砷在地下水环境中的迁移转化

砷在地下水环境中的迁移转化
砷在地下水环境中的迁移转化

4.1污染物在土壤中的迁移转化

第四章土壤环境化学——污染物在土壤中的迁移转化 本节内容要点:土壤污染源、主要污染物,氮和磷的污染及其迁移转化,土壤的重金属污染及其迁移转化,土壤的农药污染及其迁移转化,土壤中温室气体的释放、吸收及传输等。 人类活动产生的污染物进入土壤并积累到一定程度,引起土壤质量恶化的现象即为土壤污染。土壤与水体和大气环境有诸多不同,它在位置上较水体和大气相对稳定,污染物易于集聚,故有人认为土壤是污染物的“汇”。 污染物可通过各种途径进入土壤。若进入污染物的量在土壤自净能力范围内,仍可维持正常生态循环。土壤污染与净化是两个相互对立又同时存在的过程。如果人类活动产生的污染物进入土壤的数量与速度超过净化速度,造成污染物在土壤中持续累积,表现出不良的生态效应和环境效应,最终导致土壤正常功能的失调,土壤质量下降,影响作物的生长发育,作物的产量和质量下降,即发生了土壤污染。土壤污染可从以下两个方面来判别:(1)地下水是否受到污染;(2)作物生长是否受到影响。 土壤受到污染后,不仅会影响植物生长,同时会影响土壤内部生物群的变化与物质的转化,即产生不良的生态效应。土壤污染物会随地表径流而进入河、湖,当这种径流中的污染物浓度较高时,会污染地表水。例如,土壤中过多的N、P,一些有机磷农药和部分有机氯农药、酚和氰的淋溶迁移常造成地表水污染。因此,污染物进入土壤后有可能对地表水、地下水造成次生污染。土壤污染物还可通过土壤植物系统,经由食物链最终影响人类的健康。如日本的“痛痛病”就是土壤污染间接危害人类健康的一个典型例子。 1)土壤污染源 土壤污染源可分为人为污染源和自然污染源。 人为污染源:土壤污染物主要是工业和城市的废水和固体废物、农药和化肥、牲畜排泄物、生物残体及大气沉降物等。污水灌溉或污泥作为肥料使用,常使土壤受到重金属、无机盐、有机物和病原体的污染。工业及城市固体废弃物任意堆放,引起其中有害物的淋溶、释放,也可导致土壤及地下水的污染。现代农业大量使用农药和化肥,也可造成土壤污染。例如,六六六、DDT等有机氯杀虫剂能在土壤中长期残留,并在生物体内富集;氮、磷等化学肥料,凡未被植物吸收

污染物在环境中的迁移和转化(1)

污染物在环境中的迁移和转化 第一节概述 一、污染物的迁移和转化的定义 污染物在环境中发生的各种变化过程称之为污染物的迁移和转化(transport and transformation of pollutants),有时也称之为污染物的环境行为(environmental behavior)或环境转归(environmental fate)。 二、研究污染物在环境中迁移和转化过程及其规律性的意义 1. 可阐明污染物种类,接触的浓度、时间、途径、方式和条件,从而研究相关毒作用。 研究污染物在环境中的迁移和转化的过程及其规律性,对于阐明人类在环境中接触的是什么污染物,接触的浓度、时间、途径、方式和条件等都具有十分重要的环境毒理学意义,否则就不能阐明有预谋中接触而导致的一系列毒作用。 2. 环境毒理学的许多基本问题在一定程度上也取决于对污染物在环境中的迁移和转化规律的认识。 例如:污染物的物质形态、联合作用、毒作用的影响因素、剂量效应关系等,都要涉及到接触污染物的真实情况的确定。 第二节环境污染物的迁移 一、概念 污染物的迁移(transport of pollutants)是指污染物在环境中发生的空间位置的相对移动过程。迁移的结果导致局部环境中污染物的种类、数量和综合毒性强度发生变化。 二、机械性迁移 根据污染物在环境中发生机械性迁移的作用力,可以将其分为气的、水的、和重力机械性迁移三种作用。 1.气的机械性迁移作用,包括污染物在大气中的自由扩散作用和被气流搬运的作用。 其影响因素有:气象条件、地形地貌、排放浓度、排放高度。 一般规律:污染物在大气中的排放量成正比,于平均风速和垂直混合高度成反比。 2.水的机械性迁移作用,包括污染物在水中的自由扩散作用和被水流的搬运作用。 一般规律:污染物在水体中的浓度与污染源的排放量成正比,与平均流速和距污染源的距离成反比。3.重力的机械迁移作用,主要包括悬浮物污染物的沉降作用以及人为的搬运作用。 三、物理化学迁移 物理化学迁移是污染物在环境中最基本的迁移过程。污染物以简单的离子或可溶性分子的形势发生溶解-沉淀、吸附-解吸附。同时还会发生降解等作用。 1.风化淋溶作用风化淋溶作用是指环境中的水在重力作用下运动时通过水解作用使岩石、矿物中的化学元素溶入水中的过程,其作用的结果是产生游离态的元素离子。 2.溶解挥发作用降水、固体废弃物水溶性成份的溶解;VOC 3.酸碱作用(常表现为环境pH值的变化) ①酸性环境促进了污染物的迁移,使大多数污染物形成易溶性化学物质。如酸雨:加速岩石和矿物风化、淋溶的速度;促使土壤中铝的活化。 ②环境pH值偏高时,许多污染物就可能沉淀下来,在沉积物中,形成相对富集。 4.络合作用(改变毒物吸附和溶解的能力)络合物的形成大大改变了污染物的迁移能力和归宿。 例如:当含有Hg2+的河水流入海洋时,水中氯离子浓度逐渐增高,河口水体中的Hg2+逐次形成Hg(OH)2→Hg(OH)Cl →HgCl2→HgCl3- →HgCl42-。其中的Hg(OH)Cl与水体中的悬浮态黏土矿物和氧化物吸附力最强,而HgCl2的吸附力最差。因而,Hg(OH)Cl部分的汞大量转移到悬浮态固相或沉积物中,而部分的汞仍留在水体中。

