Iterative Instance Segmentation (1)

Iterative Instance Segmentation (1)
Iterative Instance Segmentation (1)

Iterative Instance Segmentation

Ke Li UC Berkeley

ke.li@https://www.360docs.net/doc/ca3096002.html,

Bharath Hariharan Facebook AI Research

bharathh@https://www.360docs.net/doc/ca3096002.html,

Jitendra Malik UC Berkeley

malik@https://www.360docs.net/doc/ca3096002.html,

Abstract

Existing methods for pixel-wise labelling tasks generally disregard the underlying structure of labellings and so the resulting predictions may be visually implausible.While in-corporating structure into the model should improve predic-tion quality,doing so is challenging –manually specifying the form of structural constraints may be impractical and inference often becomes intractable even if structural con-straints are given.We sidestep this problem by reducing structured prediction to a sequence of unconstrained pre-diction problems and demonstrate that this approach is ca-pable of automatically discovering priors on shape,conti-guity of region predictions and smoothness of region con-tours from data without any a priori speci?cation.On the instance segmentation task,this method outperforms the state-of-the-art,achieving a mean AP r of 63.7%at 50%overlap and 42.2%at 70%overlap.

1.Introduction

In computer vision,the objective of many tasks is to pre-dict a pixel-wise labelling of the input image.While the intrinsic structure of images constrains the space of sensi-ble labellings,existing approaches typically eschew lever-aging such cues and instead predict the label for each pixel independently.Consequently,the resulting predictions may not be visually plausible.To mitigate this,a common strat-egy is to perform post-processing on the predictions us-ing superpixel projections [14]or conditional random ?elds (CRFs)[17],which ensures the ?nal predictions are consis-tent with local appearance cues like colour and texture but fails to account for global object-level cues like shape.Despite its obvious shortcomings,this strategy enjoys popularity,partly because incorporating global cues re-quires introducing higher-order potentials in the graphical model and often makes inference intractable.Because in-ference in general graphical models is NP-hard,extensive work on structured prediction has focused on devising ef?-cient inference algorithms in special cases where the higher-order potentials take on a particular form.

Unfortunately,

Figure 1:A challenging image in which object instances are segmented incorrectly.While pixels belonging to the cate-gory are identi?ed correctly,they are not correctly separated into instances.

this restricts the expressive power of the model.As a re-sult,care must be taken to formulate the cues of interest as higher-order potentials of the desired form,which may not be possible.Moreover,low-energy con?gurations of the po-tentials often need to be speci?ed manually a priori,which may not be practical when the cues of interest are complex and abstract concepts like shape.

In this paper,we devise a method that learns implicit shape priors and use them to improve the quality of the pre-dicted pixel-wise labelling.Instead of attempting to capture shape using explicit constraints,we would like to model shape implicitly and allow the concept of shape to emerge from data automatically.To this end,we draw inspiration from iterative approaches like auto-context [29],inference machines [24]and iterative error feedback (IEF)[6].Rather than learning a model to predict the target in one step,we decompose the prediction process into multiple steps and allow the model to make mistakes in intermediate steps as long as it is able to correct them in subsequent steps.By

1

a r X i v :1511.08498v 1 [c s .C V ] 26 N o v 2015

learning to correct previous mistakes,the model must learn the underlying structure in the output implicitly in order to use it to make corrections.

To evaluate if the method is successful in learning shape constraints,a perfect testbed is the task of instance segmen-tation,the goal of which is to identify the pixels that be-long to each individual object instance in an image.Be-cause the unit of interest is an object instance rather than an entire object category,methods that leverage only local cues have dif?culty in identifying the instance a pixel belongs to in scenes with multiple object instances of the same cate-gory that are adjacent to one another,as illustrated in Fig-ure1.We demonstrate that the proposed method is able to successfully learn a category-speci?c shape prior and correctly suppresses pixels belonging to other instances. It is also able to automatically discover a prior favouring contiguity of region predictions and smoothness of region contours despite these being not explicitly speci?ed in the model.Quantitatively,it outperforms the state-of-the-art and achieves a mean AP r of63.7%at50%overlap and 42.2%at70%overlap.

2.Related Work

Yang et al.[30]?rst described the task of segmenting out individual instances of a category.The metrics we use in this paper were detailed by Tighe et al.[27],who pro-posed non-parametric transfer of instance masks from the training set to detected objects,and by Hariharan et al.[12] who used convolutional neural nets(CNNs)[18]to clas-sify region proposals.We use the terminology and metrics proposed by the latter in this paper.Dai et al.[7]used ideas from[15]to speed up the CNN-based proposal classi?ca-tion signi?cantly.

A simple way of tackling this task is to run an object detector and segment out each detected instance.The no-tion of segmenting out detected objects has a long history in computer https://www.360docs.net/doc/ca3096002.html,ually this idea has been used to aid semantic segmentation,or the task of labeling pixels in an image with category labels.Borenstein and Ullman[3]?rst suggested using category-speci?c information to improve the accuracy of segmentation.Yang et al.[30]start from object detections from the deformable parts model[8]and paste?gure-ground masks for each detected object.Sim-ilarly,Brox et al.[5]and Arbel′a ez et al.[1]paste?gure-ground masks for poselet detections[4].Recent advances in computer vision have all but replaced early detectors such as DPM and poselets with ones based on CNNs[18,10,9] and produced dramatic improvements in performance in the process.In the CNN era,Hariharan et al.[14]used features from CNNs to segment out R-CNN detections[10].

When producing?gure-ground masks for detections, most of these approaches predict every pixel independently. However,this disregards the fact that pixels in the image are hardly independent of each other,and a?gure-ground labeling has to satisfy certain constraints.Some of these constraints can be simply encoded as local smoothness: nearby pixels of similar color should be labeled similarly. This can be achieved simply by aligning the predicted seg-mentation to image contours[5]or projecting to superpix-els[14].More sophisticated approaches model the problem using CRFs with unary and pairwise potentials[25,22,17]. Later work consider extending these models by incorporat-ing higher-order potentials of speci?c forms for which in-ference is tractable[16,19].Zheng et al.[32]show that inference in CRFs can be viewed as recurrent neural nets and trained together with a CNN to label pixels,resulting in large gains.Another alternative is to use eigenvectors obtained from normalized cuts as an embedding for pix-els[21,20].

However,images contain more structure than just local appearance-dependent smoothness.For instance,one high informative form of global cue is shape;in the case of per-sons,it encodes important constraints like two heads cannot be part of the same person,the head must be above the torso and so on.There has been prior work on handling such constraints in the pose estimation task by using graphical models de?ned over keypoint locations[31,28].However, in many applications,keypoint locations are unknown and such constraints must be enforced on raw pixels.Explicitly specifying these constraints on pixels is impractical,since it would require formulating potentials that are capable of localizing different parts of an object,which itself is a chal-lenging task.Even if this could be done,the potentials that are induced would be higher order(which arises from the relative position constraints among multiple parts of an ob-ject)and non-submodular(due to mutual exclusivity con-straints between pixels belonging to two different heads). This makes exact inference and training in these graphical models intractable.

