高三物理电磁学经典提心(详解)

高三物理电磁学经典提心(详解)
高三物理电磁学经典提心(详解)

静电场

1.取电场的无穷远处电势为零,下列说法中正确的有:A .无论是正电荷还是负电荷,从电场中某点移到无穷远处时,电场力做的正功越多,电荷原来的电势能越大;

B .无论是正电荷还是负电荷,从电场中某点移到无穷远处时,电场力做的正功越多,电荷原来的电势能越小;

C .无论是正电荷还是负电荷,从无穷远处移到电场中某点时,克服电场力做功越多,电荷在该点的电势能越大;

D .无论是正电荷还是负电荷,从无穷远处移到电场中某点时,电场力做的正功越多,电荷在该点的电势能越大。

2.如图所示,在x 轴上关于原点O 对称的两点固定放置等量异种点电荷+Q 和-Q ,x 轴上的P 点位于的右侧。下列判断正确的是( )

A.在x 轴上还有一点与P 点电场强度相同

B.在x 轴上还有两点与P 点电场强度相同

C.若将一试探电荷+q 从P 点移至O 点,电势能增大

D.若将一试探电荷+q 从P 点移至O 点,电势能减小

3.如图所示,粗糙程度均匀的绝缘斜面下方O 点处有一正点电荷,带负电的小物体以初速 度v 1从M 点沿斜面上滑,到达N 点时速度为零,然后下滑回到M 点,此时速度为 V 2(v 2<v 1)。若小物体电荷量保持不变,OM =ON ,则( )

A.小物体上升的最大高度为

22

12

4v v g

B.从N 到M 的过程中,小物体的电势能逐渐减小

C.从M 到N 的过程中,电场力对小物体先做负功后做正功

D.从N 到M 的过程中,小物体受到的摩擦力和电场力均是先增大后减小

4.如图所示,实线为电场线,虚线为等势线,且AB=BC,电场中的A 、B 、C 三点的场强分别为E A 、E B 、E C ,

电势分别为ΦA 、ΦB 、φC ,AB 、BC 间的电势差分别为U AB 、U BC ,则下列关系中正确的有( ) (A)ΦA >ΦB >φ C

(B) E C >E B >E A (C) U AB <U BC

(D) U AB =U BC

5.如图所示,在y 轴上关于O 点对称的A 、B 两点有等量同种点电荷+Q ,

在x 轴上C 点有点电荷-Q ,且CO=OD ,∠ADO=60°。下列判断正确的是( )

A .O 点电场强度为零

B .D 点电场强度为零

C .若将点电荷+q 从O 移向C ,电势能增大

D .若将点电荷—q 从O 移向C ,电势能增大

6.平行板间加如图4(a )所示周期变化的电压,重力不计的带电粒子静止

在平行板中央,从t=0时刻开始将其释放,运动过程无碰板情况。图中,能定性描述粒子运动的速度图象

正确的是()

7.a、b、c、d是匀强电场中的四个点,它们正好是一个矩形的四个顶点。电场线与矩形所在平面平行。已

知a点的电势为20 V,b点的电势为24 V,d点的电势为4 V,

如图,由此可知c点的电势为()

A.4 V B.8 V C.12 V

D.24 V

8.空间有一沿x轴对称分布的电场,其电场强度E随X变化的图像如图所示。下列说法正确的是

(A)O点的电势最低

(B)X2点的电势最高

(C)X1和- X1两点的电势相等

(D)X1和X3两点的电势相等

9.用控制变量法,可以研究影响平行板电容器电容的因素(如图)。设两极板正对面积为S,

极板间的距离为d,静电计指针偏角为θ。实验中,极板所带电荷量不变,若

A.保持S不变,增大d,则θ变大

B.保持S不变,增大d,则θ变小

C.保持d不变,减小S,则θ变小

D.保持d不变,减小S,则θ不变

10.10.2010·海南物理·4如右图, M 、N 和P 是以MN 为直径的半圈弧上的三点,O 点为半圆弧的圆心,60MOP ∠=?.电荷量相等、符号相反的两个点电荷分别置于M 、N 两点,这时O 点

电场强度的大小为1

E ;若将N 点处的点电荷移至P 点,则O 点的场场强大小变为

2E ,

1

E 与

2

E 之

比为 A .1:2

B .2:1

C .2:3

D .4:3

11.如图所示,长L =1.2 m 、质量M =3 kg 的木板静止放在倾角为37°的光滑斜面上,质量m =1 kg 、带电荷量q =+2.5×10-4

C 的物块放在木板的上端,木板和物块间的动摩擦因数μ=0.1,所在空间加有一个方向垂直斜面向下、场强E =4.0×104

N/C 的匀强电场.现对木板施加一平行于斜面向上的拉力F =10.8 N. 取

g =10 m/s 2,斜面足够长.求:

(1)物块经多长时间离开木板;

(2)物块离开木板时木板获得的动能; (3)物块在木板上运动的过程中,由于摩擦而产生的内能.

12.如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,它的极板长L = 0.1m ,两板间距离 d = 0.4 cm ,有一束相同微粒组成的带电粒子流从两板中央平行极板射入,由于重力作用微粒能落到下板上,已知微粒质量为 m = 2×10-6kg ,电量q = 1×10-8 C ,电容器电容为C =10-6 F .求

(1) 为使第一粒子能落点范围在下板中点到紧靠边缘的B 点之内,则微粒入射速度v 0应为多少? (2) 以上述速度入射的带电粒子,最多能有多少落到下极板上?

13.如图7-3-4所示,真空中水平放置的两个相同极板Y 和Y'长为L ,相距d ,足够大的竖直屏与两板右侧相距b .在两板间加上可调偏转电压U ,一束质量为m 、带电量为+q 的粒子(不计重力)从两板左侧中点A 以初速度v 0沿水平方向射入电场且能穿出.

(1)证明粒子飞出电场后的速度方向的反向延长线交于两板间的中心O 点;

(2)求两板间所加偏转电压U 的范围;

60° P

N

O

M

L B

m ,q

d v 0

A

Y Y'

v 0

L

A

d

b

图7-3-4

(3)求粒子可能到达屏上区域的长度.

磁场

1.有关电荷受电场力和洛仑兹力的说法中,正确的是() A 、电荷在磁场中一定受磁场力的作用 B 、电荷在电场中一定受电场力的作用

C 、电荷受电场力的方向与该处电场方向垂直

D 、电荷若受磁场力,则受力方向与该处磁场方向垂直

2.图所示为一速度选择器,内有一磁感应强度为B ,方向垂直纸面向外的匀强磁场,一束粒子流以速度v 水平射入,为使粒子流经磁场时不偏转(不计重力),则磁场区域内必须同时存在一个匀强电场,关于这处电场场强大小和方向的说法中,正确的是()

A 、大小为B/v ,粒子带正电时,方向向上

B 、大小为B/v ,粒子带负电时,方向向上

C 、大小为Bv ,方向向下,与粒子带何种电荷无关

D 、大小为Bv ,方向向上,与粒子带何种电荷无关

3.如图所示,比荷为e/m 的电子从左侧垂直于界面、垂直于磁场射入宽度为d 、磁感受应强度为B 的匀强磁场区域,要从右侧面穿出这个磁场区域,电子的速度至少应为( )

A 、2Bed/m

B 、Bed/m

C 、Bed/(2m)

D 、2Bed/m

4.如右图所示,一带正电的粒子以速度v 0垂直飞入,B E v 、及0三者方向如图所示。已知粒子在运动过程中所受的重力恰与电场力平衡,则带电粒子在运动过程中。( )

A .机械能守恒;

B .动量守恒;

C . 动能始终不变;

