超精密加工技术论文

超精密加工技术论文
超精密加工技术论文

超精密加工技术简介论文

学校:XXXXX

学院:XXXX

班级:XXXXX

专业:XXXXX

姓名:XXXX

学号:XXXX

指导教师:XXX

目录

目录 ......................................................................................................................................... - 2 -

一、概述................................................................................................................... - 1 -

1、超精密加工的内涵...................................................................................... - 1 -

2.、发展超精密加工技术的重要性................................................................. - 1 -

二、超精密加工所涉及的技术范围....................................................................... - 2 -

三、超精密切削加工............................................................................................... - 3 -

1、超精密切削对刀具的要求.......................................................................... - 3 -

2、金刚石刀具的性能特征.............................................................................. - 3 -

3、超精密切削时的最小切削厚度.................................................................. - 3 -

四、超精密磨削加工............................................................................................... - 4 -

1、超精密磨削砂轮.......................................................................................... - 4 -

2、超精密磨削砂轮的修整.............................................................................. - 4 -

3、磨削速度和磨削液...................................................................................... - 5 -

五、超精密加工的设备........................................................................................... - 5 -

六、超精密加工的支撑环境................................................................................... - 6 -

1、净化的空气环境.......................................................................................... - 6 -

2、恒定的温度环境.......................................................................................... - 6 -

3、较好的抗振动干扰环境.............................................................................. - 7 -

七、超精密加工的运用领域................................................................................... - 7 -

八、超精密加工的现状及未来发展....................................................................... - 7 -

1、超精密加工的现状...................................................................................... - 7 -

2、超精密加工的发展前景.............................................................................. - 8 - 总结:....................................................................................................................... - 9 - 参考文献:............................................................................................................... - 9 -

超精密加工技术

一、概述

超精密机械加工技术是现代机械制造业最主要的发展方向之一, 已成为在国际竞争中取得成功的关键技术。这一方面是因为,尖端技术和国防工业的发展离不开精密和超精密加工技术, 当代精密工程、微细工程和纳米技术是现代制造技术的基础, 也是明天技术的基础。另一方面很多新技术机电产品要提高加工精度, 这促使精密和超精密加工技术得到发展和推广, 提高了整个机械制造业的加工精度和技术水平,使机械产品的质量、性能和可靠性得到普遍的提高, 大大提高了产品的竞争力。

1、超精密加工的内涵

超精密加工是一个十分广泛的领域,它包括了所有能使零件的形状、位置和尺寸精度达到微米和亚微米范围的机械加工方法。精密和超精密加工只是一个相对的概念,其界限随时间的推移而不断变化。

在当今技术条件下,普通加工、精密加工、超精密加工的加工精度可以作如下的划分:

1)、普通加工加工精度在1μm、表面粗糙度Ra 0.1μm以上的加工方法。

2)、精密加工加工精度在0.1-1μm、表面粗糙度Ra0.01-0.1μm之间的加工方法。

3)、超精密加工加工精度高于0.1μm、表面粗糙度小于Ra0.01μm的加工方法。

2、发展超精密加工技术的重要性

现代机械制造业之所以要致力于提高加工精度,其主要原因在于:可提高产品的性能和质量,提高其稳定性和可靠性;促进产品的小型化;增强零件的互换性,提高装配生产率。

精密和超精密加工技术的发展,直接影响到一个国家尖端技术和国防工业的发展,因此世界各国对此都极为重视,投入很大力量进行研究开发,同时实行技术保密,控制关键加工技术及设备出口。随着航空航天、高精密仪器仪表、惯导平台、光学和激光等技术的迅速发展和多领域的广泛应用,对各种高精度复杂零件、光学零件、高精度平面、曲面和复杂形状的加工需求日益迫切。目前国外已开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。

由于国外一些重要的高精度机床设备和仪器对我国实行封锁禁运,而这些精密设备仪器正是我国发展国防工业和尖端技术所迫切需要的,因此,为了使我国的国防和科技发展不受制于人,我们必须投入必要的人力物力,自主发展精密和超精密加工技术,争取尽快将我国的精密个超精密加工技术水平提升到世界先进水平。

二、超精密加工所涉及的技术范围

超精密加工所涉及的技术领域包括以下几方面:

1、超精密加工机理超精密加工是从被加工表面去除一层微量的表面层,包括超精密切削、超精密磨削和超精密特种加工。

2、超精密加工的刀具、磨具及其制备技术包括金刚石刀具的制备和刃磨、超硬砂轮的修整等超精密加工的重要关键技术。

3、超精密加工机床设备超精密加工对机床设备有高精度、高刚度、高的抗振性、高稳定性和高自动化的要求,具有微量进给机构。

4、精密测量及补偿技术超精密加工必须有相应级别的测量技术和装置,具有在线测量和误差补偿。

5、严格的工作环境超精密加工必须在超稳定的工作环境下进行,加工环境的极微小的变化都可能影响加工精度。因而,超精度加工必须具备各种物理效应恒定的工作环境,如恒温室、净化间、防振和隔振地基等。

超精密切削加工主要指金刚石刀具超精密车削,主要用于加工铜、铝等非铁金属及其合金,以及光学玻璃、大理石和碳素纤维等非金属材料。

1、超精密切削对刀具的要求

1)、极高的硬度、耐用度和弹性模量,以保证刀具有很长的寿命和很高的尺寸耐用度。

2)、刃口能磨得极其锋锐,刃口半径ρ极小,能实现超薄的切削厚度。

3)、刀刃无缺陷,因切削时刃形将复印在加工表面上,而不能得到超光滑的镜面。

4)、与工件材料的抗粘接性好、化学亲和性小、摩擦因数低,能够得到极好的加工表面完整性。

2、金刚石刀具的性能特征

目前,超精密切削刀具的金刚石为大颗粒、无杂质、无缺陷的优质天然单晶金刚石。具有如下性能特征:

1)、具有极高的硬度。

2)、能磨出极其锋锐的刃口,且切削刃没有缺口、崩刃等现象。

3)、热化学性能优越,具有导热性能好,与有色金属间的摩擦因数低、亲和力小的特征。

4)、耐磨性好,刀刃强度高。

因此,天然单晶金刚石被公认是理想的、不能替代的超精密切削的刀具材料。

3、超精密切削时的最小切削厚度

超精密切削时实际能达到的最小切削厚度与金刚石刀具的锋锐度、使用的超精密机床的性能状态、切削时的环境条件等有关。

超精密磨削是指加工精度达到或高于0.1μm、表面粗糙度低于Ra 0.025μm 的一种亚微米级加工方法,并正向着纳米级发展。超精密磨削的关键在于砂轮的选择、砂轮的修整、磨削用量和高精度的磨削机床。

