单轴双轮自平衡车姿态检测方案设计_张吉昌

单轴双轮自平衡车姿态检测方案设计_张吉昌
单轴双轮自平衡车姿态检测方案设计_张吉昌

单轴双轮自平衡车姿态检测方案设计

张吉昌,程 凯,郑荣儿

(中国海洋大学信息科学与工程学院,山东青岛266100)

摘 要: 针对单轴双轮自平衡车介绍一种基于惯性传感器的姿态检测系统,分析比较各惯性传感器在姿态检测系统中的性能优劣以及功能互补的特点。提出一种简易互补滤波算法对陀螺仪和加速度计进行数据融合,并对实际应用中可能出现的几个问题进行了探讨,从而有效地提高了系统的检测性能。通过系统实际测试得到的数据绘制了曲线图,表明滤波算法对于提高系统精度是切实有效的。

关键词: 惯性传感器;陀螺仪;加速度计;互补滤波;姿态检测

中图法分类号: T P273 文献标识码: A 文章编号: 1672-5174(2009)03Ⅱ-467-04

单轴双轮自平衡车是一种两轮左右平行布置的单人电动车,可实现原地回转和任意半径转向,移动灵活、控制简单、轻便节能,适合于繁华市区行人比较多的步行街、游乐场等地方推广使用。近年来,国内外多家科研单位和企业以及自平衡车的爱好者都对自平衡理论的应用和发展做出了许多的有益的贡献,大大推进了自平衡技术的发展,同时也推出了一批杰出的自平衡机器人和载人代步车作品。其中以2002年美国Seg way 公司推出的能够自平衡的两轮电动滑车为最具代表性的作品。

像传统的倒立摆一样,单轴双轮车系统本身是一个自然不稳定体,必须施加一定的控制手段才能使之平衡。控制系统的任务是不断检测车体所处的姿态,

通过中央微处理器计算出适当的指令和数据后,驱动装在车轮上的电动机达到车体平衡的效果。可见要实现车体的自平衡控制,首先必须对检测系统做合理的设计,以获得足够精确的车体姿态信息。

1 系统概述

根据单轴双轮自平衡车的功能特征,在姿态检测系统中,一般选择陀螺仪和加速度计两种惯性传感器来采集车体的姿态信息[1]。控制单元采用高速处理器完成数据采集与处理,包括传感器信号的获取、车体姿态的估计、电机控制算法的实现及其他外围的控制等功能。系统功能架构如图1(a )所示,车体结构如图1(b )所示

图1 系统架构F ig .1 The system structure

2 惯性传感器介绍与选取

2.1陀螺仪

如图2所示,陀螺仪的输出值是相对灵敏轴的角速率,角速率对时间积分即可得到围绕灵敏轴旋转过

的角度值。由于系统采用微控制器循环采样程序获取陀螺仪角速率信息,即每隔一段很小的时间值采样一次,所以可采用逐次累加的方法代替连续积分计算角度值:

ang le n =ang le n -1+gyro n ·d t

(1)

基金项目:国家高技术研究发展计划项目(2006AA09Z243)资助

收稿日期:2009-3-12;修订日期:2009-03-22

作者简介:张吉昌(1982-),男,硕士生。E -mail :ouc1982@https://www.360docs.net/doc/cf3093421.html,

 

第39卷 增刊 2009年9月 

中国海洋大学学报

PE RIODICAL OF OCEAN UNIVERSIT Y OF CHINA

39(S up .):467~470

S ep .,2009

式中angle n 为陀螺仪第n 次采样时转过的角度值;angle n -1为陀螺仪第n -1次采样时的角度值;gy -ro n 为陀螺仪的第n 次采样得到的瞬时角速率值;d t 为循环程序运行一遍所用时间。可见,用陀螺仪输出来

积分计算角度,要求处理器运算速度足够快,采样程序应尽量简练,程序循环一遍所用时间d t 越小,采样频率越高,最后积分得到的角度值才能越精确

图2 陀螺仪的速率敏感轴和旋转方向

(图中从上部看为顺时针旋转)

Fig .2 T he rate axis of the gy ro and the clockwise rotation

2.2加速度计

加速度计可以测量动态和静态的加速度。静态加速度的一个典型例子就是重力加速度。当加速度传感器静止时,加速度传感器仅仅输出作用在灵敏轴上的重力加速度值,即重力加速度的分量值。加速度传感器输出值和重力加速度之间的关系见图3

图3 双轴加速度计的灵敏轴与重力场

Fig .3 T he axis of the accelerometer and the g ravity field

加速度计输出与重力加速度的关系[5]可表示为

A x =g ·sin θ(2)

A y =g ·cos θ=g ·sin (90°-θ)

(3)

式中A x 和A y 为加速度计x 灵敏轴和y 灵敏轴的输

出;g 为重力加速度;θ为倾斜角度,可见θ通过反三角函数很容易求得。而式子也可以由正切来表示:

θ=tan -1

(A x /A y )

(4)

通过(4)式即可得到倾斜角度值。在自平衡小车系统中,由于一般情况下车体倾斜角度<30(°),即

0.52rad ,所以可近似得到

θ≈A x /A y (5)

由于三角函数的计算会占用微控制器大量的时

间,所以可用式(5)近似计算,可大大提高微控制器的采样频率。

2.3传感器选取

经过对资料的分析和对性能价格比的衡量,惯性传感器检测单元采用Analog Device 公司的ADIS16100(陀螺仪)和Freescale 公司的MMA7260(加速度计),其基本性能指标如下。

ADIS16100是具有数字输出接口的陀螺仪芯片[2]。它的测量范围达±300(°)/s ;灵敏度0.244(°)/s ·LSB -1;可直接通过SPI 数字接口读取角速率信息,也可通过测量陀螺仪的模拟输出电压值计算角速率值。

MMA7260是一款低成本单芯片三轴加速度传感

器[3]。该微型电容式加速传感器出厂时已设定好低通滤波、温度补偿和四种可选加速度测量范围(±1.5g 、±2g 、±4g 和±6g )的功能,无需增加外部器件;MMA7260还具有很高的灵敏度,当选择±1.5g 的测量范围时,灵敏度达到800mV /g 。

3 基于互补滤波的数据融合

对于姿态检测系统而言,单独使用陀螺仪或者加速度计,都不能提供有效而可靠的信息来保证车体的平衡。陀螺仪虽然动态性能良好,不受加速度变化的影响,但是存在累积漂移误差,不适合长时间单独工作;加速度计静态响应好,但受动态加速度影响较大,不适合跟踪动态角度运动[4]。为了克服这些困难,采用一种简易互补滤波方法来融合陀螺仪和加速度计的

输出信号,补偿陀螺仪的漂移误差和加速度计的动态

误差,得到一个更优的倾角近似值。

对于加速度计,需要采用滤波算法除去短时性快速变化的信号,保留长时性缓慢变化的信号,所以可对加速度计应用低通滤波。一种常用的方法是给变化较快的角度信号乘上一个很小权重系数,以削弱突变信号对整体产生的影响[8],如式(6)所示。

ang le n =0.97·ang le n -1+0.03·θacce

(6)