D .电势能与机械能总和守恒

5.边长为a 的正方形处于有界磁场中,如图所示。一束电子以速度v 0水平射入磁场后,分别从A 处和C 处射出,则V A :V C = ,所经历的时间之比t A :t B =

6.如右图所示,水平放置的平行金属板AB 间距为d ,两板间电势差为U ,水平方向的匀强磁场为B 。今有一带电粒子在AB 间竖直平面内作半径为R 的匀速圆周运动,则带电粒子转动方向为 时针,速率为 。

7.如图所示,在光滑水平面上一轻质弹簧将挡板和一条形磁铁连接起来,此时磁铁对水平面的压力为N 1,

现在磁铁左上方位置固定一导体棒,当导体棒中通以垂直纸面向里的电流后,磁铁对水平面的压力为N 2 ,则以下说法正确的是( ) A .弹簧长度将变长 B .弹簧长度将变短

C .N 1>N 2

D .N 1<N 2

8

.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D 形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示。设D 形盒半径为R 。若用回旋加速器加速质子时,匀强磁场的磁感应强度为B ,高频交流电频率为f 。则下列说法正确的是 A .质子被加速后的最大速度不可能超过2πfR

B .质子被加速后的最大速度与加速电场的电压大小无关

C .只要R 足够大,质子的速度可以被加速到任意值

D .不改变B 和f ,该回旋加速器也能用于加速α粒子

9..(8分)如下图,在xOy 坐标系的第一象限内有互相正交的匀强电场E 与匀强磁场B ,E 的大小为1.0×103V/m ,方向未知,B 的大小为1.0T ,方向垂直纸面向里;第二象限的某个圆形区域内,有方向垂直纸面向里的匀强磁场B ′。一质量m =1×10-14kg 、电荷量q =1×10-10C 的带正电微粒以某一速度v 沿与x 轴负方向60°角从A 点沿直线进入第一象限运动,经B 点即进入处于第二象限内的磁场B ′区域,一段时间后,微粒经过x 轴上的C 点并与x 轴负方向成60°角的方向飞出。已知A 点的坐标为(10,0),C 点的坐标为(-30,0),不计粒子重力,g 取10m/s 2。

(1)请分析判断匀强电场E 的方向并求出微粒的运动速度v ; (2)匀强磁场B ′的大小为多大? (3)B ′磁场区域的最小面积为多少?

10.(12分)如下图,竖直平面坐标系xOy 的第一象限,有垂直xOy 面向外的水平匀强磁场和竖直向上的匀强电场,大小分别为B 和E ;第四象限有垂直xOy 面向里的水平匀强电场,大小也为E ;第三象限内有一绝缘光滑竖直放置的半径为R 的半圆轨道,轨道最高点与坐标原点O 相切,最低点与绝缘光滑水平面相切于N 。一质量为m 的带电小球从y 轴上(y >0)的P 点沿x 轴正方向进入第一象限后做圆周运动,恰好通过坐标原点O ,且水平切入半圆轨道并沿轨道内侧运动,过N 点水平进入第四象限,并在电场中运动(已知重力加速度为g )。

N

S

θ

U

A B

O

C

L (1)判断小球的带电性质并求出其所带电荷量; (2)P 点距坐标原点O 至少多高;

(3)若该小球以满足(2)中OP 最小值的位置和对应速度进入第一象限,通过N 点开始计时,经时间

g

R

t 2

小球距坐标原点O 的距离s 为多远?

11.如图所示,在一底边长为2L ,θ=45°的等腰三角形区域内(O 为底边中点)有垂直纸面向外的匀强磁场. 现有一质量为m ,电量为q 的带正电粒子从静止开始经过电势差为U 的电场加速后,从O 点垂直于AB 进入磁场,不计重力与空气阻力的影响. (1)粒子经电场加速射入磁场时的速度?

(2)磁感应强度B 为多少时,粒子能以最大的圆周半径偏转后打到OA 板?

(3)增加磁感应强度的大小,可以再延长粒子在磁场中的运动时间,求粒子在磁场中运动的极限时间.(不计粒子与AB 板碰撞的作用时间,设粒子与AB 板碰撞前后,电量保持不变并以相同的速率反弹)

1.AC

2.AC 【解析】根据等量正负点电荷的电场分布可知,在x 轴上还有一点与P 点电场强度相同,即和P 点关于O 点对称,A 正确。若将一试探电荷+q 从P 点移至O 点,电场力先做正功后做负功,所以电势能先减小后增大。一般规定无穷远电势为零,过0点的中垂线电势也为零,所以试探电荷+q 在P 点时电势能为负值,移至O 点时电势能为零,所以电势能增大,C 正确。

3.【解析】设斜面倾角为θ、上升过程沿斜面运动的最大距离为L 。因为OM =ON ,则MN 两点电势相等,小物体从M 到N 、从N 到M 电场力做功均为0。上滑和下滑经过同一个位置时,垂直斜面方向上电场力的分力相等,则经过相等的一小段位移在上滑和下滑过程中电场力分力对应的摩擦力所作的功均为相等的负功,所以上滑和下滑过程克服电场力产生的摩擦力所作的功相等、并设为W 1。在上滑和下滑过程,对小

物体,应用动能定理分别有:-mg Lsinθ-μmg Lco sθ-W 1=-

2

12

mv 和mg Lsinθ-μmg Lcosθ-W 1=

上两式相减可得Lsinθ=,A 对;由OM =ON ,可知电场力对小物体先作正功后作负功,电势能

先减小后增大,BC 错;从N 到M 的过程中,小物体受到的电场力垂直斜面的分力先增大后减小,而重力分力不变,则摩擦力先增大后减小,在此过程中小物体到O 的距离先减小后增大,根据库仑定律可知小物体受到的电场力先增大后减小,D 对。 【答案】AD

4.ABC 【解析】电场是矢量,叠加遵循平行四边行定则,由E =

2r

kQ

和几何关系可以得出,A 错B 对。在O →C 之间,合场强的方向向左,把负电荷从O移动到C ,电场力做负功,电势能增加,C 错D 对。 5.【答案】BD

考查静电场中的电场线、等势面的分布知识和规律。A 、B 、C 三点处在一根电场线上,沿着电场线的方向电势降落,故A ?>B ?>C ?,A 正确;由电场线的密集程度可看出电场强度大小关系为E C >E B >E A ,B 对;电场线密集的地方电势降落较快,故U BC >U AB ,C 对D 错。 6.【答案】A 7.B

8.答案:C

【解析】沿x 轴对称分布的电场,由题图可得其电场线以O 点为中心指向正、负方向,沿电场线电势降落(最快),所以O 点电势最高,A 错误,B 错误;根据U=Ed ,电场强度是变量,可用E -x 图象面积表示,所以C 正确;两点电场强度大小相等,电势不相等,D 错误。 9.【答案】A 【解析】由kd

S

C

π4ε=

知保持S 不变,增大d ,电容减小,电容器带电能力降低,电容器电量减小,静电计所带电量增加,θ变大;保持d 不变,减小S ,电容减小,θ变大。正确答案A 。 10.B

【解析】依题意,每个点电荷在O 点产生的场强为

12

E ,则当N 点处的点电荷移至P 点时,O 点场强如

图所示,合场强大小为1

2

2

E E =

,则

1221E E =,B 正确。 11.解析:(1)物块向下做加速运动,设其加速度为a 1,木板的加速度为a 2,则由牛顿第二定律, 对物块:mg sin37°-μ(mg cos37°+qE )=ma 1,代入数据,求得:a 1=4.2m/s 2

; 对木板:Mg sin37°+μ(mg cos37°+qE )-F =Ma 2,代入数据,求得:a 2=3m/s 2 又

a 1t 2-

2

1

a 2

t 2=L ,得物块滑过木板所用时间t =2s 。 (2)物块离开木板时木板的速度v 2=a 2t =3 2 m/s ,其动能为E k2=

2

1Mv 22=27 J 。

(3)由于摩擦而产生的内能为:Q =F 摩x 相=μ(mg cos37°+qE )·L =2.16 J 。

E1/2

E1/2

E2

12.(1)若第1个粒子落到O 点,由

2L =v 01t 1,2

d

21gt 12得v 01=2.5 m/s .若落到B 点,由L =v 02t 1,2

d =21gt 22得v 02=5 m/s .故2.5 m/s ≤v 0≤5 m/s .(2)由L =v 01t ,得t =4×10-2 s .2d =2

1

at 2得a =2.5 m/s 2,有mg -qE=ma ,E=

dc

Q

得Q =6×10-6

C .所以q

Q

n =

=600个. 13.解析:此题考查带电粒子带电场中的偏转分析,涉及带电粒子受力分析、平抛运动规律速度偏转方向和位移偏转方向分析.

