数学奥林匹克中的不等式问题上

数学奥林匹克中的不等式问题上
数学奥林匹克中的不等式问题上

A 说:“如果我被评上,那么,

B 也会被评上.”

B 说:“如果我被评上,那么,

C 也会被评上.”C 说:“如果

D 没被评上,那么,我也会没被评上.”

实际上,他们之中只有一个人没有评上三好生,且A 、B 、C 说的话都是正确的.则没有评上三好生的是

.

(答案:A )

3.一次仅由A 、B 、C 、D 四名学生参加的比赛,

每人各得了一个不同的名次.赛前,甲、乙、丙三位教师预测,甲说:“A 第一,C 第二.”乙说:“A 第二,C 第三.”丙说:“D 第一,B 第二.”比赛后发现,每位教师各猜中1人.问四名学生的名次如何?

(答案:A 第一,B 第二,C 第三,D 第四.)4.A 、B 、C 三人做下列游戏:三张牌,每张上写

一个正整数,这三个数分别是p 、q 、r ,且p

三张牌混合后再分配,每人得一张,再按照牌上的数分得小球,接着把牌收回,重发,但分得的小球仍留在手里,这个游戏至少要进行三次.最后结束时,A 、

B 、

C 三人分得20、10、9个球,还知道B 在最后一次

游戏中得r 个球.问:谁在第一次得到q 个球?

(提示:首先求出p 、q 、r 的值分别为1、4、8,则

可推出第一次C 得4个球.)

5.甲、乙、丙三个学生分别在A 、B 、C 三所大学

学习数学、物理、化学中的一个专业.若:①甲不在A 校学习;②乙不在B 校学习;③在B 校学习的学数学;④在A 校学习的不学化学;⑤乙不学物理.问三人各在哪所大学学习什么专业?

(提示:将人、学校、专业分成三个集合,然后通

过连线的方式来实现题目的求解.答案:甲在B 校学数学,乙在C 校学化学,丙在A 校学物理.)

数学奥林匹克中的不等式问题(上)

唐立华

(华东师范大学二附中,200062)

收稿日期:2006-01-13 修回日期:2006-05-16

(本讲适合高中)

作为数学竞赛的热门试题,不等式频繁地出现在各类数学竞赛中,令人眼花缭乱,目不暇接,但细究起来不外乎以下几种类型:

(1)整数不等式;(2)代数不等式;(3)几何不等式;(4)组合不等式.其中,代数不等式又可分为:实数不等式、复数不等式、三角不等式、函数不等式等.

不等式的证明方法多种多样,其应用也千变万化.下面仅就数学竞赛中证明不等式的常用方法举例说明.其中,有一些问题的解法是我和我的学生多年来研究的结果.1 恒等变形

利用恒等变形对原不等式进行整形是不

等式证明中的首要任务,如二次式配方、齐次式归一、阿贝尔方法等.

例1 设△ABC 与△A 1B 1C 1的边长分别为a 、b 、c ,a 1、b 1、c 1,面积为S 、S 1.则

H ≡

∑a

2

1(b 2+c 2-a 2)

≥8a 2

1+b 2

1+c 2

1a 2+b 2+c 2?S 2+a 2+b 2+c 2a 21+b 21+c 21

?

S 2

1.当且仅当△ABC ∽△A 1B 1C 1时,上式等号成立.

讲解:由海伦公式16S 2=(a 2+b 2+c 2)2-2(a 4+b 4+c 4).

记λ=a 2

1+b 2

1+c 2

1

a 2+

b 2+

c 2,

D 1=λa 2-λ-1a 21,D 2=λb 2-λ-1b 21,D 3=λc 2-λ-1c 21.

显然,D 1+D 2+D 3=0.

于是,

2H -16(λS 2+λ-1S 2

1)

=2(D 2

1

+D 22

+D 23

)-(D 1+D 2+D 3)

2

=2(D 21+D 22+D 2

3)≥0.

由此即知原不等式成立.

当且仅当D 1=D 2=D 3=0,即a ∶b ∶c =

a 1∶

b 1∶

c 1,△ABC ∽△A 1B 1C 1时,等号成

立.

2 设0<θi

≤π4,i =1,2,3,4.证明:tan θ1?tan θ2?tan θ3?tan θ4≤∑sin 8

θi

c os 8

θi

.

(2001,中国国家集训队试题)

讲解:首先,令x i =sin 2

θi ,则

0

2

.

于是,原不等式等价于f (x 1,x 2,x 3,x 4)

≥f (1-x 1,1-x 2,1-x 3,1-x 4),

其中,f (x 1,x 2,x 3,x 4)=x 4

1+x 4

2+x 4

3+x 4

4

x 1x 2x 3x 4

.

其次,联想一道I M O 预选题:

∑4

i =1

a

2i

=1.求证:

∑1≤i

(a

i

+a j )4

≤6.

该题证明利用了恒等式

1≤i

[(a i +a j )4+(a i -a j )4

]=6(a 2

1+a 2

2+a 2

3+a 2

4)2

.

对f 进行配方有f (x 1,x 2,x 3,x 4)

=(x 1-x 2)4+(x 2-x 3)4+(x 3-x 4)4+(x 4-x 1)42x 1x 2x 3x 4

+

2(x 1-x 2)

2

x 3x 4

+2(x 3-x 4)

2

x 1x 2

+2(x 2-x 3)

2

x 1x 4

+

2(x 4-x 1)

2

x 2x 3

+

(x 1-x 3)

2

x 1x 3

+2

(x 2-x 4)

2

x 2x 4

+2.

将f (x 1,x 2,x 3,x 4)与f (1-x 1,1-x 2,

1-x 3,1-x 4)对比,二者每一项的分子均相

同,分母上由于

1x i ≥1

1-x i

,所以,式①成立.

评注:此题是当年测试中很难的一道不等式问题,上面的配方方法显得基础但并不平凡.

例3 设a 、b 、c >0.求证:

f =∑(2a +b +c )22a 2+(b +c )

2

8.(第32届美国数学奥林匹克)

讲解:由齐次性,不妨设a +b +c =3.则

f =∑(a +3)22a 2+(3-a )2=∑a 2

+6a +9

3(a 2

-2a +3)=13

1+

8a +6

(a -1)2+2

≤13

∑(4a +4)=8.

例4 设a 1≥a 2≥…≥a n >0,且

∑k

i =1

a

i

∑k

i =1

b i

(1≤k ≤n ).

则a 21+a 22+…+a 2n ≤b 21+b 22+…+b 2

n .

讲解:记S k =

∑k

i =1

a

i

,S ′k =

∑k

i =1

b i

.

由阿贝尔变换公式得

∑n

i =1

a

2i

=a n S n +

∑n -1

k =1

S

k

(a k -a k +1)

≤a n S ′n +

∑n -1

k =1

S ′

k

(a k

-a k +1)=

∑n

i =1

a i

b

i

≤(

k

i =1

a 2

i )

1

2(

n

i =1

b 2

i )1

2.

由此立得∑

k

i =1

a 2

i ≤

n

i =1

b 2

i .