1、超精密磨削砂轮

在超精密磨削中所所以的砂轮,其材料多为金刚石、立方氮化硼,因其硬度极高,故一般称为超硬磨料砂轮。金刚石砂轮有较强的磨削能力和较高的磨削效率,在加工非金属硬脆材料、硬质合金、有色金属及其合金有较大优势。立方氮化硼主要用于铁族元素材料的加工。

2、超精密磨削砂轮的修整

超硬磨料砂轮修整的方法:

1)、车削法用单点、聚晶金刚石笔、修整片等车削金刚石砂轮以达到修整目的。这种方法的修整精度和效率比较高;但修整后的砂轮表面平滑,切削能力低,同时修整成本高。

2)、磨削法用普通磨料砂轮或砂块与超硬磨料砂轮进行对磨修整。这种方法的效率和质量较好,是目前常用的修整方法,但普通砂轮的磨损消耗量大。

3)、喷射法将碳化硅、刚玉磨粒从高速喷嘴喷射到砂轮表面,从而去除部分结合剂,使超硬磨粒突出,这种方法主要用于修锐。

4)、电解在线修锐法将超硬磨料砂轮接电源正极,石墨电极接电源负极,在砂轮与电极之间通电解液,通过电解腐蚀作用去除超硬磨粒砂轮的结合剂,达到修锐目的。

5)、电火花修整法将电源的正、负极分别接于被修整超硬磨料砂轮和修整器,其原理是电火花放电加工。

此外,尚有超声波修整法、激光修整法等,有待进一步研究开发。

3、磨削速度和磨削液

金刚石砂轮磨削速度一般不能太高,根据磨削方式、砂轮结合剂和冷却情况的不同,其磨削速度为12-30 m/s。磨削速度太低,单颗磨粒的切削厚度过大,不但使工件表面粗糙度值增加,而且也使金刚石磨损增加;磨削速度提高,可使工件表面粗糙度值降低,但磨削温度随之升高,而金刚石的热稳定性只有700-800℃,因此金刚石砂轮的磨损也会增加。所以应根据具体情况选择合适磨削速度,一般陶瓷结合剂、树脂结合剂的金刚石砂轮其磨削速度可选高一些,金属结合剂的金刚石砂轮磨削速度可选低一些。

超硬磨料砂轮磨削时,磨削液的使用与否对砂轮的寿命影响很大。磨削液除了具有润滑、冷却、清洗功能外,还有渗透性、防锈、提高切削性能。磨削液分为油性液和水溶性液两大类,油性液主要成分是矿物油,其润滑性能好,主要有全损耗系统用油、煤油、轻质柴油等;水溶性液主要成分是水,其冷却性能好,主要有乳化液、无机盐水溶液、化学合成液等。

磨削液的使用应视具体情况合理选择。金刚石砂轮磨削硬质合金时,普遍采用煤油,而不宜采用乳化液;树脂结合剂砂轮不宜使用苏打水。立方氮化硼砂轮磨削时宜采用油性的磨削液,一般不用水溶液,因为在高温状态下,CBN砂轮与水会起化学反应,称水解作用,会加剧砂轮磨损。若不得不使用水溶性磨削液,可以加极压添加剂,减弱水解作用。

五、超精密加工的设备

超精密机床的质量还取决于机床的主轴部件、床身导轨以及驱动部件等关键部件的质量。

1)、精密主轴部件精密主轴部件是超精密机床的圆度基准,也是保证机床加工精度的核心。

2)、床身和精密导轨床身的机床的基础部件,应该具有抗振衰减能力强、热膨胀系数低、尺寸稳定性好的要求。超精密机床导轨部件要求有极高的直线运动精度,不能有爬行,导轨偶合面不能有磨损,因而液体静压导轨、气浮导轨和空气静压导轨,均具有运动平稳、无爬行、摩擦因数接近于零的特点,在超精密机床

中得到广泛的使用。

3)、微量进给装置在超精密加工中,要求微量进给装置满足如下要求:○1精微进给与粗进给分开,以提高微位移的精度、分辨率和稳定性;○2运动部分必须是低摩擦和高稳定性,以便实现很高的重复精度;○3末级传动元件必须有很高的刚度,即夹固刀具必须是高刚度的;○4工艺性好,容易制造;○5应能实现微进给的自动控制,动态性能好。

此外,超精密加工机床应该具有高精度、高刚度、高加工稳定性和高度自动化的要求:

1)、高精度包括高的静精度和动精度,主要的性能指标有几何精度、定位精度和重复定位精度、分辨率等,如主轴回转精度、导轨运动精度、分度精度等;

2)、高刚度包括高的静刚度和动刚度,除本身刚度外,还应注意接触刚度,以及由工件、机床、刀具、夹具所组成的工艺系统刚度。

3)、高稳定性设备在经运输、存储以后,在规定的工作环境下使用,应能长时间保持精度、抗干扰、稳定工作。设备应有良好的耐磨性、抗振性等。 4)、高自动化为了保证加工质量,减少人为因素影响,加工设备多采用数控系统实现自动化。

六、超精密加工的支撑环境

1、净化的空气环境

为了保证精密和超精密加工产品的质量,必须对周围的空气环境进行净化处理,减少空气中尘埃的含量,提高空气的洁净度。

2、恒定的温度环境

精密加工和超精密加工所处的温度环境与加工精度有着密切的关系,当环境温度发生变化时会影响机床的几何精度和工件的加工精度。

恒温环境有两个重要指标:一是恒温基数,即空气的平均温度,我国规定的

恒温基数为20;二是恒温精度,指对于平均温度所允许的偏差值。

随着现代化工业技术的发展与超精密加工工艺的不断提高,对恒温精度的要求也越来越高。

3、较好的抗振动干扰环境

1)、防振消除工艺系统内部自身产生的振动干扰。

2)、隔振采取各种隔离振动干扰的措施,阻止外部振动传播到工艺系统中。

七、超精密加工的运用领域

航天、航空工业中,人造卫星、航天飞机、民用客机等,在制造中都有大量的精密和超精密加工的需求,当前,微型卫星、微型飞机、超大规模集成电路的发展十分迅猛,涉及微细加工技术、纳米加工技术和微型机电系统(MEMS)等已形成微型机械制造。这些技术都在精密和超精密加工范畴内,与计算机工业、国防工业的发展直接相关。

八、超精密加工的现状及未来发展

1、超精密加工的现状

超精密加工技术在国际上处于领先地位的国家是美国、英国和日本。美国是开展超精密加工技术研究最早的国家,也是迄今处于领先地位的国家。英国的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,是当今世界上精密工程的研究中心之一。日本的超精密加工技术的研究相对于英美来说起步较晚,但它是当今世界上超精密加工技术发展最快的国家。尤其在用于声、光、图像、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,甚至超过了美国。我国在80年代中期出现了具有世界水平的超精密机床和部件。但总的来说,与国外产品比还有相当大的差距。

