功能材料论文

纳米复合涂层的研究进展

摘要:综述了纳米复合涂层的制备工艺,包括热喷涂、纳米复合镀、纳米粘结粘涂技术、纳米复合涂料技术等;介绍了纳米复合涂层在提高材料力学性能、耐腐蚀性、光学、电学、磁学等方面的性能研究,探究了纳米复合涂层在科技界和产业界的应用。展望了纳米复合涂层的发展、

关键词:纳米复合涂层;制备;性能;研究进展

自从八十年代初,德国科学家提出纳米晶体材料概念以来,世界各国科技界和产业界对纳米材料产生了浓厚的兴趣和广泛的关注,到了90年代,国际上掀起了纳米材料制备和研究的高潮。纳米材料具有特殊的结构和处于热力学上极不稳定的状态,表现出有别于传统材料的不同性能,正是由于纳米材料这种独特的效应,从而使纳米材料具有一系列优异的功能特性。随着相关应用基础研究的不断深入和相关技术的不断完善,纳米材料科学与技术已经开始进入应用研究阶段。纳米材料的合成与成形技术的发展和成熟,尤其是纳米材料与表面技术的结合,对于纳米材料和表面纳米技术的应用和产业化起着至关重要的推动作用[1-3]。

纳米材料是指在三维空间中至少有一维处于纳米尺度范围或它们作为基本单元构成的材料[1]。由于量子尺寸效应、小尺寸效应、表面界面效应、量子隧道效应等,使纳米材料在力学性能、电学性能、磁学性能、热学性能等方面与传统的固体材料有许多不同的特殊性质,成为当今材料科学的前沿和一个开拓性的新领域,有着极为广泛的应用前景[2]面工程是21世纪工业发展的关键技术之一,是先进制造技术的重要组成部分。表面工程是由多个学科交叉、综合而发展起来的新兴学科,它的最大优势是能够以多种方法制备优于本体材料性能的表面功能涂层,赋予零件防腐蚀、耐磨损、抗疲劳、防辐射等性能[3],纳米材料与传统的表面涂层技术相结合,可得到纳米复合涂层。纳米复合涂层是由两相或两相以上的固态物质组成的薄膜材料,其中至少有一相是纳米相,其他相可以是纳米相,也可以是非纳米相[4]。纳米复合涂层集中了纳米材料的优异特性,因而具有更好的性能,可以在更广阔的领域应用。

纳米复合涂层的制备

1纳米热喷涂技术热喷涂技术是材料表面强化与保护的重要技术,它在表面技术中占有重要地位。热喷涂是利用一种热源将喷涂材料加热至熔化或半熔化状态,并通过气流吹动使其雾化并高速喷射到基材表面,以形成喷涂层的表面加工技术〔’〕。纳米微粒用于热喷涂技术中备的纳米复合涂层与传统涂层相比,在强度、韧性、耐蚀、耐磨、热障、抗疲劳等方面有显著改善,而且部分涂层可以同时具有多种性能

制备纳米复合涂层的热喷涂方法包括超高速火焰喷涂、真空等离子喷涂、双丝电弧喷涂等。李春福困等研究了对A1T3粉(纳米1A20。与ITOZ混合物,ITO:质量分数为13%)在等离子喷涂中的应用,将经过超声乳化的纳米微粒与A1T3粉末混合,搅拌均匀,在适宜的温度下烧结,制成适于等离子喷涂用,利用此粉制备的纳米复合涂层的流平性能好,元素分布均匀,通孔率减小,涂层残余应力降低,结合力提高,内部微裂纹减小,涂层耐磨、耐蚀性能明显提高。丁红燕等川将分散好的纳米1A20。与F102粉(镍、铬、硼、硅自熔性合金粉)进行球磨混合制备了混合粉,再利用氧乙炔焰热喷焊工艺制备了纳米IAZ03作为弥散增强相的纳米复合涂层,纳米微粒在涂层中分散均匀,涂层的耐磨性明显增强。tSewart等「`习用高速火焰喷涂(Hvo)F制得了WC一co纳米复合涂层,在涂层组织中可以观察到,纳米微粒散布非晶态C。相中,结合良好,涂层显微硬度明显增加。Kear等〔9」对涂层硬度增加的原因作了进一步解释。PilaS 等[’oJ也利用HvoF制备了ere一NICr纳米复合涂层,并对其力学和摩擦性能进行了研究,纳米微粒在涂层中分布均匀,涂层的显微硬度和弹性性质显著提高,耐磨性增加