2 变量代换

常用的代换有三角代换、三角形边长的内切圆代换、分式代换(即对abc =1,可令

a =

x y ,b =y z ,c =z

x

)、增量代换等.例5 已知x 、y 、z ∈R ,且x +y +z =0.求证:

6(x3+y3+z3)2≤(x2+y2+z2)3.

讲解:引入三角代换

x=r cosθ,y=r sinθ,

则z=-r(cosθ+sinθ).

不妨设r≠0.于是,原不等式等价于

6[cos3θ+sin3θ-(cosθ+sinθ)3]2

≤[cos2θ+sin2θ+(cosθ+sinθ)2]3

Ζ25sin32θ+15sin22θ-24sin2θ-16≤0

Ζ(sin2θ-1)(5sin2θ+4)2≤0.

故原不等式成立.

注:也可由恒等式x3+y3+z3=3xyz(因为x+y+z=0),利用均值不等式得

(x2+y2+z2)3

=[(x2+y2)+x(x+y)+y(x+y)]3

≥[2xy+x(x+y)+y(x+y)]3

≥54xy?x(x+y)?y(x+y)

=54(xyz)2=6(x3+y3+z3)2.

例6 设a、b、c>0.求证:

1

a(1+b)+

1

b(1+c)

+

1

c(1+a)

≥3

1+abc

.①(2000,国家集训队训练题)

讲解:注意到,若abc=1,可作分式代换化为齐次不等式.如2000年I M O试题:设a、b、c>0,abc=1.证明:

a-1+1

b

b-1+

1

c

c-1+

1

a

≤1.

作分式代换

a=x

y

,b=y

z

,c=z

x

(x、y、z>0),

则上式等价于

∏(x-y+z)≤xyz,

即证.

类比上述做法,记k3=abc,并设

a=k x

y

,b=k y

z

,c=k z

x

.

于是,式①可化为齐次式(k视为常数)

∑yz

zx+kxy ≥3k

1+k3

.

再利用排序不等式可得

∑yz

zx+kxy

≥3

1+k

.

而3

1+k

≥3k

1+k3

,故原不等式成立.

评注:事实上,我们还得到了一个比式①

更强的结论:

对a、b、c>0,有

∑1

a(1+b)

≥3

3

abc(1+3abc)

.

另外,此题还有如下简洁的证明:

原不等式等价于

∑1+abc

a(1+b)

+1≥6

Ζ∑1+a

a(1+b)

+b

(1+c)

1+b

≥6.

由六元均值不等式知,上式显然成立.

由此可见恒等变形的重要性.

例7 在△ABC中,求证:

f=∑cos

2A

1+cos A

≥1

2

.

(2005,全国高中数学联赛)

讲解1:设a、b、c为△ABC的三边长.

对边作内切圆代换

a=x2+x3,b=x3+x1,c=x1+x2

(x

1

,x2,x3>0).

不妨设x

1

+x2+x3=1.

由余弦定理可得

f=∑

(x

1

-x2x3)2

2x1(1-x2)(1-x3)

≥1

2

Ζ∑x32x33+7(x1x2x3)2

 ≥x

1

x2x3∑(x2x3+x22x23)

Ζ∑(x42x33+x32x43)+2(x1x2x3)2∑x1

 ≥2∑x1x32x33+x1x2x3∑(x32x3+x2x33)

Ζ∑x22x23(x3-x1)(x2-x1)(x2+x3)≥0.

由对称性,不妨设x

1

≥x

2

≥x

3

≥0.易知

式②的第一项非负,后两项之和为

x23x21(x3-x2)(x1-x2)(x3+x1)+

x21x22(x1-x3)(x2-x3)(x1+x2)

=x21(x2-x3)[x22(x1-x3)(x1+x2)-x23(x1-x2)(x1+x3)]≥0.

故原不等式成立.

讲解2:对式①应用柯西不等式有

f≥[∑(x1-x2x3)]2

2∑x1(1-x2)(1-x3)

.

于是,只须证

[∑(x1-x2x3)]2≥∑x1(1-x2)(1-x3)Ζ∑x22x23≥x1x2x3(x1+x2+x3)

Ζ∑x23(x1-x2)2≥0.

故原不等式成立.

讲解3:作万能代换.

令tan A

2=x,tan B

2

=y,tan C

2

=z,其中

x、y、z∈R+.

则f≥1

2Ζ∑x2+4

x2+1

≥10.①

由xy+yz+zx=1,为去掉这一限制,再设x=u

uv+vw+wu

等,其中u、v、w>0.

则①Ζ∑u2

∑uv-1

≥9-

8∑u∑uv

∏(u+v)

Ζ∑u2-∑uv

∑uv ≥

∑(u+v)uv-6uvw

∏(u+v),

∏(u+v)∑(u-v)2

≥2∑uv[∑uv(u+v)-6uvw]

=2∑uv∑(u-v)2w

Ζ∑(u-v)2(u2v+uv2+u2w+v2w-uw2-vw2)≥0.②

记上面三个式子为f

1、f

2

、f

3

.

不妨设u≥v≥w,则

f1=(u-v)2[(v2-w2)u+(u2-w2)v+ u2w+v2w]≥0,

f2=(v-w)2[uv(v-u)+(v2-u2)w+ w2u+w2v]

≥-(v-w)2(u-v)(uv+vw+wu),

f3=(u-w)2[w(u2-v2)+uv(u-v)+ w2u+w2v]

≥(u-w)2(u-v)(uv+vw+wu)

≥(v-w)2(u-v)(uv+vw+wu).

所以,f

1

+f2+f3≥0.

从而,式②得证.故原不等式成立.

讲解4:注意到

f≥

1

2

Ζ∑(b2+c2-a2)2

bc(b+c-a)

≥a+b+c.

利用柯西不等式,只须证

(∑a2)2≥∑a∑bc(b+c-a)

Ζ2∑a4+2abc∑a≥2∑bc(b2+c2)

Ζ∑(b4+c4-b3c-bc3)

≥∑[b3c+bc3-abc(b+c)]

Ζ∑(b-c)2[b2+bc+c2-a(b+c)]

≥0.

不妨设a≥b≥c≥0,易知

(a-b)2[a2+ab+b2-c(a+b)]≥0,且后两项之和也大于或等于0.

故原不等式成立.

讲解5:(∑a2)2≥∑a∑bc(b+c-a)

Ζ(∑a2)2≥4∑(bc)2cos2A

2

Ζ∑a4≥2∑(bc)2cos A,

为嵌入不等式,即证.

3 数学归纳法

例8 设x

1

,x2,…,x n∈R+.求证:

x1

1+x21

+

x2

1+x21+x22

+…+

x n

1+x21+ (x2)

(第42届I M O预选题)

讲解:考虑加强命题:

对任意的a>0,有

∑n

k =1

x k

a +x

21

+…+x 2

k

用数学归纳法证明.

由n =1及题设结论猜想

f (n ,a )=

n a

,归纳过渡时,可对后n -1项用归纳假设,即

x 1a +x 2

1

+f (n -1,a +x 21

)

Ζx 1a +x

21

<

n (a +x 2

1)-(n -1)a

a

.

由于

a +x 21

>

a ,故只须证

x 1≤n (a +x 21

)-

(n -1)a Ζa +(n -1)x 21≥2

(n -1)a x 1.