Auto-context[29]and inference machines[24]take ad-vantage of the observation that performing accurate infer-ence does not necessarily require modelling the posterior distribution explicitly.Instead,these approaches devise ef-?cient iterative inference procedures that directly approx-imate message passing.By doing so,they are able to leverage information from distant spatial locations when making predictions while remaining computationally ef?-cient.In a similar spirit,other methods model the iter-ative process as recurrent neural nets[23,32].IEF[6] uses a related approach on the task of human pose esti-mation by directly re?ning the prediction rather than ap-proximating message passing in each iteration.While this approach shows promise when the predictions lie in a low-dimensional space of possible2D locations of human joints, it is unclear if it will be effective when the output is high-dimensional and embeds complex structure like shape,as is

Figure2:The proposed method decomposes the prediction process into multiple steps,each of which consists of performing unconstrained inference on the input image and the prediction from the preceding step.The diagram above illustrates a three-step prediction procedure when a convolutional neural net is used as the underlying model,as is the case with our method when applied to instance segmentation.

the case with tasks that require a pixel-wise labelling of the input.In this paper,we devise an iterative method that sup-ports prediction in high-dimensional spaces without a natu-ral distance metric for measuring conformity to structure.

3.Method

3.1.Task and Setting

The objective of the instance segmentation task,also known as simultaneous detection and segmentation(SDS), is to predict the segmentation mask for each object instance in an image.Typically,an object detection system is run in the?rst stage of the pipeline,which generates a set of can-didate bounding boxes along with the associated detection scores and category labels.Next,non-maximum suppres-sion(NMS)is applied to these detections,which are then fed into the segmentation system,which predicts a heatmap for each bounding box representing the probability of each pixel inside the bounding box belonging to the foreground object of interest.The heatmaps then optionally undergo some form of post-processing,such as projection to super-pixels.Finally,they are binarized by applying a threshold, yielding the?nal segmentation mask predictions.We use fast R-CNN[9]trained on MCG[2]bounding box propos-als as our detection system and focus on designing the seg-mentation system in this paper.

3.2.Segmentation System

For our segmentation system,we use a CNN that takes a224×224patch as input and outputs a50×50heatmap prediction.The architecture is based on that of the hyper-colmumn net proposed by Hariharan et al.[14],which is designed to be sensitive to image features at?ner scales and relative locations of feature activations within the bound-ing box.Speci?cally,we use the architecture based on the VGG16-layer net[26](referred to as“O-Net”in[14]),in which heatmaps are computed from the concatenation of upsampled feature maps from multiple intermediate lay-ers,known as the hypercolumn representation.The CNN is trained end-to-end on the PASCAL VOC2012training set with ground truth instance segmentation masks from the Semantic Boundaries Dataset(SBD)[11]starting from an initialization from the weights of a net?netuned for the de-tection task using R-CNN[10].

3.3.Algorithm

We would like to incorporate global cues like shape when making predictions.Shape encodes important struc-tural constraints,such as the fact that a person cannot have two heads,which is why humans are capable of recognizing the category of an object from its silhouette almost effort-lessly.So,leveraging shape enables us to disambiguate re-gion hypotheses that all correctly cover pixels belonging to the category of interest but may group pixels into instances incorrectly.

Producing a heatmap prediction that is consistent with shape cues is a structured prediction problem,with the structure being shape constraints.The proposed algorithm works by reducing the structured prediction problem to a sequence of unconstrained prediction problems.Instead of forcing the model to produce a prediction that is consistent with both the input and the structure in a single step,we al-low the model to disregard structure initially and train it to correct its mistakes arising from disregarding structure over multiple steps,while ensuring consistency of the prediction with the input in each step.The?nal prediction is there-fore consistent with both the input and the https://www.360docs.net/doc/ca3096002.html,ter, we demonstrate that this procedure is capable to learning a shape prior,a contiguity prior and a contours smoothness prior purely from data without any a priori speci?cation to

bias the learning towards ?nding these priors.

At test time,in each step,we feed the input image and the prediction from the previous step,which defaults to con-stant prediction of 1/2in the initial step,into the model and take the prediction from the last step as our ?nal prediction.In our setting,the model takes the form of a CNN.Please see Figure 2for a conceptual illustration of this procedure.Algorithm 1Training Procedure

Require:D is a training set consisting of (x,y )pairs,where x and y denote the instance and the ground truth labelling respectively,and f is the model

function T RAIN (D ,f )

//p (t )

x is the predicted labelling of x in the t th stage

p (0)

x ← 1/2···1/2 T ?(x,y )∈D for t =1to N do //Training set for the current stage T ← x

p

(i )x

,y (x,y )∈D,i

Train model f on T starting from the current parameters of f

p (t )

x ←f x p (t ?1)

x

?(x,y )∈D end for return f end function

Algorithm 2Testing Procedure

Require:f is the model and x is an instance function T EST (f ,x )//?y (t )is the predicted labelling of x after t iterations

?y (0)← 1/2···1/2 T

for t =1to M do ?y (t )←f

x

?y (t ?1)

end for return ?y (M )end function

Training the model is straightforward and is done in stages:in the ?rst stage,the model is trained to predict the ground truth segmentation mask with the previous heatmap prediction set to 1/2for all pixels and the predictions of the model at the end of training are stored for later use.In each subsequent stage,the model is trained starting from the pa-rameters values at the end of the previous stage to predict the ground truth segmentation mask from the input image and the predictions generated in all previous stages.

Pseudocode of the training and testing procedures are shown in Algorithms 1and 2.

3.4.Discussion

Modelling shape constraints using traditional structured prediction approaches would be challenging for three rea-sons.First,because shape is a highly abstract concept,it is dif?cult to explicitly formulate the set of structural con-straints it imposes on the output.Furthermore,even if it could be done,manual speci?cation would introduce bi-

ases that favour human preconceptions and lead to inaccu-racies in the predictions.Therefore,manually engineering the form of structural constraints is neither feasible or de-sirable.Hence,the structural constraints are unknown and must be learned from data automatically.Second,because shape imposes constraints on the relationship between dif-ferent parts of the object,such as the fact that a person can-not have two heads,it is dependent on the semantics of the image.As a result,the potentials must be capable of repre-senting high-level semantic concepts like “head”and would need to have complex non-linear dependence on the input image,which would complicate learning.Finally,because shape simultaneously constrains the labels of many pixels and enforce mutual exclusivity between competing region hypotheses,the potentials would need to be of higher order and non-submodular,often making inference https://www.360docs.net/doc/ca3096002.html,pared to the traditional single-step structured pre-diction paradigm,the proposed multi-step prediction pro-cedure is more powerful because it is easier to model local corrections than the global structure.This can be viewed ge-ometrically –a single-step prediction procedure effectively attempts to model the manifold de?ned by the structure di-rectly,the geometry of which could be very complex.In contrast,our multi-step procedure learns to model the gradi-ent of an implicit function whose level set de?nes the mani-fold,which tends to have much simpler geometry.Because it is possible to recover the manifold,which is a level set of an implicit function,from the gradient of the function,learning the gradient suf?ces for modelling structure.

3.5.Implementation Details

We modify the architecture introduced by Hariharan et al.[14]as follows.Because shape is only expected to be consistent for objects in the same category,we make the weights of the ?rst layer category-dependent by adding twenty channels to the input layer,each corresponding to a different object category.The channel that corresponds to the category given by the detection system contains the heatmap prediction from the previous step,and channels corresponding to other categories are ?lled with zeros.To prepare the input to the CNN,patches inside the bounding boxes generated by the detection system are extracted and anisotropically scaled to 224×224and the ground truth segmentation mask is transformed accordingly.Because the heatmap prediction from the preceding step is 50×50,we upsample it to 224×224using bilinear interpolation before feeding it in as input.To ensure learning is well-conditioned,the heatmap prediction is rescaled and cen-tred element-wise to lie in the range [?127,128]and the weights corresponding to the additional channels are ini-tialized randomly with the same standard deviation as that of the weights corresponding to the colour channels.

