文丘力流量计实验

文丘力流量计实验
文丘力流量计实验

中山大学工学院流体力学实验报告

实验名称:文丘里流量计实验

姓名:刘广、马鹏程

参与组员:刘广、马鹏程

学号:11309018、11309022

任课教师:苏炜

学科专业:工学院理论与应用力学

中山大学

2014年05月14日

实验二:文丘里流量计实验

一、实验目的

1、了解文丘里流量计的构造、原理及使用方法。

2、掌握确定流量系数μ的方法。

3、绘制流量系数与实测流量以及流量与压降的关系,计算流量系数的平均值。

二:实验仪器与设备:

①装有实验装置的实验台 1台

三、实验原理

1.实验装置图

文丘里流量计是一种管道测量的仪器,它由收缩段、喉道段和扩散段三部分组成。在文丘里流量计入口处取1-1断面,在其喉部收缩断出取2-2断面,由于流量计系水平放置,则流股在上述两断面的能量方程(不考虑能量损失)如下:

其中α为动能修正系数,根据连续性方程,得

V 1A 1=V 2A 2

令α1=α2=1,解上两式,得

()2

2124

21241d g P P Q g

d d πρ-=

?

??- ???

式中的

12

g

P P ρ-为测压管的液面高差△h 。令 2

24

21421d K g

d d π=

???- ???

则Q K h =??。

由此可见,通过测取△h 值,即可求出计算流量Q 。由于实际上所取的两个断面之间存在着水头损失,所以实际流量Q 0一般要略小于计算流量Q ,二者的比值,称为流量系数,即

Q Q

μ=

。实际流量Q 0 用体积法测定,0V Q t =,V 为t 时间内水由管道流入计量箱内的体积。

Page 3 of 6

Page 4of 6

最应该注意测量的物理量是高度差h ?和实际流量的测量值所用的时间T ,因为这两个数据在测量时的准确性直接影响着后续的数据处理,假如有大的偏差将直接导致实验结果不可靠。

2. 绘制

Q μ-实

h

Q -?实的关系曲线。如下两图所示:

Q μ-实

图像

h

Q -?实图像

Page 5 of 6

Page 6 of 6

流量计性能测试实验(DOC)

中南大学 仪器与自动检测实验报告 冶金科学与工程院系冶金专业班级 姓名学号同组者同班同学 实验日期2013 年 4 月 08 日指导教师 实验名称:流量计性能测试实验 一、实验目的 1.掌握流量计性能测试的一般实验方法; 2.了解倒U型压差计的使用方法; 3.应用体积法,测定孔板流量计、文丘里流量计的标定曲线; 4.验证孔板流量计、文丘里流量计的孔流系数C0与雷诺数Re的关系曲线。 二、实验原理 流体流过孔板流量计或文丘里流量计时,都会产生一定的压差,而这个压差与流体流过的流速存在着一定的关系。 1.孔板流量计或文丘里流量计的标定 流体在管内的流量可用体积法测量: V= a·?h /τ(1) 式中:V——管内流体的流量,L/s; a——体积系数,即计量筒内水位每增加1cm所增加的水的体积,本实验中a=0.6154 L/cm;

?h ——计量筒液位上升高度,?h = h1- h0,cm ; h1——计量筒内水位的初始读数,cm ; h0——计量筒内水位的终了读数,cm ; τ ——与?h 相对应的计量时间,s 。 测出与V 相对应的孔板流量计(或文丘里流量计)的压差读数R ,即可在直角坐标纸上标绘出对应流量计的V ~R 标定曲线。 其中, R ——孔板流量计(或文丘里流量计)的压差读数,cm 。 2.孔流系数C0与雷诺数Re 关系测定 流体在管内的流量和被测流量计的压差R 存在如下的关系: 3 00102??? ?=ρ P C A V (2) 其中,2 10-???=?g R P ρ (3) 2 00102??= Rg A V C (4) 式中: A0——孔板流量计的孔径(或文丘里流量计喉径)的截面积,m2,本实验中孔板孔d0=17.786mm ,文丘里流量计喉径d0=19.0mm ; C0——孔板流量计(或文丘里流量计)的孔流系数; g ——重力加速度,g=9.807m/s2。 又知 μ ρ du = Re (5) 式中: Re ——雷诺数; d ——水管的内径,m ,本实验中d =0.0238m ; ρ—— 流体的密度,kg/m3; μ—— 流体的粘度,Pa ·s 。 u ——水管内流体流速,m/s,

流量计(中国石油大学流体力学实验报告)

中国石油大学(华东)流量计实验报告 实验日期:成绩: 班级:学号:姓名:教师: 同组者: 实验三、流量计实验 一、实验目的(填空) 1.掌握孔板、文丘利节流式流量计的工作原理及用途; 2.测定孔板流量计的流量系数 ,绘制流量计的矫正曲线; 3.了解两用式压差计的结构及工作原理,掌握其使用方法。 二、实验装置 1、在图1-3-1下方的横线上正确填写实验装置各部分的名称: 本实验采用管流综合实验装置。管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图1-3-1示。 F1——文丘利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力试验管路 图1-3-1 管流综合实验装置流程图