用热喷涂技术所得到的纳米复合涂层的结合强度、硬度、耐磨和耐蚀性等都较传统涂层高,拓宽了这种技术在工业领域的应用。但如纳米微粒在涂层的分布、涂层致密度的提高及如何制备优良的纳米结构涂料等问题还需要进一步研究。

2.物理气相沉积技术

蒸发和溅射是真空物理镀膜的两种主要工艺,其沉积物的全部或部分由物理手段直接提供:前者使镀料通过热蒸发而获得,即蒸发镀膜;后者是由离子轰击靶材获得,即溅射镀膜。产生溅射效应的离子来源于工作气体放电,主要是辉光放电。从靶材溅射出来的粒子具有较高的动能,有利于提高涂层的附着力和致密度[4]。溅射镀膜的研究可追溯至19世纪中。20世纪50年代,随着高频溅射技术的突破,溅射镀膜得到了迅速发展,现有两极溅射、三极溅射、反应溅射、磁控溅射、双离子溅射和中频溅射等多种沉积工艺。1964年,Mattox在前人研究的基础上推出离子镀系统,用于在金属底材上镀制耐磨和装饰等用途的涂层[6]。离子镀是指镀膜与离子轰击膜层同时进行的物理气相沉积技术。离子轰击可以改善膜层与基体之间的结合强度,改善膜层的结构(例如细化晶粒和提高致密度)和性能。事实上,离子镀是以蒸镀和溅射这两种PVD技术为基础,再加上离子轰击而衍生的次级技术

3.离子镀技术

目前,工业应用的离子镀技术主要是以蒸镀为基础的阴极电弧离子镀[7]。通过以靶材(镀料)作为阴极,真空室作为阳极并接地,进行弧光放电。弧光放电仅在阴极(靶材)表面的弧斑处进行,其温度高达8000~40000K。高温下弧斑喷出的物质有电子、离子、原子和液滴。其中,离子占30%~90%。将工件加上例如100~200V负偏压,吸引离子向工件方向运动,即可实现离子镀。电弧离子镀在20世纪80年代在美国实现产业化,并沿用至今。最近采用脉冲偏压技术,导致镀膜过程远离平衡态特性,有利于提高涂层的结合强度,降低内应力。这种技术具有沉积速度快、附着力强、适合工业化生产等许多优点,但最大的问题在于靶材喷出的液滴会影响涂层的表面光洁度和均匀性。1985年,Window 等在研究溅射技术时,提出增大普通磁控溅射阴极的杂散磁场,从而使等离子体范围扩展到基体附近的非平衡磁控溅射阴极[8]。普通磁控溅射阴极的磁场将等离子体紧密地约束在靶面附近,基体(工件)附近的等离子体很弱,只受到轻微的离子和电子轰击。而非平衡磁控溅射阴极的磁场可将等离子体扩展到远离靶面处,使基体浸没其中。这有利于以磁控溅射为基础来实现离子镀,并使磁控溅射离子镀与阴极电弧蒸发离子镀处于竞争和互补的状态。英国TeerCoatings公司从20世纪90年代开始推出非平衡磁控溅射离子镀的一系列设备,用于研发和生产[9-10]。与电弧离子镀相比,溅射离子镀克服了涂层表面粗糙的难题,而且在涂层化学组分上更易于控制和调节,是目前较为新颖的一种硬质涂层合成技术。利用离子镀技术实现产业化的硬质涂层有TiN系列(包括TiC和TiCN等)硬膜、TiAlN抗高温氧化膜、CrN耐磨耐腐蚀膜、ZrN高温高强膜以及类金刚石DLC)和MoS2固体润滑膜等,它们已广泛用于刀具、模具和机械零部件等领域[11-13]。这些硬涂层的硬度一般为15~30GPa(注:纯金刚石硬度为100GPa,石英为10GPa)。由于单一涂层材料往往难以满足提高综合性能的要求,因此涂层成分将趋于多元化、复合化。例如TiN系列硬质膜正向纳米多层膜发展,其中包括TiN/TiCN、TiN/TiAlN和TiN/CrN等纳米多层膜。另一种类型是碳系列硬质膜及其复合涂层,包括DLC、CN x及其多层复合涂层。此外,还有TiN系膜与碳系硬质膜的复合涂层(如TiN/CN x)等。纳米多层涂层具有可控的一维周期结构,交替沉积的单层膜厚度一般不超过5~15nm。一般认为,纳米多层涂层的高硬度主要是由于层内或层间位错运动受阻所致。进一步的研究表明,纳米多层涂层的性能与涂层的周期膜厚有很大关系[14],当在形状复杂的刀具或零件表面沉积纳米多层膜时,很难均匀控制各层的膜厚,同时在高温工作环境下,各层间的元素相互