The training set includes all detection boxes that overlap

with the ground truth bounding boxes by more than70%. At training time,boxes are uniformly sampled by category, and the weights for upsampled patches are set proportion-ally to their original areas for the purposes of computing the loss.The weights for all layers that are present in the VGG16-layer architecture are initialized from the weights ?netuned on the detection task and the weights for all other layers are initialized randomly.The loss function is the sum of the pixel-wise negative log likelihoods.The net is trained end-to-end using SGD on mini-batches of32patches with a learning rate of5×10?5and momentum of0.9.We per-form four stages of training and train for30K,42.5K,50K and27.5K iterations in stages one,two,three and four re-spectively.We?nd that the inference procedure typically converges after three steps and so we use three iterations at test time.

We can optionally perform post-processing by project-ing to superpixels.To generate region predictions from heatmaps,we colour in a pixel or superpixel if the mean heat intensity inside a pixel or superpixel is greater than40%.Fi-nally,we can rescore the detections in the same manner as [14]by training support vector machines(SVMs)on fea-tures computed on the bounding box and the region predic-tions.To construct the training set,we take all bounding box detections that pass non-maximum suppression(NMS) using a bounding box overlap threshold of70%and include those that overlap with the ground truth by more than70% as positive instances and those by less than50%as negative instances.To compute the features,we feed in the origi-nal image patch and the patch with the region background masked out to two CNNs trained as described in[13].To obtain the?nal set of detections,we compute scores using the trained SVMs and apply NMS using a region overlap threshold of30%.

3.6.Evaluation

We evaluate the proposed method in terms of region av-erage precision(AP r),which is introduced by[13].Region average precision is de?ned in the same way as the standard average precision metric used for the detection task,with the difference being the computation of overlap between the prediction and the ground truth.For instance segmentation, overlap is de?ned as the pixel-wise intersection-over-union (IoU)of the region prediction and the ground truth segmen-tation mask,instead of the IoU of their respective bounding boxes.We evaluate on the PASCAL VOC2012validation set and demonstrate that the proposed method outperforms the state-of-the-art,achieving a mean AP r of63.7%at50% overlap and42.2%at70%overlap.

4.Experiments

First,we visualize the improvement in prediction accu-racy as training progresses.In Figure3,we show the pixel-wise heatmap predictions on image patches from the PAS-CAL VOC2012validation set after each stage of training. As shown,prediction quality steadily improves with each successive stage of training.Initially,the model is only able to identify some parts of the object;with each stage of train-ing,it learns to recover additional parts of the object that were previously missed.After four stages of training,the model is able to correctly identify most parts belonging to the object.This indicates that the model is able to learn to make local corrections to its predictions in each stage.After four stages of training,the predictions are reasonably visu-ally coherent and consistent with the underlying structure of the output space.Interestingly,the model gradually learns to suppress parts of other objects,as shown by the predic-tions on the bicycle and horse images,where the model learns to suppress parts of the pole and the other horse in later

stages.

Figure3:Heatmap predictions on images from the PAS-CAL VOC2012validation set after each stage of training. Best viewed in colour.

Next,we compare the performance of the proposed method with the state-of-the-art method,the hypercolumn net[14],under three settings:without superpixel projection, with superpixel projection and with superpixel projection and rescoring.As shown in Table1,the proposed method outperforms the state-of-the-art in each setting in terms of mean AP r at both50%and70%.In particular,the pro-posed method achieves an8.3-point gain over the state-of-the-art in terms of its raw pixel-wise prediction performance at70%overlap.This indicates the raw heatmaps produced by the proposed method are more accurate than those pro-duced by the vanilla hypercolumn net.As a result,the pro-posed method requires less reliance on post-processing.We con?rm this intuition by visualizing the heatmaps in Fig-ure4.When superpixel projection is applied,the proposed method improves performance by1.7points and3.8points

Figure4:Comparison of heatmap and region predictions produced by the proposed method and the vanilla hypercolumn net on images from the PASCAL VOC2012validation set.Best viewed in colour.

Method and Setting mAP r at50%mAP r at70%

Raw pixel-wise prediction:

Hypercolumn[14]55.528.1

Proposed Method59.236.4

With superpixel projection:

Hypercolumn[14]58.636.4

Proposed Method60.340.2

With superpixel projection

and rescoring:

Hypercolumn[14]62.439.4

Proposed Method63.742.2 Table1:Performance comparison of the proposed method and the state-of-the-art under different settings.

at50%and70%overlaps respectively.With rescoring,the proposed method obtains a mean AP r of63.7%at50% overlap and42.2%at70%overlap,which represent the best performance on the instance segmentation task to date.We break down performance of the proposed method by cate-gory under each setting in Tables2and3.

We examine heatmap and region predictions of the pro-posed method and the vanilla hypercolumn net,both with and without applying superpixel projection.As shown in Figure4,the pixel-wise heatmap predictions produced by the proposed method are generally more visually coherent than those produced by the vanilla hypercolumn net.In par-ticular,the proposed method predicts regions that are more consistent with shape.For example,the heatmap predic-tions produced by the proposed method for the sportscaster and the toddler images contain less noise and correctly iden-tify most foreground pixels with high con?dence.In con-trast,the heatmap predictions produced by the hypercolumn net are both noisy and inconsistent with the typical shape of persons.On the bicycle image,the proposed method is able to produce a fairly accurate segmentation,whereas the hypercolumn net largely fails to?nd the contours of the bi-cycle.On the horse image,the proposed method correctly identi?es the body and the legs of the horse.It also incor-rectly hallucinates the head of the horse,which is actually occluded;this mistake is reasonable given the similar ap-pearance of adjacent horses.This effect provides some evi-dence that the method is able to learn a shape prior success-fully;because the shape prior discounts the probability of seeing a headless horse,it causes the model to hallucinate a head.On the other hand,the hypercolumn net chooses to hedge its bets on the possible locations of the head and so the resulting region prediction is noisy in the area near the expected location of the head.Notably,the region pre-dictions generated by the proposed method also tend to con-tain fewer holes and have smoother contours than those pro-duced by the hypercolumn net,which is apparent in the case of the sportscaster and toddler images.This suggests that the model is able to learn a prior favouring the contiguity of regions and smoothness of region contours.

Applying superpixel projection signi?cantly improves the region predictions of the vanilla hypercolumn net.It effectively smoothes out noise in the raw heatmap predic-tions by averaging the heat intensities over all pixels in a superpixel.As a result,the region predictions contain fewer holes after applying superpixel projection,as shown by the predictions on the sportscaster and toddler images.Super-pixel projection also ensures that the region predictions con-form to the edge contours in the image,which can result in a signi?cant improvement if the raw pixel-wise region pre-diction is very poor,as is the case on the bicycle image.On

Setting aero bike bird boat bottle bus car cat chair cow

Raw pixel-wise prediction75.663.864.041.334.080.261.283.125.260.2

With superpixel projection76.364.965.142.635.180.661.280.928.361.7

With superpixel projection and rescoring79.867.169.247.743.681.268.085.931.165.6

Setting table dog horse mbike person plant sheep sofa train tv mAP r Raw pixel-wise prediction32.281.670.271.561.030.262.644.977.962.559.2 With superpixel projection33.682.271.271.963.731.165.149.678.961.560.3 With superpixel projection and rescoring32.783.776.274.067.438.371.145.476.868.963.7

Table2:AP r at50%overlap achieved by the proposed method on the PASCAL VOC2012validation set.