砷从农业土壤向人类食物链的迁移

文章编号:1006-446X(2004)01-0001-10 砷从农业土壤向人类食物链的迁移 李廷强 杨肖娥 (浙江大学环资学院资源科学系,浙江 杭州310029) 摘 要:综述了砷在土壤2植物2人类系统中的迁移,包括:砷在环境中的行为,农业系统中砷迁 移的动力学过程和粮食中砷的含量,影响砷对植物有效性的各种因子,以及砷在人体内的分布、 对人体的营养作用及不同形态对人体的毒性。 关键词:砷;食物链;土壤;迁移;农业系统 中图分类号:O61317;X13113 文献标识码:A 随着工业的发展,砷污染已成为全球性问题,粮食作物是砷进入人类食物链的主要途径,人体砷大部分来源于食物和饮用水。本文对砷从农业土壤向人类食物链的迁移作了综述。 1 环境中的砷 砷(As),又名砒,灰色半金属,在元素周期表中属ⅤA族。它有多种同素异构体,常温下最稳定的形态是灰砷,常见化合价为+3,+5和-3价。砷化学十分复杂,有许多无机和有机化合物,但主要以硫化物如雌黄(As2S3)、雄黄(As4S4)及砷铁矿(FeAsS)等形式存在。砷在地壳中的含量丰度处于第20位,在海水中的含量处于第14位,在人体中处于第12位[1]。 地壳岩石圈上部全砷的平均含量即质量分数ω为115~2mg/kg,也有报道为5mg/kg,数据差异的主要原因与取样的代表性和广泛性有关[2]。火成岩平均含量ω为1~3mg/kg,变幅不大,而沉积岩的含砷量变化较大。在有砷矿和矿带的岩石中含有较高含量的砷。我国湖南大义山脉一带的成土母岩,系印支期和燕山早期花岗岩形成时期,发生过接触变质,在这个过程中产生过砷化物成矿作用,岩层中砷含量(ω)高达16616~3505mg/kg[3]。 关于土壤中砷的调查研究,不少国家作了大量工作,取得了大量的成果和数据。小山雄生统计计算的世界自然土壤的平均含量(ω)为9136mg/kg[4]。Bowen[5]测定结果显示,砷在世界土壤中的含量(ω)一般为011~5810mg/kg,中位值为610mg/kg。但在有砷矿母质发育的土壤中砷含量相当高[6,7],如我国湖南大义山脉一带成土母岩发育土壤中砷含量(ω)可高达(50210±4214)mg/kg。表1为几个主要国家土壤的含砷量。 地下水的砷的含量与砷的来源有关,如在含砷农药厂周围,水体中砷含量(即质量浓度ρ)高达50~23080μg/L,而在无污染的井水中砷含量(ρ)0103~1141μg/L[8]。海水中砷的质量浓度,根据各地测得的数据约在1~5μg/L范围内,平均约为2μg/L。其存在形态主要是As5+或砷酸盐,而As3+一般数量较少。空气中砷密度(ρ)较低[9~11],其含量范围为014~3010ng?m-3,美国空气中砷密度(ρ)平均为6014~3010ng?m-3,在欧洲农村空气中砷密度(ρ)在012~115 ng?m-3之间,在城市为015~310ng?m-3,而工业区高达5010ng?m-3。 基金项目:国家重点基础研究发展规划资助项目(2002C B410804) 收稿日期:2003-12-15

环境水力学在地下水污染物迁移中的应用

环境水力学在地下水污染物迁移中的应用

环境水力学在地下水污染物迁移中的应用 摘要:地下水污染问题日益严重,研究污染物在地下水中的迁移过程是解决地下水污染的最主要途径之一。本文通过查阅大量文献,综合国内外研究现状,从地下水污染物特性及地下水运移介质特性两方面出发,分析环境水力学在地下水污染物迁移理论中的应用,并从国内工程应用角度提出环境水力学尤其是数值模拟法在地下水污染物迁移研究中存在的问题及其未来发展趋势。 关键词:环境水力学地下水污染物迁移理论分析实验模拟数值模拟 1 环境水力学的发展现状 1.1 环境水力学学科定义 环境水力学是一门新兴学科,其研究内容尚在探索与发展中。从广义上讲,环境水力学是研究与环境有关的水力学问题,即研究污染物在水体中混合输移的规律及其应用的学科,是水力学的一个新分支。其研究内容除水污染、水生态问题外还有许多其它方面的问题,比如水土保持、河道冲淤、洪水破坏作用、冰凌水力学等等。[1]如果说传统水力学主要是研究水流自身运动规律的话,环境水力学则主要是研究水体中所含物质的运动规律,是传统水力学的一种发展,其内容涉及水文学、水力学、水化学、水生物学、生态学、湖沼学、海洋学和沉积学等,是一门综合性很强的交叉学科。[2]美国环境与水资源研究所环境水力学技术委员会提出“环境水力学特别着重于将物理因素(水动力学、泥沙输移和地形条件)、化学因素(保守与非保守物质的传输、反应动力学和水质)和生物因素(生态学)作为一个系统来进行研究。” [3]从与水污染有关的水力学问题来说,环境水力学主要研究地面及地下水域中物质的扩散、输移和转化规律,建立其分析计算方法,确定物质浓度的时空分布及其应用。工农业生产及生活中的污水、废热,未经足够处理,就排入河流、湖泊、海洋及地下水等水域中,污染水体,恶化水质,日益严重地影响生态、环境。污染物在水体中会因与水体混合,随水流输移而稀释,也会因化学、生物作用而降解。因此,水体本身有一定的自净能力。环境水力学的主要目标是,探求因混合、输移而形成的污染物浓度随空间和时间的变化关系,为水质评价与预报、水质规划与管理、排污工程的规划设计以及水资源保护的合理措施提供基本依据。[4] 地下水作为水体的一部分,其运动规律适用于环境水力学的大多数方法,但由于其运移介质的特殊性,亦呈现出一定特殊性。因此,地下水中污染物质的输移、转化和积累成为重要的研究课题。污染物在地下水中的输移速率较小,一旦地下水被污染就很难恢复原来的水质。地下水的过度开采会严重破坏生态系统的平衡,在临近滨海地区还会引起海水入侵,造成地下水盐化。 1