说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A )。 三、实验原理 1.文丘利流量计 文丘利管是一种常用的量测有压管道 流量 的装置,见图1-3-2属压差式流量计。它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的管道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上比压计,通过量测两个断面的 测压管水头差 ,就可计算管道的理论流量 Q ,再经修正得到实际流量。 2.孔板流量计 如图1-3-3,在管道上设置孔板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上比压计,通过量测两个断面的 测压管水头差 ,可计算管道的理论流量 Q ,再经修正得到实际流量。孔板流量计也属压差式流量计,其特点是结构简单。 图1-3-2 文丘利流量计示意图 图1-3-3 孔板流量计示意图 3.理论流量 水流从1-1断面到达2-2断面,由于过水断面的收缩,流速增大,根据恒定总流能量方程,若不考虑 水头损失 ,速度水头的增加等于测压管水头的减小(即比压计液面高差h ?),因此,通过量测到的h ?建立了两断面平均流速v 1和v 2之间的一个关系: 如果假设动能修正系数1210.αα==,则最终得到理论流量为: 式中 2K A g =,2221 1( )()A A A A μ= -,A 为孔板锐孔断面面积。 4.流量系数 (1)流量计流过实际液体时,由于两断面测压管水头差中还包括了因 粘性 造成的水头损失,流量应修正为: 其中 1.0α<,称为流量计的流量系数。

电磁流量计在化工行业的应用

电磁流量计在化工行业的应用 【摘要】文章介绍了电磁流量计的概述,技术原理,安装条件,以及电磁流量在煤化工行业上的应用。 【关键词】电磁流量计;化工行业;应用 0.概述 电磁流量计(Electromagnetic Flowmeter)是由直接接触管道介质的传感器和上端信号转换器两部分构成。它是基于法拉第电磁感应定律工作的,用来测量电导率大于5μs/cm的导电液体的流量,是一种测量导电介质流量的仪表。除了可以测量一般导电液体的流量外,还可以用于测量强酸、强碱等强腐蚀性液体和均匀含有液固两相悬浮的液体,如泥浆、矿浆、纸浆等。 电磁流量计 电磁流量计特别设计了带背光宽温的中文液晶显示器,功能齐全实用、显示直观、操作使用方便,可以减少其他电磁流量计英文菜单所带来的不便。另外我们独家设计4-6多电极结构,进一步保证了测量精度并且任何时候无需接地环,减轻了仪表体积和安装维护的麻烦。电磁流量计在满足现场显示的同时,还可以输出4~20mA电流信号供记录、调节和控制用,现已广泛地应用于化工、环保、冶金、医药、造纸、给排水等工业技术和管理部门。 采用电磁感应原理测量介质流体流速的电磁流量计。它在管道的两侧加一个磁场,被测介质流过管道就切割磁力线,在两个检测电极上产生感应电势,其大小正比于流体的运动速度。可以用于测量酸、碱、盐溶液、水煤浆、矿浆、砂浆灰泥、纸浆、树脂、橡胶乳、合成纤维浆和感光乳胶等各种悬浮物、气化汽和粘性物质的流量。电磁流量计密封性能好,还可用于自来水和地下水道系统。而且测量过程不与流体接触,适于制药、生物化学和食品工业。这种流量计还可检测血液流量。它的量程比约为100:1,精度一般为1%,由于这种传感器必须保持管道内电阻和测量电路阻抗之间有一定比例关系,因此在制造上有一定困难。当被测介质的电导率约为10欧姆·厘米时就开始产生困难,电导率更低时就产生原理性困难。当电导率为10欧姆·厘米时,就达到导电介质和电介质之间的“分界线”,热噪声电平随内阻的增大而显著增加。 电磁流量计是高精度、高可靠和使用寿命长的流量仪表,所以在设计产品结构、选材、制定工艺、生产装配和出厂测试等过程中每一个环节我们都非常细致讲究,还自行设计了一套中国最先进的,专用于电磁流量计的生产设备和流量实流标定装置,从而在软件和硬件上都能切实保证产品长期的高质量。电磁流量计特别设计了带背光宽温的中文液晶显示器,功能齐全实用、显示直观、操作使用方便,可以减少其他电磁流量计英文菜单所带来的不便。另外我们独家设计4-6多电极结构,进一步保证了测量精度并且任何时候无需接地环,减轻了仪表体积

流量计性能测定实验报告doc

流量计性能测定实验报告 篇一:孔板流量计性能测定实验数据记录及处理篇二:实验3 流量计性能测定实验 实验3 流量计性能测定实验 一、实验目的 ⒈了解几种常用流量计的构造、工作原理和主要特点。 ⒉掌握流量计的标定方法(例如标准流量计法)。 ⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。 ⒋学习合理选择坐标系的方法。 二、实验内容 ⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。 ⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。 ⒊测定节流式流量计的雷诺数Re和流量系数C的关系。 三、实验原理 流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为: 式中: 被测流体(水)的体积流量,m3/s; 流量系数,无因次;

流量计节流孔截面积,m2; 流量计上、下游两取压口之间的压强差,Pa ; 被测流体(水)的密度,kg/m3 。 用涡轮流量计和转子流量计作为标准流量计来测量流量VS。每一 个流量在压差计上都有一对应的读数,将压差计读数△P和流量Vs绘制成一条曲线,即流量标定曲线。同时用上式整理数据可进一步得到C—Re关系曲线。 四、实验装置 该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。 ⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。 ⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。 ⒊压差测量:用第一路差压变送器直接读取。 图1 流动过程综合实验流程图 ⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀; ⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—

文丘里流量计实验实验报告

文丘里流量计实验实验报告 实验日期:2011.12.22 一、实验目的: 1、学会使用测压管与U 型压差计的测量原理; 2、掌握文丘里流量计测量流量的方法和原理; 3、掌握文丘里流量计测定流量系数的方法。 二、实验原理: 流体流径文丘里管时,根据连续性方程和伯努利方程 Q vA =(常数) H g v p z =++22 γ(常数) 得不计阻力作用时的文丘里管过水能力关系式(1、2断面) h K p z p z g d d d Q ?=?????????? ??+-???? ? ?+???? ??-=γγπ221141222214 1 由于阻力的存在,实际通过的流量Q '恒小于Q 。引入一无量纲系数Q Q '=μ(μ称为流量系数),对计算所得的流量值进行修正。 h K Q Q ?=='μμ h K Q ?' =μ 在实验中,测得流量Q '和测压管水头差h ?,即可求得流量系数μ,μ一般在0.92~0.99之间。 上式中 K —仪器常数 g d d d K 214 141222???? ??-=π h ?—两断面测压管水头差 ??? ? ??+-???? ??+=?γγ2211p z p z h h ?用气—水多管压差计或电测仪测得,气—水多管压差计测量原理如下图所示。