(1)如图7-3-5所示,设粒子在运动过程中的加速度大小为a ,离开偏转电场时偏转距离为y ,沿电场方向的速度为v y ,偏转角为θ,其反向延长线通过O 点,O 点与板右端的水平距离为x ,则有

y =

212

at ① 0L v t = ② y v at =

tan y v y v x

θ=

=

联立可得 2

L

x =

即粒子飞出电场后的速度方向的反向延长线交于两板间的中心.

(2)Eq

a

m =

③ U

E d = ④

由①②③④式解得2

2

2qUL y dmv =,

当2

d y =

时,22

02

md v U qL =

.

则两板间所加电压的范围 2222

0022

md v md v U qL qL -

≤≤.

(3)当

2d

y =

时,粒子在屏上侧向偏移的距离最大(设为y 0

),则 0()tan 2L

y b θ=+,

而tan d

L

θ=,

解得 0(2)

2d L b y L +=.

Y Y'

v 0

A

O

v 0

v y

θ

θ

x y y 0

图7-3-5

则粒子可能到达屏上区域的长度为

(2)

d L b L

+.

磁场

D . BD

2.D 假设电荷带正电,根据左手定则可知电荷所受的洛伦兹力方向竖直向下,要想粒子不偏转,它所受的电场力必须与洛伦兹力等大方向,即电场力竖直向上,电场方向与正电荷受力方向相同;如果电荷带负电,电场方向仍然竖直向上,与粒子带何种电荷无关。由题意知:Bvq Eq =,即E Bv =,故D 正确

3.B

电子在匀强磁场中做匀速圆周运动其向心力由电子所受到的洛伦兹力来提供,即

2

Bvq m R v

=,解得:

Bed v m =

,故B 正确

4. CD

因为带电粒子带正电荷且所受重力与电场力平衡,所以带电粒子做匀速圆周运动,由洛伦兹力来提供所需要的向心力。又因为洛伦兹力始终不做功,所以粒子的动能不变。带电粒子在运动过程中还有电场力在做功,因此粒子的机械能不守恒。带电粒子在运动过程中只有电势能和重力势能相互转化,所以电势能与机械能总和守恒,故CD 正确 5.1:2 2:1

电子在磁场做匀速圆周运动由洛伦兹力来提供向心力,即

2

Bvq m R v =,解得:BqR

v m =

,121:2v v =:;电子在匀强磁场中做圆周运动的周期2m T Bq π=,2t T θπ=

,即12:2:1t t =

6.顺

U

RBgd

由于带电粒子在电磁场中做匀速圆周运动,粒子所受的电场力与重力等大方向,则粒子带负电荷,有

mg=q=U

E q

d ,带电粒子的转动方向为顺时针,它所受的洛伦兹力提供向心力,即

2

Bvq m R v =,解

得:

RBgd v U =

7.BC

【解析】画出导体棒所在处的磁感线方向,用左手定则可判断出条形磁铁对导体棒的安培力斜向右下,由

牛顿第三定律可知,导体棒对条形磁铁的安培力斜向左上,所以弹簧长度将变短,N 1>N 2,选项BC 正确。

8.AB 【解析】由evB=m

2

v R

可得回旋加速器加速质子的最大速度为v=eBR/m 。由回旋加速器高频交流电频

率等于质子运动的频率,则有f= eB/2πm ,联立解得质子被加速后的最大速度不可能超过2πfR ,选项AB 正确C 错误;由于α粒子在回旋加速器中运动的频率是质子的1/2,不改变B 和f ,该回旋加速器不能用于加速α粒子,选项D 错误。

9.(1)电场E 的方向与x 轴正方向成30°角斜向右上方 103m/s (2)

2

3

T (3)3.1×10-2m 2 (1)由于重力忽略不计,微粒在第一象限内仅受电场力和洛伦兹力,且微粒做直线运动,速度的变化会引起洛仑兹力的变化,所以微粒必做匀速直线运动。这样,电场力和洛仑兹力大小相等,方向相反,电场E 的方向与微粒运动的方向垂直,即与x 轴正方向成30°角斜向右上方。 由力的平衡条件有Eq =Bqv (1分)

得v =0

.1100.13?=B E m/s =103m/s (1分)

(2)微粒从B 点进入第二象限的磁场B '中,画出微粒的运动轨迹如右图。

粒子在第二象限内做圆周运动的半径为R ,由几何关系可知

R =030cos 10cm=3

20cm 。(1分)

微粒做圆周运动的向心力由洛伦兹力提供,即qvB ′=m R

v 2(1分)

B ′=qR mv

qvR mv =2(1分)代入数据解得B ′=2

3T (1分) (3)由图可知,B 、D 点应分别是微粒进入磁场和离开磁场的点,磁场B ′的最小区域应该分布在以BD 为直径的圆内。由几何关系易得BD =20cm ,磁场圆的最小半径r =10cm 。(1分) 所以,所求磁场的最小面积为S =πr 2=0.01π=3.1×10-2m 2(1分)

8.

10.(1)E mg

q =

,小球带正电;(2)PO 的最小距离为:qB

Rg m r y 22==;(3)()R R z x s 722222=++=。 【解析】(1)小球进入第一象限正交的电场和磁场后,在垂直磁场的平面内做圆周运动,说明重力与

电场力平衡,qE =mg ①(1分) 得E

mg

q =

② 小球带正电。(1分) (2)小球在洛伦兹力作用下做匀速圆周运动,设匀速圆周运动的速度为v 、轨道半径为r 。 有:r

v m

qvB 2

=③(1分) 小球恰能通过半圆轨道的最高点并沿轨道运动,有:R

v m mg 2

=④(1分) 由③④得:qB

Rg m r =

⑤(1分)PO 的最小距离为:qB

Rg m r y 22=

=⑥(1分)

(3)小球由O 运动到N 的过程中机械能守恒:mg ·2R +12mv 2=1

2mv 2N ⑦(1分)

由④⑦得:Rg v Rg v 542N =+=⑧(1分)

根据运动的独立性可知,小球从N 点进入电场区域后,在x 轴方向以速度v N 做匀速直线运动,沿电场

方向做初速度为零的匀加速直线运动,则沿x 轴方向有:x =v N t ⑨(1分)

沿电场方向有:z =12at 2⑩(1分)g m qE

a ==?