扩散也会导致涂层性能下降。

纳米复合涂层的性能研究

力学性能

纳米粒子的加人对于传统涂层力学性能有很大的改善。纳米微粒作为弥散相分布在涂层中,增强了涂层与基体间的结合,提高了涂层的耐磨性。纳米iToZ分散在iN一P镀液中利用化学镀制备的纳米复合镀层,镀层的硬度大于80HV,硬度的增加提高了镀层的高温抗氧化能力。利用电沉积的方法,将纳米iN微粒加入到SIC中,在纳米微粒添加到3%时,复合涂层的显微硬度较传统涂层提高了2倍[31]

蒋斌等[32]利用电刷镀技术制得的纳米SiO2/Ni复合涂层的抗疲劳性得到很大的提高,在不同的作用力下,纳米复合涂层的抗疲劳性能都比未添加纳米微粒时增加;经过退火处理后,涂层的抗疲劳程度更高。张而耕等人[33〕向PsP中分别加人纳米级SiO2和微米级SiO2,对两种复合涂层的力学性能进行了对比果表明,纳米复合涂层的附着力和耐冲击性都较微米级粒子的好,耐冲蚀磨损性能也有很大的提高,约为普通涂层的26倍,冲蚀磨损后涂层表面较为光滑,无裂纹和凹坑。将改性的纳米微粒加入热处理过的聚合物中,由于聚合物结晶度的改变及改性纳米微粒的作用,提高了纳米复合涂层的耐冲击性和热稳定性【34】,纳米SiO2对环氧树脂的改性也有显著效果,添加纳米微粒之后,复合涂层的拉伸强度提高了26%,无缺口冲击强度提高了30%[35〕。iN纳米微粒添加到聚氨酷中,复合涂层的摩擦系数减小,耐磨性提高[’36〕。环氧树脂与聚醋的混合物经过纳米Al2O3的改善,在纳米微粒添加到8%时,冲击强度较未加纳米微粒的混合物及纯环氧树脂分别增加了110%、400%,拉伸强度则分别增加了4%、165%;同时,涂层的介电性和耐热性也得到提高[37]

光、电、磁学性能

无机材料TiO2:、ZnO等具有很强的光催化功能,可利用紫外线或日光将有机物氧化为CO2和水。将纳米TiO2:添加于涂料中,制成光催化涂料,利用阳光分解环境污染物,达到减少污染、保护环境的目的利用TiO2:的透明性、紫外线吸收性,将纳米TiO2:金属闪光材料与铝粉颜料或珠光颜料等混合用在涂料中,能产生随角异色效应,可制作汽车金属闪光面漆,这种漆还具有极强的附着力和耐酸碱性能,在高档汽车涂料、商标印刷油墨、特种建筑涂料等具有很大的应用市场

纳米复合涂层因纳米微粒的导电性可制成抗静电材料。诸如纳米微粒Fe2O3、TiO2、Cr2O3、ZnO等具有半导体特性的氧化微粒制成具有良好静电屏蔽性能的涂料,而且可以调节颜色。在化纤品中加人金属纳米微粒可以解决其静电问题,提高安全性[[38]

米金属微粒具有较大的比表面,而且具有较好的吸收电磁波的特性,利用这个特性可以开发纳米隐身涂料。纳米磁性材料特别是类似铁氧体的纳米磁性材料加人涂料中,既有优良的吸波特性,又有良好的吸收和耗散红外线的性能,加之相对密度小,在隐身方面的应用有明显的优越性。采用单磁畴针状微粒制备的纳米复合涂层,具有单磁畴结构,高矫顽力,用它做磁性记录材料可以提高记录密度,提高信噪比。