式中angle n 为第n 次滤波后的角度;angle n -1为第n 次

滤波前的角度,θACCE 为第n 次加速度计采样测定的角度值。

例如,加速度计传感器输出信号的倾角值突然由0变为10(°),则角度估计值按照表1步骤逐次变化。

表1 加速度计低通滤波

T able 1 T he low -pass filter based on the accelerometer

采样次数Hits 012345678910滤波角度Filting ang le /(°)

0.00

0.30

0.74

1.17

1.58

1.99

2.38

2.76

3.12

3.48

3.82

468中 国 海 洋 大 学 学 报2009年

如果传感器停留在10(°),滤波后角度值会在一段时间后逐渐增大到10(°)。这段时间的长短依赖于滤波

常数和循环程序的采样速率(程序循环一次所用时间)。

对于陀螺仪,情况正好相反,应用高通滤波方法处理陀螺仪数据,来抑制陀螺仪积分的漂移。针对加速度计和陀螺仪的姿态检测系统滤波器结构见图4

图4 简易互补滤波器设计

Fig .4 T he desig n of the complementary filter

简易互补滤波器可表示为

ang le n =a g yro ·(ang le n -1+gyro n ·d t )+a acce ·θa cce

(7)

式中a gy ro =τ

τ+d t

为陀螺仪的高通滤波系数,a acc e =d t τ+d t 为加速度计的低通滤波系数。τ为滤波器的时间常数(time constant )。对于低通滤波而言,变化周期大于时间常数的信号,可以完整的通过;变化周期小于时间常数的信号被过滤掉;高通滤波刚好相反。τ这个时间常数,是更相信陀螺仪还是更相信加速度计的一个界限值。变化周期比τ短的,陀螺仪积分的角度

更让人相信,而加速度计噪声被过滤掉;变化周期比τ长的,加速度计测定的角度值比陀螺仪更重要,因为此时陀螺仪会发生漂移了。

针对陀螺仪的高通滤波和针对加速度计的低通滤波两部分恰好可组成一个互补滤波器。可以看到,两滤波系数之和为1,所以滤波结果是一个比较精确的、线性的角度估计值。

在大多情况下,滤波器通常是按照这样的顺序设计的[8]。首先选取时间常数τ,然后用τ来计算滤波系数。比如,如果陀螺仪平均每秒漂移1(°),那就可以选取时间常数τ=1s ,这样就可以保证每秒的漂移量不会超过1(°)。但该常数值越小,通过的加速度计噪声就越多。所以必须找到一个最为合适的中间值,找到该值最好的办法是实验测试。采样频率也是一个重要的数值。例如,程序的更新时间(循环一次所用时间)为25m s ,如果选定时间常数为0.8s ,则滤波系数应该这样计算:

a gy ro =

0.8

0.8+0.025=0.97,a ac ce =1-a gyro =0.03所以滤波器为:angle =0.97·(angle +gyro ·0.025)+0.03·θacce (8)

通过表2可以看出增加了陀螺仪高通滤波的效果。假设系统以90(°)/s 的角速度从0旋转到10(°),然后静止不动,角度评估值按表2步骤逐次变化:

表2 加速度计和陀螺仪的互补滤波

T able 2 T he complementary filter based on the accelerometer and rate gy ro

循环次数Hits 012345678910滤波角度Filting ang le /(°)

0.00

2.48

4.89

7.23

9.50

9.51

9.53

9.54

9.55

9.57

9.58

程序循环一次用时25ms ,计算可知,前4次采样时系统角速度为90(°)/s ,此时针对陀螺仪的高通滤波起主要作用,可以看出角度评估值从0快速增加到9.50(°);程序运行至第五次时,系统已转至10(°)保持不变,从此时开始后六次采样角速度值都是0,这时仅有针对加速度计的低通滤波起作用,角度值缓慢增加。

4 

系统实际测试分析

图5 互补滤波

F ig .5 The complementary filter

简易互补滤波的效果可以通过图5得到一个十分直观的认识。图中横轴为时间轴,纵轴为角度轴。在实际完成的代步车系统中,主程序循环周期约为30ms ,经多次实验,在τ=1.5s 可获得最佳平衡效果,此时a gyro =0.98,a acc e =0.02。图5是根据实际测试中得到的数据绘制而成。

从图5可以看到,随着检测系统工作时间的增长,陀螺仪积分得到的角度值逐渐偏离真实角度值,尤其在大角度时更加明显,这是陀螺仪积分的漂移造成的;加速度计输出的角度值在有些地方存在快速的微小波动,这增加了姿态检测的不稳定性。采用简易互补滤波对两传感器进行数据融合后,两个问题都得到了较好的解决,滤波后的角度估计值已十分接近由电位计测量得到的真实角度值,角度曲线也变得平滑了。可见,该滤波方法非常有效地融合了两个传感器的数据。

5 结语

本文研究了基于惯性传感器的应用于单轴双轮自

469

增刊张吉昌,等:单轴双轮自平衡车姿态检测方案设计

平衡车的检测系统。应用惯性传感器建立的姿态检测单元,完成了对车体姿态的检测,使双轮车能够保持自平衡。通过系统的实际测试应用,表明运用互补滤波算法对传感器进行数据融合所得到的结果是切实有效的,明显提高了动态环境下的姿态检测精度,以达到整车系统精确控制的要求。该检测方案也可应用到其他类似的轮式机器人控制中,应用前景非常广阔。

参考文献:

[1] Albert-Jan Baerveldt,Robert Klang.A Low cost and Low w eight At-

titude Estimation S ystem for an Autonomous Helicopter//Proc of the IE EE Int Conf on Intelligent Engineering System s[C].Sw eden: 1997,391-395.[2] Data S heet.±300°/sec Yaw Rate Gyro w ith SPI In terface[EB/

OL].h ttp://w w https://www.360docs.net/doc/cf3093421.html,/static/imported-files/data-sheets/ ADIS16100.pdf.

[3] Data S heet.±1.5g~6g Three Axis Low-g M icrom achined Ac-

celerometer[EB/OL].http://ww https://www.360docs.net/doc/cf3093421.html,/files/sensors/ doc/data-sheet/M M A7260QT.pdf.

[4] 秦勇,

臧希,王晓宇,等.基于M EM S惯性传感器的机器人姿态检测系统的研究[J].传感技术学报,2007,20(2):298-301.

[5] 韩宏,吴嘉澍.基于加速度计的数字式倾角仪的设计[J].传感器

技术,2005,24(4):48-50.

[6] 毛强.基于M EM S技术的倾角传感器的研制[J].计算机测量与

控制,2006,14(10):1428-1430.

[7] 陈亮,黄玉美,林义忠,等.陀螺仪角速度的检测与处理[J].传

感器与微系统,2006,25(4):58-59.

[8] The Balance Filter[EB/OL].w https://www.360docs.net/doc/cf3093421.html,/first/segw ay.2008-1-

18.