(1分)t 时刻小球距O 点:()R R z x s 722222=++=(1分)

11.【答案】(1) m qU

v

2=

(2) qL

Uqm

B 2)21(+=

(3)qU

m L

v

L

t m

222?=

?=

ππ

【解析】⑴依题意,粒子经电场加速射入磁场时的速度为v ,由动能定理得:

由 22

1mv qU =

① 得m

qU v 2=

⑵要使圆周半径最大,则粒子的圆周轨迹应与AC 边相切,设圆周半径为R 由图中几何关系:

L R

R =+

θ

sin ③

由洛仑兹力提供向心力:

R

v m

qvB 2

= ④

联立②③④解得qL

Uqm

B 2)21(+=

⑶设粒子运动圆周半径为r , qB

mv

r =

,当r 越小,最后一次打到AB 板的点越靠近A 端点,在磁场中圆周运动累积路程越大,时间越长. 当r 为无穷小,经过n 个半圆运动,如图所示,最后一次打到A 点. 有:

r

L

n 2=

⑥ 圆周运动周期:v r

T

?=

π2 ⑦ 最长的极限时间2

T

n t m = ⑧

由⑥⑦⑧式得:qU

m L

v

L

t m

222?=

?=

ππ

A

B

O

C

U

L R

A

B

O C

L

U

θ

高二物理电磁学综合试题

高二物理电磁学综合试题 第Ⅰ卷选择题 一.选择题:(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,有的小题只有一个 选项正确,有的小题有多个选项正确,全对得3分,漏选得1分,错选、不选得0分) 1、下列说法不符合 ...物理史事的是() A、赫兹首先发现电流能够产生磁场,证实了电和磁存在着相互联系 B、安培提出的分子电流假说,揭示了磁现象的电本质 C、法拉第在前人的启发下,经过十年不懈的努力,终于发现电磁感应现象 D、19世纪60年代,麦克斯韦建立了完整的电磁场理论,并预言了电磁波的存在 2、图1中带箭头的直线是某电场中的一条电场线,在这条直线上有a、b两点,若用 E a、E b表示a、b两点的场强大小,则() A、a、b两点的场强方向相同 B、电场线是从a指向b,所以有E a>E b C、若一负电荷从b点逆电场线方向移到a点,则电场力对该电荷做负功 D、若此电场是由一负点电荷所产生的,则有E a<E b 3、质量均为m、带电量均为+q的A、B小球,用等长的绝缘细线悬在天花板上的同一点,平衡后两线张角为2θ,如图2所示,若A、B小球可视为点电荷,则A小球所在处的场强大小等于() A、mgsinθ/q B、mgcosθ/q C、mgtgθ/q D、mgctgθ/q 4、如图3所示为某一LC振荡电路在某时刻的振荡情况,则由此可知,此刻()A、电容器正在充电 B、线圈中的磁场能正在增加 C、线圈中的电流正在增加 D、线圈中自感电动势正在阻碍电流增大 是() A、它的频率是50H Z B、电压的有效值为311V C、电压的周期是 002s D、电压的瞬时表达式是u=311 sin314t v 图3 -311 311 u/v 0 1 2 t/10-2s 图4 ab 图1 B 图2 A θθ q q

初中物理电学计算题经典练习 (含答案)

物理电学计算经典练习 解题要求:1.写出所依据的主要公式或变形公式 2.写出代入数据的过程 3.计算过程和结果都要写明单位 1.如图1所示,已知R1=2Ω, R2=4Ω,U=12V;求: 1)通过电阻R1的电流I1; 2)电阻R2两端的电压U2。 (2A,8V) 2.如图2所示,电流表示数为0.5A, R2=20Ω,通过R2的电流是0.3A,求: 1)电压表的示数; 2)电阻R1=?(6V30Ω) 3. 如图3所示,电源电压为8V,R1=4R2,电流表A的示数为0.2A; 求:电阻R1, R2各为多少欧?(200Ω50Ω) 4. 如图4所示,电源电压U不变,当开关S闭合时,通过电阻R1的电流为3A。当电路中开关S断开时,R1两端电压为5V,R2的电功率为10W. 求:电源电压U及电阻R1和R2的阻值。(15V 5Ω 10Ω) 5.把阻值为300Ω的电阻R1接入电路中后,通过电阻R1的电流为40mA;把阻值为200Ω的电阻R2和R1串联接入同一电路中时; 求:1)通过电阻R2的电流为多少? 2)R2两端的电压为多少? 3)5min内电流通过R2做功多少? (0.25A 0.75A) 6. 如图5所示,电源电压恒为3V,知R1=12Ω, R2=6Ω。求: 1)当开关S断开时电流表A的读数 2)当开关S闭合时电流表A的读数

7. 如图6所示,电源电压U不变,R1=6Ω. 1)当开关S断开时电流表A的示数为1A,求R1两端的电压; 2)当开关S闭合时电流表A的示数为1.2A,求R2的电阻值。 (6V 30Ω) 8.如图7所示,定值电阻R1和R2串联,电源电压为7V,电流表的示数为0.5A, R2的电功率为2.5W。 求:电阻R2两端电压和电阻R1的电功率。(5V 1W) 9.如图8所示,电源电压为8V,且保持不变。R1=4R2。当开关S断开时,电流表的示数为2A。 求:1)电阻R1和R2的阻值各为多少欧?(4Ω 1Ω) 2)当开关S闭合时电阻R1和R2的电功率各为多大?(16W 64W) 10.如图9所示,已知R1=6Ω,通过电阻R2的电流I2=0.5A, 通过电阻R1和R2的电流之比为I1: I2=2:3。求:电阻R2的阻值和电源的总电压。 (4Ω 2V) 11.如图10所示,灯上标有“10V2W”的字样。当开关S闭合时,灯L恰能正常发光,电压表的示数为2V。当开关S断开时,灯L的实际功率仅为额定功率的1/4。求:电阻R2的阻值。(60Ω) 12.如图11所示,当灯正常发光时,求:1)通过灯泡的电流是多少?2)电流表的示数是多少?(2.5A 3A) 13.如图12所示,A是标 有“24V 60W”的用电器, E是串联后电压为32V的 电源,S为开关,B是滑

大学物理电磁学练习题及答案

大学物理电磁学练习题 球壳,内半径为R 。在腔内离球心的距离为d 处(d R <),固定一点电荷q +,如图所示。用导线把球壳接地后,再把地线撤 去。选无穷远处为电势零点,则球心O 处的电势为[ D ] (A) 0 (B) 04πq d ε (C) 04πq R ε- (D) 01 1 () 4πq d R ε- 2. 一个平行板电容器, 充电后与电源断开, 当用绝缘手柄将电容器两极板的距离拉大, 则两极板间的电势差12U 、电场强度的大小E 、电场能量W 将发生如下变化:[ C ] (A) 12U 减小,E 减小,W 减小; (B) 12U 增大,E 增大,W 增大; (C) 12U 增大,E 不变,W 增大; (D) 12U 减小,E 不变,W 不变. 3.如图,在一圆形电流I 所在的平面内, 选一个同心圆形闭合回路L (A) ?=?L l B 0d ,且环路上任意一点0B = (B) ?=?L l B 0d ,且环路上 任意一点0B ≠ (C) ?≠?L l B 0d ,且环路上任意一点0B ≠ (D) ?≠?L l B 0d ,且环路上任意一点B = 常量. [ B ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感应强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示。现测得导体上下两面电势差为V ,则此导体的霍尔系数等于[ C ] (A) IB V D S (B) B V S ID (C) V D IB (D) IV S B D 5.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为 l 。当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a 、 c 两点间的电势差a c U U -为 [ B ] (A)2 0,a c U U B l εω=-= (B) 2 0,/2a c U U B l εω=-=- (C)22 ,/2a c B l U U B l εωω=-= (D)2 2 ,a c B l U U B l εωω=-= 6. 对位移电流,有下述四种说法,请指出哪一种说法正确 [ A ] (A) 位移电流是由变化的电场产生的; (B) 位移电流是由线性变化的磁场产生的; (C) 位移电流的热效应服从焦耳——楞次定律; (D) 位移电流的磁效应不服从安培环路定理.