地下水溶质运移第六章

六、对流—弥散模型的应用 六 水质模研究的般程 1、水质模型研究的一般过程 2、地下水污染问题 3、海水入侵问题与海水入侵中的阳离子交换问题 4、咸水、卤水入侵问题 5、非饱和带水分和养分联合运移模型

水质模型研究的般过程 1、水质模型研究的一般过程 1)确定目的任务: 最常见的问题有: 地下水污染趋势的分析、预测,提出相应对策; 地下水污染趋势的分析预测提出相应对策; 估计废水排放和废物堆对地下水可能造成的污染; 估计农药、化肥及污水灌溉对地下水可能造成的污染; 研究人工回灌对地下水水质的影响; 沿海地区海水入侵淡水含水层问题; 咸水、卤水入侵问题,内陆地区咸水对水源地入侵可能性分析; 核废料处置库的安全评价; 尾矿库渗漏对地下水水质影响分析; 地表水污染对地下水水质的影响等。

不同的问题会提出不同的任务,如: 确定污染区范围,预防地下水或水源地进一步被污染; 根据地下水水质及其发展趋势,指导新井布置; 规定人工回灌水的水质标准; 指导生活垃圾和工业废弃物堆放地、核废料处置库位置的选定; 预计已被污染的含水层天然净化所需时间等。 确定滨海含水层、滨卤水体淡水含水层的开采强度和开采井的合理布局以避免海水入侵或咸水入侵的进一步扩展; 为政府有关部门提供污染防治对策等。 目的、任务、研究区确定后,选定模拟的溶质,提出对结果的精度要求。 2 )野外调查和资料收集并确定模型确定相应的数值方法 36th 3)选择并确定模型,确定相应的数值方法

4)现场试验 布置长期观测网进行观测;进行必要的抽水试验、弥散试验。 5)编制程序、整理数据 如二维对流——弥散模型需要输入下列数据: 含水层的边界的形状、厚度、顶底板高程等; 初始水头场、溶质初始浓度场(通过插值得到各结点的初始水头 初始水头场溶质初始浓度场(通过插值得到各结点的初始水头 和初始浓度); 抽(注)水井的位置、流量和水质,河流和地表水体的位置、 补给量和水质,污染源的位置、水质等; 与相邻含水层及地表水之间的水力联系; 各种水文地质参数孔隙度渗透系数贮水系数给水度 各种水文地质参数(孔隙度、渗透系数、贮水系数、给水度、 降水入渗系数、纵向弥散度、横向弥散度、分子扩散系数等)的估计值; 水头和溶质浓度的长期观测资料; 野外试验资料(包括试验期间的水头、水质的观测资料); 有关水流模型、对流—弥散模型各类边界条件的资料等。

谈重金属铅在水体中的迁移与转化特征

谈重金属铅在水体中的迁移与转化特征 (武汉大学) 一,前言 铅是一种重金属,由铅组成的盐类大部分是不溶于水的,当水体中铅的浓度达到一定范围时就会对人体、渔业、农业灌溉等等都会产生极大的危害,铅在人体内富集可以使铅中毒。伴随着社会上出现的一系列铅污染问题,例如儿童铅中毒、孕妇铅中毒等,科学家对铅的了解和研究进一步的加深。水圈与大气圈和岩石圈共同组成了生物圈,可见水环境的重要,铅在水体中的迁移与转化也必然随之成为社会的焦点问题。 二,铅在水体中的存在形态 关于铅元素在水体中的存在形态,一般按其总量分为“可溶态”和“颗粒态”,一些+2价铅和+4价铅离子都是可溶态的,可溶态的铅毒性较大,可以为人、生物直接吸收,储积性强。悬浮物和沉积物中的铅是颗粒态的。 三,铅在水体中迁移转化的类型和规律 和其他重金属一样,铅在水体中不能为生物所降解,只能产生各种形态之间的相互转化、分散和富集,这就是铅的迁移与转化,按照其运动的形式可以分为机械迁移转化、物理化学迁移转化、生物迁移转化。⑴对于铅的机械迁移转化,主要是铅在水体中被包含于矿物质或是有机胶体中,或是被吸附在悬浮物上,以溶解态或是颗粒态的形态随水流迁移转化。⑵铅在水体中的物理化学迁移转化主要分为沉淀作用、吸附作用和氧化还原作用。在此笔者详细的讨论一下其转化过程。从高中的知识我们知道铅盐的溶解度都非常小,在偏酸性的水体中Pb 的浓度被PbSO 和PbS等限制着,水体中氢离子浓度大于氢氧根离子浓度,Pb +SO ─PbSO (沉淀),Pb +S ─PbS(沉淀),生成的PbSO ,PbS不溶于酸;在偏碱性的水体中铅的浓度受Pb(OH) 的限制,Pb(OH)─Pb + 2OH ,此反应是可逆的,水中OH 较多,使得平衡向逆向移动,又水解反应Pb +2H O─Pb(OH)+H ,OH 中和H 使得平衡向正向移动。另外铅离子在水体中会发生络合反应生成一些络合物,所以铅通过沉淀作用可以使铅在水体中的扩散速度和范围得到限制。铅离子带正电被水中带负电的胶体吸附,发生聚沉现象,这也如沉淀作用有着相同之处,最后大量的铅沉积在排污口的底泥中,实现了铅从水体转化到表层沉积物中,在一些