1h ? 2h ? H 3 1H 2H 1z 2z 气—水多管压差计原理图 根据流体静力学方程 γγ22231311 p H h H h H H p = +?-+?--- 得 221121H h h H p p -?+?++=γγ 则 )()(222211212211γγγγp z H h h H p z p z p z +--?+?+++=??? ? ??+-???? ?? + 212211)()(h h H z H z ?+?++-+= 由图可知 )()(4321h h h h h -+-=? 式中,1h 、2h 、3h 、4h 分别为各测压管的液面读数。 三、实验数据记录及整理计算(附表) 文丘里流量计实验装置台号:2 d1=1.4cm d2=0.7cm 水温t=13.1℃ v=0.01226cm 2/s 水箱液面标尺值▽0=38cm 管轴线高程标尺值▽=35.7cm 实验数据记录表见附表 四、成果分析及小结: 经计算 K=17.60cm 2.5/s u=1.064 由实验计算结果看各组数据的相差较大,可以判断实验的精密度不高,实验 与理论值有偏差。误差来源主要有实验测量值的不准确,人为造成的主管因素较大。 五、问题讨论: 为什么计算流量Q 理论与实际流量Q 实际不相等? 答:因为实际流体在流动过程中受到阻力作用、有能量损失(或水头损失),而计算流量是假设流体没有阻力时计算得到的,所以计算流量恒大于实际流量。

中国石油大学(华东)流量计实验报告

中国石油大学(华东)工程流体力学实验报告18-19-2 实验日期:成绩: 班级:学号:姓名:教师: 同组者: 实验三、流量计实验 一、实验目的(填空) 1 2 3 文丘利流量计、孔板流量计,其结构如图1-3-1示。 F1——文丘利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图1-3-1 管流综合实验装置流程图

说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A )。 三、实验原理 1.文丘利流量计 文丘利管是一种常用的量测有压管道 流量 的装置,见图1-3-2属压差式流量计。它1-12 图1-3-2 文丘利流量计示意图 图1-3-3 孔板流量计示意图 3),22 1 2 22 111212()()= 22p p v v h h h z z g g ααγ γ ?=-=+ -+ - 如果假设动能修正系数1210.αα==,则最终得到理论流量为: Q μ= =理

式中 K= μ=,A为孔板锐孔断面面积。 4.流量系数 (1)流量计流过实际液体时,由于两断面测压管水头差中还包括了因黏性造成的水头损失,流量应修正为: Qα = 实 其中 1.0 α<,称为流量计的流量系数。 数 1

2.实验数据记录及处理见表1-3-1。 表1-3-1 实验数据记录及处理表 (4)= 6867.01 cm3/s (5)流量系数:α== = 0.67

空气流量计的检测方法

空气流量计的检测方法 空气流量计基本结构及性能特点随着对发动机汽车尾气排放要求的提高,越来越多的发动机采用精密的空气计量传感器计量进入发动机的空气量,发动机ECU 根据空气计量传 感器信号初步设定基本供油量,以满足发动机各种工况空燃比,进而保证发动机各种工况对混合气的要求。 空气流量计分类:按测量空气流量的方法可分为两种:①直接测量方法传 感器一一空气流量计。②间接测量方法传感器一一进气歧管压力传感器(负压传感器)。直接测量方法传感器按其测量信号转化形式又可分为3种。 (1) 机械式空气流量计,即可动叶片式空气流量计。其特点是将燃油泵控制开关、空气温度传感器、CO 调节器及空气流量计等功能融为一体,结构较复杂,但精度较高。不过由于叶片具有弹簧阻力增加了进气阻力,使它对发动机在急加速时的响应不够理想,故现在很少使用。 (2) 卡尔曼涡流式空气流量计。它是通过采集涡流频率完成空气流速测量,主要是通过光电(如丰田车型)和超声波采集(如韩国现代、日本三菱等)进气涡流,具有进气阻力小、计量准确的特点,但因其结构复杂、不耐振动且造价高,现已逐步被热线式空气流量计取代。 (3) 热线式空气流量计。热线式空气流量计按其热线形又分为 3 种。 ①热丝式一一将加热丝均匀分布在计量通道内。热丝式空气流量计(图1) 精度高、分布均匀,可精确计量空气量,但由于热丝很细(0.01~0.05mm)且暴露在空气中,在空气高速流动时,空气中的沙粒很容易击断热丝。 ②热膜式——将加热丝印刷在一块线路板上,并将线路板固定在空气通道中间。由 于热丝被固定且受到保护膜的保护,寿命提高,但由于保护膜热传导 较差,影响计量精度。

流量计实验报告

流量计实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期:成绩: 班级:学号:姓名:教师:李成华 同组者: 实验三、流量计实验 一、实验目的(填空) 1.掌握孔板、文丘利节流式流量计的工作原理及用途; 2.测定孔板流量计的流量系数 ,绘制流量计的校正曲线; 3.了解两用式压差计的结构及工作原理,掌握其使用方法。 二、实验装置 1、在图1-3-1下方的横线上正确填写实验装置各部分的名称: 本实验采用管流综合实验装置。管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图1-3-1示。