高中物理电磁学和光学知识点公式总结大全

高中物理电磁学知识点公式总结大全 来源:网络作者:佚名点击:1524次 高中物理电磁学知识点公式总结大全 一、静电学 1.库仑定律,描述空间中两点电荷之间的电力 ,, 由库仑定律经过演算可推出电场的高斯定律。 2.点电荷或均匀带电球体在空间中形成之电场 , 导体表面电场方向与表面垂直。电力线的切线方向为电场方向,电力线越密集电场强度越大。 平行板间的电场 3.点电荷或均匀带电球体间之电位能。本式以以无限远为零位面。 4.点电荷或均匀带电球体在空间中形成之电位。 导体内部为等电位。接地之导体电位恒为零。 电位为零之处,电场未必等于零。电场为零之处,电位未必等于零。 均匀电场内,相距d之两点电位差。故平行板间的电位差。 5.电容,为储存电荷的组件,C越大,则固定电位差下可储存的电荷量就越大。电容本身为电中性,两极上各储存了+q与-q的电荷。电容同时储存电能,。 a.球状导体的电容,本电容之另一极在无限远,带有电荷-q。 b.平行板电容。故欲加大电容之值,必须增大极板面积A,减少板间距离d,或改变板间的介电质使k变小。 二、感应电动势与电磁波 1.法拉地定律:感应电动势。注意此处并非计算封闭曲面上之磁通量。 感应电动势造成的感应电流之方向,会使得线圈受到的磁力与外力方向相反。 2.长度的导线以速度v前进切割磁力线时,导线两端两端的感应电动势。若v、B、互相垂直,则 3.法拉地定律提供将机械能转换成电能的方法,也就是发电机的基本原理。以频率f 转动的发电机输出的电动势,最大感应电动势。 变压器,用来改变交流电之电压,通以直流电时输出端无电位差。 ,又理想变压器不会消耗能量,由能量守恒,故 4.十九世纪中马克士威整理电磁学,得到四大公式,分别为 a.电场的高斯定律 b.法拉地定律 c.磁场的高斯定律 d.安培定律 马克士威由法拉地定律中变动磁场会产生电场的概念,修正了安培定律,使得变动的电场会产生磁场。e.马克士威修正后的安培定律为 a.、 b.、 c.和修正后的e.称为马克士威方程式,为电磁学的基本方程式。由马克士威方程式,预测了电磁波的存在,且其传播速度。 。十九世纪末,由赫兹发现了电磁波的存在。 劳仑兹力。 右手定则:右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向

高中物理电磁学经典例题

高中物理典型例题集锦 (电磁学部分) 25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板 的中央各有小孔M、N。今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好 为零,然后按原路径返回。若保持两板间的电压不变,则: A.若把A板向上平移一小段距离,质点自P点下落仍能返回。 B.若把B板向下平移一小段距离,质点自P点下落仍能返回。 C.若把A板向上平移一小段距离,质点自P点下落后将穿过 N孔继续下落。 图22-1 D.若把B板向下平移一小段距离,质点自P点下落后将穿过N 孔继续下落。 分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N 运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB 若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回, 应选A。 若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功 增加,所以它将一直下落,应选D。 由上述分析可知:选项A和D是正确的。 想一想:在上题中若断开开关S后,再移动金属板,则问题又如何(选A、B)。 26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。现有一离子束,其中每个 离子的质量为m,电量为q,从与两板 等距处沿着与板平行的方向连续地射 入两板间的电场中。设离子通过平行 板所需的时间恰为T(与电压变化周图23-1 图23-1(b)

磁学练习题

______和______(线圈和磁极) 1.【2017?泰安卷】如图是我国早期的指南针﹣﹣司南,它是把天然磁石磨成勺子的形状,放在水平光滑的“地盘”上制成的.东汉学者王充在《论衡》中记载:“司南之杓,投之于地,其柢指南”.“柢”指的是司南长柄,下列说法中正确的是() ①司南指南北是由于它受到地磁场的作用 ②司南长柄指的是地磁场的北极 ③地磁场的南极在地球地理的南极附近 ④司南长柄一端是磁石的北极. A.只有①②正确 B.只有①④正确 C.只有②③正确 D.只有③④正确 图K27-6 7.如图K27-7所示,开关闭合,小磁铁处于静止状态后,把滑动变阻器的滑片P缓慢向右移动,此时悬挂的小磁铁的运动情况是( ) 图K27-7 A.向下移动B.向上移动 C.静止不动D.无法确定 5.(2015湖南长沙,第25题)法国科学家阿尔贝?费尔和德国科学家彼得?格林贝格尔由于巨磁电阻(GMR)效应而荣获2007年诺贝尔物理学奖。如图是研究巨磁电阻特性的原理示意图。实验发现,在闭合开关S1、S2且滑片 P向右滑动的过程中,指示灯明显变暗,这说明()

A、电磁铁的左端为N极。 B、流过灯泡的电流增大。 C、巨磁电阻的阻值随磁场的减弱而明显减小。 D、巨磁电阻的阻值与磁场的强弱没有关系。 6.(2015浙江嘉兴,第14题)爱因斯坦曾说,在一个现代的物理学家看来,磁场和他坐的椅子一样实在。下图所表示的磁场与实际不相符的是( ) 16.(2015四川遂宁,第9题)如图所示,A是悬挂在弹簧测力计下的条形磁铁,B是螺线管。闭合开关,待弹簧测力计示数稳定后,将滑动变阻器的滑片缓慢向右移动的过程中,下列说法正确的是( ) A.电压表示数变大,电流表示数也变大 B.电压表示数变小,电流表示数也变小 C.螺线管上端是N极,弹簧测力计示数变小 D.螺线管上端是S极,弹簧测力计示数变大 34.(2015山东烟台,第6题)如图4是一种水位自动报警器的原理示意图,当水位升高到金属块A处时() 图4 A.红灯亮,绿灯灭 B.红灯灭,绿灯亮 C.红灯亮,绿灯亮 D.红灯灭,绿灯灭 23.【湖北省荆门市2015年初中毕业生学业水平考试】如图所示,闭合开关S,弹簧测力计

(完整版)电磁学题库(附答案)

《电磁学》练习题(附答案) 1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E ? 的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远? 2. 一带有电荷q =3×10- 9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10- 5 J ,粒子动能的增量为4.5×10- 5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大? 3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度. 4. 一半径为 R 的带电球体,其电荷体密度分布为 ρ =Ar (r ≤R ) , ρ =0 (r >R ) A 为一常量.试求球体内外的场强分布. 5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10- 12C 2 / N ·m 2 ) 6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位 置.已知空间的场强分布为: E x =bx , E y =0 , E z =0. 常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功. 8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10- 6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 ) 9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在 此区域有一静电场,场强为j i E ? ??300200+= .试求穿过各面的电通量. E ? q L q P

大学物理电磁学公式总结

大学物理电磁学公式总结 Prepared on 22 November 2020

静电场小结 一、库仑定律 二、电场强度 三、场强迭加原理 点电荷场强 点电荷系场强 连续带电体场强 四、静电场高斯定理 五、几种典型电荷分布的电场强度 均匀带电球面 均匀带电球体 均匀带电长直圆柱面 均匀带电长直圆柱体无限大均匀带电平面 六、静电场的环流定理 七、电势 八、电势迭加原理 点电荷电势 点电荷系电势 连续带电体电势 九、几种典型电场的电势 均匀带电球面 均匀带电直线 十、导体静电平衡条件 (1)导体内电场强度为零;导体表面附近场强与表面垂直。(2)导体是一个等势体,表面是一个等势面。 推论一电荷只分布于导体表面 推论二导体表面附近场强与表面电荷密度关系