浅析地下水污染物的迁移与转化

浅析地下水污染物的迁移与转化 摘要:随着淡水资源日益紧缺,合理利用和保护地下水资源逐渐得到社会的广泛关注。有机污染物对地下水资源的污染已成为当前地下水污染防治与保护的焦点问题。随着工农业的发展,越来越多的有机化学污染物进入自然环境,这些有机污染物随着地表径流流入渗到地下水环境中,对地下水系统造成污染。地下水是人类的主要饮用水来源之一,水中的有机污染直接或间接对人类健康造成严重危害。研究有机污染物在地下水环境中迁移转化具有重要的理论和现实意义。 关键词:地下水有机污染物迁移与转化 一、我国地下水污染源和污染物状况 1. 地下水污染的主要表现 1.1有机化合物(如合成染料,油类及有机农药)出现于地下水。 1.2极其微量的毒性金属元素(如汞、铬、铅、砷及其他放射性元素)出现于地下水中。 1.3各种细菌,病毒大量繁殖于地下水。 地下水硬度,矿化度,酸度和某些单项离子超过使用标准。[1] 2、我国地下水有机污染物的特点及危害 目前,我国大部分地区的地下水物污染日趋严重,且具有种类多、含量低、危害大、治理难等特点。在浅层地下水中有机污染物主要有三氯甲烷、PCE、TCE 等[2]。许多有机污染物具有致癌、致畸、致突变效应,严重影响人体健康,且有机污染物在地下水环境中难以通过自然降解过程去除,可能长期存在并累积,有机污染物对我国地下水污染日趋严重。 3、地下水污染物的研究现状 近年,国内外学者在地下水溶质迁移理论和试验研究方面取得了新的进展:对污染物迁移的弥散系数提出了与时空相关的表达式;大量的试验研究使得迁移方程中的衰减、离子交换、生物、化学反应的系数考虑更全,取值更合理,并考虑了污染物的固相和液相浓度的相互转化关系,吸附条件则由平衡等温模式发展到考虑非平衡吸附模式【3】。 二、地下水污染物的迁移转化研究

汞和砷的迁移转化

●汞 土壤中汞的背景值为0.01~0.15 μg/g。除来源于母岩以外,汞主要来自污染源,如含汞农药的施用、污水灌溉等,故各地土壤中汞含量差异较大。来自污染源的汞首先进入土壤表层。土壤胶体及有机质对汞的吸附作用相当强,汞在土壤中移动性较弱,往往积累于表层,而在剖面中呈不均匀分布。土壤中的汞不易随水流失,但易挥发至大气中,许多因素可以影响汞的挥发。土壤中的汞按其化学形态可分为金属汞、无机汞和有机汞,在正常的pE和pH范围内,土壤中汞以零价汞形式存在。在一定条件下,各种形态的汞可以相互转化。进入土壤的一些无机汞可分解而生成金属汞,当土壤在还原条件下,有机汞可降解为金属汞。一般情况下,土壤中都能发生Hg2+===Hg2++HgO反应,新生成的汞可能挥发。在通气良好的土壤中,汞可以任何形态稳定存在。在厌氧条件下,部分汞可转化为可溶性甲基汞或气态二甲基汞。 阳离子态汞易被土壤吸附,许多汞盐如磷酸汞、碳酸汞和硫化汞的溶解度亦很低。在还原条件下,Hg2+与H2S生成极难溶的HgS;金属汞也可被硫酸还原细菌变成硫化汞;所有这些都可阻止汞在土壤中的移动。当氧气充足时,硫化汞又可慢慢氧化成亚硫酸盐和硫酸盐。以阴离子形式存在的汞,如HgCl3-、HgCl42-也可被带正电荷的氧化铁、氢氧化铁或黏土矿物的边缘所吸附。分子态的汞,如HgCl2,也可以被吸附在Fe,Mn的氢氧化物上。Hg(OH)2溶解度小,可以被土壤强烈的保留。由于汞化合物和土壤组分间强烈的相互作用,除了还原成金属汞以蒸气挥发外,其他形态的汞在土壤中的迁移很缓慢。在土壤中汞主要以气相在孔隙中扩散。总体而言,汞比其他有毒金属容易迁移。当汞被土壤有机质螯合时,亦会发生一定的水平和垂直移动。 汞是危害植物生长的元素。土壤中含汞量过高,它不但能在植物体内积累,还会对植物产生毒害。通常有机汞和无机汞化合物以及蒸气汞都会引起植物中毒。例如,汞对水稻的生长发育产生危害。中国科学院植物研究所水稻的水培实验表明,采用含汞为0.074 μg/mL的培养液处理水稻,产量开始下降,秕谷率增加;以0.74 μg/mL浓度处理时,水稻根部已开始受害,并随着试验浓度的增加,根部更加扭曲,呈褐色,有锈斑;当介质含汞为7.4 μg/mL

砷的环境地球化学研究进展

砷的环境地球化学研究进展概述 摘要:由于自然原因和人为原因,大量的砷分布在岩石、土壤、大气和水中,进而进入生物体内。近年来,越来越多的砷中毒事件已引起国内外的高度重视。本文对砷的性质、砷在环境介质如岩石矿物、土壤、大气、水体和生物体中的形态分布及砷在环境介质间的迁移转化进行了综述。 关键词:环境地球化学砷研究进展迁移转化形态分布 A Review on Environmental Geochemistry Studies of Arsenic Abstract: Arsenic (As) is a ubiquitous element in rock,soil,atmosphere,water,plants and animals as a result of natural geological sources and anthropogenic sources,such as mining and smelting,pesticide application,fossil-fuel burning and other industrialization in general. Recently,more and more reports about arsenic poisoning occur,which attracted a significant environmental health concern. This article will give a review on characteristic of arsenic,distribution,speciation,transport and transformation of arsenic and its compounds in environment medium. Key words: Environmental geochemistry; arsenic; speciation; transformation; review 早在四千多年前,我国就将雄黄(As2S2)、雌黄(As2S3)等砷化物用于食用、制药及炼丹。从1250年Albertus Magnus分离出砷以来,砷广泛应用于医药、农业、畜牧业、电子、工业及冶金业等各个领域。砷在地壳中的丰度为(1.7-1.8)mg/kg,大量分布于岩石、土壤、水和生物体中。环境中的砷主要来源于自然地质作用,除此之外,人为来源如尾矿及采矿废水、金属冶炼、化石燃料燃烧、木材燃烧和含砷化学品(除草剂、杀虫剂、防腐剂和肥料等)等也起到重要作用。砷及砷化物是世界卫生组织( WHO) 下属的国际癌症研究所( IARC) 、美国环境卫生科学研究院( NIEHS)、美国环保局( USEPA) 等诸多权威机构所公认的人类已确定的致癌物。因其对动植物的广泛致毒性,无机砷化物被美国环保局(USEPA)列为第一类优先控制污染物,是国际肿瘤机构(IARC)确认的人类致癌物之一,人体摄入砷可导致皮肤、肺、肝肾、膀胱等器官的病变,乃至诱发癌症。据统计,全球约6-10千万人长期暴露在高砷环境中。因此,对砷的环境地球化学研究具有重要意义。 1砷的性质 砷的英文名称为Arsenic,化学元素符号As,它的外观为银灰色发亮的块状固体,质硬而脆。熔点为817℃/3650Kpa,沸点为613℃/升华,它不溶于水、碱液、多数有机溶剂,但溶于硝酸、热碱液。砷位于元素周期表中第四周期第V主族,处于金属与非金属过渡的区域,通常情况下可以把砷看作半金属元素。砷在自然界中无处不在,地壳中排列第20位,海水中排列第14位,人体中排列第12位。环境中的砷主要以四种氧化态(-3,0,+3,+5)存在,主要以以无机态的As(Ⅲ)和As(Ⅴ)存在,有机砷包括一甲基砷酸(MMA)、二甲基砷酸(DMA),在海产品中主要以砷甜菜碱砷(AsB)和砷胆碱(AsC)。但As3一只存在于Eh极低的环境中,呈气态砷化三氢(AsH3)和(CH)3As的形式,在自然界中十分稀少;金属砷在自然界中则更是稀少。不同形态的砷