F1——文丘里流量计;F2——孔板流量计;F3——电磁流量计;C——量水箱;V——阀门;K——局部阻力实验管路 图1-3-1 管流综合实验装置流程图

说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A)。 三、实验原理 1.文丘利流量计 文丘利管是一种常用的量测有压管道流量的装置,见图1-3-2属压差式流量计。它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的管道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上比压计,通过量测两个断面的测压管水头差,就可计算管道的理论流量Q ,再经修正得到实际流量。 2.孔板流量计 如图1-3-3,在管道上设置孔板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上比压计,通过量测两个断面的测压管水头差,可计算管道的理论流量

电磁流量计设计与安装标准讲义(doc 7页)

电磁流量计设计与安装标准讲义(doc 7页)

电磁流量计设计资料选型和安装标准 详细介绍: 概述 电磁流量计(以下简称EMF)是利用法拉第电磁感应定律制成的一种测量导电液体体积流量的仪表。50年代初EMF实现了工业化应用,近年来世界范围EMF产量约占工业流量仪表台数的5%~6.5%。 70年代以来出现键控低频矩形波激磁方式,逐渐替代早期应用的工频交流激磁方式,仪表性能有了很大提高,得到更为广泛的应用。 2. 原理与机构 EMF的基本原理是法拉第电磁感应定律,即导体在磁场中切割磁力线运动时在其两端产生感应电动势。如图1所示,导电性液体在垂直于磁场的非磁性测量管内流动,与流动方向垂直的方向上产生与流量成比例的感应电势,电动势的方向按“弗来明右手规则”,其值如下式式中 E-----感应电动势,即流量信号,V; k-----系数; B-----磁感应强度,T; D----测量管内径,m;--- 平均流速,m/s。设液体的体积流量为,则式中 K 为仪

表常数,K= 4 KB/πD 。 EMF由流量传感器和转换器两大部分组成。传感器典型结构示意如图2,测量管上下装有激磁线圈,通激磁电流后产生磁场穿过测量管,一对电极装在测量管内壁与液体相接触,引出感应电势,送到转换器。激磁电流则由转换器提供。 3、优点 EMF的测量通道是一段无阻流检测件的光滑直管,因不易阻塞适用于测量含有固体颗粒或纤维的液固二相流体,如纸浆、煤水浆、矿浆、泥浆和污水等。EMF不产生因检测流量所形成的压力损失,仪表的阻力仅是同一长度管道的沿程阻力,节能效果显著,对于要求低阻力损失的大管径供水管道最为适合。 EMF 所测得的体积流量,实际上不受流体密度、粘度、温度、压力和电导率(只要在某阈值以上)变化明显的影响。与其他大部分流量仪表相比,前置直管段要求较低。 EMF测量范围度大,通常为20:1~50:1,可选流量范围宽。满度值液体流速可在0.5~10m/s 内选定。有些型号仪表可在现场根据需要扩大和缩小流量(例如设有4位数电位器设定仪表常数)不必取下作离线实流标定。 EMF的口径范围比其他品种流量仪表宽,从几毫米到3m。可测正反双向流量,也可测脉动流量,只要脉动频率低于激磁频率很多。仪表输

离心泵的性能测试实验报告

实验名称:离心泵的性能测试 班级: 姓名: 学号: 一、 实验目的 1、 熟悉离心泵的操作,了解离心泵的结构和特性。 2、 学会离心泵特性曲线的测定方法。 3、了解单级离心泵在一定转速下的扬程、轴功率、效率和流量之间的关系。 二、 实验原理 离心泵的特性主要是指泵的流量、扬程、功率和效率,在一定转速下,离心泵的流量、扬程、功率和效率均随流量的大小改变。即扬程和流量的特性曲线H=f (Q );功率消耗和流量的特性曲线N 轴=f (Q e );及效率和流量的特性曲线?=f(Qe);这三条曲线为离心泵的特性曲线。他们与离心泵的设计、加工情况有关,必须由实验测定。 三条特性曲线中的Qe 和N 轴由实验测定。He 和?由以下各式计算,由伯努利方程可知: He=H 压强表+H 真空表+h 0+g u u 22 1 20- 式中: He ——泵的扬程(m ——液柱) H 压强表——压强表测得的表压(m ——液柱) H 真空表——真空表测得的真空度(m ——液柱) h 0——压强表和真空表中心的垂直距离(m ) u 0——泵的出口管内流体的速度(m/s ) u1——泵的进口管内流体的速度(m/s ) g ——重力加速度(m/s 2 ) 流体流过泵之后,实际得到的有效功率:Ne= 102ρ HeQe ;离心泵的效率:轴 N N e =η。在实验中,泵的周效率由所测得的电机的输入功率N 入计算:N 轴=η传η电N 入 式中: Ne ——离心泵的有效功率(kw ) Qe ——离心泵的输液量(m3/s) ρ——被输进液体的密度(kg/m3) N 入——电机的输入功率(kw ) N 轴——离心泵的轴效率(kw ) η——离心泵的效率 η传——传动效率,联轴器直接传动时取1.00 η电——电机效率,一般取0.90 三、 实验装置和流程

实验3 流量计性能测定实验

实验3 流量计性能测定实验 一、实验目的 ⒈了解几种常用流量计的构造、工作原理和主要特点。 ⒉掌握流量计的标定方法(例如标准流量计法)。 ⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。 ⒋学习合理选择坐标系的方法。 二、实验内容 ⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。 ⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。 ⒊测定节流式流量计的雷诺数Re和流量系数C的关系。 三、实验原理 流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为: 式中:被测流体(水)的体积流量,m3/s; 流量系数,无因次; 流量计节流孔截面积,m2;