2、超精密加工的发展前景

超精密加工将向高精度、高效率、大型化、微型化、智能化、工艺整合化、在线加工检测一体化、绿色化等方向发展。

1)、高精度、高效率随着科学技术的不断进步,对精度、效率、质量的要求愈来愈高,高精度与高效率成为超精密加工永恒的主题。超精密切削、磨削技术能有效提高加工效率,CMP技术能够保证加工精度,而半固着磨粒加工方法及电解磁力研磨、磁流变磨料流加工等复合加工方法由于能兼顾效率与精度的加工方法,成为超精密加工的趋势。

2)、大型化、微型化由于航天航空等技术的发展,大型光电子器件要求大型超精密加工设备,如美国研制的加工直径为2.4~4m的大型光学器件超精密加工机床。同时随着微型机械电子、光电信息等领域的发展,超精密加工技术向微型化发展,如微型传感器,微型驱动元件和动力装置、微型航空航天器件等都需要微型超精密加工设备。

3)、智能化以智能化设备降低加工结果对人工经验的依赖性一直是制造领域追求的目标。加工设备的智能化程度直接关系到加工的稳定性与加工效率,这一点在超精密加工中体现更为明显。

4)、工艺整合化当今企业间的竞争趋于白热化,高生产效率越来越成为企业赖以生存的条件。在这样的背景下,出现了“以磨代研”甚至“以磨代抛”的呼声。另一方面,使用一台设备完成多种加工(如车削、钻削、铣削、光整)的趋势越来越明显。

5)、在线加工检测一体化由于超精密加工的精度很高,必须发展在线加工检测一体化技术才能保证产品质量和提高生产率。同时由于加工设备本身的精度有时很难满足要求,采用在线检测、工况监控和误差补偿的方法可以提高精度,保证加工质量的要求。

6)、绿色化磨料加工是超精密加工的主要手段,磨料本身的制造、磨料在加工中的消耗、加工中造成的能源及材料的消耗、以及加工中大量使用的加工液等对环境造成了极大的负担。我国是磨料、磨具产量及消耗的第一大国,大幅提高磨削加工的绿色化程度已成为当务之急发达国家以及我国的台湾地区均对

半导体生产厂家的废液、废气排量及标准实施严格管制,绿色化的超精密加工技术在降低环境负担的同时,提高了自身的生命力。

超精密加工,是现代机械制造业最主要的发展方向之一,在提高机电产品的性能、质量和发展高新技术中起着至关重要的作用,并且已成为在国际竞争中取得成功的关键技术。我国的制造业发展已进入了高速发展阶段,中国民营企业已具备足够的经济实力来使企业迈向现代化,先进设备的引进和大量专业人才的涌入使许多沿海地区的制造业水平迅速提高。随着国家决策的科学化、民主化进程不断深入,相信我国的制造业会更快速、更健康地发展。

总结:

爱因斯坦说:“所谓教育,是要将学校学到的知识忘掉后剩下的本领”。或许多年以后我已不记得曾学习过什么先进制造技术,但我在先进制造技术的课堂上所学到的脚踏实地、力求完美、注重细节的做事态度将陪伴我的一生。这才是我最大的收获!

参考文献:

1 王隆太主编.先进制造技术.北京:机械工业出版社,2003

2 袁哲俊,王先逵主编.精密超精密加工技术.北京:机械工业出版

社,1999

精密和超精密加工的应用和发展趋势

精密和超精密加工的应用和发展趋势 [摘要]本文以精密和超精密加工为研究对象,对世界上精密和超精密加工的应用和发展趋,势进行了分析和阐释,结合我国目前发展状况,提出今后努力方向和发展目标。 【关键词】精密和超精密加工;精度;发展趋势 精密和超精密制造技术是当前各个工业国家发展的核心技术之一,各技术先进国家在高技术领域(如国防工业、集成电路、信息技术产业等)之所以一直领先,与这些国家高度重视和发展精密、超精密制造技术有极其重要的关系。超精密加工当前是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。超精密加工技术在国际上处于领先地位的国家有美国、英国和日本。这些国家的超精密加工技术不仅总体成套水平高,而且商品化的程度也非常高。 美国是开展超精密加工技术研究最早的国家,也是迄今处于世界领先地位的国家。早在20世纪50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的超精密切削技术,称为“SPDT技术”(Single Point Diamond Turning)或“微英寸技术”(1微英寸=0.025μm),并发展了相应的空气轴承主轴的超精密机床。用于加工激光核聚变反射镜、战术导弹及载人飞船用球面非球面大型零件等等。如美国LLL实验室和Y-12工厂在美国能源部支持下,于1983年7月研制成功大型超精密金刚石车床DTM-3型,该机床可加工最大零件¢2100mm、重量4500kg的激光核聚变用的各种金属反射镜、红外装置用零件、大型天体望远镜(包括X光天体望远镜)等。该机床的加工精度可达到形状误差为28nm(半径),圆度和平面度为12.5nm,加工表面粗糙度为Ra4.2nm。 在超精密加工技术领域,英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,它是当今世界上精密工程的研究中心之一,是英国超精密加工技术水平的独特代表。如CUPE生产的Nanocentre(纳米加工中心)既可进行超精密车削,又带有磨头,也可进行超精密磨削,加工工件的形状精度可达0.1μm,表面粗糙度Ra<10nm。 日本对超精密加工技术的研究相对于美、英来说起步较晚,但是当今世界上超精密加工技术发展最快的国家。日本的研究重点不同于美国,是以民品应用为主要对象。所以日本在用于声、光、图象、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,是更加先进和具有优势的,甚至超过了美国。 我国的精密、超精密加工技术在20世纪70年代末期有了长足进步,80年代中期出现了具有世界水平的超精密机床和部件。北京机床研究所是国内进行超

超精密加工技术论文

超精密加工技术简介论文 学校:XXXXX 学院:XXXX 班级:XXXXX 专业:XXXXX 姓名:XXXX 学号:XXXX 指导教师:XXX

目录 目录 .......................................................................................................................................... - 2 - 一、概述................................................................................................................... - 1 - 1、超精密加工的内涵...................................................................................... - 1 - 2.、发展超精密加工技术的重要性................................................................. - 1 - 二、超精密加工所涉及的技术范围....................................................................... - 2 - 三、超精密切削加工............................................................................................... - 3 - 1、超精密切削对刀具的要求.......................................................................... - 3 - 2、金刚石刀具的性能特征.............................................................................. - 3 - 3、超精密切削时的最小切削厚度.................................................................. - 3 - 四、超精密磨削加工............................................................................................... - 4 - 1、超精密磨削砂轮.......................................................................................... - 4 - 2、超精密磨削砂轮的修整.............................................................................. - 4 - 3、磨削速度和磨削液...................................................................................... - 5 - 五、超精密加工的设备........................................................................................... - 5 - 六、超精密加工的支撑环境................................................................................... - 6 - 1、净化的空气环境.......................................................................................... - 6 - 2、恒定的温度环境.......................................................................................... - 6 - 3、较好的抗振动干扰环境.............................................................................. - 7 - 七、超精密加工的运用领域................................................................................... - 7 - 八、超精密加工的现状及未来发展....................................................................... - 7 - 1、超精密加工的现状...................................................................................... - 7 - 2、超精密加工的发展前景.............................................................................. - 8 - 总结:....................................................................................................................... - 9 - 参考文献:.....................................................................................错误!未定义书签。