Setting aero bike bird boat bottle bus car cat chair cow

Raw pixel-wise prediction56.828.335.118.221.471.043.165.4 5.733.4

With superpixel projection57.433.242.923.123.471.044.964.410.840.6

With superpixel projection and rescoring61.135.442.625.728.773.549.368.511.044.0

Setting table dog horse mbike person plant sheep sofa train tv mAP r Raw pixel-wise prediction10.760.336.440.229.311.832.919.458.549.336.4 With superpixel projection14.362.742.144.136.211.644.427.660.149.740.2 With superpixel projection and rescoring10.763.548.344.132.019.349.723.760.652.842.2

Table3:AP r at70%overlap achieved by the proposed method on the PASCAL VOC2012validation set.

the other hand,because the raw pixel-wise predictions of the proposed method are generally less noisy and have more accurate contours than those of the hypercolumn net,super-pixel projection does not improve the quality of predictions as signi?cantly.In some cases,it may lead to a performance drop,as pixel-wise prediction may capture details that are missed by the superpixel segmentation.As an example,on the bicycle image,the seat is originally segmented correctly in the pixel-wise prediction,but is completely missed after applying superpixel projection.Therefore,superpixel pro-jection has the effect of masking prediction errors and limits performance when the quality of pixel-wise predictions be-comes better than that of the superpixel segmentation.

We?nd that the proposed method is able to avoid some of the mistakes made by the vanilla hypercolumn net on im-ages with challenging scene con?gurations,such as those depicting groups of people.On such images,the hypercol-umn net sometimes includes parts of adjacent persons in region predictions.Two such examples are shown in Figure 5,in which region predictions contain two heads from dif-ferent people.The proposed method is able to suppress the heads of adjacent people and correctly exclude them from region predictions,suggesting that the shape prior that is learned is able to help the model disambiguate between the region hypotheses with one head and two heads,both of which are consistent with local appearance cues.

We now analyze the improvement in overlap between re-gion predictions and the ground truth segmentation masks at the level of individual detections.In Figure6,we plot the maximum overlap of the pixel-wise region prediction pro-duced by the proposed method with the ground truth

against Figure5:Region predictions on images with challenging scene con?gurations.

that of the region prediction generated by the vanilla hyper-column net for each of the top200detections in each cat-egory.So,in this plot,any point above the diagonal repre-sents a detection for which the proposed method produces a more accurate region prediction than the hypercolumn net. We?nd overlap with ground truth improves for76%of the detections,degrades for15.6%of the detections and re-mains the same for the rest.This is re?ected in the plot, where the vast majority of the points lie above the diagonal, indicating that the proposed method improves the accuracy of region predictions for most detections.

Remarkably,for detections on which reasonably good overlap is achieved using the vanilla hypercolumn net, which tend to correspond to bounding boxes that are well-localized,the proposed method can improve overlap by 15%in many cases.Furthermore,the increase in overlap

the hy-proposed times reach given that to achieve that learned to very accu-

Figure 6:Comparison of maximum overlap of region pre-dictions produced by the vanilla hypercolumn net and the proposed method with the ground truth.Each point corre-sponds to a bounding box detection and the colour of each point denotes the category of the detection.Points that lie above the diagonal represent detections for which the region predictions produced by the proposed method are more ac-curate than those produced by the hypercolumn net.Finally,we conduct an experiment to test whether the proposed method is indeed able to learn a shape prior more directly.To this end,we select an image patch from the PASCAL VOC 2012validation set that contains little vi-sually distinctive features,so that it does not resemble an object from any of the categories.We then feed the patch into the model along with an arbitrary category label,which essentially forces the model to try to interpret the image as that of an object of the particular category.We are interested in examining if the model is able to hallucinate a region that is both consistent with the input image and resembles an ob-ject from the speci?ed category.

Figure 7shows the input image and the resulting heatmap predictions under different settings of category.As shown,when the category is set to bird,the heatmap predic-tion resembles the body and the wing of a bird.When the

category is set to horse,the model hallucinates the body and

the legs of a horse.Interestingly,the wing of the bird and the legs of the horse are hallucinated even though there are no corresponding contours that resemble these parts in the input image.When the category is set to bicycle,the model interprets the edges in the input image as the frame of a bicycle,which contrasts with the heatmap prediction when the category is set to television,which is not sensitive to thin edges in the input image and instead contains a large contiguous box that resembles the shape of a television set.

Figure 7:Heatmap predictions of the proposed method un-der different settings of category.As shown,the model is able to hallucinate plausible shapes that correspond to the speci?ed categories.

5.Conclusion

We presented a method that is able to take advantage of the implicit structure that underlies the output space when making predictions.The method does not require manual speci?cation of the form of the structure a priori and is able to discover salient structure from the data automati-cally.We apply the method to the simultaneous detection and segmentation task and show that the method automat-ically learns a prior on shape,contiguity of regions and smoothness of region contours.We also demonstrate state-of-the-art performance on instance segmentation using the method,which achieves a mean AP r of 63.7%and 42.2%at 50%and 70%overlaps respectively.The method is gen-erally applicable to all tasks that require the prediction of a pixel-wise labelling of the input image;we hope the success we demonstrated on instance segmentation will encourage application to other such tasks and further exploration of the method.

References

[1]P.Arbel′a ez,B.Hariharan,C.Gu,S.Gupta,and J.Malik.

Semantic segmentation using regions and parts.In CVPR, 2012.2

[2]P.Arbelaez,J.Pont-Tuset,J.Barron,F.Marques,and J.Ma-

lik.Multiscale combinatorial grouping.In Computer Vision and Pattern Recognition(CVPR),2014IEEE Conference on, pages328–335.IEEE,2014.3

[3] E.Borenstein and S.Ullman.Class-speci?c,top-down seg-

mentation.In Computer Vision?ECCV2002,pages109–122.

Springer,2002.2

[4]L.Bourdev,S.Maji,T.Brox,and J.Malik.Detecting peo-

ple using mutually consistent poselet activations.In ECCV.

2010.2

[5]T.Brox,L.Bourdev,S.Maji,and J.Malik.Object segmen-

tation by alignment of poselet activations to image contours.

In CVPR,2011.2

[6]J.Carreira,P.Agrawal,K.Fragkiadaki,and J.Malik.Human

pose estimation with iterative error feedback.arXiv preprint arXiv:1507.06550,2015.1,2

[7]J.Dai,K.He,and J.Sun.Convolutional feature masking for

joint object and stuff segmentation.In CVPR,2015.2 [8]P.F.Felzenszwalb,R.B.Girshick,D.McAllester,and D.Ra-

manan.Object detection with discriminatively trained part-based models.TPAMI,32(9),2010.2

[9]R.Girshick.Fast R-CNN.In ICCV,2015.2,3

[10]R.Girshick,J.Donahue,T.Darrell,and J.Malik.Rich fea-

ture hierarchies for accurate object detection and semantic segmentation.In CVPR,2014.2,3

[11] B.Hariharan,P.Arbel′a ez,L.Bourdev,S.Maji,and J.Malik.