而上式显然成立,从而,原不等式成立.例9 设正实数a 1,a ,…,a n ,n ∈N +.

a k >0.求证:

n

k =1

k

a 1a 2…a k

n

k =1

a k .

讲解1:注意到,数列1+1

k

k

单调递

增,且

lim k →∞

1+

1

k k

=e.

取b i =

(i +1)i

i

i -1

,i =1,2,…,n .

则b 1b 2…b k =(k +1)k

,k =1,2,…,n .

故∑

n

k =1

k

a 1a 2…a k

=

∑n

k =1

1

k +1k

(a 1b 1)(a 2b 2)…(a k b k )

≤∑

n

k =1

1

k (k +1)

k

i =1

a i

b i

=∑

n

i =1a i b i

n

k =i

1k (k +1)

=∑n

i =1

a i

b i

1

i -1n +1

<

n

i =1

a i

i +1

i

i

n

i =1

a i .

讲解2:考虑加强命题:

n k =1

k

a 1a 2…a k +n

n

a 1a 2…a n

∑n

k =1

a k

.

当n =1时,结论显然成立.假设式①对n -1成立,即

n -1k =1

k

a 1a 2…a k +(n -1)

n -1

a 1a 2…a n -1

∑n -1

k =1

a k

.

下面只须证e a n +(n -1)

n -1

a 1a 2…a n -1

≥(n +1)

n

a 1a 2…a n .

注意到e >1+1

n

n

,由均值不等式得

e a n +(n -1)

n -1

a 1a 2…a n -1

≥n

n

e a 1a 2…a n ≥n

n

1+

1

n

n

a 1a 2…a n

=(n +1)

n

a 1a 2…a n .

评注:对形如

∑f (k )S k

<∑

1

a k

(S k =a 1+a 2+…+a k )这类不等式,可考虑

加强命题———在式①的左边加上一项

g (n )

S n

后,用数学归纳法证明.例如:

(1)设a 1,a 2,…,a n ∈R +,S k =a 1+a 2

+…+a k .则

n

k =1

k S k <2∑

n

k =11a k

可加强为∑

n

k =1

k S k +n 2

2S n <2∑

n

k =11a k

.(2)设a ,a 1,…,a n ∈R +,S k =a 1+a 2+

…+a k .则∑

n

k =1

ak +a

2

4

S k

<

(a +2)24

∑n

k =1

1

a k

可加

强为

n

k =1

ak +a

2

4

S k

+n 2S n ≤(a +2)

2

4

∑n

k =1

1

a

k

.

(未完待续)

1995全国小学数学奥林匹克

3.下面算式中,每一个汉字代表一个数字,不同的汉字代表不同的数字。 数数×科学=学数学 那么“数学”两字代表的两位数是 4.我们规定,符号“ °”代表选择两数中较大数的运算,例如: 3.5 2.9=2.9 3.5=3.5.符号“△”表示选择两数中较小数的运算,例如:3.5△2.9=2.9△3.5=2.9。请计算 5.在如图的中间圆圈内填一个数,计算每一线段两端的两数之差(大减小),然后算出这三个差数之和。那么这个差数之和的最小值是 。 6.在下面的方框中各填人一个数字,使六位数11□□11能被17和19整除,那么方框中的两位数是 。 7.在下表中 第n 行有一个数A ,在它的下一行(第n+l 行)有一个数B ,并且A 和B 在同一竖列。如果A+B=391,那么n= 。 8.2个蟹将和4个虾兵能打扫龙宫的 10 3 ,8个蟹将和10个虾兵就能打扫完全部龙宫。如果单让蟹将去打扫,与单让虾兵去打扫进行比较,那么要打扫完全部龙宫,虾兵比蟹将要多 个。 9.某中学初中学生共780人,该校去数学奥校学习的学生中,没进奥校学习的有 人。 10.一张长方形纸片,把它的右上角往下折叠如下页甲图,阴影部分面积占原纸片面积的 7 2 ;再把左下角往上折叠如乙图,乙图中阴影部分面积占原纸片面积的 (答案用分数表示)。

(甲图) (乙图) 11.130克含盐5 %的盐水,与含盐9%的盐水混合,配成含盐6.4%的盐水,这样配成的6.4%的盐水有克。 12.小张、小王、小李同时从湖边同一地点出发,绕湖行走。小张速度是5.4千米每小时,小王速度是 4.2千米每小时,他们两人同方向行走,小李与他们反方向行走,半小时后小张与小李相遇,再过5分钟,小李与小王相遇。那么绕湖一周的行程是千米。 3.下面算式中,每一个汉字代表一个数字,不同的汉字代表不同的数字。 数学×科学=学数学 那么“数学”两字代表的两位数是。 4.我们规定,符号“ °”代表选择两数中较大数的运算,例如: 3.5 2.9=2.9 3.5=3.5.符号“△”表示选择两数中较小数的运算,例如:3.5△2.9=2.9△3.5=2.9。请计算 5.在如图的中间圆圈内填一个数,计算每一线段两端的两数之差(大减小),然后算出这三个差数之和。那么这个差数之和的最小值是。 6.有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人分4块就少2块。这些糖共有块。 7. 在下面的方框中各填人一个数字,使六位数11□□11能被17和19整除,那么方框中的两位数是。 8.每次考试满分是100分。小明4次考试的平均成绩是89分,为了使平均成绩尽快达到94分(或更多),他至少再要考次。 9.在下表中

历史上三大数学危机之三

第三次数学危机 一、起因 魏尔斯特拉斯用排除无穷小量的办法来解决贝克莱悖论,而在本世纪60年代,鲁滨逊又把无穷小量请了回来,引进了超实数的概念,从而建立了非标准分析,同样也能精确地描述微积分,进而也解决了贝克莱悖论。但必须注意到,贝克莱悖论只是在相对意义下得到了解决,因为实数理论的无矛盾性归结为集合论的无矛盾性,而集合论的无矛盾性至今仍未彻底解决。 二、经过 经过第一、二次数学危机,人们把数学基础理论的无矛盾性,归结为集合论的无矛盾性,集合论已成为整个现代数学的逻辑基础,数学这座富丽堂皇的大厦就算竣工了。看来集合论似乎是不会有矛盾的,数学的严格性的目标快要达到了,数学家们几乎都为这一成就自鸣得意。法国著名数学家庞加莱(1854—1912)于1900年在巴黎召开的国际数学家会议上夸耀道:“现在可以说,(数学)绝对的严密性是已经达到了”。然而,事隔不到两年,英国著名数理逻辑学家和哲学家罗素(1872—1970)即宣布了一条惊人的消息:集合论是自相矛盾的,并不存在什么绝对的严密性!史称“罗素悖论”。1918年,罗素把这个悖论通俗化,成为理发师悖论。罗素悖论的发现,无异于晴天劈雳,把人们从美梦中惊醒。