特种加工技术论文.(优选)

特种加工技术概论 摘要:特种加工技术是直接借助电能、热能等各种能量进行材料加工的重要工艺方法。本文简介了电火花加工,电化学加工,超声波加工等各种不同的特种加工技术,并介绍了特种加工技术的特点及未来发展方向趋势。 关键词:特种加工电火花加工电化学加工离子束加工超声波加工快速成形 一.前言: 近年来,计算机技术、微电子技术、自动控制技术、国防军工和航空航天技术发展迅速,与此同时,高度、高韧性、高强度和高脆性等难切削材料的应用日益广泛,制造精密细小、形状复杂和结构特殊工件的求也在日益增加。社会需求与技术进步的结合促使特种加工技术不断进步和快速发展。所谓特种加工,是一种利用化学能、电能、声能、机械能以及光能和热能对金属或非金属材料进行加工的方法。其工作原理不同于传统的机械切削方法,即加工过程中工件与所用工具之间没有明显的切削力,工具材料的硬度也可低于工件材料的硬度。特种加工技术在国内外各行各业的应用中取得了巨大成效,它们有着各自的特点,特殊材料或特殊结构工件的加工工艺性发生了根本变化,解决了传统加工方法所遇到的各种问题,已经成为现代工业领域中不可缺少的重要加工手段和关键制造技术。 二.特种加工的特点 特种加工与一般机械切削加工相比,有其独特的优点,在某种场合上,它是一般机械切削加工的补充,扩大了机械加工的领域。它具有以下较为突出的特点 (1)不用机械能,与加工对象的机械性能无关,有些加工方法,如激光加工、电火花加工、等离子弧加工、电化学加工等,是利用热能、化学能、电化学能等,这些加工方法与工件的硬度强度等机械性能无关,故可加工各种硬、软、脆、热敏、耐腐蚀、高熔点、高强度、特殊性能的金属和非金属材料。 (2)非接触加工,不一定需要工具,有的虽使用工具,但与工件不接触,因此,工件不承受大的作用力,工具硬度可低于工件硬度,故使刚性极低元件及弹性元件得以加工。

精密和超精密加工论文

精密和超精密加工论文 一、精密和超精密加工的概念与范畴 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1?;m,表面粗糙度为Ra0.1~0.01?;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。精密加工包括微细加工和超微细加工、光整加工等加工技术。传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 a.砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 b.精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 c.珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1?;m,最好可到Ra0.025?;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。 d.精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025?;m加工变质层很小,表面质量高,精密研磨的设备简单,

精密和超精密加工技术复习思考题答案

精密和超精密加工技术复习思考题答案 第一章 1.试述精密和超精密加工技术对发展国防和尖端技术的重要意义。 答:超精密加工技术在尖端产品和现代化武器的制造中占有非常重要的地位。国防方面,例如:对于导弹来说,具有决定意义的是导弹的命中精度,而命中精度是由惯性仪表的精度所决定的。制造惯性仪表,需要有超精密加工技术和相应的设备。 尖端技术方面,大规模集成电路的发展,促进了微细工程的发展,并且密切依赖于微细工程的发展。因为集成电路的发展要求电路中各种元件微型化,使有限的微小面积上能容纳更多的电子元件,以形成功能复杂和完备的电路。因此,提高超精密加工水平以减小电路微细图案的最小线条宽度就成了提高集成电路集成度的技术关键。 2.从机械制造技术发展看,过去和现在达到怎样的精度可被称为精密和超精密加工。 答:通常将加工精度在0.1-lμm,加工表面粗糙度在Ra 0.02-0.1μm之间的加工方法称为精密加工。而将加工精度高于0.1μm,加工表面粗糙度小于Ra 0.01μm的加工方法称为超精密加工。 3.精密和超精密加工现在包括哪些领域。 答:精密和超精密加工目前包含三个领域: 1)超精密切削,如超精密金刚石刀具切削,可加工各种镜面。它成功地解决了高精度陀螺仪,激光反射镜和某些大型反射镜的加工。 2)精密和超精密磨削研磨。例如解决了大规模集成电路基片的加工和高精度硬磁盘等的加工。 3)精密特种加工。如电子束,离子束加工。使美国超大规模集成电路线宽达到0.1μm。 4.试展望精密和超精密加工技术的发展。 答:精密和超精密加工的发展分为两大方面:一是高密度高能量的粒子束加工的研究和开发;另一方面是以三维曲面加工为主的高性能的超精密机械加工技术以及作为配套的三维超精密检测技术和加工环境的控制技术。 5.我国的精密和超精密加工技术和发达国家相比情况如何。 答:我国当前某些精密产品尚靠进口,有些精密产品靠老工人于艺,因而废品率极高,例如现在生产的某种高精度惯性仪表,从十几台甚至几十台中才能挑选出一台合格品。磁盘生产质量尚未完全过关,激光打印机的多面棱镜尚不能生产。1996年我国进口精密机床价值达32亿多美元(主要是精密机床和数控机床)。相当于同年我国机床的总产值,某些大型精密机械和仪器国外还对我们禁运。这些都说明我国必须大力发展精密和高精密加工技术。 6.我目要发展精密和超精密加工技术,应重点发展哪些方面的内容。