流量计上、下游两取压口之间的压强差,Pa ; 被测流体(水)的密度,kg/m3。 用涡轮流量计和转子流量计作为标准流量计来测量流量V S。每一个流量在压差计上都有一对应的读数,将压差计读数△P和流量V s 绘制成一条曲线,即流量标定曲线。同时用上式整理数据可进一步得到C—Re关系曲线。 四、实验装置 该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。 ⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。 ⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。 ⒊压差测量:用第一路差压变送器直接读取。

图1 流动过程综合实验流程图 ⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀;⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—截止阀;a—出口压力取压点;b—吸入压力取压点;1-1’—流量计压差;2-2’—光滑管压差;3-3’—粗糙管压差;4-4’—闸阀近点压差; 5-5’—闸阀远点压差;6-6’—截止阀近点压差;7-7’—截止阀远点压差;J-M—光滑管;K-L—粗糙管

实验二气体流量测定与流量计标定(精)

实验二气体流量测定与流量计标定 一、实验目的 气体属于可压缩流体。气体流量的测量,虽然有一些与用于不可压缩流体相同的测量仪表但也有不少专用于气体的测量仪表,在测量方法和检定方法上也有一些特殊之处。显然,气体流量的测量与液体一样,在工业生产上和科学研究中,都是十分重要的。尤其是在近代,工业生产规摸的大型化和科学实验的微型化,往往这些流量、温度、压力等的检测仪表就成为关键问题。 目前,工业用有LZB 系列转子流量计,实验室用有LZW 系列微型转子流量计,可供选用。对于市售定型仪表,若流体种类和使用条件都按照规格规定,则读出刻度就能知道流量。但从精度上考虑,仍有必要重新进行校正。转子流量计自制是有困难的,因锥形玻璃管的锥度手工难于制作。但是,在科学研究中或其它某种场合,有时,不免还要根据某种特殊需要,创制一些新型测量仪表和自制一些简易的流量计。不论是市售的标准系列产品还是自制的简易仪表,使用前,尤其是使用一段时间后,都需要进行校正,这样才能保证计量的准确、可靠。 气体流量计的标定,一般采用容积法,用标准容量瓶量体积,或者用校准过的流量计作比较标定。在实验室里,一般采用湿式气体流量计作为标准计量器。它属于容积式仪表,事先应经标准容量瓶校准。实验用的湿式流量计的额定流量,一般有 0.2m3h 1和0.5m3h 1两种。若要标定更大流量的仪表,一般采用气柜计量体积。实验室往往又需用微型流量计,现时一般采用皂膜流量计来标定。 本实验采用标准系列中的转子流量计和自制的毛细管流量计来测量空气流量。并用经标准容量瓶直接校准好的湿式流量作为标准,用比较法对上述两种流量计进行检定,标定出流量曲线.,对毛细管流量计标定。通过本实验学习气体流量的测量方法,以及气体流量计的原理、使用方法和检定方法。同时,这些知识和实验方法对学习者在进行以下各项实验时,肯定会有帮助,尤其时对今后所从事的各种实验研究工作,也是有益处的。 二、实验原理 1.湿式气体流量计 该仪器属于容积式流量计。它是实验室常用的一种仪器,其构造主要由圆鼓形壳

电磁流量计设计与安装标准讲

电磁流量计设计资料选型和安装规范 详细介绍: 概述 电磁流量计(以下简称EMF)是利用法拉第电磁感应定律制成的一种测量导电液体体积流量的仪表。50年代初EMF实现了工业化应用,近年来世界范围EMF产量约占工业流量仪表台数的5%~6.5%。70年代以来出现键控低频矩形波激磁方式,逐渐替代早期应用的工频交流激磁方式,仪表性能有了很大提高,得到更为广泛的应用。 2. 原理与机构 EMF的基本原理是法拉第电磁感应定律,即导体在磁场中切割磁力线运动时在其两端产生感应电动势。如图1所示,导电性液体在垂直于磁场的非磁性测量管内流动,与流动方向垂直的方向上产生与流量成比例的感应电势,电动势的方向按“弗来明右手规则”,其值如下式式中 E-----感应电动势,即流量信号,V。 k-----系数; B-----磁感应强度,T; D----测量管内径,m;--- 平均流速,m/s。设液体的体积流量为,则式中 K 为仪表常数,K= 4 KB/πD 。 EMF 由流量传感器和转换器两大部分组成。传感器典型结构示意如图2,测量管上下装有激磁线圈,通激磁电流后产生磁场穿过测量管,一对电极装在测量管内壁与液体相接触,引出感应电势,送到转换器。激磁电流则由转换器提供。 3、优点 EMF的测量通道是一段无阻流检测件的光滑直管,因不易阻塞适用于测量含有固体颗粒或纤维的液固二相流体,如纸浆、煤水浆、矿浆、泥浆和污水等。 EMF不产生因检测流量所形成的压力损失,仪表的阻力仅是同一长度管道的沿程阻力,节能效果显著,对于要求低阻力损失的大管径供水管道最为适合。 EMF所测得的体积流量,实际上不受流体密度、粘度、温度、压力和电导率(只要在某阈值以上)变化明显的影响。与其他大部分流量仪表相比,前置直管段要求较低。 EMF测量范围度大,通常为20:1~50:1,可选流量范围宽。满度值液体流速可在0.5~10m/s内选定。有些型号仪表可在现场根据需要扩大和缩小流量(例如设有4位数电位器设定仪表常数)不必取下作离线实流标定。EMF的口径范围比其他品种流量仪表宽,从几毫M到3m。可测正反双向流量,也可测脉动流量,只要脉动频率低于激磁频率很多。仪表输出本质上是线性的。易于选择与流体接触件的材料品种,可应用于腐蚀性流体。 4、缺点 EMF不能测量电导率很低的液体,如石油制品和有机溶剂等。不能测量气体、蒸汽和含有较多较大气泡的液体。通用型EMF由于衬里材料和电气绝缘材料限制,不能用于较高温度的液体;有些型号仪表用于过低于室温的液体,因测量管外凝露(或霜)而破坏绝缘。 5、分类