罗素悖论以及集合论中其它一些悖论,深入到集合论的理论基础之中,从而从根本上危及了整个数学体系的确定性和严密性。于是在数学和逻辑学界引起了一场轩然大波,形成了数学史上的第三次危机。 产生集合论悖论的原因在于集合的辨证性与数学方法的形式特性或者形而上学的思维方法的矛盾。如产生罗素悖论的原因,就在于概括原则造集的任意性与生成集合的客观规则的非任意性之间的矛盾。 三、影响 第三次数学危机的产物——数理逻辑的发展与一批现代数学的产生。 为了解决第三次数学危机,数学家们作了不同的努力。由于他们解决问题的出发点不同,所遵循的途径不同,所以在本世纪初就形成了不同的数学哲学流派,这就是以罗素为首的逻辑主义学派、以布劳威尔(1881—1966)为首的直觉主义学派和以希尔伯特为首的形式主义学派。这三大学派的形成与发展,把数学基础理论研究推向了一个新的阶段。三大学派的数学成果首先表现在数理逻辑学科的形成和它的现代分支——证明论等——的形成上。 为了排除集合论悖论,罗素提出了类型论,策梅罗提出了第一个集合论公理系统,后经弗伦克尔加以修改和补充,得到常用的策梅罗——弗伦克尔集合论公理体系,以后又经

小学数学奥林匹克试题

小学数学奥林匹克试题 预赛(A)卷 1.计算: 12-22+32-42+52-62+…-1002+1012=________. 2.一个两位数等于其个位数字的平方与十位数字之和,这个两位数是________. 3.五个连续自然数,每个数都是合数,这五个连续自然数的和最小是________. 4.有红、白球若干个.若每次拿出一个红球和一个白球,拿到没有红球时,还剩下50个白球;若每次拿走一个 红球和 3个白球,则拿到没有白球时,红球还剩下50个.那么这堆红球、白球共有________个. 5.一个年轻人今年(2000年)的岁数正好等于出生年份数字之和,那么这位年轻人今年的岁数是________. 6.如下图, ABCD是平行四边形,面积为 72平方厘米,E,F分别为AB,BC的中 点,则图中阴影部分的面积为_____平 方厘米. 7.a是由2000个9组成的2000位整数,b是由2000个8组成的2000位整数,则a×b的各位数字之和为________. 8.四个连续自然数,它们从小到大顺次是3的倍数、5的倍数、7的倍数、9的倍数,这四个连续自然数的和最小 是____. 9.某区对用电的收费标准规定如下:每月每户用电不超过10度的部分,按每度0.45元收费;超过10度而不超过 20度的部分,按每度0.80元收费;超过20度的部分,按每度1.50元收费.某月甲用户比乙用户多交电费7.10元 ,乙用户比丙用户多交3.75元,那么甲、乙、丙三用户共交电费________元(用电都按整度数收费). 10.一辆小汽车与一辆大卡车在一段9千米长的狭路上相遇,必须倒车,才能继续通行.已知小汽车的速度是大 卡车的速度的3倍,两车倒车的速度是各自速度的;小汽车需倒车的路程是大卡车需倒车的路程的4倍.如果 小汽车的速度是50千米/时,那么要通过这段狭路最少用________小时. 11.某学校五年级共有110人,参加语文、数学、英语三科活动小组,每人至少参加一组.已知参加语文小组的 有52人,只参加语文小组的有16人;参加英语小组的有61人,只参加英语小组的有15人;参加数学小组的有63 人,只参加数学小组的有21人.那么三组都参加的有________人.

2020最新小学数学奥林匹克竞赛试题及答案(五年级)

2020最新第二届华博士小学数学奥林匹克网上竞赛试题及答案 (五年级) (红色为正确答案) 选择正确的答案: (1)在下列算式中加一对括号后,算式的最大值是()。 7 ×9 + 12 ÷ 3 - 2 A 75 B 147 C 89 D 90 (2)已知三角形的内角和是180度.一个五边形的内角和应是( )度. A 500 B 540 C 360 D 480 (3)甲乙两个数的和是15.95,甲数的小数点向右移动一位就等于乙数,那么 甲数是( ). A 1.75 B 1.47 C 1.45 D 1.95 (4)一个顾客买了6瓶酒,每瓶付1.3元,退空瓶时,售货员说,每只空瓶钱比酒钱 少1.1元,顾客应退回的瓶钱是( )元. A 0.8 B 0.4 C 0.6 D 1.2 (5)两数相除得3余10,被除数,除数,商与余数之和是143,这两个数分别是( ) 和( ). A 30和100 B 110和30 C 100和34 D 95和40 (6) 今年爸爸和女儿的年龄和是44岁,10年后,爸爸的年龄是女儿的3倍,今年女儿是多少岁? A16 B11 C9 D10 (7)一个两位数除250,余数是37,这样的两位数是( ). A 17 B38 C 71 D 91 (8)把一条细绳先对折,再把它所折成相等的三折,接着再对折,然后用剪刀在折过三次的绳中间剪一刀,那么这条绳被剪成( )段. A 13 B 12 C 14 D 15 (9) 把两个表面积都是6平方厘米的正方体拼成一个长方体,这个长方体的表面积( ). A 12 B 18 C10D11

(10)一昼夜钟面上的时针和分针重叠( )次. A 23 B 12 C 20 D13 (11)某车间四月份实际生产机器76台,其中原计划生产的台数比超产台数多60台, 求四月份比原计划超产多少台机器? A 16 B 8 C 10 D 12 (12)一块红砖长25厘米,宽15厘米,用这样的红砖拼成一个正方形最少需要多少块? A 15 B 12 C 75 D 8 (13)图中ABCD 是长方形,已知AB=4厘米,BC=6厘米,三角形EFD 的面积 比三角形ABF 的面积大6平方厘米,求ED=? A 9 B 7 C 8 D 6 (14)一天,甲乙丙三人去郊外钓鱼已知甲比乙多钓6条,丙钓的是甲的2 倍,比乙多钓22条,问他们三人一共钓了多少条? A 48 B 50 C 52 D 58 (15)张师傅以1元钱4个苹果的价格买进苹果若干个,又以2元钱5个苹果有价格把这些苹果卖出,如果他要赚得15元钱的利润,那么他必须卖出苹果多少个? A 10 B 100 C 20 D 160 E D C B