Semantic contours from inverse detectors.In Computer Vi-sion(ICCV),2011IEEE International Conference on,pages 991–998.IEEE,2011.3

[12] B.Hariharan,P.Arbel′a ez,R.Girshick,and J.Malik.Simul-

taneous detection and segmentation.In ECCV,2014.2 [13] B.Hariharan,P.Arbel′a ez,R.Girshick,and J.Malik.Simul-

taneous detection and segmentation.In Computer Vision–ECCV2014,pages297–312.Springer,2014.5

[14] B.Hariharan,P.Arbel′a ez,R.Girshick,and J.Malik.Hyper-

columns for object segmentation and?ne-grained localiza-tion.In CVPR,2015.1,2,3,4,5,6

[15]K.He,X.Zhang,S.Ren,and J.Sun.Spatial pyramid pooling

in deep convolutional networks for visual recognition.In ECCV,2014.2

[16]P.Kohli,A.Osokin,and S.Jegelka.A principled deep ran-

dom?eld model for image segmentation.In Computer Vision and Pattern Recognition(CVPR),2013IEEE Conference on, pages1971–1978.IEEE,2013.2

[17]P.Kr¨a henb¨u hl and V.Koltun.Ef?cient inference in fully

connected CRFs with Gaussian edge potentials.In NIPS, 2011.1,2

[18]Y.LeCun,B.Boser,J.S.Denker,D.Henderson,R.E.

Howard,W.Hubbard,and L.D.Jackel.Backpropagation applied to handwritten zip code recognition.Neural compu-tation,1(4),1989.2[19]Y.Li,D.Tarlow,and R.Zemel.Exploring compositional

high order pattern potentials for structured output learning.

In Computer Vision and Pattern Recognition(CVPR),2013 IEEE Conference on,pages49–56.IEEE,2013.2

[20]M.Maire,S.X.Yu,and P.Perona.Object detection and

segmentation from joint embedding of parts and pixels.In ICCV,2011.2

[21]S.Maji,N.K.Vishnoi,and J.Malik.Biased normalized cuts.

In CVPR,2011.2

[22]O.M.Parkhi,A.Vedaldi,C.Jawahar,and A.Zisserman.The

truth about cats and dogs.In ICCV,2011.2

[23]P.H.O.Pinheiro and R.Collobert.Recurrent convolutional

neural networks for scene labeling.In ICML,2014.2 [24]S.Ross,D.Munoz,M.Hebert,and J.A.Bagnell.Learning

message-passing inference machines for structured predic-tion.In IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2011.1,2

[25] C.Rother,V.Kolmogorov,and A.Blake.Grabcut:Interac-

tive foreground extraction using iterated graph cuts.ACM Transactions on Graphics(TOG),23(3):309–314,2004.2 [26]K.Simonyan and A.Zisserman.Very deep convolutional

networks for large-scale image recognition.arXiv preprint arXiv:1409.1556,2014.3

[27]J.Tighe,M.Niethammer,and https://www.360docs.net/doc/ca3096002.html,zebnik.Scene pars-

ing with object instances and occlusion handling.In ECCV, 2010.2

[28]J.Tompson,A.Jain,Y.LeCun,and C.Bregler.Joint training

of a convolutional network and a graphical model for human pose estimation.In NIPS,2014.2

[29]Z.Tu and X.Bai.Auto-context and its application to high-

level vision tasks and3D brain image segmentation.Pattern Analysis and Machine Intelligence,IEEE Transactions on, 32(10):1744–1757,2010.1,2

[30]Y.Yang,S.Hallman,D.Ramanan,and https://www.360docs.net/doc/ca3096002.html,y-

ered object models for image segmentation.TPAMI,34(9), 2012.2

[31]Y.Yang and D.Ramanan.Articulated human detection with

?exible mixtures of parts.TPAMI,35(12),2013.2

[32]S.Zheng,S.Jayasumana,B.Romera-Paredes,V.Vineet,

Z.Su,D.Du,C.Huang,and P.Torr.Conditional ran-dom?elds as recurrent neural networks.arXiv preprint arXiv:1502.03240,2015.2

6.Supplementary Material

Below are the predictions of the proposed method and the vanilla hypercolumn net on additional images from various categories.

Figure8:Comparison of heatmap and region predictions produced by the proposed method and the vanilla hypercolumn net on additional images from the PASCAL VOC2012validation set.Best viewed in colour.

on additional images from the PASCAL VOC2012validation set.Best viewed in colour.

螺纹通止规

螺纹通止规 定是:螺纹止规进入螺纹不能超过2.5圈,一般的要实际不得超过2圈,并且用得力度不能大,我们的经验是用拇指和食指轻轻夹持螺纹规以刚好能转动螺纹规的力度为准.力大了就相当于在使用丝锥或牙板了,那样规就用不了几次了. 螺纹通止规 螺纹通止规是适用于标准规定型号的灯头作为灯用附件电光源产品时候的设计和生产、检验的工具设备。 用途 一般用于检验螺纹灯头或灯座的尺寸是否符合标准要求,分别检验螺纹灯头的通规和止规尺寸或灯座的通规或止规尺寸。 工作原理 具体检验要求及介绍详见中国人民国国家标准:GB/T1483.1-2008或 IEC60061-3:2004标准规定容。 操作方法 具体检验要求及介绍详见中国人民国国家标准:GB/T1483.1-2008或 IEC60061-3:2004标准规定容。 通止规

通止规,是量规的一种。作为度量标准,用于大批量的检验产品。 通止规是量具的一种,在实际生产批量的产品若采取用计量量具(如游标卡尺,千分表等有刻度的量具)逐个测量很费事.我们知道合格的产品是有一个度量围的.在这个围的都合格,所以人们便采取通规和止规来测量. 通止规种类 (一)对统一英制螺纹,外螺纹有三种螺纹等级:1A、2A和3A级,螺纹有三种等级:1B、2B和3B级,全部都是间隙配合。等级数字越高,配合越紧。在英制螺纹中,偏差仅规定1A和2A级,3A级的偏差为零,而且1A和2A级的等级偏差是相等的等级数目越大公差越小,如图所示:1B 2B 3B 螺纹基本中径3A 外螺纹2A 1A 1、1A和1B级,非常松的公差等级,其适用于外螺纹的允差配合。 2、2A和2B级,是英制系列机械紧固件规定最通用的螺纹公差等级。 3、3A和3B级,旋合形成最紧的配合,适用于公差紧的紧固件,用于安全性的关键设计。 4、对外螺纹来说,1A和2A级有一个配合公差,3A级没有。1A级公差比2A级公差大50,比3A级大75,对螺纹来说,2B级公差比2A公差大30。1B级比2B级大50,比3B级大75。 (二)公制螺纹,外螺纹有三种螺纹等级:4h、6h和6g,螺纹有三种螺纹等级:5H、6 H、7H。(日标螺纹精度等级分为I、II、III三级,通常状况下为II级)在公制螺纹中,H 和h的基本偏差为零。G的基本偏差为正值,e、f和g的基本偏差为负值。如图所示:公差G H 螺纹偏差基本中径外螺纹f g h e 1、H是螺纹常用的公差带位置,一般不用作表面镀层,或用极薄的磷化层。G位置基本偏差用于特殊场合,如较厚的镀层,一般很少用。 2、g常用来镀6-9um的薄镀层,如产品图纸要6h的螺栓,其镀前螺纹采用6g的公差带。 3、螺纹配合最好组合成H/g、H/h或G/h,对于螺栓、螺母等精制紧固件螺纹,标准推荐采用6H/6g的配合。 (三)螺纹标记M10×1–5g 6g M10×1–6H 顶径公差代号中径和顶径公差代号(相同)中径公差代号。 通止规是两个量具分为通规和止规.举个例子:M6-7h的螺纹通止规一头为通规(T)如果能顺利旋进被测螺纹孔则为合格,反之不合格需返工(也就是孔小了).然后用止规(Z)如果能顺利旋进被测螺纹孔2.5圈或以上则为不合格反之合格.且此时不合格的螺纹孔应报废,不能进行返工了.其中2.5圈为国家标准,若是出口件最多只能进1.5圈(国际标准).总之通规过止规不过为合格,通规止规都不过或通规止规都过则为不合格。