超声波流量计检定规程

附件2: 明渠堰槽流量计型式评价大纲 1范围 本型式评价大纲适用于分类代码为12185000的明渠堰槽流量计(以下简称流量计)的型式评价。 2引用文件 本大纲引用了下列文件: JJG 711-1990 明渠堰槽流量计 GB/T 9359-2001 水文仪器基本环境试验条件及方法 GB/T 11606-2007 分析仪器环境试验方法 GB/T 17626.2电磁兼容试验和测量技术静电放电抗扰度试验 GB/T 17626.3电磁兼容试验和测量技术射频电磁场辐射抗扰度试验 GB/T 17626.8电磁兼容试验和测量技术工频磁场抗扰度试验 JB/T 9329-1999 仪器仪表运输、运输贮存基本环境条件及试验方法 HJ/T 15-2007 环境保护产品技术要求超声波明渠污水流量计 凡是注日期的引用文件,仅注日期的版本适用于本规范。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规范。 3术语 3.1 明渠堰槽流量计weirs and flumes for flow measurement 在明渠中利用量水堰槽和水位~流量转换仪表(二次仪表)来测量流量的流量计。 3.2 水位stage 从测量基准点(或零点)高程算起,加上某一水面的距离后所得到的高程值,单位m。 3.3 喉道throat 测流堰槽内截面面积最小的区段。 4概述 4.1工作原理 在明渠中设置标准量水堰槽,液位计安装在规定位置上测量流过堰槽的水位。将测出的水位值代入相应的流量公式或经验关系式,即可计算出流量值。明渠堰槽

流量计的水位与流量呈单值关系。 4.2结构型式 明渠堰槽流量计包括:薄壁堰、宽顶堰、三角形剖面堰、流线型三角形剖面堰、平坦V形堰、巴歇尔(Parshall)槽、孙奈利(SANIIRI)槽、P-B(Palmer-Boulus)槽等槽体及与之配套的液位计和水位、流量显示仪表。 明渠堰槽流量计由量水堰槽和水位~流量转换仪表(二次仪表)所组成。水位~流量转换仪表包括:液位计、换算器和显示器。 为准确计量流量,明渠堰槽流量计还应包括:堰体上游行近段、下游渠槽衔接段和水位观测设施。 量水堰槽有多种形式,如:薄壁堰、宽顶堰、三角形剖面堰、喉道槽等,可根据现场条件、流量范围和使用要求选取。 5法制管理要求 5.1计量单位 流量计应采用法定计量单位。选用的流量计量单位为m3/h、m3/s或m3,温度单位为℃。 5.2 外部结构 流量计应具有防护装置及不经破坏不能打开的封印。凡能影响计量准确度的任何人为机械干扰,都将在流量计或保护标记上产生永久性的有形损坏痕迹。 5.3 标志 5.3.1计量法制标志的内容 试验样机应预留出位置,以标出制造计量器具许可证的标志和编号,流量计型式批准标志和编号以及产品合格印、证。 5.3.2铭牌 铭牌应包括: a)制造商名称(商标); b)产品名称及型号; c)出厂编号; d)制造计量器具许可证标志和编号; e)工作温度范围; f)在工作条件下的最大、最小流量或流速;

化工原理实验-流量计校核实验分析报告

化工原理实验-流量计校核实验报告

————————————————————————————————作者:————————————————————————————————日期:

流量计校核 一、实验操作 1. 熟悉实验装置,了解各阀门的位置及作用。 2. 对装置中有关管道、导压管、压差计进行排气,使倒U 形压差计处于工作状态。 3. 对应每一个阀门开度,用容积法测量流量,同时记下压差计的读数,按由小到大的顺序在小流量时测量8-9个点,大流量时测量5-6个点。为保证标定精度,最好再从大流量到小流量重复一次,然后取其平均值。 4. 测量流量时应保证每次测量中,计量桶液位差不小于100mm 或测量时间不少于40s 。 二、数据处理 1.数据记录 计量水箱规格:长 400mm ;宽 300mm 管径d (mm ):25 孔板取喉径d 0(mm ):15.347 查出实验温度下水的物性: 密度 ρ= 996.2542 kg/m3 粘度 μ= 0.000958 PaS 2.数据处理 d V d V d du πμρ πμ ρ μρ 44Re 2=? == ρ/20000p A C A u V ?== 则 ρ /200p u C ?= 孔板流量计试验数据处理 左/cm 右/cm ΔR/m 时间t/s 水箱 高度h/cm 体积V/m 3 流量Qv/m 3·s -1 流速V/m ·s -1 空流系数C0 雷诺数 Re min 57.0 57.0 Qv=h.S/t V=∏ 24d qv V=C 0.gR 2 Re=dv ρ/μ max 33.1 45.3 1 33.7 46.3 0.126 40 6.7 0.008193 2.05E-04 1.1078 0.7049 16916.60 2 38.2 47.1 0.089 41 6.1 0.007454 1.82E-04 0.983 3 0.7445 15014.92 3 40.6 48.8 0.082 41 5.7 0.007022 1.71E-04 0.9264 0.7307 14146.29