The Design of the Self-Balance Two Wheel Vehicle's Attitude Estimation System

ZHANG Ji-Chang,CHENG Kai,ZHENG Rong-Er

(College of Information Science and Engineering,O cean University of China,Qingdao266100,China)

Abstract: An attitude estimation sy stem based on the inertial sensors w as proposed.The composition of sy s-tem w as discussed,and the advantages and disadvantages of the sensors were analyzed.The data coming from the inertial senso rs w as fusioned through the complementary filter.In this w ay the characteristic of the sensors can be effectively compensated.There w ere good results in the actual experiment also,and it had been applied

in the attitude estimation of the tw o w heeled self-balance vehicles.The graphics based on the collected data

w ere made,w hich indicated that the complementary filter was effectively to enhance the precision of the sy s-tem.

Key words: inertial sensors;g yro;accelerometer;com plementary filter;attitude estimation

责任编辑 陈呈超470中 国 海 洋 大 学 学 报2009年

两轮自平衡小车毕业设计毕业论文

两轮自平衡小车毕业设计毕业论文 目录 1.绪论 (1) 1.1研究背景与意义 (1) 1.2两轮自平衡车的关键技术 (2) 1.2.1系统设计 (2) 1.2.2数学建模 (2) 1.2.3姿态检测系统 (2) 1.2.4控制算法 (3) 1.3本文主要研究目标与内容 (3) 1.4论文章节安排 (3) 2.系统原理分析 (5) 2.1控制系统要求分析 (5) 2.2平衡控制原理分析 (5) 2.3自平衡小车数学模型 (6) 2.3.1两轮自平衡小车受力分析 (6) 2.3.2自平衡小车运动微分方程 (9) 2.4 PID控制器设计 (10) 2.4.1 PID控制器原理 (10) 2.4.2 PID控制器设计 (11) 2.5姿态检测系统 (12) 2.5.1陀螺仪 (12) 2.5.2加速度计 (13) 2.5.3基于卡尔曼滤波的数据融合 (14) 2.6本章小结 (16) 3.系统硬件电路设计 (17) 3.1 MC9SXS128单片机介绍 (17) 3.2单片机最小系统设计 (19) 3.3 电源管理模块设计 (21) I

3.4倾角传感器信号调理电路 (22) 3.4.1加速度计电路设计 (22) 3.4.2陀螺仪放大电路设计 (22) 3.5电机驱动电路设计 (23) 3.5.1驱动芯片介绍 (24) 3.5.2 驱动电路设计 (24) 3.6速度检测模块设计 (25) 3.6.1编码器介绍 (25) 3.6.2 编码器电路设计 (26) 3.7辅助调试电路 (27) 3.8本章小结 (27) 4.系统软件设计 (28) 4.1软件系统总体结构 (28) 4.2单片机初始化软件设计 (28) 4.2.1锁相环初始化 (28) 4.2.2模数转换模块(ATD)初始化 (29) 4.2.3串行通信模块(SCI)初始化设置 (30) 4.2.4测速模块初始化 (31) 4.2.5 PWM模块初始化 (32) 4.3姿态检测系统软件设计 (32) 4.3.1陀螺仪与加速度计输出值转换 (32) 4.3.2卡尔曼滤波器的软件实现 (34) 4.4平衡PID控制软件实现 (36) 4.5两轮自平衡车的运动控制 (37) 4.6本章小结 (39) 5. 系统调试 (40) 5.1系统调试工具 (40) 5.2系统硬件电路调试 (40) 5.3姿态检测系统调试 (41) 5.4控制系统PID参数整定 (43) II

飞思卡尔智能汽车设计技术报告

第九届“飞思卡尔”杯全国大学生 智能汽车竞赛 技术报告 学校:武汉科技大学队 伍名称:首安二队参赛 队员:韦天 肖杨吴光星带队 教师:章政 0敏

I

关于技术报告和研究论文使用授权的说明 本人完全了解第九届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:

II

目录 第一章引言 (1) 1.1 概述 (1) 1.2 内容分布 (1) 第二章系统总体设计 (2) 2.1 设计概述 (3) 2.2 控制芯片的选择 (3) 2.3 线性 CCD 检测的基本原理 (3) 2.3 系统结极 (5) 第三章机械系统设计 (7) 3.1 底盘加固 (7) 3.2 轮胎处理 (7) 3.3 四轮定位 (8) 3.4 差速器的调整 (12) 3.5 舵机的安装 (13) 3.6 保护杆的安装 (15) 3.7 CCD的安装 (16) 3.8 编码器的安装 (17) 3.9 检测起跑线光电管及加速度计陀螺仪的安装 (18) 第四章硬件系统设计 (19) 4.1 最小系统版 (20) 4.2 电源模块 (21) 4.3 CCD模块 (22) 4.4 驱动桥模块 (23) 4.5 车身姿态检测模块 (24) 4.7 测速模块 (24) 4.8 OLED液晶屏及按键、拨码 (25) 第5章程序设计 (27)

线控两轮平衡车的建模与控制研究

线控两轮平衡车的建模 与控制研究 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

线性系统理论 上机实验报告 题目:两轮平衡小车的建模与控制研究 完成时间:2016-11-29 1.研究背景及意义 现代社会人们活动范围已经大大延伸,交通对于每个人都十分重要。交通工具的选择则是重中之重,是全社会关注的焦点。 随着社会经济的发展,人民生活水平的提高,越来越多的小汽车走进了寻常百姓家。汽车快捷方便、省时省力,现代化程度高,种类繁多的个性化设计满足了不同人的需求。但它体积大、重量大、污染大、噪声大、耗油大、技术复杂、使用不便、价格贵、停放困难,效率不高,而且还会造成交通拥堵并带来安全隐患。相比之下,自行车是一种既经济又实用的交通工具。中国是自行车大国,短距离出行人们常选择骑自行车。自行车确实方便,但在使用之前需要先学会骑车,虽然看似简单,平衡能力差的人学起来却很困难,容易摔倒,造成人身伤害。另外,自行车毕竟不适宜长距离的行驶,遥远的路程会使人感到疲劳。 那么,究竟有没有这样一种交通工具,集两者的优点于一身呢?既能像汽车一样方便快捷又如自行车般经济简洁,而且操作易于掌握,易学又易用。两轮自平衡车概念就是在这样的背景下提出来的。 借鉴目前国内外两轮自平衡车的成功经验,本文提出的研究目标是设计一款新型的、结构简单、成本低的两轮自平衡车,使其能够很好地实现自平衡功能,同时设计结果通过MATLAB进行仿真验证。

2.研究内容 自平衡式两轮电动车是一个非线性、强耦合、欠驱动的自不稳定系统,对其控制策略的研究具有重大的理论意义。我们通过分析两轮平衡车的物理结构以及在平衡瞬间的力学关系,得到两轮车的力学平衡方程,并建立其数学模型。运用MATLAB 和SIMULINK 仿真系统的角度θ、角加速度? θ、位移x 和速度的? x 变化过程,对其利用外部控制器来控制其平衡。 3.系统建模 两轮平衡车的瞬时力平衡分析如图1所示。下面将分析归纳此时的力平衡方程[1-3],并逐步建立其数学模型。 对两轮平衡车的右轮进行力学分析,如图2所示。 依据图2对右轮进行受力分析,并建立其平衡方程: =R R R R M X f H ? - (1) R R R R J C f R ??? =- (2) 同理,对左轮进行受力分析,并建立其平衡方程: =R L L L M X f H ? - (3) L L L L J C f R ??? =- (4) 两轮平衡车摆杆的受力分析如图3所示,由图3可以得到水平和垂直方向的平衡方程以及转矩方程。 水平方向的平衡方程: H H x R L p m +=? ? (5) 其中θsin L x x m p +=,则有:

两轮自平衡小车控制系统的设计

两轮自平衡小车控制系统的设计 摘要:介绍了两轮自平衡小车控制系统的设计与实现,系统以飞思卡尔公司的16位微控制器MC9S12XS128MAL作为核心控制单元,利用加速度传感器MMA7361测量重力加速度的分量,即小车的实时倾角,以及利用陀螺仪ENC-03MB测量小车的实时角速度,并利用光电编码器采集小车的前进速度,实现了小车的平衡和速度控制。在小车可以保持两轮自平衡前提下,采用摄像头CCD-TSL1401作为路径识别传感器,实时采集赛道信息,并通过左右轮差速控制转弯,使小车始终沿着赛道中线运行。实验表明,该控制系统能较好地控制小车平衡快速地跟随跑道运行,具有一定的实用性。 关键词:控制;自平衡;实时性 近年来,随着经济的不断发展和城市人口的日益增长,城市交通阻塞以及耗能、污染问题成为了一个困扰人们的心病。新型交通工具的诞生显得尤为重要,两轮自平衡小车应运而生,其以行走灵活、便利、节能等特点得到了很大的发展。但是,昂贵的成本还是令人望而止步,成为它暂时无法广泛推广的一个重要原因。因此,开展对两轮自平衡车的深入研究,不仅对改善平衡车的性价比有着重要意义,同时也对提高我国在该领域的科研水平、扩展机器人的应用背景等具有重要的理论及现实意义。全国大学生飞思卡尔智能车竞赛与时俱进,第七届电磁组小车首次采用了两轮小车,模拟两轮自平衡电动智能车的运行机理。在此基础上,第八届光电组小车再次采用两轮小车作为控制系统的载体。小车设计内容涵盖了控制、模式识别、传感技术、汽车电子、电气、计算机、机械及能源等多个学科的知识。 1 小车控制系统总体方案 小车以16位单片机MC9S12XS128MAL作为中央控制单元,用陀螺仪和加速度传感器分别检测小车的加速度和倾斜角度[1],以线性CCD采集小车行走时的赛道信息,最终通过三者的数据融合,作为直流电机的输入量,从而驱动直流电机的差速运转,实现小车的自动循轨功能。同时,为了更方便、及时地观察小车行走时数据的变化,并且对数据作出正确的处理,本系统调试时需要无线模块和上位机的配合。小车控制系统总体架构。 2 小车控制系统自平衡原理 两轮小车能够实现自平衡功能,并且在受到一定外力的干扰下,仍能保持直立状态,是小车可以沿着赛道自动循线行走的先决条件。为了更好地控制小车的行走方式,得到最优的行走路径,需要对小车分模块分析与控制。 本控制系统维持小车直立和运行的动力都来自小车的两个轮子,轮子转动由两个直流电机驱动。小车作为一个控制对象,它的控制输入量是两个电机的转动速度。小车运动控制可以分解成以下3个基本控制任务。 (1)小车平衡控制:通过控制两个电机正反方向运动保持小车直立平衡状态; (2)小车速度控制:通过调节小车的倾斜角度来实现小车速度控制,本质上是通过控制电机的转速来实现小车速度的控制。 (3)小车方向控制:通过控制两个电机之间的转动差速实现小车转向控制。 2.1 小车平衡控制 要想实现小车的平衡控制,需要采取负反馈控制方式[2]。当小车偏离平衡点时,通过控制电机驱动电机实现加、减速,从而抵消小车倾斜的趋势,便可以保持车体平衡。即当小车有向前倾的趋势时,可以使电机正向加速,给小车一个向前的加速度,在回复力和阻尼力的作用下,小车不至于向前倾倒;当小车有向后倾的趋势时,可以使小车反向加速,给小车一个向后的加速度,从而不会让小车向后倾倒,。

单片机控制单轴双轮自动平衡小车设计开题报告

毕业设计(论文) 开题报告 题目:单片机控制单轴双轮自动平衡小车设计系别:电气工程系 专业:电气工程及其自动化 班级: 学号 学生姓名: 指导教师: 2016年 3月

中原工学院信息商务学院 毕业论文(设计)开题报告 论文(设计)题目单片机控制单轴双轮自动平衡小车 姓名系别电气工程系专业 班级 电气121学号6 1选题目的和意义: 平衡车是一个不稳定、强耦合、非线性系统,对平衡车的研究有利于我们更熟练得运用自动控制理论,并且发展更可靠稳定的控制方法。在实际应用中,平衡车由于体积小,灵活方便,不管是在军用或者民用领域都有广阔的应用空间,两轮自平衡小车可以作为一种小范围的移动式服务平台。通过本课题的研究学习,会使自己更加了解单片机,熟悉电子电路,提升自己的对整个设计的把握,更透彻的掌握自动控制方法。 2本选题在国内外的研究状况及发展趋势: 国外方面:JOE 是瑞士研制的用DSP和FPGA 控制并基于倒立摆理论双轮车。通过倾斜传感器和倾角传感器来检测车体。通过电机上的编码盘检测电机的速度。采用了基于状态反馈的线性控制策略,车的运动被分解成直线和旋转运动,然后分析直线运动和旋转运动,得到电机需要的控制量,最终把控制量耦合叠加。他主要的设计思想依然是:使车子朝车体倾斜的方向运动来保持车身的平衡。主控芯片是HC11 微处理器,此处理器是David P.Anderson 专门的针对nBot 车设计的。传感器在得到车的车身信息后,再比例整合,当作模糊控制器的输入,按照之前设定的控制原则得到两个电机需要的PWM 电压。该控制只能能让小车平衡运动,而不能让小车自主直立。Segway 拥有更多的姿态传感器,它有5个陀螺仪传感器,然而事实是检测车身前倾斜只需要3个传感器就够了,其他的两个传感器只是增加安全性。传感器的信息会被传送到一个电路板,这个电路板是微处理器的集群,效率是个人电脑的三倍。这个集群是为了保证本载人平衡车在其中任何一个处理器出现问题时能报告错误,给驾驶者以处理问题的时间余量,保证了平衡车的安全性。 国内方面:哈工大尹亮制作的双轮移动车Sway,车身倾斜度采用AD 推出的双轴加速度传感器ADXL202 及反射式红外线距离传感器来获得。基于PWM 动态控制直流电机的速度。车与上位机间的数据通信使用PTR2000 超小型超低功耗高速无线收发数传MODEM。人机交互界面使用图形液晶点阵、方向摇杆、按键。依靠这些可靠并且完备