超精密加工技术

精密加工 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1μm,表面粗糙度为Ra0.1~0.01μm的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。 精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。 精密及超精密加工-分类 1、传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 a.砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 b.精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 c.珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1μ;m,最好可到Ra0.025μ;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。 d.精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025μ;m加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。 e.抛光是利用机械、化学、电化学的方法对工件表面进行的一种微细加工,主要用来降低工件表面粗糙度,常用的方法有:手工或机械抛光、超声波抛光、化学抛光、电化学抛光及电化学机械复合加工等。手工或机械抛光加工后工件表面粗糙度Ra≤0.05μ;m,可用于平面、柱面、曲面及模具型腔的抛光加工。超声波抛光加工精度0.01~0.02μ;m,表面粗糙度Ra0.1μ;m。化学抛光加工的表面粗糙度一般为Ra≤0.2μ;m。电化学抛光可提高到Ra0.1~0.08μm。 2、精密加工包括微细加工和超微细加工、光整加工等加工技术。 微细加工技术是指制造微小尺寸零件的加工技术; 超微细加工技术是指制造超微小尺寸零件的加工技术,它们是针对集成电路的制造要求而提出的,由于尺寸微小,其精度是用切除尺寸的绝对值来表示,而不是用所加工尺寸与尺寸误差的比值来表示。 光整加工一般是指降低表面粗糙度和提高表面层力学机械性质的加工方法,不着重于提高加工精度,其典型加工方法有珩磨、研磨、超精加工及无屑加工等。实际上,这些加工方法不仅能提高表面质量,而且可以提高加工精度。精整加工是近年来提出的一个新的名词术语,它与光整加工是对应的,是指既要降低表面粗糙度和提高表面层力学机械性质,又要提高加工精度(包括尺寸、形状、位置精度)的加工方法。 3、超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程。当前的超精密加工是指

特种加工论文

特种加工技术的现代应用及其发展研究 摘要:特种加工技术是直接借助电能、热能、声能、光化学能或者复合能实现材料切削的加工方法,是难切削材料、复杂型面、低刚度零件及模具加工中的重要工艺方法。本文介绍了概念、特点、分类以及近些年应用于特种加工的一些新方法、新工艺。 关键词:特种加工电火花加工电化学加工高能束流加工超声波加工复合加工 1、特种加工技术的特点 现代特种加工(SP,SpciaI Machining)技术是直接借助电能、热能、声能、光能、电化学能、化学能及特殊机械能等多种能量或其复合以实现材料切除的加工方法。与常规机械加工方法相比它具有许多独到之处。 1.1以柔克刚。因为工具与工件不直接接触,加工时无明显的强大机械作用力,故加工脆性材料和精密微细零件、薄壁零件、弹性元件时,工具硬度可低于被加工材料的硬度。 1.2用简单运动加工复杂型面。特种加工技术只需简单的进给运动即可加工出三维复杂型面。特种加工技术已成为复杂型面的主要加工手段。 1.3不受材料硬度限制。因为特种加工技术主要不依靠机械力和机械能切除材料,而是直接用电、热、声、光、化学和电化学能去除金属和非金属材料。它们瞬时能量密度高,可以直接有效地利用各种能量,造成瞬时或局部熔化,以强力、高速爆炸、冲击去除材料。其加工性能与工件材料的强度或硬度力学性能无关,故可以加工各种超硬超强材料、高脆性和热敏材料以及特殊的金属和非金属材料,因此,特别适用于航空产品结构材料的加工。 1.4可以获得优异的表面质量。由于在特种加工过程中,工件表面不产生强烈的弹、塑性变形,故有些特种加工方法可获得良好的表面粗糙度。热应力、残余应力、冷作硬化、热影响区及毛刺等表面缺陷均比机械切削表面小。 各种加工方法可以任意复合,扬长避短,形成新的工艺方法,更突出其优越性,便于扩大应用范围。 由于特种加工技术具有其它常规加工技术无法比拟的优点,在现代加工技术中,占有越来越重要的地位。许多现代技术装备,特别是航空航天高技术产品的一些结构件,如工程陶瓷、涡轮叶片、燃烧室的三维型腔、型孔的加工和航空陀

超精密加工技术的发展与展望资料

精密与特种加工技术 结课论文 题目:超精密加工技术的发展与展望指导教师:沈浩 学院:机电工程学院 专业:机械工程 姓名:司皇腾 学号:152085201020

超精密加工技术的发展与展望 摘要:超精密加工是多种技术综合的一种加工技术,是获得高形状精度、表面精度和表面完整性的必要手段。根据当前国内外超精密加工技术的发展状况,对超精密切削、磨削、研磨以及超精密特种加工及复合加工技术进行综述,简单地对超精密加工的发展趋势进行预测。精密加工技术发展方向是:向高精度、高效率方向发展;向大型化、微型化方向发展;向加工检测一体化方向发展;机床向多功能模块化方向发展。本世纪的精密加工发展到超精密加工历程比较复杂且难度大,目前超精密加工日趋成熟,已形成系列,它包括超精密切削、超精密磨削、超精密研磨、超精密特种加工等。在不久的将来,精密加工也必将实现精密化、智能化、自动化、高效信息化、柔性化、集成化。创新思想及先进制造模式的提出也必将为精密与超精密技术发展提供策略。环保也是机械制造业发展的必然趋势。 关键词:加工精度;超精密加工技术;超精密特种加工;纳米技术;复合加工 【引言】 精密加工和超精密加工代表了加工精度发展的不同阶段,往往我们一提到超精密这个词,就会觉得它很神秘,但同任何复杂的高新技术一样,经过一段时间的熟悉和掌握,都会被大众所了解,也就不再是所谓的高科技了,超精密加工也是这样。实际上,如果拥有超精密的加工设备,并且在其它相关技术和工艺上能匹配,经过一段时间的实践之后,就能很好地掌握它,但这需要一个过程。超精密加工领域集成了很多IT、机械以及电气控制方面的技术,设备方面的操作和使用也非常复杂,所以,只有在对它有很深的理解之后才能把它用好。 通常按加工精度划分,可将机械加工分为一般加工、精密加工、超精密加工。在不同的历史阶段,不同的科学技术水平下,对超精密加工有不同的定义,由于生产技术的不断发展,划分的界限不断变化。过去的超精密加工对今天来说可能已经是普通加工了,所以对其划分的界限是相对的,而且在具体数值上至今没有确切的界限。现阶段通常把被加工零件的尺寸精度和形位精度达到零点几微米,表面粗糙度优于百分之几微米的加工技术称为超精密加工技术[1],也可以理解为超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程,其精度从微米到亚微米,乃至纳米。超精密加工技术是现代高技术战争的重要支撑技术,是现代高科技产业和科学技术的发展基础,是现代制造科学的发展方向[2]。 超精密加工技术综合应用了机械技术发展的新成果及现代光电技术、计算机技术、测量技术和传感技术等先进技术。同时,作为现代高科技的基础技术和重要组成部分,它推动着现代机械、光学、半导体、传感技术、电子、测量技术以及材料科学的发展进步。超精密加工在现代武器和一些尖端产品制造中具有举足轻重的地位,是其它一些加工方法无可替代的,它不仅可以应用于国防,而且可以广泛地应用于比较高端的民用产品中,是衡量一个国家科学技术发展水平的重要标志。 1、超精密加工技术的发展历史 精密超精密加工技术的起源从一定意义上可以上溯到原始社会:当原始人类学会了制作具有一定形状且锋利的石器工具时,可以认为出现了最原始的手工研