十一、静电屏蔽 导体空腔能屏蔽空腔内、外电荷的相互影响。即空腔外(包括外表面)的电荷在空腔内的场强为零,空腔内(包括内表面)的电荷在空腔外的场强为零。 十二、电容器的电容 平行板电容器 圆柱形电容器 球形电容器 孤立导体球 十三、电容器的联接 并联电容器 串联电容器 十四、电场的能量 电容器的能量 电场的能量密度 电场的能量 稳恒电流磁场小结一、磁场 运动电荷的磁场 毕奥——萨伐尔定律 二、磁场高斯定理 三、安培环路定理 四、几种典型磁场 有限长载流直导线的磁场 无限长载流直导线的磁场 圆电流轴线上的磁场 圆电流中心的磁场 长直载流螺线管内的磁场 载流密绕螺绕环内的磁场 五、载流平面线圈的磁矩 m和S沿电流的右手螺旋方向 六、洛伦兹力 七、安培力公式

八、载流平面线圈在均匀磁场中受到 的合磁力 载流平面线圈在均匀磁场中受到的磁力矩 电磁感应小结 一、电动势 非静电性场强 电源电动势 一段电路的电动势 闭合电路的电动势当 时,电动势沿电路(或回路)l的正方向, 时沿反方向。 二、电磁感应的实验定律 1、楞次定律:闭合回路中感生电流的方向是使它产生的磁通量反抗引起电磁感应的磁通量变化。楞次定律是能量守恒定律在电磁感应中的表现。 2、法拉第电磁感应定律:当闭合回路l中的磁通量变化时,在回路中的感应电动势为若时,电动势沿回路l 的正方向,时,沿反方向。对线图,为全磁通。 3、感应电流 感应电量 三、电动势的理论解释 1、动生电动势在磁场中运动的导线l 以洛伦兹力为非电静力而成为一电源,导线上的动生电动势 若,电动势沿导线l的正方向,若,沿反方向。动生电动势的大小为导线单位时间扫过的磁通量,动生电动势的方向可由正载流子受洛伦兹力的方向决定。直导线在均匀磁场的垂面以磁场为轴转动 。平面线圈绕磁场的垂轴转动。 2、感生电动势变化磁场要在周围空间激发一个非静电性的有旋电场E,

(完整版)高中物理电磁学知识点

二、电磁学 (一)电场 1、库仑力:2 2 1r q q k F = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量 电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。 定义式: q F E = 单位: N / C 点电荷电场场强 r Q k E = 匀强电场场强 d U E = 3、电势,电势能: q E A 电=?,A q E ?=电 顺着电场线方向,电势越来越低。 4、电势差U ,又称电压 q W U = U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 22 1mv qU = 7、粒子通过偏转电场的偏转量: 2 02 2022212121V L md qU V L m qE at y = == 粒子通过偏转电场的偏转角 20 mdv qUL v v tg x y = = θ 8、电容器的电容: c Q U = 电容器的带电量: Q=cU 平行板电容器的电容: kd S c πε4= 电压不变 电量不变

(二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,) 2、电阻定律: 电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。 单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3 电压分配 2 12 1R R U U =,U R R R U 2 11 1 += 功率分配 2 12 1R R P P =,P R R R P 2 11 1+= 4、并联电路总电阻: 3 2 1 1111R R R R ++= (并联的总电阻比任何一个分电阻小) 两个电阻并联 2 121R R R R R += 并联电路电流分配 122 1 I R I R =,I 1= I R R R 2 12 + 并联电路功率分配 1 22 1R R P P =,P R R R P 2 12 1+= 5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR (2)闭合电路欧姆定律:I = r R E + Ir U E += E r 路端电压:U = E -I r= IR 输出功率: = IE -I r = (R = r 输出功率最大) R 电源热功率: 电源效率: =E U = R R+r 6、电功和电功率: 电功:W=IUt 焦耳定律(电热)Q= 电功率 P=IU 纯电阻电路:W=IUt= P=IU 非纯电阻电路:W=IUt > P=IU > S l R ρ=

电磁学经典练习题与答案

高中物理电磁学练习题 一、在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确. 1.如图3-1所示,有一金属箔验电器,起初金属箔闭合,当带正电的棒靠近验电器上部的金属板时,金属箔开.在这个状态下,用手指接触验电器的金属板,金属箔闭合,问当手指从金属板上离开,然后使棒也远离验电器,金属箔的状态如何变化?从图3-1的①~④四个选项中选取一个正确的答案.[] 图3-1 A.图①B.图②C.图③D.图④ 2.下列关于静电场的说法中正确的是[] A.在点电荷形成的电场中没有场强相等的两点,但有电势相等的两点 B.正电荷只在电场力作用下,一定从高电势向低电势运动 C.场强为零处,电势不一定为零;电势为零处,场强不一定为零 D.初速为零的正电荷在电场力作用下不一定沿电场线运动 3.在静电场中,带电量大小为q的带电粒子(不计重力),仅在电场力的作用下,先后飞过相距为d的a、b两点,动能增加了ΔE,则[]A.a点的电势一定高于b点的电势 B.带电粒子的电势能一定减少 C.电场强度一定等于ΔE/dq D.a、b两点间的电势差大小一定等于ΔE/q 4.将原来相距较近的两个带同种电荷的小球同时由静止释放(小球放在光滑绝缘的水平面上),它们仅在相互间库仑力作用下运动的过程中[]A.它们的相互作用力不断减少 B.它们的加速度之比不断减小 C.它们的动量之和不断增加 D.它们的动能之和不断增加 5.如图3-2所示,两个正、负点电荷,在库仑力作用下,它们以两者连线上的某点为圆心做匀速圆周运动,以下说确的是[] 图3-2

A.它们所需要的向心力不相等 B.它们做圆周运动的角速度相等 C.它们的线速度与其质量成反比 D.它们的运动半径与电荷量成反比 6.如图3-3所示,水平固定的小圆盘A,带电量为Q,电势为零,从盘心处O由静止释放一质量为m,带电量为+q的小球,由于电场的作用,小球竖直上升的高度可达盘中心竖直线上的c点,Oc=h,又知道过竖直线上的b点时,小球速度最大,由此可知在Q所形成的电场中,可以确定的物理量是[] 图3-3 A.b点场强B.c点场强 C.b点电势D.c点电势 7.如图3-4所示,带电体Q固定,带电体P的带电量为q,质量为m,与绝缘的水平桌面间的动摩擦因数为μ,将P在A点由静止放开,则在Q的排斥下运动到B点停下,A、B相距为s,下列说确的是[] 图3-4 A.将P从B点由静止拉到A点,水平拉力最少做功2μmgs B.将P从B点由静止拉到A点,水平拉力做功μmgs C.P从A点运动到B点,电势能增加μmgs D.P从A点运动到B点,电势能减少μmgs 8.如图3-5所示,悬线下挂着一个带正电的小球,它的质量为m、电量为q,整个装置处于水平向右的匀强电场中,电场强度为E.[] 图3-5 A.小球平衡时,悬线与竖直方向夹角的正切为Eq/mg B.若剪断悬线,则小球做曲线运动 C.若剪断悬线,则小球做匀速运动 D.若剪断悬线,则小球做匀加速直线运动 9.将一个6V、6W的小灯甲连接在阻不能忽略的电源上,小灯恰好正常发光,现改将一个6V、3W的小灯乙连接到同电源上,则[]A.小灯乙可能正常发光 B.小灯乙可能因电压过高而烧毁 C.小灯乙可能因电压较低而不能正常发光 D.小灯乙一定正常发光 10.用三个电动势均为1.5V、阻均为0.5Ω的相同电池串联起来作电源,向三个阻值都是1Ω的用电器供电,要想获得最大的输出功率,在如图3-6所示电路中应选择的电路是[] 图3-6 11.如图3-10所示的电路中,R 1、R 2 、R 3 、R 4 、R 5 为阻值固定的 电阻,R 6 为可变电阻,A为阻可忽略的电流表,V为阻很大的电压表,电源的