基于单片机的两轮自平衡车控制系统设计

基于单片机的两轮自平衡车控制系统设计 摘要 两轮自平衡车是一种高度不稳定的两轮机器人,就像传统的倒立摆一样,本质不稳定是两轮小车的特性,必须施加有效的控制手段才能使其稳定。本文提出了一种两轮自平衡小车的设计方案,采用重力加速度陀螺仪传感器MPU-6050检测小车姿态,使用互补滤波完成陀螺仪数据与加速度计数据的数据融合。系统选用STC 公司的8位单片机STC12C5A60S2为主控制器,根据从传感器中获取的数据,经过PID算法处理后,输出控制信号至电机驱动芯片TB6612FNG,以控制小车的两个电机,来使小车保持平衡状态。 整个系统制作完成后,小车可以在无人干预的条件下实现自主平衡,并且在引入适量干扰的情况下小车能够自主调整并迅速恢复至稳定状态。通过蓝牙,还可以控制小车前进,后退,左右转。 关键词:两轮自平衡小车加速度计陀螺仪数据融合滤波 PID算法 Design of Control System of Two-Wheel Self-Balance Vehicle based on Microcontroller Abstract Two-wheel self-balance vehicle is a kind of highly unstable two-wheel robot. The characteristic of two-wheel vehicle is the nature of the instability as traditional inverted pendulum, and effective control must be exerted if we need to make it stable. This paper presents a design scheme of two-wheel self-balance vehicle. We need using gravity accelerometer

双轮自平衡小车

项目名称:两轮自平衡小车 本设计采用微控制器,通过软件滤波和自动控制理论算法使得小车达到平衡状态。系统的传感器采用角度传感SCA61T,和陀螺仪采集小车车身的水平状态值和小车的加速度值。并且采用了LM298双桥大功率集成驱动芯片来驱动电机,无线遥控来控制小车的数据传输。依靠这些可靠的硬件设计,使用PID 闭环控制算法和卡尔曼滤波算法,使得整个硬件结构和软件系统能顺利匹配。从而使得小车能保持直立自平衡状态。详细介绍:单轴两轮自平衡小车系统设计说明书摘要:本设计采用ATMEL公司推出的MEGA 16 单片机作为“双轮直立自平衡小车”的微控制器,用以处理任意时刻传感器的数据;通过软件滤波和自动控制理论算法使得小车能够在任意时刻进行自我调整以达到平衡状态。该系统的传感器采用角度传SCA61T,和陀螺仪采集小车车身的水平状态值和小车的加速度值。并且采用了LM298双桥大功率集成驱动芯片来驱动...(查看更多)电机,无线遥控来控制小车的数据传输。依靠这些设备和可靠的硬件设计,我们使用了一套PID 闭环控制算法和比较稳定的卡尔曼滤波算法,使得整个硬件结构和软件系统能顺利匹配。从而使得我们的小车能保持直立自平衡状态。 关键词:微控制器卡尔曼滤波PID闭环控制 一、总体设计方案 (1)设计思路题目要求设计并制作一个单轴两轮自平衡小车。对于小车能保持平衡,直立行走。系统应该设置有测量倾角和加速度的模块。可以采用角速度传感器和陀螺仪测量出小车的倾角和加速度,并把数据传送给单片机处理。经过单片机处理数据和进行相应的补偿后,通过控制电机从而使小车保持在平衡状态。系统硬件结构 (2)方案论证与比较 1.微控制器选型 方案一:采用目前市场比较主流性能稳定价格低廉的AT8952单片机,AT8952单片机内部资源8K字节在系统可编程Flash存储器、全静态操作:0Hz~33MHz 、32个可编程I/O口线、三个16位定时器/计数器八个中断源、全双工UART串行通道、低功耗空闲和掉电模式、掉电后中断可唤醒、看门狗定时器、双数据指针、和一路可编程的PWM 输出。我们的系统一共用到两路独立的PWM输出,AT89S52只有一路硬件PWM 这样我们必须考虑用软件或硬件再产产生一路可调的PWM 才能满足我们系统的两个轮子调速的需求。考虑到系统整体的程序构思是一个很耗费CPU运行时间,所以我们排除了软件中断的方式在产生一路PWM ,节省了CPU 的程序运行时间的开销。值得我们考虑的只能用其他电机控制芯片+AT8952来控制我们的两个电机,后来我们考虑了NEC-SSOP30 这个电机控制芯片来产生两路PWM,该芯片是一颗强大的直流电机和步进电机的控制芯片,里面有三路可编程的直流电机PWM 输出通道和三路步进电机控制通道,和单片机通信接口,有SPI 总线接口和USAP 串口通信,但是考虑到NEC –SSOP30 芯片的指令周期是1.4MS ,不能实时性的更新系统的PWM 这样就会造成整个系统的不稳定。最重要的一点还有考虑到该系统是程序里面运行的是一些比较复杂的浮点数运算,对微控制器的内核得必须既有可靠稳定快速处理浮点数运算的性能,51内核是以冯诺依曼总线 结构对数据的处理和传输,因为我们都知道该结构使不能同时进取指令和举行指

基于嵌入式STM32的飞思卡尔智能车设计



飞思卡尔智能车大赛是面向全国大学生举办的应用型比赛, 旨在培养创新精 神、协作精神,提高工程实践能力的科技活动。大赛主要是要求小车自主循迹并 在最短时间内走完整个赛道。针对小车所安装传感器的不同,大赛分为光电组、 电磁组和摄像头组。 本文介绍了本院自动化系第一届大学生智能汽车竟赛的智能车系统。 包括总 体方案设计、机械结构设计、硬件电路设计、软件设计以及系统的调试与分析。 机械结构设计部分主要介绍了对车模的改进,以及舵机随动系统的机械结构。硬 件电路设计部分主要介绍了智能车系统的硬件电路设计, 包括原理图和 PCB 设计 智能车系统的软、 硬件结构及其开发流程。该智能车车模采用学校统一提供的飞 思卡尔车模,系统以 STM32F103C8T6 作为整个系统信息处理和控制命令的核心, 使用激光传感器检测道路信息使小车实现自主循迹的功能
关键字:飞思卡尔智能车STM32F103C8T6
激光传感器
第一章 概述