超精密机械加工技术发展及应用

超精密机械加工技术发 展及应用 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

超精密机械加工技术发展及应用超精密机械加工技术作为微光学元件的一种制造方法,具有很多其他传统方法所不具有的优点。本文回顾了超精密机械加工技术的发展,展望了其在微光学元件加工中的应用潜力。 1微光学概述 1.1定义与名称 微光学是一门属于多门前沿学科交叉领域的新兴科学。微光学借助于微电子工业技术的最新研究成果,是国际上最前沿研究方向之一,并具有广泛的应用前途。微光学元件(MOC),指面形精度可达亚微米级,表面粗糙度可达纳米级的自由光学曲面及微结构光学元件。自由光学曲面包括有回转轴的回转非球面(如抛物面、渐开面等),和没有任何对称轴的非回转非球面,如Zernike像差方程曲面。微结构是指具有特定功能的微小表面拓扑形状,如凹槽、微透镜阵列等,如图1所示(图1略)的微金字塔结构表面。这些结构决定了对光线的反射,透射或衍射性能,便于光学设计者优化光学系统,减轻重量,缩小体积。典型微光学元件如全息透镜、衍射光学元件(DOE)和梯度折射率透镜等,将这些微光学元件应用在各种光电子仪器中,可以使光电子仪器及其零部件更加小型化、阵列化和集成化。 1.2微光学元件的应用 微光学元件是制造小型光电子系统的关键元件,它具有体积小、质量轻、造价低等优点,并且能够实现普通光学元件难以实现的微小、阵

列、集成、成像和波面转换等新功能。随着系统小型化不断的成为一种趋势,几乎在所有的工程应用领域中,无论是现代国防科学技术领域,还是普通的工业领域的应用前景。军用方面,西方国家在70年代以后研制和生产的军用光电系统,如军用激光装置、热成像装置、微光夜视头盔、红外扫描装置、导弹引导头和各种变焦镜头,均已在不同程度上采用了非球面光学零件。在一般民用光电系统方面,自由非球面零件可以大量地应用到各种光电成像系统中。如飞机中提供飞行信息的显示系统;摄像机的取景器、变焦镜头;红外广角地平仪中的锗透镜;录像、录音用显微物镜读出头;医疗诊断用的间接眼底镜,内窥镜,渐进镜片等。微结构光学元件应用更是广泛,如光纤连接器中的微槽结构,液晶显示屏的微透镜阵列,及用于激光扫描的F-theta镜片,激光头的分光器等,这些微结构光学元件在很多我们日常使用的产品中都有应用,比如手机、掌上电脑、CD和DVD等。 1.3微光学元件加工方法 由于受应用需求的驱动,对微光学元件加工技术的研究也在不断深入,出现了多种现代加工技术,如电子束写技术、激光束写技术、光刻技术、蚀刻技术、LIGA技术,复制技术和镀膜技术等,其中最为成熟的技术是蚀刻技术和LIGA技术。这些技术基本都是从微电子元器件的微细加工技术发展而来,但与电子原件不同,三维成型精度和装配精度对光学元件来说是至关重要的,将会直接影响其性能,因此这些方法各自都有它自身的缺陷和使用的局限性。如由于视场深度的限制,光刻技术仅限于二微结构和小深宽比三维结构的加工;采用牺牲层蚀刻技术,虽然

特种加工论文

题目:浅谈特种加工发展及改进方向姓名: 专业:机械设计与制造 班级: 学号:

浅谈特种加工发展及改进方向 摘要: 传统的机械加工技术对推动人类的进步和社会的发展起到了重大的作用。随着科学技术的迅速发展,各国制造业蓬勃发展,并随着新材料,新结构不断出现,情况将会改变,现代机械制造业呼吁了特种加工技术的诞生,随着我国工业的现代化发展,特种加工技术逐渐走向寻常中国人的面前。新型加工技术的出现对传统加工业产生极大的影响,本文将通过介绍各类特种加工,分析其特性及优缺点,浅谈特种加工的现代产业中的定位以及其发展前期。 关键词:电火花加工电化学加工离子束加工特种加工的发展前景 引言: 传统加工技术经过了漫长的历史发展,曾经长期主导着机械加工工业,并对于人类的生存及发展生活水准有着极大的推动作用,对于工业发展有着长期的支撑作用,在现代加工史上有举足轻重的地位。1943年,前苏联拉扎连科夫妇发明了利用电能和热能去除金属材料的加工方法,这一个创举,开创了人类利用多种能量的特种加工时代。 随着科学技术的迅速发展,新型工程材料不断涌现、被采用工件形状的复杂程度,以及加工精度和表面粗糙度的要求,越来越高对机械制造工艺技术,提出了更高的要求。传统的机械加工方法由于受到刀具材料性能、结构、设备加工能力等条件的限制,很难完成对高硬度、高强、高韧性、高脆性、耐高温和磁性等新材料,以及精密复杂或难以处理的形状的加工,随着生产发展和科学实验的需要,很多工业部门,尤其是国防工业部门要求尖端科学技术产品向高精度、高速度、高温、高压、大功率、小型化等方向发展,它们所使用的材料愈来愈难加工,零件形状愈来愈复杂,表面精度、粗糙度和某些特殊要求也愈来愈高,传统加工技术越来越难以满足要求。 科学家们为了解决这些难题,借助于多种能量形式,探求新的工艺途径,冲破传统加工方法的束缚,不断探索、寻求新的加工方法,于是许多本质上区别于传统加工的特种加工方式便应运而生。 随着工业化、现代化的推进,非传统车削加工的各式特种加工,开始出现在机械加工工业之中,并且对于机械制造行业逐渐有了一定深度的改变。现在,特种加工技术已成为机械制造技术中不可缺少的一个组成部分。如今,国内外开发的特种加工种类已有十数种,对于现代工业隐隐有重大改造的趋势。 特种加工的出现,有力地解决了:各种难切削材料的加工、各种特殊复杂表面加工、各种超精、光整或具有特殊要求的零件加工,这三个困扰机械加工企业的难题。随着各类特种加工技术出现,现代工业即将带来翻天覆地的变化。 一、特种加工技术概念及特点 特种加工的定义: 特种加工是二次世界大战后发展起来的一类有别于传统切削与磨削加工方