螺纹通止规要求螺纹通规通

螺纹通止规要求螺纹通规通,止规止。 但是如果螺纹通规止,说明什么? 螺纹止规通,又说明什么? 我也来说两句查看全部回复 最新回复 ?wpc (2008-11-07 20:11:20) 在牙型正确的前提下螺纹通止规检测螺纹中径 ?lobont (2008-11-08 11:16:32) 对外螺纹而言,螺纹通规是做到中径上偏差,所以能通过就表示产品合格,通不过就表示螺纹做大了,要再修一刀; 螺纹止规做到中径下偏差,所以只能通过2~3牙,如果也通过,就表示外螺纹做小了,产品成为废品 ?qubin8512 (2008-11-18 15:36:05) 螺纹赛规与螺纹环规主要测量螺纹的中径。 ?datafield (2008-11-29 19:12:51) 检具不是万能的,只是方便而已。具体没什么的我有在哪本书上看过,是一本螺纹手册上的。 ?ZYC007 (2009-2-09 20:31:13) 在牙型正确的前提下螺纹通止规检测螺纹中径。 对外螺纹而言,但是如果螺纹通规止,说明螺纹中径大;螺纹止规通,又说明螺纹中径小。 ?WWCCJJ (2009-3-19 09:27:19) 检测的是螺纹的中径,螺纹检测规在检定时,也是检测其中径. ?tanjiren (2009-3-20 22:23:06) 螺纹通止规只能检测螺纹的作用中径,大径和底径等均无法准确测量出来. ?月夜(2009-4-01 21:47:13) 用来测量中径 ?丽萍(2009-4-02 10:11:41)

只能检测工件螺纹的中径 yg196733456 (2009-4-03 09:15:56)原来是测中径的知道了

NPT螺纹以及检测方法详解

N P T螺纹以及检测方法详 解 Prepared on 22 November 2020

一、目的:规范公司技术员,检验员,操作员对NPT螺纹的了解。 二、适用范围:适用于公司任何NPT螺纹类产品,参考资料为通用管螺 纹和国家标准GB/T12716-2011。 三、目录 1、NPT和NPTF介绍 2、螺纹技术参数参数讲解 3、NPT与NPTF加工工艺 4、NPT和NPTF的检测方法 四、内容: NPT和NPTF螺纹介绍 NPT 是 National (American) Pipe Thread 的缩写,属於美国标准的 60 度锥管 密封螺纹,用於北美地区,美国标准为13)通用管螺纹.国家标准可查阅 GB/T12716-2011。NPTF:美制干密封圆锥管螺。NPTF = National Pipe Thread Fine 称之为一般用途的锥管螺纹,这也是我们以前称之为的布氏锥螺纹。NPTF 螺纹称之为干密封式锥管螺纹,它连接密封的原理是在没有润滑剂或密封填 料情况下完全依靠螺纹自身形成密封,设计意图是使内、外螺纹牙的侧面、 牙顶和牙底同时接触,来达到密封的目的。它们两者的牙型角、斜度等指标 都是相同的,关键是牙顶和牙底的削平高度不一样,所以,量规的设计也是 不一样的。NPTF干密封管螺纹的牙形精度比NPT螺纹高,旋合时不用任何 填料,完全依靠螺纹自身形成密封,螺纹间无任何密封介质。干密封管螺纹 规定有较为严格的公差,属精密型螺纹,仅用在特殊场合。这种螺纹有较高 的强度和良好的密封性,在具有薄截面的脆硬材料上采用此螺纹可以减少断 裂现象。NPTF内、外螺纹牙顶与牙底间没有间隙,是过盈配合,而NPT螺 纹是过渡配合。NPTF螺纹主要用于高温高压对密封要求严格的场所。NPT

通止规的用法及管理

通止规的用法及管理 1、止规 使用前:应经相关检验计量机构检验计量合格后,方可投入生产现场使用。 使用时:应注意被测螺纹公差等级及偏差代号与环规标识公差等级、偏差代号相同(如M24*1.5-6h与M24*1.5-5g两种环规外形相同,其螺纹公差带不相同,错用后将产生批量不合格品)。 检验测量过程:首先要清理干净被测螺纹油污及杂质,然后在环规与被测螺纹对正后,用大母指与食指转动环规,旋入螺纹长度在2个螺距之内为合格,否则判为不合格品。 2、通规 使用前:应经相关检验计量机构检验计量合格后,方可投入生产现场使用。 使用时:应注意被测螺纹公差等级及偏差代号与环规标识的公差等级、偏差代号相同(如M24*1.5-6h与M24*1.5-5g两种环规外形相同,其螺纹公差带不相同,错用后将产生批量不合格品)。 检验测量过程:首先要清理干净被测螺纹塞规油污及杂质,然后在环规与被测螺纹对正后,用大母指与食指转动环规,使其在自由状态下旋合通过螺纹全部长度判定合格,否则以不通判定。 3、注意事项 在用量具应在每个工作日用校对塞规计量一次。经校对塞规计量超差或者达到计量器具周检期限的环规,由计量管理人员收回、标识隔离并作相应的处理措施。 可调节螺纹环规经调整后,测量部位会产生失圆,此现象由计量修复人员经螺纹磨削加工后再次计量鉴定,各尺寸合格后方可投入使用。 报废环规应标识隔离并及时处理,不得流入生产现场。 4、维护与保养 量具(环规)使用完毕后,应及时清理干净测量部位附着物,存放在规定的量具盒内。生产现场在用量具应摆放在工艺定置位置,轻拿轻放,以防止磕碰而损坏测量表面。 严禁将量具作为切削工具强制旋入螺纹,避免造成早期磨损。可调节螺纹环规严禁非计量工作人员随意调整,确保量具的准确性。环规长时间不用,应交计量管理部门妥善保管。

通止规的用法及管理

通止规的用法及管理 令狐采学 1、止规 使用前:应经相关检验计量机构检验计量合格后,方可投入生产现场使用。 使用时:应注意被测螺纹公差等级及偏差代号与环规标识公差等级、偏差代号相同(如M24*1.56h与M24*1.55g两种环规外形相同,其螺纹公差带不相同,错用后将产生批量不合格品)。 检验测量过程:首先要清理干净被测螺纹油污及杂质,然后在环规与被测螺纹对正后,用大母指与食指转动环规,旋入螺纹长度在2个螺距之内为合格,否则判为不合格品。 2、通规 使用前:应经相关检验计量机构检验计量合格后,方可投入生

产现场使用。 使用时:应注意被测螺纹公差等级及偏差代号与环规标识的公差等级、偏差代号相同(如M24*1.56h与M24*1.55g两种环规外形相同,其螺纹公差带不相同,错用后将产生批量不合格品)。 检验测量过程:首先要清理干净被测螺纹塞规油污及杂质,然后在环规与被测螺纹对正后,用大母指与食指转动环规,使其在自由状态下旋合通过螺纹全部长度判定合格,否则以不通判定。 3、注意事项 在用量具应在每个工作日用校对塞规计量一次。经校对塞规计量超差或者达到计量器具周检期限的环规,由计量管理人员收回、标识隔离并作相应的处理措施。 可调节螺纹环规经调整后,测量部位会产生失圆,此现象由计量修复人员经螺纹磨削加工后再次计量鉴定,各尺寸合格后方