1.1 专业课程设计题目
基于嵌入式 STM32 的飞思卡尔智能车设计
1.2 专业课程设计的目的与内容
1.2.1 目的 让学生运用所学的计算机、传感器、电子电路、自动控制等知识,在老师的 指导下,结合飞思卡尔智能车的设计独立地开展自动化专业的综合设计与实验, 锻炼学生对实际问题的分析和解决能力,提高工程意识,为以后的毕业设计和今 后从事相关工作打下一定的基础。 1.2.2 内容 本次智能车大赛分为光电组和创新做,我们选择光电组小车完成循迹功能。 该智能车车模采用学校统一提供的飞思卡尔车模, 系统以 STM32F103C8T6 作为整 个系统信息处理和控制命令的核心,我们对系统进行了创造性的优化: 其一, 硬件上采用激光传感器的方案, 软件上采用 keil 开发环境进行调试、 算法、弯道预判。 其二,传感器可以随动跟线,提高了检测范围。 其三,独立设计了控制电路板,充分利用 STM32 单片机现有模块进行编程, 同时拨码开关、状态指示灯等方便了算法调试。
1.3 方案的研讨与制定
1.3.1传感器选择方案 方案一:选用红外管作为赛道信息采集传感器。 由于识别赛道主要是识别黑白两种不同的颜色, 而红外对管恰好就能实现区 分黑白的功能,当红外光照在白色KT板上时,由于赛道的漫反射作用,使得一部 分红外光能反射回来, 让接收管接的输出引脚的电压发生变化,通过采集这个电 压的变化情况来区分红外光点的位置情况,以达到区分赛道与底板的作用。 红外管的优点在于价格便宜,耐用;缺点却用很多:1、红外光线在自然环 境中,无论是室内还是室外均比较常见,就使得其抗干扰能力不强,容易受环境 变化的影响。2、调试不方面,由于红外光是不可见光,调试的时候需要采用比 较麻烦的方法来判断光电的位置。3、由于红外管光线的直线性不好,就使得红 外传感器所能准确的判断的最远距离比较小,也就是通常所说的前瞻不够远。

两轮平衡车说明书

双轮自平衡车 学校:德州学院 学生:唐文涛焦方磊李尧 指导老师:孟俊焕 时间:二О一四年7 月10日~10 月 6 日共12 周

中文摘要 两轮自平衡车是动态平衡机器人的一种。2008年我国奥运会的时候安全保卫工作使用过它,到今年两轮平衡车已经发展的相对成熟。在国家节能、降耗、环保、低碳、经济的方针政策下,两轮平衡车进行了资源整合、技术升级,在原来的两轮单轴式自平衡的基础上采取两轴双轮可折叠设计,两轮自平衡车具有运动灵活、智能控制、操作简单、驾驶姿势多样、节省能源、绿色环保、转弯半径为0等优点。适用于在狭小空间内运行,能够在大型购物中心、国际性会议或展览场所、体育场馆、办公大楼、大型公园及广场、生态旅游风景区、大学校园、城市中的生活住宅小区等各种室内或室外场合中作为人们的中、短距离代步工具。也是集娱乐、代步、炫酷为一体的,主打形象是汽车伴侣解决停车后几公里内的代步问题。 两轮自平衡车主要由驱动电机、锂电池组、车轮、车身等组成。其工作原理:车体内置的精密固态陀螺仪来判断车身所处的姿势状态,透过精密且高速的中央微处理器计算出适当的指令后,驱动马达来做到平衡的效果。 关键词:陀螺仪,动态稳定,折叠,驱动系统,平衡。 English abstract Two rounds of self-balancing vehicle is one of the dynamic balance of the robot. In 2008 the Olympic Games security work used it in our country, in the year to balance two rounds of car has developed relatively mature. In the national energy saving, consumption reduction, environmental protection, low carbon, economic policies and regulations, the two rounds of balance of resource integration, technology upgrades, in the original two rounds of single shaft type taken on the basis of self balancing two shaft double folding design, two rounds of self-balancing vehicle movement, flexible, intelligent control, simple operation and driving posture diversity, save energy, green environmental protection, the advantages of turning radius of 0. Apply to run in narrow space, can in a large shopping center, the international conference and exhibition venues, sports venues, office buildings, large parks and square, ecological tourism scenic spot, the university campus, city life in residential quarters and other indoor or outdoor situations as the medium and short distance transport of people. Is entertainment, walking, cool as a whole, the main image is car partner solve the problem of parking within a few kilometers after walking. Two rounds of self-balancing vehicle is mainly composed of drive motor, lithium battery pack, wheel, body, etc. Its working principle: the body's built-in precision solid-state gyroscope to judge the body's position, through sophisticated and high-speed central microprocessor

双轮自平衡小车机器人系统设计与制作

燕山大学 课程设计说明书题目:双轮自平衡小车机器人系统设计与制作 学院(系):机械工程学院 年级专业:12级机械电子工程 组号:3 学生: 指导教师:史艳国建涛艳文史小华庆玲 唐艳华富娟晓飞正操胡浩波 日期: 2015.11

燕山大学课程设计(论文)任务书院(系):机械工程学院基层教学单位:机械电子工程系

摘要 两轮自平衡小车是一种非线性、多变量、强耦合、参数不确定的复杂系统,他体积小、结构简单、运动灵活,适合在狭小空间工作,是检验各种控制方法的一个理想装置,受到广大研究人员的重视,成为具有挑战性的课题之一。 两轮自平衡小车系统是一种两轮左右并行布置的系统。像传统的倒立一样,其工作原理是依靠倾角传感器所检测的位姿和状态变化率结合控制算法来维持自身平衡。本设计通过对倒立摆进行动力学建模,类比得到小车平衡的条件。从加速度计和陀螺仪传感器得出的角度。运用卡尔曼滤波优化,补偿陀螺仪的漂移误差和加速度计的动态误差,得到更优的倾角近似值。通过光电编码器分别得到车子的线速度和转向角速度,对速度进行PI控制。根据PID控制调节参数,实现两轮直立行走。通过调节左右两轮的差速实现小车的转向。 制作完成后,小车实现了在无线蓝牙通讯下前进、后退、和左右转向的基本动作。此外小车能在正常条件下达到自主平衡状态。并且在适量干扰下,小车能够自主调整并迅速恢复稳定状态。 关键词:自平衡陀螺仪控制调试

前言 移动机器人是机器人学的一个重要分支,对于移动机器人的研究,包括轮式、腿式、履带式以及水下式机器人等,可以追溯到20世纪60年代。移动机器人得到快速发展有两方面原因:一是其应用围越来越广泛;二是相关领域如计算、传感、控制及执行等技术的快速发展。移动机器人尚有不少技术问题有待解决,因此近几年对移动机器人的研究相当活跃。 近年来,随着移动机器人研究不断深入、应用领域更加广泛,所面临的环境和任务也越来越复杂。机器人经常会遇到一些比较狭窄,而且有很多大转角的工作场合,如何在这样比较复杂的环境中灵活快捷的执行任务,成为人们颇为关心的一个问题。双轮自平衡机器人概念就是在这样的背景下提出来的。两轮自平衡小车是一个高度不稳定两轮机器人,是一种多变量、非线性、强耦合的系统,是检验各种控制方法的典型装置。同时由于它具有体积小、运动灵活、零转弯半径等特点,将会在军用和民用领域有着广泛的应用前景。因为它既有理论研究意义又有实用价值,所以两轮自平衡小车的研究在最近十年引起了大量机器人技术实验室的广泛关注。 本论文主要叙述了基于stm32控制的两轮自平衡小车的设计与实现的整个过程。主要容为两轮自平衡小车的平衡原理,直立控制,速度控制,转向控制及系统定位算法的设计。通过此设计使小车具备一定的自平衡能力、负载承载能力、速度调节能力和无线通讯功能。小车能够自动检测自身机械系统的倾角并完成姿态的调整,并在加载一定重量的重物时能够快速做出调整并保证自身系统的自我平衡。能够以不同运动速度实现双轮车系统的前进、后退、左转与右转等动作,同时也能够实现双轮自平衡车系统的无线远程控制操作