土壤中砷的处理

土壤中砷的处理 1 引言 砷是一类广泛存在于土壤中的具有致癌作用的类金属元素,主要来源于含砷农药、化肥的施用及含砷污水灌溉等.据雷鸣等(2008)的调查,湖南郴州、衡阳等地稻田砷污染较严重,土壤砷含量最高达245 mg·kg-1,导致大米砷含量超标,造成严重的健康威胁和巨大的经济损失.同时,砷作为一种变价元素,不同价态毒性及生物有效性有较大差异,如三价砷生物毒性是五价砷的60~100倍.此外,水分可通过改变土壤氧化还原电位、铁锰氧化物等变价元素的价态而影响砷的生物有效性及其环境风险,如淹水导致As(Ⅴ)向As(Ⅲ)转化,提高了土壤中As(Ⅲ)的含量;同时,土壤水分会影响水稻籽粒中砷含量,灌浆期后湿润灌溉可显著降低糙米中砷含量.研究表明,稻田土壤水分含量可影响并改变土壤溶液及稻米中砷含量,而控制土壤水分含量是解决稻田土壤砷污染问题的有效途径之一,并揭示出水分是影响砷毒性的主要因素之一,尤其是在稻田土壤上.因此,需对二者作用关系进行系统探讨. 土壤酶是土壤的重要组成成分,土壤中所有生物化学过程的发生都得益于土壤酶的作用.酶促反应动力学是研究酶催化反应速度及各种因素(如污染物等)影响的方法,其结果不仅可显示土壤酶总量的高低,而且还可以反映酶与底物、重金属污染物等之间结合的紧密程度和作用过程,从而能深入探讨污染物与酶作用机理,故被认为是一种理想的研究手段.目前,国内外学者对砷的土壤酶效应进行了研究,发现有激活、抑制和无关3种作用,如As(Ⅴ)会抑制碱性磷酸酶及芳基硫酸酯酶活性,而As(Ⅲ)则不敏感;砷能激活土壤脲酶活性.对不同水分下土壤酶作用机理的研究也有零星报道,如Zhang等(2009a;2009b)发现,土壤脱氢酶活性及酶促最大反应速度均随水分含量升高而增加;高水分含量增强了磷酸酶与底物亲和力,提高了最大反应速度;淹水对土壤脲酶动力学参数无显著影响(隽英华等,2011).但目前对不同水分条件下砷与酶作用机理的研究则鲜见报道.因此,本文拟采用室内模拟培养试验的方法,从酶动力学角度研究水分对砷与土壤碱性磷酸酶关系的影响,揭示砷对碱性磷酸酶的作用受水分影响的机理,以期为稻田土壤砷污染的准确监测和保护修复提供依据. 2 材料与方法 2.1 供试土壤 供试土壤为采自江苏省中国科学院常熟农业生态试验站的水稻土(底潜铁聚水耕人为土,Endogleyic Fe-accumuli-Stagnic Anthrosols).采样时,先去除0~5 cm表层土,采用五点法取5~20 cm土样,混匀风干,过1 mm尼龙筛备用.常规方法测定土壤基本化学性质(鲍士旦,1997),结果为有机质47.69 g·kg-1,pH=6.93(水土比2.5:1),全氮3.1 g·kg-1,全磷0.61 g·kg-1,全钾18.02 g·kg-1,碱解氮10.66 mg·kg-1,速效磷11.74 mg·kg-1,速效钾112.90 mg·kg-1,阳离子交换量26.20 cmol·kg-1,游离氧化铁2.43 g·kg-1,总砷8.70 mg·kg-1,有效砷(0.5 mol·L-1 NaHCO3)0.32 mg·kg-1. 2.2 试验方案 向600 g土样中添加不同浓度的As(Ⅴ)(Na3AsO4·12H2O,AR)溶液,使As(Ⅴ)含量分别为0、25、50、100、200、400 mg·kg-1,并调节土壤含水量为最大持水量(WHC)的35%、65%、110%,

地下水动力学(全)