电磁学练习题

电磁学练习题 8-1 在下列三种情况下,线圈内是否产生感应电动势?若产生感应电动势,其方向如何? (1)一根无限长载流直导线与一环形导线的直径重合,如图(a )所示.若直导线与环形导线绝缘,且后者以前者为轴而转动. (2)A 、B 两个环形导线,如图(b)所示B 环固定并通有电流I ,A 环可绕通过环的中心的竖直轴转动.开始时,两环面相互垂直,然后A 环以逆时针方向转到两环面相互重叠的位置. (3)矩形金属线框ABCD 在长直线电流I 的磁场中,以AB 边为轴,按图(C )中所示的方向转过1800。 答:(1)通电直导线的B 线为圆心在导线上并垂直于导线的同心圆,环形导线以导线为轴转动时,穿过它的B 通量始终不变,故环形导线内无感应电动势产生. (2)B 环电流产生的B 线类似条形磁铁B 线的分布:两侧B 分布不均匀.A 环绕B 环轴转动时,穿过它的B 通量不断变化,故A 环中有感应电动势产生. (3)长通电直导线外B 分布不均匀,线圈ABCD 以AB 为轴转过180o ,穿过它的B 通量不断变化,故ABCD 中有感应电动势产生. 8-2 将磁铁插入闭合线圈,一次是迅速地插入,另一次是缓慢地插入,问: (1)两次插人线圈,线圈中的感应电荷是否相同? (2)两次插人线圈,手推磁铁之力(反抗电磁力)所作的功是否相同? 解: ,故 无论是迅速插入,还是缓慢插入,因为线圈匝数N 、线圈导线总电阻R 和前后穿过线圈磁通量的改变量?Φ都相同,所以两次线圈中的感应电荷量相同. (2)线圈中产生感应电流,手推磁铁之力所作的功转换为电能W E ,由于 ,与磁通量变化率成正比,故快速插人时手推磁铁之力所作功大一些. 8—3 有一无限长螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈、半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dl /dt ,求小线圈中的感应电动势. 解:长螺线管内nI B 0μ=

大学物理电磁学知识点汇总

稳恒电流 1.电流形成的条件、电流定义、单位、电流密度矢量、电流场(注意我们 又涉及到了场的概念) 2.电流连续性方程(注意和电荷守恒联系起来)、电流稳恒条件。 3.欧姆定律的两种表述(积分型、微分型)、电导、电阻定律、电阻、电 导率、电阻率、电阻温度系数、理解超导现象 4.电阻的计算(这是重点)。 5.金属导电的经典微观解释(了解)。 6.焦耳定律两种形式(积分、微分)。(这里要明白一点:微分型方程是 精确的,是强解。而积分方程是近似的,是弱解。) 7.电动势、电源的作用、电源做功。、 8.含源电路欧姆定律。 9.基尔霍夫定律(节点电流定律、环路电压定律。明白两者的物理基础。)习题:13.19;13.20 真空中的稳恒磁场 电磁学里面极为重要的一章 1. 几个概念:磁性、磁极、磁单极子、磁力、分子电流 2. 磁感应强度(定义、大小、方向、单位)、洛仑磁力(磁场对电荷的作用) 3. 毕奥-萨伐尔定律(稳恒电流元的磁场分布——实验定律)、磁场叠加原理(这是磁场的两大基本定律——对比电场的两大基本定律) 4. 毕奥-萨伐尔定律的应用(重点)。 5. 磁矩、螺线管磁场、运动电荷的磁场(和毕奥-萨伐尔定律等价——更基本) 6. 稳恒磁场的基本定理(高斯定理、安培环路定理——与电场对比) 7. 安培环路定理的应用(重要——求磁场强度) 8. 磁场对电流的作用(安培力、安培定律积分、微分形式)

9. 安培定律的应用(例14.2;平直导线相互作用、磁场对载流线圈的作用、磁力矩做功) 10. 电场对带电粒子的作用(电场力);磁场对带电粒子的作用(洛仑磁力);重力场对带电粒子的作用(引力)。 11. 三场作用叠加(霍尔效应、质谱仪、例14.4) 习题:14.20,14.22,14.27,14.32,14.46,14.47 磁介质(与电解质对比) 1.几个重要概念:磁化、附加磁场、相对磁导率、顺磁质、抗磁质、铁磁 质、弱磁质、强磁质。(请自己阅读并绘制磁场和电场相关概念和公式 的对照表) 2.磁性的起源(分子电流)、轨道磁矩、自旋磁矩、分子矩、顺磁质、抗 磁质的形成原理。 3.磁化强度、磁化电流、磁化面电流密度、束缚电流。 4.磁化强度和磁化电流的关系(微分关系、积分关系) 5.有磁介质存在时的磁场基本定理、磁场强度矢量H、有磁介质存在时的 安培环路定律(有电解质存在的安培环路定律)、磁化规律。 6.请比较B、H、M和E、D、P的关系。磁化率、相对磁导率、绝对磁导 率。 7.有磁介质存在的安培环路定理的应用(例15.1、例15.2)、有磁介质存 在的高斯定理。 8.铁磁质(起始磁化曲线、磁滞回线、饱和磁感应强度、起始磁导率、磁 滞效应、磁滞、剩磁、矫顽力、磁滞损耗、磁畴、居里点、软磁材料、 硬磁材料、矩磁材料)(了解) 习题: 15.11

高中物理电磁学知识点梳理2

高中物理知识点梳理 电磁学部分: 1、基本概念: 电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦交流电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速 2、基本规律: 电量平分原理(电荷守恒) 库伦定律(注意条件、比较-两个近距离的带电球体间的电场力) 电场强度的三个表达式及其适用条件(定义式、点电荷电场、匀强电场) 电场力做功的特点及与电势能变化的关系 电容的定义式及平行板电容器的决定式 部分电路欧姆定律(适用条件) 电阻定律 串并联电路的基本特点(总电阻;电流、电压、电功率及其分配关系) 焦耳定律、电功(电功率)三个表达式的适用范围 闭合电路欧姆定律 基本电路的动态分析(串反并同) 电场线(磁感线)的特点 等量同种(异种)电荷连线及中垂线上的场强和电势的分布特点 常见电场(磁场)的电场线(磁感线)形状(点电荷电场、等量同种电荷电场、等量异种电荷电场、点电荷与带电金属板间的电场、匀强电场、条形磁铁、蹄形磁铁、通电直导线、环形电流、通电螺线管) 电源的三个功率(总功率、损耗功率、输出功率;电源输出功率的最大值、效率) 电动机的三个功率(输入功率、损耗功率、输出功率) 电阻的伏安特性曲线、电源的伏安特性曲线(图像及其应用;注意点、线、面、斜率、截