第二届华博士小学数学奥林匹克网上竞赛试题及答案

第二届华博士小学数学奥林匹克网上竞赛试题及答案 选择正确的答案: (1)在下列算式中加一对括号后,算式的最大值是()。 7 × 9 + 12 ÷ 3 - 2 A 75 B 147 C 89 D 90 (2)已知三角形的内角和是180度.一个五边形的内角和应是( )度. A 500 B 540 C 360 D 480 (3)甲乙两个数的和是15.95,甲数的小数点向右移动一位就等于乙数,那么甲数是( ). A 1.75 B 1.47 C 1.45 D 1.95 (4)一个顾客买了6瓶酒,每瓶付1.3元,退空瓶时,售货员说,每只空瓶钱比酒钱少1.1元,顾客应退回的瓶钱是( )元. A 0.8 B 0.4 C 0.6 D 1.2 (5)两数相除得3余10,被除数,除数,商与余数之和是143,这两个数分别是( ) 和( ). A 30和100 B 110和30 C 100和34 D 95和40 (6) 今年爸爸和女儿的年龄和是44岁,10年后,爸爸的年龄是女儿的3倍,今年女儿是多少岁? A16 B11 C9 D10 (7)一个两位数除250,余数是37,这样的两位数是( ). A 17 B38 C 71 D 91 (8)把一条细绳先对折,再把它所折成相等的三折,接着再对折,然后用剪刀在折过三次的绳中间剪一刀,那么这条绳被剪成( )段. A 13 B 12 C 14 D 15 (9) 把两个表面积都是6平方厘米的正方体拼成一个长方体,这个长方体的表面积( ). A 12 B 18 C10 D11 (10)一昼夜钟面上的时针和分针重叠( )次. A 23 B 12 C 20 D13 (11)某车间四月份实际生产机器76台,其中原计划生产的台数比超产台数多60台, 求四月份比原计划超产多少台机器? A 16 B 8 C 10 D 12 (12)一块红砖长25厘米,宽15厘米,用这样的红砖拼成一个正方形最少需要多少块? A 15 B 12 C 75 D 8 (13)图中ABCD是长方形,已知AB=4厘米,BC=6厘米,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED=?厘米 A 9 B 7 C 8 D 6 (14)一天,甲乙丙三人去郊外钓鱼已知甲比乙多钓6条,丙钓的是甲的2 倍,比乙多钓22条,问他们三人一共钓了多少条? A 48 B 50 C 52 D 58 (15)张师傅以1元钱4个苹果的价格买进苹果若干个,又以2元钱5个苹果有价格把这些苹果卖出,如果他要赚得15元钱的利润,那么他必须卖出苹果多少个? A 10 B 100 C 20 D 160 2006年“希望杯”全国数学大赛 (时间:90分钟满分:120分)

小学数学奥林匹克竞赛三年级“奥林匹克”数学指导(含答案)

三年级“奥林匹克”数学指导 时刻、时间与钟表 同学们,你一定知道钟表是用来记时的,爸爸妈妈当你很小时就会教你如何看钟表、报时间,可钟表里有许多有趣的数学问题。 什么叫“时间”它有两层意思: 1. 表示某一种特定时候。 如:北京时间八点整。每天早上六点起床等等,为了区别别一种含义,我们把表示某一种特定的时候,叫时刻。(也叫点) 2. 表示两个不同时刻的间隔。 如:从早上8时到10时,花了2个小时的时间写作业,从杭州到上海火车运行的时间是2小时30分。这叫做时间。 我们可以从单位名称上来区分时刻与时间的差异。 时刻,一般用“时”如:飞机上午8时起航,指飞机离开机场时刻。时间一般用“小时”共飞行了8小时,指飞机从上午8时起飞到下午4时降落,在空中飞行了8个小时。 同学们不仅要会读钟面上显示的时刻,还要学会观察钟面所表示的不同的时刻之间的时间关系。找出规律。 如:长短针位置的判断时刻,确定长,短针互换位置后的时刻,反射到镜面上的钟面的时刻等等。有利于培养自己观察能力。 例1 根据前3个钟面的规律,画出第4个钟面的长、短针。

3 分析:前面三个钟表所表示的时刻分别是1时,3时30分,6时,相邻两个钟的时间差都是2小时30分。因此第4个钟也应是在第3个钟6点的基础上增加2小时30分,应显示出的时刻是8点30分 例2 按次序观察图中各钟面所表示的时刻,找出各种钟面所表示的时间规律,请在第5只钟面上标出符合规律的时刻

分析:把各钟面表示的时刻依次排列起来 11点30分→12点5分→12点40分→1点15分→()→2点25分 发现它们相邻两钟的间隔时间都是35分钟,因此第5个钟面的时刻应是1点50分。 例3 见图:是反射在镜面上的两只钟面的长针和短针的位置,请说出各钟面的时刻? 分析:同学们我们只要用镜子实践一下,就会发现任何物体经过镜面反射,它的位置发生了变化。左边的在镜子反射后成为右边,右边的在镜子反射后变为左边了,因此,要从镜面上反射出来的钟面时刻推出原钟面的时刻,只要将镜面上的钟面左右翻转半圈,这两只钟面表示的时刻分别为6点40分和8点15分

数学史上的三大危机

数学史上的三大危机 无理数危机、无穷小是零危机和悖论危机 无理数的发现-第一次数学危机 大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯的悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称"四艺",在其中追求宇宙的和谐规律性。他们认为:宇宙间一切事物都可总结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。这个悖论直接触犯了毕氏学派的根本信条,导致了当时理解上的"危机",从而产生了第一次数学危机。 到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。第一次数学危机对古希腊的数学观点有极大的冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却能够由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命! 无穷小是零吗?-第二次数学危机 18世纪,微分法和积分法在生产和实践上都有了广泛而成功的实验过,绝大部分数学家对这个理论的可靠性是毫不怀疑的。 1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,茅头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。这里牛顿做了违反矛盾律的手续──先设x有增量,又令增量为零,也即假设x没有增量。"他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,"dx为逝去量的灵魂"。无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。导致了数学史上的第二次数学危机。 18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级数求和的任意性,符号的不严格使用,不考虑连续性就实行微分,不考虑导数及积分的存有性以及函数可否展成幂级数等等。 直到19世纪20年代,一些数学家才比较注重于微积分的严格基础。从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到韦尔斯特拉斯、戴德金和康托的工作结束,中间经历了

1998小学数学奥林匹克试题

1998小学数学奥林匹克试题

1998小学数学奥林匹克试题 预赛(A)卷 1.计算: =________。 2.在左下图的乘法算式中,每个□表示一个数字,那么计算所得的乘积应该是________。 3.在右上图中,已知矩形GHCD的面积是矩形ABCD面积的,矩形MHCF的面积 是矩形ABCD面积的,矩形BCFE的面积等于3平方米。矩形AEMG的面积等于________平方米。 4.三个连续的自然数的最小公倍数是9828,这三个自然数的和等于________。 5.如果四个两位质数a、b、c、d两两不同,并且满足等式a+b=c+d,那么a+b的最大可能值是________。 6.某数除以11余8,除以13余10,除以17余12,那么这个数的最小可能值是________。 7.一个长方体,表面全涂上红色后,被分割成若干个体积都等于1立方厘米的小正方体。如果在这些小正方体中,不带红色的小正方体的个数等于7,那么两面带红色的小正方体的个数等于________。 8.甲、乙两个车间共有94个工人,每天共生产1998把竹椅。由于设备和技术的不同,甲车间平均每个工人每天只生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅。甲车间每天竹椅的产量比乙车间多________把。 9.一个运输队包运1998套玻璃茶具。运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元。结果这个队实际得运费3059.6元。在运输过程中被损坏的茶具套数是________。