飞思卡尔智能车电机资料

3.1.6驱动电机介绍 驱动电机采用直流伺服电机,我们在此选用的是RS-380SH型号的伺服电机,这是因为直流伺服电机具有优良的速度控制性能,它输出较大的转矩,直接拖动负载运行,同时它又受控制信号的直接控制进行转速调节。在很多方面有优越性,具体来说,它具有以下优点: (1)具有较大的转矩,以克服传动装置的摩擦转矩和负载转矩。 (2)调速范围宽,高精度,机械特性及调节特性线性好,且运行速度平稳。 (3)具有快速响应能力,可以适应复杂的速度变化。 (4)电机的负载特性硬,有较大的过载能力,确保运行速度不受负载冲击的 影响。 (5)可以长时间地处于停转状态而不会烧毁电机,一般电机不能长时间运行于 停转状态,电机长时间停转时,稳定温升不超过允许值时输出的最大堵转转矩称为连续堵转转矩,相应的电枢电流为连续堵转电流。 图3.1为该伺服电机的结构图。图3.2是此伺服电机的性能曲线。 图3.1 伺服电机的结构图

图3.2 伺服电机的性能曲线 3.1.7 舵机介绍 舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。其工作原理是:控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。一般舵机的控制要求如图3.3所示。图3.4为舵机的控制线。

平衡车原理和扑街解释

平衡车原理和扑街解释 摘要: 说到仆街的原因或者原理,必须从平衡车的原理说起。本文为 buaa_dingo 原创一、自平衡基本原理所有前后方向具有自平衡功能的车辆,双轮或者独轮,都是基于倒立摆原理。自平衡车实际上是一个比较 ... 说到仆街的原因或者原理,必须从平衡车的原理说起。本文为buaa_dingo原创 一、自平衡基本原理 所有前后方向具有自平衡功能的车辆,双轮或者独轮,都是基于倒立摆原理。自平衡车实际上是一个比较简单的单级倒立摆系统,只是由于有驾驶员的操纵,为这个简单的单级倒立摆系统引入了一些非线性因素,但是也并不复杂。 简单文字描述如下: 1)最简单的自平衡车系统,包括控制器、姿态传感器和执行器(电机),以及必要的电源(电池)和结构零件(让小车组合在一起具备功能)。其中,控制器能够测量姿态传感器输出的姿态信息,并比较精确地控制电机运转;姿态传感器可以每秒输出100-500次姿态数据(俯仰、滚转、方向);执行器(电机)可以提供整车运动的动力。 2)当驾驶者向前倾斜身体时,会带动车子向前倾斜。此时控制器可通过姿态传感器感知到这个倾斜,并命令电机向前旋转。这样,驾驶者前倾的时候,车子也会往前走,从而“追上”打算往前倾倒的驾驶者,保持动态平衡。 3)当驾驶者身体向后仰时,会带动车子向后倾斜。此时控制器可通过姿态传感器感知到这个倾斜,并命令电机向后旋转。这样,驾驶者后仰的时候,车子也会往后走,从而“追上”打算向后倾倒的驾驶者,保持动态平衡。 4)控制器每秒钟执行100-500次2、3的过程,不停地测量车子姿态,不停地调整电机的转动方向和转速。这样就保持一个动态的平衡。不管驾驶者往前还是往后倾斜,车子都会自动“追上”驾驶者,保持平衡。 参考文献:

飞思卡尔智能车竞赛光电组技术报告

第九届“飞思卡尔”杯全国大学生智能车竞赛光电组技术报告 学校:中北大学 伍名称:ARES 赛队员:贺彦兴 王志强 雷鸿 队教师:闫晓燕甄国涌

关于技术报告和研究论文使用授权的说明书本人完全了解第八届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:2014-09-15日

摘要 本文介绍了第九届“飞思卡尔杯全国大学生智能车大赛光电组中北大学参赛队伍整个系统核心采用飞思卡尔单片机MC9S12XS128MAA ,利用TSL1401线性CCD 对赛道的行扫描采集信息来引导智能小车的前进方向。机械系统设计包括前轮定位、方向转角调整,重心设计器件布局设计等。硬件系统设计包括线性CCD传感器安装调整,电机驱动电路,电源管理等模块的设计。软件上以经典的PID算法为主,辅以小规Bang-Bang 算法来控制智能车的转向和速度。在智能车系统设计开发过程中使用Altium Designer设计制作pcb电路板,CodeWarriorIDE作为软件开发平台,Nokia5110屏用来显示各实时参数信息并利用蓝牙通信模块和串口模块辅 助调试。关键字:智能车摄像头控制器算法。

目录 1绪论 (1) 1.1 竞赛背景 (1) 1.2国内外智能车辆发展状况 (1) 1.3 智能车大赛简介 (2) 1.4 第九届比赛规则简介 (2) 2智能车系统设计总述 (2) 2.1机械系统概述 (3) 2.2硬件系统概述 (5) 2.3软件系统概述 (6) 3智能车机械系统设计 (7) 3.1智能车的整体结构 (7) 3.2前轮定位 (7) 3.3智能车后轮减速齿轮机构调整 (8) 3.4传感器的安装 (8) 4智能车硬件系统设计 (8) 4.1XS128芯片介绍 (8) 4.2传感器板设计 (8) 4.2.1电磁传感器方案选择 (8) 4.2.2电源管理模 (9) 4.2.3电机驱动模块 (10) 4.2.4编码器 (11) 5智能车软件系统设 (11) 5.1程序概述 (11) 5.2采集传感器信息及处理 (11) 5.3计算赛道信息 (13) 5.4转向控制策略 (17) 5.5速度控制策略 (19) 6总结 (19)

爱尔威平衡车

爱尔威平衡车 百科名片 双轮平衡车,又叫电动平衡车,双轮思维车、双轮代步车、体感车、射位车、智感车等。其运作原理主要是建立在一种被称为“动态稳定”(Dynamic Stabilization)的基本原理上,利用车体内部的陀螺仪和加速度传感器,来检测车体姿态的变化,并利用伺服控制系统,精确地驱动电机进行相应的调整,以保持系统的平衡。[1] 中文名:双轮平衡车外文名:Airwheel 别名:双轮代步车、双轮思维车、体感 车目录 驾驶方法 技术特点: 原理 功能配置 产品特色 主要品牌