可投入使用。 报废环规应标识隔离并及时处理,不得流入生产现场。 4、维护与保养 量具(环规)使用完毕后,应及时清理干净测量部位附着物,存放在规定的量具盒内。生产现场在用量具应摆放在工艺定置位置,轻拿轻放,以防止磕碰而损坏测量表面。 严禁将量具作为切削工具强制旋入螺纹,避免造成早期磨损。可调节螺纹环规严禁非计量工作人员随意调整,确保量具的准确性。环规长时间不用,应交计量管理部门妥善保管。

通止规的用法及管理修订稿

通止规的用法及管理 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

通止规的用法及管理 1、止规 使用前:应经相关检验计量机构检验计量合格后,方可投入生产现场使用。 使用时:应注意被测螺纹公差等级及偏差代号与环规标识公差等级、偏差代号相同(如M24*与M24*两种环规外形相同,其螺纹公差带不相同,错用后将产生批量不合格品)。 检验测量过程:首先要清理干净被测螺纹油污及杂质,然后在环规与被测螺纹对正后,用大母指与食指转动环规,旋入螺纹长度在2个螺距之内为合格,否则判为不合格品。 2、通规 使用前:应经相关检验计量机构检验计量合格后,方可投入生产现场使用。 使用时:应注意被测螺纹公差等级及偏差代号与环规标识的公差等级、偏差代号相同(如M24*与M24*两种环规外形相同,其螺纹公差带不相同,错用后将产生批量不合格品)。 检验测量过程:首先要清理干净被测螺纹塞规油污及杂质,然后在环规与被测螺纹对正后,用大母指与食指转动环规,使其在自由状态下旋合通过螺纹全部长度判定合格,否则以不通判定。 3、注意事项

在用量具应在每个工作日用校对塞规计量一次。经校对塞规计量超差或者达到计量器具周检期限的环规,由计量管理人员收回、标识隔离并作相应的处理措施。 可调节螺纹环规经调整后,测量部位会产生失圆,此现象由计量修复人员经螺纹磨削加工后再次计量鉴定,各尺寸合格后方可投入使用。 报废环规应标识隔离并及时处理,不得流入生产现场。 4、维护与保养 量具(环规)使用完毕后,应及时清理干净测量部位附着物,存放在规定的量具盒内。生产现场在用量具应摆放在工艺定置位置,轻拿轻放,以防止磕碰而损坏测量表面。 严禁将量具作为切削工具强制旋入螺纹,避免造成早期磨损。可调节螺纹环规严禁非计量工作人员随意调整,确保量具的准确性。环规长时间不用,应交计量管理部门妥善保管。

螺纹规使用方法

螺纹规使用方法 一、目的 规范塞规、环规使用的操作方法,保证测量结果的准确性。螺纹塞规使用者应根据操作规范要求,确保操作过程正确,并负责仪器的维护和保养。 二、说明 螺纹规又称螺纹通止规、螺纹量规,通常用来检验判定螺纹的尺寸是否合格。 螺纹规根据所检验内外螺纹分为螺纹塞规和螺纹环规,目前我们所使用的只有螺纹塞规。 图1 三、使用方法 1、选择螺纹规时,应选择与被测螺纹相匹配的规格。 2、使用前,先清理干净螺纹规和被测螺纹表面的油污、杂质等。 3、使用时,使螺纹规的通端(止端)与被测螺纹对正后,用大拇指与食指转动螺纹规或被 测零件,使其在自由状态下旋转。通常情况下(无被测零件的螺纹的图示说明时),螺纹 规(通端)的通规可以在被测螺纹的任意位置转动,通过全部螺纹长度则判定为合格,否 则为不合格品;在螺纹规(止端)的止规与被测螺纹对正后,旋入螺纹长度在2个螺距之 内止住为合格,不可强行用力通过,否则判为不合格品。(有被测零件的图示说明时,应 按照图示说明做判定。) 图2 图3 图中英文字母“GO”或“T”:表 示螺纹塞规的通端。 图中“G 3/8-19”或“M3 6H” 表示该螺纹规规格. 图中英文字母“NO GO”或“Z”: 表示螺纹塞规的止端。 螺纹塞规

4、检验工件时旋转螺纹规不能用力拧,用三只手指自然顺畅地旋转,止住即可,螺纹规退 出工件最后一圈时也要自然退出,不能用力拔出螺纹规,否则会影响产品检验结果的误差,螺纹规的损坏。 图4 图5 如上图4操作方法是正确的,图5是错误的,无需手握。 5、使用完毕后,及时清理干净螺纹规的通端(止端)的表面附着物,并存放在工具柜的量 具盒内。 四、注意事项 1、被测件螺纹公差等级及偏差代号必须与塞规标识公差等级、偏差代号相同,才可使用。 2、只有当通规和止规联合使用,并分别检验合格,才表示被测螺纹合格。 3、应避免与坚硬物品相互碰撞,轻拿轻放,以防止磕碰而损坏测量表面。 4、严禁将螺纹规作为切削工具强制旋入螺纹,避免造成早期磨损。 5、螺纹规使用完毕后,应及时清理干净测量部位附着物,存放在规定的量具盒内。 五、维护和保养 1、每月定期涂抹防锈油,以保证表面无锈蚀、无杂质(我们的螺纹规使用频繁且所 处环境干净无需上油保护)。 2、所有的螺纹规必须经计量校验机构校验合格后并在校验有效期内,方可使用。 3、损坏或报废的螺纹规应及时反馈处理,不得继续使用。 4、经校对的螺纹规计量超差或者达到计量器具周检期的螺纹规,由计量管理人员收回 并做相应的处理。

Segmentation和DEMOGRAPHIC 的解释

Segmentation, Targeting, and Positioning Segmentation, targeting, and positioning together comprise a three stage process. We first (1) determine which kinds of customers exist, then (2) select which ones we are best off trying to serve and, finally, (3) implement our segmentation by optimizing our products/services for that segment and communicating that we have made the choice to distinguish ourselves that way. Segmentation involves finding out what kinds of consumers with different needs exist. In the auto market, for example, some consumers demand speed and performance, while others are much more concerned about roominess and safety. In general, it holds true that “You can’t be all things to all people,” and experience has demonstrated that firms that specialize in meeting the needs of one group of consumers over another tend to be more profitable. Generically, there are three approaches to marketing. In the undifferentiated strategy, all consumers are treated as the same, with firms not making any specific efforts to satisfy particular groups. This may work when the product is a standard one where one competitor really can’t offer much that another one can’https://www.360docs.net/doc/ca3096002.html,ually, this is the case only for commodities. In the concentrated strategy, one firm chooses to focus on one of several segments that exist while leaving other segments to competitors. For example, Southwest Airlines focuses on price sensitive consumers who will forego meals and assigned seating for low prices. In contrast, most airlines follow the differentiated strategy: They offer high priced tickets to those who are inflexible in that they cannot tell in advance when they need to fly and find it impractical to stay over a Saturday. These travelers—usually business travelers—pay high fares but can only fill the