10.买来一批苹果,分给幼儿园大班的小朋友。如果每人分5个苹果,那么还剩余32个;如果每人分8个苹果,那么还有5个小朋友分不到苹果。这批苹果的个数是________。 11.某司机开车从A城到B城。如果按原定速度前进,可准时到达。当路程走了一半时,司机发现前一半路程中,实际平均速度只可达到原定速度的。现在 司机想准时到达B城,在后一半的行程中,实际平均速度与原速度的比是 _______。 12.某店原来将一批苹果按100%的利润定价出售,由于定价过高,无人购买,不得不按38%的利润重新定价,这样售出了其中的40%。此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果。结果,实际获得的总利润是原定利润的30.2%,那么第二次降价后的价格是原定价格的______%。(注:“按100%的利润定价”指的是“利润=成本×100%”) 预赛(B)卷 1.计算:=________。 2.在下图的乘法算式中,每个□表示一个数字,那么计算所得的乘积应该是 ________。 3.右上图中有六个正方形,较小的正方形都由较大的正方形的四边中点连接而成。已知最大的正方形的边长为10cm,那么最小的正方形的面积等于 ________cm2。 4.三个连续的自然数的最小公倍数168,那么这三个自然数的和等于________。 5.如果四个两位质数a、b、c、d两两不同,并且满足等式a+b=c+d,那么a+b的最小可能值是________。 6.一个小于200的数,它除以11余8,除以13余10,那么这个数是________。 7.一个长方体的长、宽、高都是整数厘米,它的体积是1998立方厘米,那么它的长、宽、高的和的最小可能值是________厘米。

2019-2020年高二数学 第六章 不等式: 6.1不等式的性质(一)优秀教案

2019-2020年高二数学第六章不等式: 6.1不等式的性质(一) 优秀教案 教学目的: 1了解不等式的实际应用及不等式的重要地位和作用; 2掌握实数的运算性质与大小顺序之间的关系,学会比较两个代数式的大小. 教学重点:比较两实数大小. 教学难点:差值比较法:作差→变形→判断差值的符号 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、引入: 复习初中学过的不等式的性质 ①正数的相反数是负数 ②任意实数的平方不小于0。 ③不等式的两边都加上(或减去)同一个数或同一个整式, 不等号的方向不变。 ④不等式的两边都乘以(或除以)同一个正数,不等号的

方向不变。 ⑤不等式的两边都乘以(或除以)同一个负数,不等号的 方向改变。 人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的研究不等关系,反映在数学上就是证明不等式与解不等式实数的差的正负与实数的大小的比较有着密切关系,这种关系是本章内容的基础,也是证明不等式与解不等式的主要依据因此,本节课我们有必要来研究探讨实数的运算性质与大小顺序之间的关系 生活中为什么糖水中加的糖越多越甜呢? 转化为数学问题:a克糖水中含有b克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么? 分析:起初的糖水浓度为,加入m克糖后的糖水浓度为,只要证>即可怎么证呢?引人课题 二、讲解新课: 1.不等式的定义:用不等号连接两个解析式所得的式子,叫做不等式.

说明:(1)不等号的种类:>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代数式和超越式(包括指数式、对数式和三角式等) (3)不等式研究的范围是实数集R. 2.判断两个实数大小的充要条件 对于任意两个实数a、b,在a>b,a= b,a<b三种关系中有且仅有一种成立.判断两个实数大小的充要条件是: 由此可见,要比较两个实数的大小,只要考察它们的差的符号就可以了,这好比站在同一水平面上的两个人,只要看一下他们的差距,就可以判断他们的高矮了. 三、讲解范例: 例1比较(a+3)(a-5)与(a+2)(a-4)的大小分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要)并根据实数运算的符号法则来得出两个代数

全国小学生数学奥林匹克竞赛真题及答案收集

全国小学生数学奥林匹克竞赛真题及答案收集 目录 2006年小学数学奥林匹克预赛试卷及答案 (1) 2006年小学数学奥林匹克决赛试题 (4) 2007年全国小学数学奥林匹克预赛试卷 (7) 2008年小学数学奥林匹克决赛试题 (8) 2008年小学数学奥林匹克预赛试卷 (10) 2006年小学数学奥林匹克预赛试卷及答案 1、计算4567-3456+1456-1567=__________。 2、计算5×4+3÷4=__________。 3、计算12345×12346-12344×12343=__________。 4、三个连续奇数的乘积为1287,则这三个数之和为__________。 5、定义新运算a※b=a b+a+b (例如3※4=3×4+3+4=19)。 计算(4※5)※(5※6)=__________。 6、在下图中,第一格内放着一个正方体木块,木块六个面上分别写着A、B、C、D、E、 F六个字母,其中A与D,B与E,C与F相对。将木块沿着图中的方格滚动,当木块滚动到第2006个格时,木块向上的面写的那个字母是__________。 7、如图:在三角形ABC中,BD=BC,AE=ED,图中阴影部分的面积为250.75平方 厘米,则三角形ABC面积为__________平方厘米。

8、一个正整数,它与13的和为5的倍数,与13的差为3的倍数。那么这个正整数最小是 __________。 9、若一个自然数中的某个数字等于其它所有数字之和,则称这样的数为“S数”,(例: 561,6=5+1),则最大的三位数“S数”与最小的三位数“S数”之差为__________。 10、某校原有男女同学325人,新学年男生增加25人,女生减少5%,总人数增加16人, 那么该校现有男同学__________人。 11、小李、小王两人骑车同时从甲地出发,向同一方向行进。小李的速度比小王的速 度每小时快4千米,小李比小王早20分钟通过途中乙地。当小王到达乙地时,小李又前进了8千米,那么甲乙两地相距__________千米。 12、下列算式中,不同的汉字代表不同的数字,则:白+衣的可能值的平均数为 __________。 答案: 1、1000 2、22.3 3、49378 4、33 5、1259 6、E 7、2006 8、 7 9、889 10、170 11、40 12、12.25 1.【解】原式=(4567-1567)-(3456-1456)=3000-2000=1000 2.【解】原式==21.5+0.8=22.3 3.【解】原式=12345×(12345+1)-(12343+1)×12343 =+12345--12343 =(12345+12343)×(12345-12343)+2

2013小学数学奥林匹克竞赛试题及答案

小学数学奥林匹克竞赛试题及答案 (三年级) (红色为正确答案) 1、根据下列数中的规律在括号里填入合适的数: 17、2、14、2、11、2、( )、( )。 A 2、8 B 8、2 C 5、4 D 2、2 2、甲乙丙三个数平均数是150,甲数48,乙数与丙数相同,那么乙数是( )。 A 201 B 402 C 51 D 102 3、同学们做操,排成一个正方形的队伍,从前,后,左右数,小红都是第5 个,问一共有( )人. A 81 B25 C 32 D120 4、在“A ÷9=B …..C ”算式里,其中B 、C 都是一位数,那么A 最大是多少? A 90 B 91 C 89 D 87 5、妈妈从蛋糕店买来一块方形蛋糕,(如图),让小红动手分成8块,最小要切( )刀。 A 2 B 4 C 3 D 5 6、在所有四位数中,各位数字之和等于35的数共有( )个。 A 4 B 5 C 3 D 6 7、如图,在小方格里最多放入一个?,要想使得同一行、同一列或对角连线上的三个小方格最多不出现三个?,那么在这九个小方格里最多能放入( )个?。() A 4 B7 C 6 D 5 8、甲乙二人买同一种杂志,甲买一本差2角8分,乙买一本差2角6分,而他俩的钱合起来买一本还剩2角6分,那么这种杂志每本价钱是( )。 A 1元 B 7角 C 8角 D 9角 9、从1—9中选出6个数填在算式: ÷??( + )?( - ),使结果最大。那么这个结果是( )。 A 190 B 702 C 630 D 890 10、夏令营基地小买部规定:每三个空汽水瓶可一瓶汽水。李明如果买6瓶汽水,那么他最多可以让( )位小伙伴喝到汽水。 A 11 B 8 C 10 D 9个 11、图中阴影部分是一个正方形,那么最大长方形的周长是( A 26 B 28 C 24 D 25

(整理)数学史上的三次危机.

