变车辆对桥梁的作用力,进而改变桥梁结构的振动情况;同样,桥梁结构任意时刻的振动情况也会改变桥梁对车辆的作用力,进而改变车辆的振动情况。两个体系的振动相互影响、相互制约,使其可以看作一个车辆桥梁体系的振动。 车辆与桥梁的相互作用是十分复杂的现象,它受很多因素的影响,主要有:车辆的动力特性,包括车辆的轴数、轴距、轴重、自振频率以及减振装置和弹簧中摩擦装置提供的阻力;桥跨结构的动力特性,如桥跨结构的几何尺寸、结构型式、支撑条件、质量和刚度分布;车速;桥头引道与桥面平整度,桥头沉陷及伸缩装置的状况;车辆的数量和在桥上行驶的位置等。 图1依兰牡丹江钢管混凝土桥有限元模型 2应用算例与分析 依兰牡丹江大桥位于黑龙江省依兰古城西1km,原哈同公路牡丹江上游256m处,属同江—— —三亚公路北段黑龙江省境内,是跨越牡丹江的一座大型桥梁。根据桥位地形特点, 【摘要】钢管混凝土材料在桥梁工程中已经得到了广泛的应用,随着研究的深入展,钢管混凝土拱桥在车辆荷载作用下的振动特性研究也备受关注。以依兰牡丹江钢管混凝土拱桥为例,通过编制程序以及对计算结果的分析,讨论了车速对此桥梁结构的车桥耦合振动的影响,并提出相关意见,为大跨度钢管混凝土拱桥的设计提供参考。【关键词】车速;大跨度钢管混凝土拱桥;车桥耦合振动;影响因素【中图分类号】U448.34 【文献标识码】A 【文章编号】1008-5696-(2006)02-0052-02 车速对大跨度钢管混凝土拱桥车桥耦合振动的影响分析 ●刘舒1,王宗林1,王淑涛 2 (1.哈尔滨工业大学,哈尔滨150090;2.路桥集团桥梁技术有限公司,北京100010) 投稿日期:2005-11-10 作者简介:刘舒(1981-),女,黑龙江哈尔滨人,硕士研究生,研究方向: 桥梁与隧道工程。

相关文档
最新文档