特种加工结课论文

工作液在线切割加工中的应用 电火花线切割机床专用工作液伴随着线切割机床的发展至今在我国已有近50 年的历史。在这漫长的发展过程中,随着电火花线切割机床加工性能的提高、功能设计及技术进步的演变,为适应不同时期的需求,经过几代技术人员的艰辛努力,线切割机床专用工作液从早期单一油剂型产品发展到今天的多品种多种类。 电火花线切割加工是电火花加工中的一种,是用移动着的金属丝(钼丝或钨丝)作工具电极,按预定的轨迹作进给运动电火花放电是在电极丝进给方向的周边与工件之间进行,当两者按照规定的轨迹作进给运动时,便形成了成形切割放电部位的电极丝必须用流动的工作液充分包围起来,将电极上的热量和电腐蚀物随电极丝的移动和工作液的流动被带出放电部位。电火花线切割加工是模具加工的重要手段之一。在模具制造技术迅速发展的今天, 对模具加工质量和效率要求越来越高, 深入了解合理选用电火花线切割加工液, 对提高电火花线切割加工的质量和加工效率起着重要作用。 1 工作液的作用与特点 电火花线切割加工原理大致分为4个阶段:极间介质的电离、击穿; 电极材料的熔化、气化膨胀; 电极材料的抛出; 极间介质的消电离。由电火花线切割加工的原理可知道,工作液在线切割加工过程中充当着放电介质的作用, 同时还有冷却和洗涤的作用。在实际的加工生产中, 工作液对加工工艺指标影响很大, 如切割速度、表面粗糙度、加工精度等。快走丝电火花线切割使用的工作液一般是专用的乳化液( 目前市面上供应的乳化液有多种, 各有特点) 。根据线切割的加工工艺特点, 它们都应该具有以下性能。 1 . 1 一定的绝缘性能 火花放电必须在具有一定的绝缘性能的液体介质中进行。工作液的绝缘性能可使击穿后的放电通道压缩, 从而局限在较小的通道半径内火花放电, 形成瞬时和局部高温来熔化并气化金属, 放电结束后又迅速恢复放电间隙成为绝缘状态。绝缘性能要适中, 绝缘性能太低, 则工作液成了导电体, 而不能形成火花放电; 绝缘性能太高, 则放电间隙小, 排屑难,切割速度降低。 1 . 2 较好的冷却性能 电火花放电的局部瞬时温度极高, 为防止电极丝烧断和工件表面局部退火, 必须使切削部位充分冷却, 以带走火花放电时产生的热量。 1 . 3 较好的洗涤性能 洗涤性能好的工作液, 切割时的排屑效果好, 切削速度高, 切削后表面光亮清洁,

《精密与超精密加工技术》知识点总结

《精密与超精密加工技术》知识点总结 1.加工的定义:改变原材料、毛坯或半成品的形状、尺寸及表面状态,使之符合规定要求的各种工作的统称。规定要求:加工精度和表面质量。 2.加工精度:是指零件在加工以后的几何参数(尺寸、形状、位置)与图纸规定的理想零件的几何参数相符合的程度。符合程度越高,加工精度则越高。 3.表面质量:指已加工表面粗糙度、残余应力及加工硬化。 4.精密加工定义:是指在一定时期,加工精度和表面质量达到较高程度的加工技术(工艺)。 5.超精密加工:是指在一定时期,加工精度和表面质量达到最高程度的加工技术(工艺)。 6.加工的划分普通加工(一般加工)、精密加工和超精密加工。普通加工:加工精度在1μm 以上(粗加工IT13~IT9、半精加工IT8~IT7、精加工IT6~IT5),粗糙度Ra0.1-0.8μm。加工方法:车、铣、刨、磨等。适用于:普通机械(汽车、拖拉机、机床)制造等。 精密加工:加工精度在1~0.1μm ,粗糙度Ra0.1μm 以下(一般Ra0.1~0.01μm )的加工方法。加工方法:车削、磨削、研磨及特种加工。适用于:精密机床、精密测量仪器等中的关键零件的制造。 超精密加工:加工精度在0.1~0.01μm ,粗糙度小于Ra0.01μm(Ra0.01~Ra0.001μm)的加工方法。 加工方法:金刚石刀具超精密切削、超精密磨削、超精密特种加工。适用于:精密元件的制造、计量标准元件、集成电路等的制造。 7.精密加工影响因素 8.切削、磨削加工:精密切削和磨削、超精密切削与磨削。 9.特种加工:是指一些利用热、声、光、电、磁、原子、化学等能源的物理的,化学的非传统加工方法。 10.精密加工和超精密加工的发展趋势:向高精度方向发展、向大型化,微型化方向发展、向加工检测一体化发展、研究新型超精密加工方法的机理、新材料的研究。 11.精密加工和超精密加工的特点:形成了系统工程它是一门多学科的综合高级技术;它与特种加工关系密切传统加工方法与非传统加工方法相结合;加工检测一体化在线检测并进行实时控制、误差补偿;与自动化技术联系密切依靠自动化技术来保证;与产品需求联系紧密加工质量要求高、技术难度大、投资大、必须与具体产品需求相结合。 12.金刚石刀具是超精密切削中的重要关键。金刚石刀具有两个比较重要的问题:一是晶面的选择,因为金刚石晶体各向异性;二是研磨质量,也就是刃口半径,因为影响变形和最小切削厚度。 13.检测技术是超精密切削中一个极为重要的问题。超精密加工要求测量精度比加工精度高一个数量级。 14.超精密加工必须在超稳定的加工环境条件下进行:恒温条件、防振条件。恒温:20℃±(1~0.02)℃恒湿:35﹪~45﹪空气净化、防振等。 15.金刚石分类:天然金刚石和人造金刚石两大类(碳的同素异形体)。 16.金刚石晶体的三种晶面晶体——原子具有规则排列的物体。晶体中各种方位上的原子面 叫晶面。晶体中各种方位上的原子列叫晶向。金刚石晶格中有三种重要晶面,(100),(110),(111)。 17.金刚石晶体具有强烈的各向异性不同晶面,不同方向性能有明显差别;金刚石刀具的晶面选择直接影响切削变形和加工表面质量;金刚石晶体和铝合金、紫铜间的摩擦系数在0.06~0.13之间,而