地下水动力学复习资料 名词解释 1. 地下水动力学是研究地下水在孔隙岩石、裂隙岩石、和喀斯特岩石中运动规律的科学。它是模拟地下水流基本状态和地下水中溶质运移过程,对地下水从数量和质量上进行定量评价和合理开发利用,以及兴利除害的理论基础。。 2.流量:单位时间通过过水断面的水量称为通过该断面的渗流量。 3.渗流速度:假设水流通过整个岩层断面(骨架+空隙)时所具有的虚拟平均流速,定义为通过单位过水断面面积的流量。 4.渗流场:发生渗流的区域称为渗流场。是由固体骨架和岩石空隙中的水两部分组成。 5. 层流:水质点作有秩序、互不混杂的流动。 6. 紊流:水质点作无秩序、互相混杂的流动。 7. 稳定流与非稳定流:若流场中所有空间点上一切运动要素都不随时间改变时,称为稳定流,否则称为非稳定流。 8.雷诺数:表征运动流体质点所受惯性力和粘性力的比值。 9.雷诺数的物理意义:水流的惯性力与黏滞力之比。 10.渗透系数:在各项同性介质(均质)中,用单位水力梯度下单位面积上的流量表示流体通过孔隙骨架的难易程度,称之为渗透系数。 11. 流网:在渗流场中,由流线和等水头线组成的网络称为流网。 12.折射现象:地下水在非均质岩层中运动,当水流通过渗透系数突变的分界面时,出现流线改变方向的现象。 13.裘布依假设:绝大多数地下水具有缓变流的特点。 14.完整井:贯穿整个含水层,在全部含水层厚度上都安装有过滤器并能全断面进水的井。 15. 非完整井:未揭穿整个含水层、只有井底和含水层的部分厚度上能进水或进水部分仅揭穿部分含水层的井。 16.水位降深:抽水井及其周围某时刻的水头比初始水头的降低值。 17.水位降落漏斗:抽水井周围由抽水(排水)而形成的漏斗状水头(水位)下降区,称为降落漏斗。 18.影响半径:是从抽水井到实际观测不到水位降深处的径向距离。 19.有效井半径:由井轴到井管外壁某一点的水平距离。在该点,按稳定流计算的理论降深正好等于过滤器外壁的实际降深。 20.井损水流经过滤器的水头损失和在井内向上运动至水泵吸水口时的水头损失,统称为井损。 21.水跃:在实验室砂槽中进行井流模拟实验时发现,只有当井中水位降低非常小时,抽水井中的水位与井壁外的水位才基本一致,当井中水位降低较大时,抽水井中的水位与井壁外的水位之间存在差值的现象。

土壤中总砷的分光光度法测定(精)

土壤中总砷的分光光度法测定 相关背景:砷是世界卫生组织确定的高毒致癌物质,从上世纪初就开始受到科学家们的广泛关注。在农业生产中,砷主要是通过工业“三废”、农业利用等方式进入土壤,施用含砷的农药、化肥、有机肥等是土壤中砷的重要来源之一。砷进入土壤后,可被土壤胶体吸附固定,使其有效性降低。有机态砷进入土壤后,不仅被土壤吸附固定,也可在土壤微生物的作用下,并通过一系列的土壤过程,发生形态和价态的转化。农业生产与人类生活息息相关,研究不同形态砷在土壤中的转化及对植物砷有效性的影响,对提高农产品质量,预防设施土壤中砷含量超标等具有很重要的意义。由环保部牵头制定的《全国土壤环境保护“十二五”规划》已进入国务院审批程序,国家发改委批准了“‘十二五’重金属污染防治规划”,将“土壤与场地污染治理与修复”列入“十二五”社会发展科技领域国家科技计划项目指南。 依据标准:1997年12月8日,国家环境部发布GB/T 17135-1997 《土壤质量总砷的测定硼氢化钾-硝酸银分光光度法》。 检测方法简介: 土壤样品经氧化分解后,使不同形式的砷转化为可溶态砷离子,硼氢化钾(钠在酸性的溶液中产生新生态氢,使五价砷还原为三价砷,三价砷还原成气态砷化氢,再用硝酸-硝酸银-聚乙烯醇-一算溶液为吸收液,银离子被砷化氢还原成单质银,使溶液成黄色,在400nm 分光光法测定。(10mm光程 赛默飞世尔科技有限公司(ThermoFisher的紫外可见分光光度计产品完全能够满足上述检测需要,并且可以为客户提供方法建立的工作,以方便有此需求的客户快速使用仪器,达到单位检测要求。请您联系赛默飞世尔科技有限公司(8008105118,4006505118,或者咨询我们当地的代理商。

镉的迁移转化

镉一般在土壤表层0~15cm处积累。在土壤中,镉主要以CdCO3,Cd(PO4)2, Cd(OH)2的形态存在,其中以CdCO3为主,尤其在碱性土壤中。 镉在土壤-植物系统中的迁移转化 1.2.1镉在土壤环境中的存在形态 镉在土壤中以水溶性镉和非水溶性镉两种形式存在。水溶性镉常以简单离子或简单配离子的形式存在,如Cd2+、CdCl+,CdSO3,石灰性土壤中还有CdHCO3+。非水溶性镉主要为CdS、CdCO3及胶体吸附态镉等。其中,镉在旱地土壤中以CdCO3、Cd3(P04)2和Cd(OH)2的形态存在,并以CdCO3为主,尤其是在pH值>7的石灰性土壤中更以CdCO3居多;CdCO3形成的反应为 Cd2++CO2+H2O=== CdCO3+2H+lgK=-6.07 可导出土壤中为–lg[Cd2+]=-6.07+2pH+lg[CO2] 可见旱地土壤中Cd2+浓度与pH呈负相关。 而镉在淹水土壤中则多以CdS的形态存在。由于土壤对镉的吸附能力很强,土壤中呈吸附交换态的所占比例较大。但土壤胶体吸附的镉一般随pH值的下降其溶出率增加,当pH=4时,溶出率超过50%,而当pH=7.5时,交换吸附态的镉则很难被溶出。 1.2.2镉的迁移转化 由于土壤的强吸附作用,镉很少发生向下的再迁移而累积于土壤表层。镉一般在土壤表层0~15cm处积累。大多数土壤对镉的吸附率为80%~95%。不同土壤吸附顺序为:腐殖质土>重壤土壤>壤质土>砂质冲积土。因此镉的吸附与土壤中胶体的性质有关。 在降水的影响下,土壤表层的镉的可溶态部分随水流动就可能发生水平迁移,进入界面土壤和附近的河流或湖泊而造成次生污染。土壤中水溶性镉和非水溶镉在一定的条件下可相互转化,其主要影响因素为土壤的酸碱度、氧化一还原条件和碳酸盐的含量。 1.2.3镉的生物迁移 土壤中的镉非常容易被植物所吸收。土壤中镉的含量稍有增加,就会使植物体内镉的含量相应增高。镉在同一作物的各部位分布是不均匀的,在被镉污染的水田中种植的水稻其各器官对镉的浓缩系数按根>杆>枝>叶鞘>叶身>稻壳>糙米的顺序递减。不同种类的植物对镉的吸收存在着明显的差异,谷类作物如小麦、玉米、水稻、燕麦和栗子都可通过根系吸收镉,其吸收量依次是玉米>小麦>水稻。植物在不同的生长阶段对镉的吸收量也不一样,其中以生长期吸收量最大。 镉在植物体内可取代锌,破坏参与呼吸和其他生理过程的含锌酶的功能,从而抑制植物生长并导致其死亡。与铅、铜、锌、砷及铬等相比较,土壤中镉的环境容量要小得多,这是土壤镉污染的一个重要特点。