数学史上的三次危机 张清利 第一次数学危机 在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。这是数学史上的一个里程碑。毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。后来,又发现数轴上还存在许多点也不对应于任何有理数。因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。 例如, ,22,8,6,2等都是无理数。无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。 第一次数学危机表明,当时希腊的数学已经发展到这样的阶段: 1. 数学已由经验科学变为演绎科学; 2. 把证明引入了数学; 3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有 更加重要的地位。这种状态一直保持到笛卡儿解析几何的诞生。 中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。即算术阶段。希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。 在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。 总之,第一次数学危机是人类文明史上的重大事件。 无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。而毕达哥拉斯学派的比例和相似形的全部理论都是建立在这一假设之上的。突然之间基础坍塌了,已经建立的几何学的大部分内容必须抛弃,因为它们的证明失效了。数学基础的严重危机爆发了。这个“逻辑上的丑陋”是如此可怕,以致毕达哥拉斯学派对此严守秘密。据说,米太旁登的帕苏斯把这个秘密泄漏了出去,结果他被抛进了大海。还有一种说法是,将他逐出学派,并为他立了一个墓,说他

小学数学奥林匹克模拟试卷(答案)

模拟试卷 一、填空题: 2.将1、2、3、4、5、6、8、9这八个数组成两个四位数,使这两个数的差最小,这个差是______. 3.如图,将它折成一个正方体,相交于同一顶点的三个面上的数之和最大是______. 4.将1至9这九个数分别填在下面九个方框中,使等式成立: 5.如图,平行四边形ABCD的一边AB=8厘米,AB上的高等于3厘米,四边形EFOG的面积等于2平方厘米,则阴影部分的面积与平行四边形的面积之比是______. 6.200个连续自然数的和是32300,取出其中所有的第偶数个数(第2个,第4个,……,第200个),将它们相加,则和是______. 7.某人从甲地到乙地,如果每分钟走75米,迟到8分,如果每分钟走80米,迟到6分,他应以每分钟走______米的速度走才能准时到达. 8.快慢两列火车的长分别是200米、300米,它们相向而行.坐在慢车上的人见快车通过此人窗口的时间是8秒,则坐在快车上的人见慢车通过此人窗口所用的时间是______秒.

9.至少有一个数字是0,且能被4整除的四位数有______个. 10.如图,九个小正方形内各有一个一位数,并且每行、每列及两条对角线上的三个整数的和相等,那么x=______. 二、解答题: 2.甲、乙、丙三人,甲每五天去李老师家,乙每四天去李老师家,丙每六天去李老师家。三人在1997年元旦去了李老师家,下一次三人在李老师家相聚是几月几日? 3.编号为1至7的7个盘子,每盘都放有玻璃球,共放有80个,其中第1号盘里放有18个,并且编号相邻的三个盘里的玻璃球数的和相等,问第6个盘中玻璃球最多可能是多少个? 已知他骑车每小时行8千米,乘车每小时行16千米,则此人从家到单位的距离是多少千米? 模拟试卷24 一、填空题:

2001年小学数学奥林匹克竞赛试卷汇总

太原康大培训学校教材·六年级·总结册 2001年小学数学奥林匹克竞赛试卷 考生注意:本试卷共12道题,每题10分,满分120分,前10道题为填空题,只写答案;最后两道题为解答题,必须写出解题过程,只写答案不得分。 1.计算: 1?3?5+2?6?10+3?9?15+4?12?20+5?15?251?2?3+2?4?6+3?6?9+4?8?12 +5?10?15= 2.有一个分数约成最简分数是5,约分前分子分母的11 和等于48,约分前的分数是() 200120013.76+25的末两位数字是() 4.甲、乙、丙、丁四人去买电视,甲带的钱是另外三人所带钱总数的一半,乙带的钱是另外三人所带钱总数的11,丙带的钱是另外三人所带钱总数的,丁带了910元,34 四人所带的总钱数是()元。 5.若2836,4582,6522四个自然数都被同一个自然数相除,所得余数相同且为两位数,那么除数与余数的和为() 6.两人从甲地到乙地,同时出发,一人用匀速3小时走完全程,另一个用匀速4小时走完全程,经过()小时,其中一人所剩路程的长是另一人所剩路程的长的2倍。 康大教材第1页 太原康大培训学校教材·六年级·总结册 7.设A=29293031,B=,比较大小:A(<)B。 62626160 8.今有桃95个,分给甲、乙两班学生吃,甲班分到的桃有23是坏的,其它是好的;乙班分到的桃有是坏的,916 其它是好的,甲、乙两班分到的好桃共有()个。 9.如下图示:ABCD是平行四边形,AD=8cm,AB=10cm, 0∠DAB=30,高CH=4cm1,弧BE、DF分别以AB、CD为半径,弧DM、BN 分别以AD、CB为半径,那么阴影部分的面积为()平方厘米(取π=3)。10.假设某星球的一天只有6小时,每小时36分钟,那么3点18分时,时针和分针所形成的锐角是()度。

中职数学2.2.1不等式的基本性质

2.2.1不等式的基本性质 【学习目标】: 1.复习归纳不等式的基本性质; 2.学会证明这些性质; 3.并会利用不等式的性质解决一些简单的比较大小的问题。 【学习重点】:不等式性质的证明 【课前自主学习】: 1、数轴上右边的点表示的数总左边的点所表示的数,可知: ? a- > b b a a- = b ? a b ? < a- a b b 结论:要比较两个实数的大小,只要考察它们的差的符号即可。2、不等式的基本性质: (1)对称性:b a>?; (2)传递性:? b a,; b > >c (3)同加性:? a; >b 推论:同加性:? > a,; b c >d (4)同乘性:? b ,c a, >0 > ,c a; b ? < >0 推论1:同乘性:? ,0d c b a; >0 > > > 推论2:乘方性:? n N a,0; b ∈ > >+ 推论3:开方性:? b n a,0; > ∈ >+ N 【问题发现】:

【问题导学,练习跟踪】: 例1. 用符号“>”或“<”填空,并说出应用了不等式的哪条性质. (1) 设a b >,3a - 3b -; (2) 设a b >,6a 6b ; (3) 设a b <,4a - 4b -; (4) 设a b <,52a - 52b -. 变式练习(1)设36x >,则 x > ; (2)设151x -<-,则 x > . 例2. 已知0a b >>,0c d >>,求证ac bd >. 变式练习:已知a b >,c d >,求证a c b d +>+. 当堂检测: 1.如果b a >,则下列不等式成立的是( ) A.b a 55-<- B.b a > C.bc ac > D.22bc ac > 2.如果0< B.b a > C.b b a 1 1 >- D.22b a > 3.已知b a ,为任意实数,那么( ) A.b a >是的22b a >必要条件 B.b a >是b a -<-11的充要条件 C.b a >是b a >的充分条件 D.b a >是22b a >的必要条件 归纳小结 强化思想 本次课学了哪些内容?重点和难点各是什么?