图文解说_电磁流量计设计说明

图文解说:电磁流量计设计 由ADI_Amy于 2016-8-5 创建的讨论 ?喜欢?显示0 喜欢0 ?评论? 0 "若不能度量,则无法管理。"这是工业领域的一句口头禅,尤其适合于流量测量。简单说来,对流量监测的需求越来越多,常常还要求更高速度和精度的监测。前不久ADI举办了在线研讨会“工业过程控制应用的电磁流量计设计”,我们已经分享了完整的讲义文档,需要的戳【在线研讨会讲义PPT下载】工业过程控制应用的电磁流量计设计自取。 这里我们为大家讲解下讲义的部分容 电磁流量变送器——信号链框图 电磁流量传感器的特性是:无压力损耗,不受速度、密度、温度、压力和传导率的影响,可以实现高精度测量。流量计系统由以下组件组成:电源、信号调理、转换器、处理器、显示键盘和多个通信组件,比如无线,RS485/422,4-20毫安电流,HART。 电磁流量变送器——传感器工作原理 其工作原理基于法拉第电磁感应定律。这意味着带电导体通过一个磁场并切割磁力线时在管道两侧将会产生感应电动势。电磁场是由电流流经测量管外面的线圈产生的。感应电压的幅度直接与速度和导体的电导率、管道直径以及磁场强度的成比例,具体来说,我们可以将法拉第定律表述为E = K x B x D x V,其中V表示导电流体的速度,B表示磁场强度,D表示测量管段的直径,E表示电极上的电压,而K是一个常数。B、D、K可以是固定值,因此方程简化为E与V的比例关系。

大部分电磁流量计使用低频率方波来激励传感器线圈。可以是1/25、1/16,1/10或者1/4 电网频率,以及电网频率的一半。低频方波励磁的幅度不变,但改变电流流入流出线圈的方向。 传感器信号调理——模拟前端共模抑制比 共模电压必须被电磁流量计转换器所抑制,模拟前端电路在其中所起的作用最大。如果电路具有对于120 分贝共模抑制比,则0.28V 共模电压可以降低至0.28 μV,而如果共模抑制比是100 dB,则抑制为2.8 μV。 共模信号中的直流成分可以通过对信号进行交流耦合或者校准得以消除。但是,共模信号中的交流成分即使经过抑制也会呈现为噪声成分,出现在放大器输出端。它无法简单地通过交流耦合消除。必须采取措施,否则可能影响噪声性能。在120 dB共模抑制比的情况下,0.1V噪声下降至0.1μV。在100 dB共模抑制比的情况下,该噪声仅能抑制到最低1μV,因此共模抑制比参数很重要。 电磁流量计——信号处理电路架构比较 虽然具体的实现方式可能有所不同,电磁流量计的传感器信号处理可以分为模拟同步解调和数字过采样两种主要方法。 模拟解调是一种传统的方法,但现今仍然在业使用广泛。它通常使用前置放大器,带通滤波放大器,采样保持,同步解调,模数转换器和微控制器。 下图显示典型的模拟同步解调电路的信号链。传感器输出的微伏或毫伏级信号首先被集成仪表放大器或者分立器件搭建的仪表放大器放大。

流量计流量的校正实验

流量计流量的校正实验 一. 实验目的 1. 熟悉孔板流量计、文丘里流量计的构造、性能及安装方法。 2. 掌握流量计的标定方法之一——容量法。 3. 测定孔板流量计、文丘里流量计的孔流系数与雷诺准数的关系。 二. 基本原理 对非标准化的各种流量仪表在出厂前都必须进行流量标定,建立流量刻度标尺(如转子流量计)、给出孔流系数(如涡轮流量计)、给出校正曲线(如孔板流量计)。使用者在使用时,如工作介质、温度、压强等操作条件与原来标定时的条件不同,就需要根据现场情况,对流量计进行标定。 孔板、文丘里流量计的收缩口面积都是固定的,而流体通过收缩口的压力降则随流量大小而变,据此来测量流量,因此,称其为变压头流量计。而另一类流量计中,当流体通过时,压力降不变,但收缩口面积却随流量而改变,故称这类流量计为变截面流量计,此类的典型代表是转子流量计。 1、孔板流量计的校核 孔板流量计是应用最广泛的节流式流量计之一,本实验采用自制的孔板流量计测定液体流量,用容量法进行标定,同时测定孔流系数与雷诺准数的关系。 孔板流量计是根据流体的动能和势能相互转化原理而设计的,流体通过锐孔时流速增加,造成孔板前后产生压强差,可以通过引压管在压差计或差压变送器上显示。其基本构造如图1所示。 若管路直径为d 1,孔板锐孔直径为d 0,流体流经孔板前后所形成的缩脉直径为d 2,流体的密度为ρ,则根据柏 努利方程,在界面1、2处有: 图1 孔板流量计 2 2 21 12 2 u u p p p ρ ρ --?= = 或 = 由于缩脉处位置随流速而变化,截面积2A 又难以指导,而孔板孔径的面积0A 是已知的,因此,用孔板孔径处流速0u 来替代上式中的2u ,又考虑这种替代带来的误差以及实际流体局部阻力造成的能