溶解性有机质及对重金属迁移转化的影响

溶解性有机质及对重金属迁移转化的影响 摘要:溶解性有机质(Dissolved organic matter, DOM )由于含有羧基、羟基、羰基等活性功能团,是生态系统中极为活跃的一种有机组分,具有很强的反应活性和迁移特性。DOM 可以作为有机和无机污染物的载体,通过与水体、土壤和沉积物中的金属离子之间的离子交换吸附、络合、螯合、氧化还原等一系列反应,影响金属离子的吸附解吸,从而影响重金属的最终归宿。因此,具体介绍了DOM的来源、提取方法和种类组成以及不同来源DOM的性质的表征,同时综述了溶解性有机质对重金属的影响迁移转化的影响尤其是对土壤中重金属吸附的影响及其影响机理的研究进展。 关键词:溶解性有机质;重金属;迁移转化;影响 引言 重金属是指密度高于4.5g·cm-3(也有文章指出为5g·cm-3)的常见金属。重金属污染则是指因人类活动导致环境中的重金属或其化合物含量增加,超出正常范围并导致环境质量恶化。重金属污染主要来源于工业生产,如金属采矿和冶炼产生的废渣、废水、废气排入

环境;其次来源于交通和生活活动产生的污染,如汽车尾气和家庭燃煤产生的金属污染等。重金属污染与其他有机化合物的污染不同,大多数有机化合物可以通过自然净化作用降解消除危害。生物体内的各种酶和蛋白质能和重金属在发生强烈的相互作用失去活性。重金属也可能在人体的某些器官中富集会造成人体急性中毒、亚急性中毒、慢性中毒等,如果超过人体所能耐受的临界限度,对人体会造成很大的危害。 溶解性有机质((Dissolved organic matter, DOM)能结合对环境和生物有重要影响的Hg、Cu、Pb、Cd、Ni 等重金属,从而改变这些物质的迁移、生物可利用性[1,2]。从而越来越多的研究开始关注DOM 与重金属作用对金属迁移转化及其生物利用性的影响。在DOM 与金属离子的络合反应中,普遍认为低分子量DOM 易与重金属络合,高分子量DOM 则与重金属反应多形成难溶络合物[3]。研究同时表示DOM 主要通过氢键、范德华力、疏水作用等作用与金属离子以及其它污染物发生,形成溶解度不同的络合物,通过改变金属自由离子浓度来改变其迁移性[3-5]。从而可能影响重金属的迁移转化和生物利用性。 1. 溶解性有机质(DOM)的概念、来源和提取 1.1 DOM的概念 DOM 指能通过0.45 um的滤膜,具有不同结构及分子量大小的有机物(如低分子量的游离氨基酸、碳水化合物、有机酸等和大分子量的酶、多糖、酚和腐殖质等)的连续体或混合体。它是陆生生态系统和水生生态系统中极为活跃的一种有机组分,具有很强的反应活性和迁移特性[6]。其主要成分可以分为腐殖质类和非腐殖质类,腐殖质分为富里酸、胡敏酸和胡敏素等;非腐殖质主要包括为碳水化合物、碳氢化合物、脂肪族、醇类、醛类和含氮化合物等[9]。 DOM作为环境中许多有机、无机污染物的迁移载体或配位体,其自身在环境中的行为和性质直接影响这些污染物在环境中的毒性。通常认为,DOM中移动性强的组分能够提高污染物在介质中的运移能力;反之,如果DOM在迁移过程中易被介质吸附固定,则可为污染物提供吸附位点,从而降低了与其相结合的污染物的迁移性或活性[10]。 因此,溶解性有机质DOM对于重金属的迁移转化(尤其土壤和沉积物中的重金属)有很大的影响作用。 1.2 DOM的来源 在自然生态系统中,DOM主要来自植物凋落物、根系分泌物和微生物体的分解、渗滤、腐殖化等。在农业生态系统中,DOM除上述来源外,施用的外源有机物料(如:还田秸秆、