小学数学奥林匹克试题.pdf

2000小学数学奥林匹克试题 预赛(A)卷 1.计算: 12-22+32-42+52-62+…-1002+1012=________。 2.一个两位数等于其个位数字的平方与十位数字之和,这个两位数是________。 3.五个连续自然数,每个数都是合数,这五个连续自然数的和最小是________。 4.有红、白球若干个。若每次拿出一个红球和一个白球,拿到没有红球时,还剩下50个白球;若每次拿走一个红球和 3个白球,则拿到没有白球时,红球还剩下50个。那么这堆红球、白球共有________个。 5.一个年轻人今年(2000年)的岁数正好等于出生年份数字之和,那么这位年轻人今年的岁数是 ________。 6.如右图, ABCD是平行四边形,面积为 72平方厘米,E,F分别为AB,BC的中 点,则图中阴影部分的面积为_____平 方厘米。 7.a是由2000个9组成的2000位整数,b是由2000个8组成的2000位整数,则a×b的各位数字之和为________。 8.四个连续自然数,它们从小到大顺次是3的倍数、5的倍数、7的倍数、9的倍数,这四个连续自然数的和最小是____。 9.某区对用电的收费标准规定如下:每月每户用电不超过10度的部分,按每度0.45元收费;超过10度而不超过20度的部分,按每度0.80元收费;超过20度的部分,按每度1.50元收费。某月甲用户比乙用户多交电费7.10元,乙用户比丙用户多交3.75元,那么甲、乙、丙三用户共交电费________元(用电都按整度数收费)。 10.一辆小汽车与一辆大卡车在一段9千米长的狭路上相遇,必须倒车,才能继续通行。已知小汽车的速度是大卡车的速度的3倍,两车倒车的速度是各自速度的;小汽车需倒车的路程是大卡车需 倒车的路程的4倍。如果小汽车的速度是50千米/时,那么要通过这段狭路最少用________小时。 11.某学校五年级共有110人,参加语文、数学、英语三科活动小组,每人至少参加一组。已知参加语文小组的有52人,只参加语文小组的有16人;参加英语小组的有61人,只参加英语小组的有15人;参加数学小组的有63人,只参加数学小组的有21人。那么三组都参加的有________人。 12.有8级台阶,小明从下向上走,若每次只能跨过一级或两级,他走上去可能有________种不同方法。 预赛(B)卷 1.计算:=________。 2.1到2000之间被3,4,5除余1的数共有________个。 3.已知从1开始连续n个自然数相乘,1×2×3×…×n,乘积的尾部恰有25 个连续的0,那么n的最大值是____ 。 4.若今天是星期六,从今日起102000天后的那一天是星期________。

小学数学奥林匹克竞赛试题 及答案(四年级)

1 小学数学奥林匹克竞赛试题及答案 (四年级) (红色为正确答案) 1、下面的△,○,□各代表一个数,在括号里填出得数: △+△+△=36 □×△=240 ○÷□=6 ○=( ) A 120 B 100 C 130 D 124 2、如果一个整数,与1,2,3这三个数,通过加减乘除运算(可以添加括号)组成算式,结果等于24,那么这个整数就称为可用的,那么,在4,5,6,7,8,9,10这七个数中,可用的数有()个. A 5 B 6 C 7 D 4 3、有100个足球队,两两进行淘汰赛,最后产生一个冠军,共要赛()场. A 97 B98 C 99 D 50 4、七个小队共种树100棵,各小队种的棵数都不同,其中种树最多的小队种了18棵,种树最少的小队至少种了()棵. A 10 B 8 C 9 D 7 5、将一盒饼干平均分给三个小朋友,每人吃了八块后,这时三个小朋友共剩的饼干数正好和开始1个人分到的同样多,问每个小朋友分到()块。 A 24 B 20 C 12 D 16 6、每次考试满分是100分,小明4次考试的平均成绩是89分,为了使用权平均成绩尽快达到94分(或更多),他至少再要考( )次. A 5 B 6 C 3 D 4 7、甲乙丙丁四个人比赛乒乓球,每两人都要赛一场,结果甲胜丁,并且甲乙丙胜的场数相同,那么丁胜的场数是()场。 A 0 B 1 C 2 D 3 8、有一位探险家,用6天时间徒步横穿沙漠。如果一个搬运工人只能运一个人四天的食物和水,那么这个探险家至少要雇用()名工人。 A 2 B 3 C 4 D 5 9、在右图的中间圆圈内填一个数,计算每一线段两 数之差(大减小),然后算出这三个数之和,那么这个 差数之和的最小值是( ). 13 32 41 13

人教A版新课标高中数学必修一教案-《等式性质与不等式性质》

《 等式性质与不等式性质》 1、知识与技能 (1)能用不等式 (组)表示实际问题的不等关系; (2)初步学会作差法比较两实数的大小; (3)掌握不等式的基本性质,并能运用这些性质解决有关问题. 2、过程与方法 使学生感受到在现实世界和日常生活中存在着大量的不等关系;以问题方式代替例题,学习如何利用不等式研究及表示不等式,利用不等式的有关基本性质研究不等关系. 3、情感态度与价值观 通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的设置,通过学生对问题的探究思考,广泛参与,改变学生学习方式,提高学习质量. 【教学重点】 能用不等式(组)表示实际问题的不等关系, 会作差法比较两实数的大小 ,通过类比法,掌握不等式的基本性质. 【教学难点】 运用不等式性质解决有关问题. (一)新课导入 用不等式(组)表示不等关系

中国"神舟七号”宇宙飞船飞天取得了最圆满的成功.我们知道,它的飞行速度(v )不小于第一宇宙速度(记作2v ),且小于第二宇宙速度(记 1v ). 12v v v ≤< (二)新课讲授 问题1:你能用不等式或不等式组表示下列问题中的不等关系吗 (1)某路段限速40km /h ; (2)某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于%,蛋白质的含量p 应不少于%; (3)三角形两边之和大于第三边、两边之差小于第三边; (4)连接直线外一点与直线上各点的所有线段中,垂线段最短. 对于(1),设在该路段行驶的汽车的速度为vkm /h ,“限速40km /h ”就是v 的大小不能超过40,于是0<v ≤40. 对于(2)某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于%,蛋白质的含量p 应不少于%. 2.5%2.3% f p ≥??≥? 对于(3),设△ABC 的三条边为a ,b ,c ,则a +b >c ,a -b <c . 对于(4),如图,设C 是线段AB 外的任意一点,CD 垂直于AB ,垂足 为D ,E 是线段AB 上不同于D 的任意一点,则CD <CE . 以上我们根据实际问题所蕴含的不等关系抽象出了不等式图接着, 就可以用不等式研究相应的问题了 问题2:某种杂志原以每本元的价格销售,可以售出8万本.据市场调查,杂志的单价每提高元,销售量就可能减少2000本.如何定价才能使提价后的销售总收入不低于20万元 解:提价后销售的总收入为错误!x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式

相关文档
最新文档