驾驶方法 类似人体自身的平衡系统,当身体重心前倾时,为了保证平衡,需要往前走,重心后倾时同理。同时,电动平衡车的转向由把手握及伸缩杆来实现,摆动把手握会连带着伸缩杆使车辆左右两个车轮产生转速差(例如伸缩杆向左摆动时,右轮的转速会比左轮快),达到转向的效果。 车辆的能量来源是一个锂电池组,单次充电可保证20-30公里的续航里程和15公里的最高时速。在骑行时,将方向操纵杆指向需要前进的方向,车体将会朝着指向的方向行驶。当方向操纵杆处于车体正中间位置时,系统将朝正前方行驶。当转方向操纵杆时,系统会相应地控制左右两边的速度差,实现转向,让身体跟随方向操纵杆倾斜的方向倾斜,将会获得更好的转向体验。突破性的垂直转向设计,颠覆传统的驾驭方式,更符合人体的操作习惯。 [2] 技术特点: 1、左右两轮电动车,独特的平衡设计方案。 2、集“嵌入式+工业设计+艺术设计”的产品集成创新技术,以嵌入式技术提升产品的内在智能化,以适应当代产品数字化、智能化的趋势,实现由内而外的创新。 3、产品信息建模,建立一套既包含产品形状特征,也包含用户认知意象的心理特征体系,并在此基础上进一步开发以用户对产品的最终要求驱动的产品生成系统。 原理 运作原理主要是建立在一种被称为“动态稳定”(DynamicStabilization)的基本原理上,也就是车辆本身的自动平衡能力。以内置的精密固态陀螺仪(Solid-StateGyroscopes)来判断车身所处的姿势状态,透过精密且高速的中央微处理器计算出适当的指令后,驱动马达来做到平衡的效果。 功能配置 代步出行,代步是双轮平衡车以及同类型产品具有的物理特性,时速最高可达18公里,单次充电可完成20至45公里的续航里程。 移动视频,双轮平衡车可以与手机、DV、相机等设备结合,利用其自动行走功能,成为移动拍摄平台。APP应用,通过APP应用,电动平衡车可以与手机互联,通过手机APP,可以实时了解体感车的行驶、售后信息,同时,APP还可以实现交友、分享等功能。

双轮自平衡智能车行走伺服控制算法设计报告

自动控制原理课程设计

目录 一.引言 (4) 二.系统模型的建立 (4) 三.系统控制的优化 (9) 3.1 PID调节参数的优化 (9) 3.2 积分分离PID的应用 (13) 四,结语 (16)

双轮自平衡智能车行走伺服控制算法 摘要:全国第八届“飞思卡尔”智能汽车大赛已经结束。光电组使用大赛提供的D车模,双轮站立前进,相对于以前的四轮车,双轮车的控制复杂度大大增加。行走过程中会遇到各种干扰,经过多次的实验,已经找到了一套能够控制双轮车的方法。双轮机器人已经广泛用于城市作战,排爆,反恐,消防以及空间消防等领域。实验使用单片机控制双电机的转速,达到了预期的效果。 关键词:自平衡;智能;控制算法 Motion Servo Control Algorithm for Dual Wheel Intelligent Car Abstract: The 8th freescale cup national Intelligent Car competition of has been end.The led team must used D car which has only 2tires.It is more difficult to control prefer to control A car which has 4tires.There is much interference on the track. A two-wheeled robots have been widely used in urban warfare, eod, counter-terrorism, fire control and space fire control and other fields。We has searched a good ways to control it.We used MCU to control the speed of motors and get our gates. Key Words: balance by self; intelligent; control algorithm

平衡小车平衡原理介绍

平衡原理 一、平衡小车原理 平衡小车是通过两个电机运动下实现小车不倒下直立行走的多功能智能小车,在外力的推拉下,小车依然保持不倒下。这么一说可能还没有很直观的了解究竟什么是平衡小车,不过这个平衡小车实现的原理其实是在人们生活中的经验得来的。如果通过简单的练习,一般人可以通过自己的手指把木棒直立而不倒的放在指尖上,所以练习的时候,需要学会的两个条件:一是放在指尖上可以移动,二是通过眼睛观察木棒的倾斜角度和倾斜趋势(角速度)。通过手指的移动去抵消木棒倾斜的角度和趋势,使得木棒能直立不倒。这样的条件是不可以缺一的,实际上加入这两个条件,控制过程中就是负反馈机制。 而世界上没有任何一个人可以蒙眼不看,就可以直立木棒的,因为没有眼睛的负反馈,就不知道笔的倾斜角度和趋势。这整个过程可以用一个执行式表达: 平衡小车也是这样的过程,通过负反馈实现平衡。与上面保持木棒直立比较则相对简单,因为小车有两个轮子着地,车体只会在轮子滚动的方向上发生倾斜。控制轮子转动,抵消在一个维度上倾斜的趋势便可以保持车体平衡了。

所以根据上述的原理,通过测量小车的倾角和倾角速度控制小车车轮的加 速度来消除小车的倾角。因此,小车倾角以及倾角速度的测量成为控制小车直立 的关键。我们的平衡小车使用了测量倾角和倾角速度的集成传感器陀螺仪 -MPU6050 二、角度(物理分析PD算法) 图1 图2 控制平衡小车,使得它作加速运动。这样站在小车上(非惯性系,以车轮 作为坐标原点)分析倒立摆受力,它就会受到额外的惯性力,该力与车轮的加 速度方向相反,大小成正比。这样倒立摆(如图2)所受到的回复力为:公式1 F = mg sin θ-ma cos θ≈mg θ-mk1θ式1中,由于θ很小,所以进行了线 性化。假设负反馈控制是车轮加速度a与偏角θ成正比,比例为k1。如果比例 k1>g,(g是重力加速度)那么回复力的方向便于位移方向相反了。

自平衡小车设计报告

2012年省电子竞赛设计报告 项目名称:自平衡小车 姓名:连文金、林冰财、陈立镔 指导老师:吴进营、苏伟达、李汪彪、何志杰日期:2012年9月7日

摘要: 本组的智能小车底座采用的是网上淘宝的三轮两个电机驱动的底座,主控芯片为STC89C52,由黑白循迹采集模块对车道信息进行采集,将采集的信息传送到主控芯片,再由主控芯片发送相应的指令到电机驱动模块L298N,从而控制电机的运转模式。 关键词: STC89C52 L298N 色标传感器 E18-F10NK 自动循迹 引言: 近现代,随着电子科技的迅猛发展,人们对技术也提出了更高的要求。汽车的智能化在提高汽车的行驶安全性,操作性等方面都有巨大的优势,在一些特殊的场合下也能满足一些特殊的需要。智能小车系统涉及到自动控制,车辆工程,计算机等多个领域,是未来汽车智能化是一个不可避免的大趋势。本文设计的小车以STC89C52为控制核心,用色标传感器 E18-F10NK作为检测元件实现小车的自动循迹前行。 一、系统设计 本组智能小车的硬件主要有以STC89C52 作为核心的主控器部分、自动循迹部分、电机驱动部分。 1.1方案论证及选择: 根据设计要求,可以有多种方法来实现小车的功能。我们采用模块化思想,从各个单元电路选择入手进行整体方案的论证、比较与选择。 本方案以STC89C52作为主控芯片,通过按键进行模式的选择切换,按键一选择三轮循迹,按键二进行两轮循迹。 1.1.1模式一(三轮循迹): 模式一(按键一控制):三轮循迹的时候,通过色标传感器和激光传感器进行实时的数据采集,反馈给主控芯片,主控芯片通过驱动L298来控制两路直流减速电机,从而保证路线的准确性。

相关文档
最新文档