纳米复合涂层的应用

近年来,不少研究机构采用PVD(包括磁控溅射)技术制备纳米复合涂层,例如nc-TiN/a-Si3N4、nc-TiN/BN和nc-TiAlN/a-Si3N4等。初步研究结果显示,纳米复合涂层在金属加工特别是干切削中有良好的应用前景。纳米复合涂层技术之所以能够起到这种重要作用,根本原因在于材料的纳米尺寸效应,即当晶粒尺寸进入纳米尺度范围(<10nm)时,物质显示出与常规材料截然不同的特性(例如超高硬度)[16-17]。纳米复合涂层及其在干切削加工中的应用是目前高性能刀具的研究开发热点。硬质涂层的应用可减小刀具与

工件的摩擦,降低刀具在切削中的磨损,延长刀具的使用寿命。此外,高精度数控机床的应用和普及,绿色制造理念的提出,各种高硬度、高韧性的难切削材料的加工,使干切削技术愈来愈受到重视,同时也对刀具涂层技术及涂层材料提出了更高要求。而纳米复合涂层的发展顺应了现代机械加工对高效、高精度、高可靠性和环保的需求。迄今为止,纳米涂层在制造业上的应用已初见成效[18]。例如,瑞士Platit公司利用LARC?(LateralRotatingARC-Cathodes)技术开发的新一代nc-TiAlN/a-Si3N4纳米复合涂层以及其他纳米多层膜,其高温硬度十分突出[19-20];德国CemeCon公司推出了新的纳米结构(Supernitrides)涂层[21],这类涂层将硬质涂层的抗磨损性能及氧化物涂层的化学稳定性结合起来,在应用中表现出极佳的热稳定性;Balzers和Teer等公司在硬质涂层表面上再镀上固体润滑纳米涂层如WC/C和MoS2/Ti,发现刀具的干切削效能得到进一步提高[22-23]。

结论

将纳米材料与表面涂层技术相结合制备出的纳米复合涂层较传统涂层有更大的优越性。纳米复合涂层均匀、结构致密,有更好的力学性能如耐磨性、硬度、抗氧化性和耐腐蚀性等。利用纳米材料的不同性质,在其他领域中,纳米复合涂层也展示其诱人的前景,利用纳米微粒光催化作用制备的纳米复合涂层用于室内、医院及某些公共场合可以产生很好的抗菌、杀菌及自清洁功能;纳米微粒特有的吸波能力,使得复合涂层广泛应用于飞机、导弹、军舰等武器装备上;利用纳米复合涂层中纳米微粒对环境的敏感性,可望制备出小型化、多功能、低能耗传感器,如红外线传感器、压电传感器、光传感器等。用分子自组装技术已经制备了很好的双疏性单分子膜,具有很好的摩擦学性能〔43,〕;将TiO2纳米线与聚合物单体在玻璃片上用浸涂法成膜,再用紫外光照射引发原位聚合,得到TiO2:纳米线弥散在高聚物的纳米复合膜〔44,这种纳米复合膜具有良好的减摩功能[45];同时,还利用原位复合技术制备了含氟聚合物一纳米TiO2/聚丙烯酸丁醋纳米复合膜及摩擦性能复合涂层,涂层具有很好的疏水效果[46]。

纳米复合涂层的研究还处于刚刚起步阶段,有很多问题有待于进一步研究,如纳米微粒表面修饰和包覆、纳米功能涂层的制备、纳米微粒与表面涂层技术的结合等方面。在纳米材料的制备合成技术不断取得进展和基础理论研究日益深人的基础上,纳米涂层将会有更快、更全面的发展,制备方法也在不断得到创新和完善,其应用将遍及多个领域。

参考文献

1.张立德,牟季美,纳米材料学[M].沈阳:辽宁科学技术出版社,1994,10

2.Cheiter H.[J].金属学报,1997,33(2):166

3.吴秋允,等.[J].材料研究学报,1997,11(3):331~334

4.

相关文档
最新文档