新版流量计标定实验讲义

实验二 流量计的标定 一、实验目的 1、了解孔板流量计和文丘里流量计的操作原理和特性,掌握流量计的一般标定方法; 2、测定孔板流量计和文丘里流量计的流量系数的C 0和Cv 与管内Re 的关系。 3、通过C 0和Cv 与管内Re 的关系,比较两种流量计。 二、基本原理 工厂生产的流量计大都是按标准规范生产的,出厂时一般都在标准技术状况下(101325Pa ,20℃)以水或空气为介质进行标定,给出流量曲线或按规定的流量计算公式给出指定的流量系数,或将流量读数直接刻在显示仪表上。然而在使用时,所处温度、压强及被测介质的性质与标定状况多数并不相同,因此为了测量准确和方便使用,应在现场进行流量计的标定或校正。对已校正过的流量计,在长时间使用磨损较大时也需要再次校正。对于自制的非标准流量计,则必须进行校正,以确定其流量系数C 0或C v 。本实验通过改变流体流量q 和压差ΔP f ,获得一系列Re 与C 0或C v ,采用半对数坐标绘制出C 0或C v 与Re 的关系曲线进而实现流量计的标定或校正。 1、流体在管内Re 的测定: 式中:ρ、μ— 流体在测量温度下的密度和粘度 [Kg/m 3 ]、[Pa ·s] q — 管内流体体积流量 [m 3/s] 2、孔板流量计和文丘里流量计 孔板流量计和文丘里流量计是应用最广的节流式流量计,其结构如图2-1所示。 a 孔板流量计 b 文丘里流量计 图2-1 节流式流量计结构 孔板流量计是利用动能和静压能相互转换的原理设计的,它是以消耗大量机械能为代价的。孔板的开孔越小、通过孔口的平均流速u 0越大,孔前后的压差ΔP 也越大,阻力损失也随之增大。为了减小流体通过孔口后由于突然扩大而引起的大量旋涡能耗,在孔板后开一渐扩形圆角。因此孔板流量计的安装是有方向的。若是方向弄反,不光是能耗增大,同时其流量系数也将改变,实际上这样使用没有意义。 以孔板流量计为例,若用f P ?表示节流前后两截面之间的压差,根据两截面之间的柏努利方程,可知: 222222121 1u P gZ u P gZ ++=++ρρ,则有:ρ f P u u ?=-22122 以孔口速度u 0代替上式中的u 2,并将质量守恒式u 1A 1= u 0A 0代入,得:

电磁流量计的工作原理及设计

电磁流量计的工作原理及设计 今天为大家介绍一项国家发明授权专利——电磁流量计。该专利由阿自倍尔株式会社申请,并于2018年9月7日获得授权公告。 内容说明本发明涉及在各种工艺系统中测量流体的流量的电磁流量计,尤其涉及一种具备测量流体的电导率的功能的电磁流量计。 发明背景电磁流量计为如下测量设备,其具备:励磁线圈,其在与在测定管内流动的流体的流动方向垂直的方向上产生磁场;以及一对电极,它们配置在测定管上,沿与由励磁线圈产生的磁场正交的方向配置,该测量设备一边交替切换流至励磁线圈的励磁电流的极性、一边检测上述电极间产生的电动势,由此测量在测定管内流动的被检测流体的流量。通常,电磁流量计大致分为接触式和电容式(非接触式),所述接触式是使设置在测定管上的电极直接接触测量对象的流体来检测上述流体的电动势,所述电容式(非接触式)是经由流体与电极间的静电电容来检测上述流体的电动势而不会使设置在测定管上的电极接触测量对象的流体。 电容式电磁流量计是利用信号放大电路(例如差动放大电路)来放大电极间产生的电动势,之后利用模数转换电路转换为数字信号,并将该数字信号输入至微控制器等程序处理装置来执行规定的运算处理,由此算出流量。这种电容式电磁流量计因电极不易劣化、容易维护,所以近年来特别受到业界关注。 此外,电磁流量计当中,存在具备不仅测量流体的流量、还测量该流体的电导率(所谓的导电率)的功能的电磁流量计。例如,专利文献3中揭示有一种配备双电极方式的电导率计的电磁流量计,所述双电极方式的电导率计对2个电极间施加正弦波或矩形波等的交流信号并测定在电极间流通的电流,由此求出电导率。该专利文献揭示的电导率计是通过将2个电极均浸入测量对象的液体来测量电导率。 发明内容本发明者对在电容式电磁流量计中追加测量流体的电导率的功能这一内容进行了研究。然而,根据本发明者的研究,明确了存在以下所示的问题。

流体力学实验报告 流量计实验报告

中国石油大学(华东)流量计实验实验报告 实验日期:2011.4.18 成绩: 班级:石工09-13班学号:09021614 姓名:石海山教师: 同组者:尚斌宋玉良武希涛杜姗姗 实验三、流量计实验 一、实验目的 1、掌握孔板、文丘利节流式流量计的工作原理及用途; 2、测定孔板流量计的流量系数 ,绘制流量计的校正曲线; 3、了解两用式压差计的结构及工作原理,掌握两用式压差计的使用方法。 二、实验装置 本实验采用管流综合实验装置。管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图3-1示。 F1——文丘里流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图3-1 管流综合实验装置流程图

三、实验原理 1、文丘利流量计 文丘利管是一种常用的两侧有管道流量的装置,属压差式流量计(见图3-2)。它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的官道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上压差计,通过测量两个断面的测压管水头差,可以计算管道的理论流量Q ,再经修正即可得到实际流量。 2、孔板流量计 如图3-3所示,在管道上设置空板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上压差计,通过量测两个断面的测压管水头差,可以计算管道的理论流量Q ,再经修正即可得到实际流量。孔板流量计也属于压差式流量计,其特点是结构简单。 图3-2 文丘利流量计示意图 图3-3 孔板流量计示意图 3、理论流量 水流从1-1断面到达2-2断面,由于过水断面的收缩,流速增大,根据恒定总流能量方程,若不考虑水头损失,速度水头的增加等于测压管水头的减小(即压差计液面高差h ?),因此,通过量测到的h ?建立了两个断面平均流速1v 和2v 之间的关系: h ?=1h -2h =(1z + γ 1 p )-(2z + γ 2 p )= g v 22 2 2α- g v 22 1 1α (3-1) 如果假设动能修正系数1α=2α=1.0,则最终得到理论流量为: 理Q = ) ( 1 2 A A A A A -h g △2=h K △μ 其中:K =g A 2

相关文档
最新文档