石油类污染物在土壤和地下水中的污染模拟

2、土壤污染模拟 土壤是一个多相的疏松的多孔介质,固相中有大量的有机和无机胶体。石油是一种天然的粘油状液体,主要成分为烃类化合物(占80%一90%)。烃类化合物是非极性有机物,其偶极矩<1,介电常数<3,在土壤中有一定的吸附作用。地表的石油可以在重力作用下入渗,也可能随地面水或雨水沿着土壤毛细管孔隙向下渗透污染土壤,甚至进一步向下淋滤污染地下水。石油类污染物质在土壤入渗过程中,由于土壤中存在着大量的有机和无机的胶体,使得进入土壤中的污染物不断地被吸附。吸附能力与土壤的质地、石油的性质有密切联系。通常,石油烃类在土壤介质吸附程度以分配系数Kd来表示。 式中:Cs为平衡时固相中的浓度(mg/kg);Ce为平衡时液相中的浓度(mg/l)根据土壤中溶质运移模型和石油类污染物质在土壤中的迁移转化过程,考虑吸附作用而忽略石油的挥发,建立石油类污染物质在土壤中迁移转化二维综合模型。它包括水运动方程和石油运动方程。 土壤中水运动方程: 土壤中石油类运动方程: 式中:C(h)为比水容量(cm-1);K x、K z分别为横向纵向水力传导系数(cm/d);Dxx、Dzz分别为横向纵向弥散系数(cm2/d);Rd为滞留因子;c为液相中石油的浓度(mg/l);qx、qz分别为x和z方向的达西流速(cm/d);θ为含水量(%);λ为降解系数(d-1);h为土壤中压力水头(cm)。 初始条件和边界条件 根据监测的结果和落地油的分布特征,预测石油类在土壤中迁移过程及石油是否会对地下水造成污染,选择预测范围为:长80m,深6m剖面区域。并对部分问题可进行简化处理,作一些基本假设。假设土壤水最初不含石油,即未受到污染,但土壤中存在一定的本底值,经取样测定取平均值为40.3mg/kg。在土壤的预测范围内,土壤被认为是均质的。 对水运动方程上边界确定为Cauchy边界,下边界为Neumann边界。

地下水溶质运移理论及模型读书报告

《地下水溶质运移理论及模型》读书报告 0、前言 本书作者陈崇希教授,浙江温州人士,生于1933年10月,1956年毕业于北京地质学院水文地质及工程地质专业。教授、博士生导师。现任中国地质大学环境地质研究所所长。《水文地质、工程地质》、《勘察科学技术》与《地球科学》杂志编委。湖北省地质学会名誉理事。长期从事地下水渗流理论,地下水数值模拟技术,地下水资源评价与管理,地质环境保护及地质灾害防治等方面的教学与科研工作;主持过“五五”、“八五”、“九五”国家科技攻关,国家自然科学基金等各类的科研项目31项;以第一作者身份获奖的有:省部级科技进步三等奖2项,二等奖3项,部优秀教材2等奖1项,国家科技进步三等奖1项。独著或以第一作者合作的著作有《地下水动力学》、《地下水流动问题数值方法》、《地下水溶质运移理论及模型》、《地下水混合井流的理论及应用》和《地下水不稳定井流计算方法》等七部,发表的论文有《用数值一解析法预测毛里塔尼亚伊迪尼水源地地下水开采动态》、《滨海多含水层系统地下水开采――水环境系统若干问题》等40余篇。1997年获地质矿产部“八五”科技工作有突出贡献先进个人。1992年获政府特殊津贴。培养硕士生18名,博士生13名。是中国地质大学211工程建设《地质环境保护及地质灾害防治》学科群的首席科学家。 该书是陈教授在“多孔介质水动力弥散理论及水质模型”的讲稿基础上修正补充而成,分7章进行叙述。《地下水溶质运移理论及模型》书中主要分三个方向:水动力弥散(微分)方程、水动力弥散(微分)方程的解及水动力弥散系数的计算。通过对本书的阅读,现就关于水动力弥散方程的解的做一下简单介绍。 水动力弥散方程的解法主要分为水动力弥散方程的解析解法和数值解法。本书第四章,重点介绍以基本解为基础,给出一、二、三维的解析解;第六章介绍了数值解,主要是利用有限差分和有限元法来求一、二维的解,并给出一些修

区域地下水溶质运移随机理论的研究与进展_杨金忠

区域地下水溶质运移随机理论的研究与进展 杨金忠 蔡树英 叶自桐 (武汉水利电力大学 武汉430072)摘 要 在总结近年来国内外区域地下水溶质运动研究的基本理论、方法和部分成果的基础上, 论述了溶质在大区域运动的主要影响因素为区域介质的空间变异性。首先总结了野外条件下饱和 介质和非饱和介质土壤渗透性能的空间变异性结果,由于野外渗透介质严重的空间变异性,研究 溶质在野外条件下的运动采用了随机理论方法。基于La gr ange 方法和Euler 方法,研究结果表明, 在渗透系数为对数正态二阶平稳及一阶扰动近似条件下,平均浓度满足对流-弥散方程,方程中宏 观弥散度决定于介质渗透性能的统计特征,总结了一系列宏观弥散系数的表达形式,在此基础上, 指出了需要进一步研究的问题。 关键词 区域 地下水 随机理论 溶质运移 空间变异性 分类号 P 641.2 多年来,人们对溶质在多孔介质中的运动进行了大量理论和实验研究[5~7,42],研究结果表明,溶质在均匀多孔介质中运动满足以下形式的对流-弥散方程: c t = x i [ d ij c x j ]- x i [V i c ]+ (1) 式中 d ij 为水动力弥散系数;V i 为地下水孔隙流速;c 为地下水中污染物的浓度; 为由于溶质的吸附、沉淀、化合、分解等作用而引起的单位时间内单位体积含水层溶质质量的变化。水动力弥散系数可以表示为 d ij = T V ij +( L - T )V i V j V (2) 式中 L 、 T 分别为纵向和横向孔隙尺度弥散度,是仅与介质特性有关的参数。大量室内弥散试验测量结果表明[23,29],纵向弥散度一般为毫米的量级,称为孔隙尺度的水动力弥散作用。但将以上弥散理论应用于大区域或野外溶质运动的预测和分析时发现,野外所得到的弥散度远大于实验室内测量结果,两者相差几个数量级,野外得到的弥散度值随所研究问题尺度的增大而增大,并随溶质运移时间而增大,弥散度不是常数 [29]。这就进一步促使人们研究以上 所述弥散理论在野外条件下的可应用性问题。 本文分析和讨论了近年来大区域多孔介质中溶质运移的基本理论、方法和研究成果,并对今后在此领域的研究提出一些看法。  第9卷第1期  1998年3月 水科学进展ADVANCES IN WATER SCIENCE Vo l.9,N o.1 M ar.,1998 收稿日期:1996-6-16;修改稿日期:1996-10-15。*自然科学基金和霍英东教育基金的资助(N o.59379404)。

相关文档
最新文档