电磁学第三章例题教学文案

物理与电子工程学院 注:教案按授课章数填写,每一章均应填写一份。重复班授课可不另填写教案。教学内容须另加附页。

总结: 1、E P 0 (1)极化率 各点相同,为均匀介质 (2) i p P 各点相同,为均匀极化 2、极化电荷体密度 S S S d P S d P q d S d P q (1)对均匀极化的介质:0 q (2)特例:仅对均匀介质,不要求均匀极化,只要该点自由电荷体密度0000q ,则:, (第5节小字部分给出证明) 3、极化电荷面密度 n P P ?12 2P 、1P 分别为媒质2、1的极化强度,n ?为界面上从2→1的法向单位矢。当电介质置于真空(空气中)或金属中: n P n P ? n P :电介质内的极化强度 n ?:从电介质指向真空或 金属的法向单位矢。 例(补充):求一均匀极化的电介质球表面上极化电荷的分布,以及极 化电荷在球心处产生的电场强度,已知极化强度为P 。 - -z 解:(1)求极化电荷的分布,取球心O 为原点,极轴与P 平行的球极 坐标,选球表面任一点A (这里认为置于真空中),则:

学习资料 A n P ? 由于均匀极化,P 处处相同,而极化电荷 的分布情况由A n ?与P 的夹角而定,即 是θ的函数(任一点的n ?都是球面的径向r ?) A A A P n P cos ? 任一点有: cos P 所以极化电荷分布: 140230030 22P 右半球在、象限,左半球在、象限,左右两极处,,最大上下两极处,,最小 (2)求极化电荷在球心处产生的场强 由以上分析知 以z 为轴对称地分布在球表面上,因此 在球心处产 生的E 只有z 轴的分量,且方向为z 轴负方向。 在球表面上任意选取一面元S d ,面元所带电荷量dS q d ,其在球心O 处产生场强为: R R dS E d ?42 其z 分量为: cos 4cos 2 0R dS E d E d z (方向为z 轴负方向) 全部极化电荷在O 处所产生的场强为: 2 0222 0cos 4cos sin cos 4z S dS E dE R P R d d R 乙

电磁学试题库试题及答案

. 电磁学试题库 试题3 一、填空题(每小题2分,共20分) 1、带电粒子受到加速电压作用后速度增大,把静止状态下的电子加速到光速需要电压是( )。 2、一无限长均匀带电直线(线电荷密度为λ)与另一长为L ,线电荷密度为η的均匀带电直线AB 共面,且互相垂直,设A 端到无限长均匀带电线的距离为a ,带电线AB 所受的静电力为( )。 3、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势( 4、两个同心的导体薄球壳,半径分别为b a r r 和,其间充满电阻率为ρ的均匀介质(1)两球壳之间的电阻( )。(2)若两球壳之间的电压是U ,其电流密度( )。 5、载流导线形状如图所示,(虚线表示通向无穷远的直导线)O 处的磁感应强度的大小为( ) 6、一矩形闭合导线回路放在均匀磁场中,磁场方向与回路平 面垂直,如图所示,回路的一条边ab 可以在另外的两条边上滑 动,在滑动过程中,保持良好的电接触,若可动边的长度为L , 滑动速度为V ,则回路中的感应电动势大小( ),方向( )。 7、一个同轴圆柱形电容器,半径为a 和b ,长度为L ,假定两板间的电压 t U u m ω=sin ,且电场随半径的变化与静电的情况相同,则通过半径为r (a

电磁学公式总结

大学物理电磁学公式总结 ?第一章(静止电荷的电场) 1.电荷的基本性质:两种电荷,量子性,电荷守恒,相对论不变性。 2.库仑定律:两个静止的点电荷之间的作用力 F =kq1q2 e r= r2 3.电力叠加原理:F=ΣF i , q0为静止电荷 4.电场强度:E=F q0 5.场强叠加原理:E=ΣE i 用叠加法求电荷系的静电场: E=(离散型) E=(连续型) 6.电通量:Φe= 7.高斯定律:=Σq int 8.典型静电场: 1)均匀带电球面:E=0 (球面内) E=(球面外) 2)均匀带电球体:E==(球体内) E=(球体外)

3) 均匀带电无限长直线: E= ,方向垂直于带电直线 4) 均匀带电无限大平面: E=,方向垂直于带电平面 9. 电偶极子在电场中受到的力矩: M=p×E ? 第三章(电势) 1. 静电场是保守场: =0 2. 电势差:φ1 –φ2= 电势:φp =∫E 鈥r (p0)(p) (P0是电势零点) 电势叠加原理:φ=Σφi 3. 点电荷的电势:φ= 电荷连续分布的带电体的电势:φ= 4. 电场强度E 与电势φ的关系的微分形式: E=-gradφ=-▽φ=-(i +j +k ) 电场线处处与等势面垂直,并指向电势降低的方向;电场线密处等势面间距小。 5. 电荷在外电场中的电势能:W=q φ 移动电荷时电场力做的功:A 12=q(φ1 –φ2)=W 1-W 2 电偶极子在外电场中的电势能:W=-p?E

?第四章(静电场中的导体) 1.导体的静电平衡条件:E int=0,表面外紧邻处Es⊥表面或导体是个等势体。 2.静电平衡的导体上电荷的分布: Q int=0,σ=ε0E 3.计算有导体存在时的静电场分布问题的基本依据: 高斯定律,电势概念,电荷守恒,导体经典平衡条件。 4.静电屏蔽:金属空壳的外表面上及壳外的电荷在壳内的合场强总为零,因而对壳内无影响。?第五章(静电场中的电介质) 1.电介质分子的电距:极性分子有固有电距,非极性分子在外电场中产生感生电距。 2.电介质的极化:在外电场中固有电距的取向或感生电距的产生使电介质的表面(或 内部)出现束缚电荷。 电极化强度:对各向同性的电介质,在电场不太强的情况下 P=ε0(εr-1)E=ε0X E 面束缚电荷密度:σ’=P?e n 3.电位移:D=ε0E+P 对各向同性电介质:D=ε0εr E=εE D的高斯定律:=q0int 4.电容器的电容:C=Q U

高中【物理】高中物理电磁学所有概念-知识点-公式

高中物理电磁学所有概念-知识点-公式 十、电场 1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电 势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器〔见第二册P111〕 14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E =U/d) 抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注:

初中物理电学经典易错题个人整理

历年中考物理经典错题---电学部分 一.选择题 1.用丝绸磨擦过的玻璃去靠近甲、乙两个轻小物体,甲被排斥、乙被吸引。由此我们可以判定()A甲正电乙负电B甲负电乙正电 C甲带负电,乙不带电或带正电 D甲带正电,乙不带电或带负电 2.电视机显像管尾部热灯丝发射出电子,高速撞击在荧光屏上,使荧光屏发光,则在显像管内( ) A.电流方向从荧光屏到灯丝 B.电流方向从灯丝到荧光屏 C.显像管内是真空,无法通过电流 D.电视机使用的是交流电,显像管中的电流方向不断变化 3.三个相同的灯泡连接在电路中,亮度一样,则它们的连接关系是() A.一定并联B一定串联C可能是混联D串联、并联都有可能,不可能是混联 4.有两只日光灯,开关闭合时,两灯同时亮,开关断开时,两灯同时熄灭,则它们的连接关系是( ) A 一定串联 B 一定并联 C可能并联,也可能串联 D无法确定 5.对式子R=U/I的理解,下面的说法中正确的是() A、导体的电阻跟它两端的电压成正比 B、导体的电阻跟通过它的电流强度成反比 C、导体的电阻跟它两端的电压和通过它的电流强度无关 D、加在导体两端的电压为零,则通过它的电流为零,此时导体的电阻为零 6.L1、L2两灯额定电压相同,额定功率P额1>P额2,把它们接入电压为U的电路中,错误的是( ) A.两灯串联使用时,实际功率P1P2 C.串联时两灯消耗的总功率P总>P额2 D.并联使用时两灯消耗的总功P总

相关文档
最新文档