精密与超精密加工技术

精密与超精密加工技术综述 0 前言 就先进制造技术的技术实质性而论,主要有精密和超精密加工技术和制造自动化两大领域 1 。前者包括了精密加工、超精密加工、微细加工,以及广为流传的纳米加工,它追求加工上的精度和表面质量的极限,可统称为精密工程;后者包括了设计、制造和管理的自动化,它不仅是快速响应市场需求、提高生产率、改善劳动条件的重要手段,而且是提高产品质量的有效方式。两者有密切联系,许多精密和超精密加工要靠自动化技术才能达到预期目标,而不少制造自动化则有赖于精密加工才能达到设计要求。精密工程和制造自动化具有全局性的、决策性的作用,是先进制造技术的支柱。 精密和超精密加工与国防工业有密切关系。导弹是现代战争的重要武器,其命中精度由惯性仪表的精度所决定,因而需要高超的精密和超精密加工设备来制造这种仪表。例如,美国“民兵”型洲际导弹系统的陀螺仪其漂移率为0.03~0.05°/h ,加速度计敏感元件不允许有0.05μm的尘粒,它的命中精度的圆概率误差为500m;MX战略导弹(可装载10个核弹头),由于其制导系统陀螺仪精度比“民兵—Ⅲ”型导弹要高出一个数量级,因而其命中精度的圆概率误差仅为50~150m。对射程4000km的潜射弹道导弹,当潜艇的位置误差对射程偏差的影响为400m、潜艇速度误差对射程偏差的影响为800m、惯性平台的垂直对准精度对射程偏差的影响为400m时,要求惯性导航的陀螺仪的漂移精度为0.001°/h、航向精度在1′以上、10小时运行的定位精度为0.4~0.7海里,因此,陀螺元件的加工精度必须达到亚微米级,表面粗糙度达到Ra0.012~0.008μm。由此可知,惯性仪表的制造精度十分关键。如1kg重的陀螺转子,其质量中心偏离其对称轴为0.5nm时,就会造成100m的射程误差和50m的轨道误差;激光陀螺的平面反射镜的平面度为0.03~ 0.06μm ,表面粗糙度要求为Ra0.012μm以上;红外制导的导弹,其红外探测器中接受红外线的反射镜,其表面粗糙度要求达到Ra0.015~0.01μm[2]。 航天、航空工业中,人造卫星、航天飞机、民用客机等,在制造中都有大量的精密和超精密加工的需求,如人造卫星用的姿态轴承和遥测部件对观测性能影响很大。该轴承为真空无润滑轴承,其孔和轴的表面粗糙度要求为Ry0.01μm,即1nm,其圆度和圆柱度均要求纳米级精度。被送入太空的哈勃望远镜(HST),可摄取亿万千米远的星球的图像,为了加工该望远镜中直径为2.4m、重达900kg的大型反光镜,专门研制了一台形状精度为0.01μm的加工光学玻璃的六轴CNC研磨抛光机。据英国Rolls-Royce公司报道,若将飞机发动机转子叶片的加工度,由60μm提高到12μm、表面粗糙度由Ra0.5μm减少到0.2μm,发动机的加速效率将从89%提高到94%;齿轮的齿形和齿距误差若能从目前的3~6μm,降低到1μm,则其单位重量所能传递的扭距可提高近1倍。 当前,微型卫星、微型飞机、超大规模集成电路的发展十分迅猛,涉及微细加工技术、纳米加工技术和微型机电系统(MEMS)等已形成微型机械制造。这些技术都在精密和超精密加工范畴内,与计算机工业、国防工业的发展直接相关。 1 精密和超精密加工的技术内涵 精密加工和超精密加工代表了加工精度发展的不同阶段,通常,按加工精度划分,可将机械加工分为一般加工、精密加工、超精密加工三个阶段。由于生产技术的不断发展,划分的界限将逐渐向前推移,过去的精密加工对今天来说已是普通加工,因此,其划分的界限是相对的,且在具体数值上至今没有固定。 1.1 精密加工和超精密加工的范畴 当前,精密加工是指加工精度为1~0.1μm、表面粗糙度为Ra0.1~0.025μm的加工技术;超精密加工是指加工精度高于0.1μm、表面粗糙度Ra小于0.025μm的加工技术,因此,超精密加工又称之为亚微米级加工。但是,目前超精密加工已进入纳米级精度阶段,故出现了纳米加工及其相应的技术 从精密加工和超精密加工的范畴来看,它应该包括微细加工、超微细加工、光整加工、精整加工等加工技术。 微细加工技术是指制造微小尺寸零件的加工技术;超微细加工技术是指制造超微小尺寸零件的加工技术,它们是针对集成电路的制造要求而提出的,由于尺寸微小,其精度是用切除尺寸的绝对值来表示,而不是

特种加工论文

湖南交通工程学院 特种加工论文 题目:特种加工技术发展现状及展望 专业:模具设计与制造 2 0 1 5年3月 目录 摘要 (3)

1.特种加工技术分类 (4) 1.1 激光加工技术 (4) 1.2 电子束加工技术 (6) 1.3 离子束及等离子体加工技术 (7) 1.4 电加工技术 (8) 2.特种加工技术的发展方向 (8) 3.特种加工工艺的技术研究趋势 (9) 3.1 激光加工技术 (9) 3.2 电子束加工技术 (9) 3.3 离子束和等离子体加工技术 (10) 3.4 电加工技术 (10) 特种加工课程论文 特种加工技术发展现状及展望

摘要 特种加工亦称“非传统加工”或。现代加工方法,,泛指用电能、热能、光能、电化学能、化学能、声能及特殊机械能等能量达到去除或增加材料的加工方法。本文所述的特种加工技术主要是指激光加工技术、电子束加工技术、离子束及等离子加工技术和电加工技术等。【关键字】: 特种加工特点应用展望 随着新型武器装备的发展,国内外对特种加工技术的需求日迫切。不论飞机、导弹,还是其它作战平台都要求降低结构重量,提高飞行速度,增大航程,降低燃油消耗,达到战技性能高、结构寿命长、经济可承受性好。为此,上述武器系统和作战平台都要求采用整体结构、轻量化结构、先进冷却结构等新型结构,以及钦合金、复合材料、粉末材料、金属间化合物等新材料。为此,需要采用特种加工技术厂以解决武器装备制造中用常规加工方法无法实现的加工难题:所以特种加工技术的主要应用领域是: 难加工材料,如钦合金、耐热不锈钢、高强钢、复合材料、工程陶瓷、金刚石、红宝石、硬化玻璃等高硬度、高韧性、高强度、高熔点材料。难加工零件,如复杂零件三维型腔、型孔、群孔和窄缝等的加工。低刚度零件,如薄壁零件、弹性元件等零件的加工。以高能量密度束流实现焊接、切割、制孔、喷涂、表面改性、刻蚀他精制加工。 特种加工课程论文

超精密加工技术的发展现状与趋势

超精密加工技术的发展现状与趋势 一、精密和超精密加工的概念与范畴 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1?;m,表面粗糙度为Ra0.1~0.01?;m的加工技术,但 这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加 工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。精密加工包括微细加工和超微细加工、光整加工等加工技术。传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 1.1砂带磨削 用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 1.2精密切割 也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 1.3珩磨 用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1?;m,最好可到Ra0.025?;m,主要用来加工铸铁及钢,不宜用来加工硬度小、 韧性好的有色金属。 1.4精密研磨与抛光 通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求 的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方 法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025?;m加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配 偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。 二、精密加工的发展现状 2.1精密成型加工的发展现状与应用 精密成型加工的发展现状与应用精密铸造成形、精密模压成形、塑性加工、薄板精密成形 技术在工业发达国家受到高度重视,并投入大量资金优先发展。70年代美国空军主持制

相关文档
最新文档