HGS型钢筋直螺纹滚丝机使用说明书

H G S型钢筋直螺纹滚丝 机使用说明书 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

HGS-40型钢筋直螺纹滚丝机使用说明书 一.用途 HGS-40型钢筋直螺纹滚丝机。主要用于建筑工程带肋钢滚轧直螺纹丝头,是实现钢筋连接的关键设备。可加工直径16-40mm的HRB335和HRB400级带肋钢筋。 二.特点 HGS-40型钢筋直螺纹滚丝机,可一次装夹完成从剥肋到滚轧螺纹的加工过程。加工螺纹的牙形饱满,尺寸精度高,机械强度高。 既可加工正扣螺纹,也可加工反扣螺纹。 本机操作简单、结构紧凑、工作可靠,具有独特的刀具自动开合机构。 可加工直径范围为16-40mm的HRB335和HRB400级钢筋。 三.结构 HGS-40型钢筋直螺纹滚丝机,由机架、夹紧钳、导轨、滑板、摆线针轮减速机、剥肋滚轧头、进给机构、自动开合机构、行程限位机构、冷却系统、电器控制箱、控制系统等部分组成。

四.主要技术参数 1.加工钢筋直径范围:φ16-φ40mm 2.主电机功率: KW 3.配用电源:三相380V 50Hz 4.主轴转速:40-62r/min 5.最大加工长度:80mm 6.重量:560kg 五.使用方法 (一)加工前的准备 1.按要求接好电源线和接地线,接通电源。电源为三相380V 50Hz的交流电源,为保证人身安全请使用带漏电保护功能的自动开关。 2.冷却液箱中,加足溶性冷却液(严禁加油性冷却液)。

(二)空车试转 1.接通电源。检查冷却水泵工作是否正常。 2.操作按钮,检查电器控制系统工作是否正常。 (三)加工前的调整 1.根据所加工钢筋的直径,调换与加工直径相适应的滚丝轮。滚丝轮与加工钢筋直径的关系见表一: 2.调换滚丝轮的同时,调换与滚丝轮螺距相适宜的垫圈,以保证螺距的正确性,螺距与垫圈厚度的关系见表二: 3.滚丝轮与加工直径相适应后,将与钢筋相适应的对刀棒插入滚轧头中心,调整滚丝轮使之与对刀棒相接触,抽出对刀棒,拧紧螺钉,压紧齿圈,使之不得移动。 4.对于固定定位盘的设备根据所加工钢筋直径,调换与加工直径相适应的定位盘(定位盘上打印有加工直径)。对于可调整定位盘的设备按定位盘刻度调整到相应的刻度,当剥肋刀磨损时还需要进行微调。 5.根据所加工钢筋规格,调整剥肋行程档块的位置,保证剥肋长度达到要求值。剥肋长度与钢筋规格的关系见表三:

螺纹环规(通规止规)的使用方法

一、螺纹环规是一种“量具”,是用来检测标准外螺纹中径的,两个为一套,一个通规,一个止 规。两个环规的内螺纹中径分别按照标准螺纹中径的最大极限尺寸和最小极限尺寸制造的,精度非常高。 二、使用方法 1、通规使用前: 应经相关检验计量机构检验计量合格后,方可投入生产现场使用。 使用时:应注意被测螺纹公差 等级及偏差代号与环规标识的公差等级、偏差代号相同(如M24 ×1.5 6h 与M24×1.5 5g 两种环 规外形相同,其螺纹公差带不相同,错用后将产生批量不合格品)。 检验测量过程: 首先要清理干净被测件螺纹油污及杂质,然后在环规与被测件螺纹对正后, 用大拇指与食指转动环规,使其在自由状态下旋合通过螺纹全部长度判定合格,否则以不通判定。 2、止规使用前: 应经相关检验计量机构检验计量合格后,方可投入生产现场使用。 使用时: 应注意被测件螺纹公差等级及偏差代号与环规标识公差等级、偏差代号相同。 检验测量过程: 首先要清理干净被测螺纹油污及杂质,然后在环规与被测螺纹对正后,用大拇指与食指转动环规,旋入螺纹长度在2个螺距之内后止住为合格,否则判为不合格品。 3、通规可以在螺纹的任意位置转动自如,止规拧一至两三圈,(可能有时还能多拧一两圈,但螺纹头部没出环规端面)就拧不动了,这时说明你检测的外螺纹中径正好在“公差带”内,是合格的产品。 4、只有当通规和止规联合使用,并分别检验合格,才表示被测工件合格。 三、维护和保养 螺纹环规使用完毕后,应及时清理干净测量部位附着物,存放在规定的量具盒内。环规使用时应轻拿轻放,环规严禁套在坚硬物品上面旋转。严禁将环规强制旋入螺纹,避免造成早期磨损,确保环规的准确性。长时间不使用,应涂上防锈油。 图中英文字母“T”:表示螺纹环规的通规。 图中英文字母“Z”:表示螺纹环规的止规。 图中“MJ10×1.5 6g”及“7/8-6ACME”表示该螺纹环规的规格。 使用螺纹环规口诀: 通规通;止规止!

HK通用检测标准

钣金件检验规范 1 目的 为了确保钣金件类物料的质量符合公司所规定的要求 2 适用范围 本规范适用于本公司无特殊要求的钣金件来料检验。 3 检验依据、抽样方案以及质量合格水平 3.1依据:(1)图纸;(2)封样;(3)器件认定资料; 3.2 对每批次进货的钣金件 (每次进货为一个批次),按GB/T 2828.1-2003?中一般检查水平的一次抽样方案和定数抽样方案进行抽检, 所有定数检验项目, 检验合格的判定依据Ac/Re 为0/1判据:即发现1个不合格即判该批为不合格,检验内容详见下表。 3.3 缺陷等级定义:A表示严重缺陷 B表示重缺陷 C轻缺陷 4 职责 ? 主管部门为品质管理部,配合部门为研发中心、供应部及生产部。 5 检测仪器、工具及检测条件 ? 5.1检测仪器、工具 游标卡尺、塞规、螺纹通止规、色差计、3M600胶带、2H中华铅笔、橡皮擦、铅笔硬度计、百格刀、无水酒精、高度计、影像测量仪、三坐标测量机及一些检验工装; 5.2检测条件 样品表面(观察面)与照明平行,视线呈45度进行观察,被检验产品在荧光灯下1.2米处,眼睛距物30厘米观察3-5秒,视力或矫正视力应不低于1.0,检验时不能使用放大镜。 6 检验标准 6.1判定总则: 1)可接收的等级面缺陷不能影响产品的装配和功能,否则仍判不合格。 2)有封样或图纸上有特殊要求的零件,其对应的缺陷优先按其限度样板或技术要求的标准进行判断。 3)对某一缺陷判定有歧异,或者出现本规范中未定义的缺陷时,由SQE工程师进行仲裁判定并签订限度样品。 4)同一表面缺陷不能聚集过多,实际缺陷数量不能超过缺陷允收表规定的缺陷数 N 。 5)同一表面同一区域缺陷不能聚集过大,即以规定缺陷间距为半径的圆周内,实际测量结果不能大于缺陷允收表的要求。对于可累积计算的缺陷如长度L和面积S等,记录累积值(L =L1+L2+…Ln,S=S1+S2+…Sn)与缺陷允收表比较。对无法累积计算的缺陷如高度H,宽度W,直径D等,记录最大的测量值与缺陷允收表比较。

施必牢防松螺母使用指南

上海底特精密紧固件有限公司 第 1 页 共 1 页 2010-12-24 施必牢? 防松螺母设计和使用指南 ◆ 施必牢防松螺母只适用于刚性连接,不适用于柔性连接,见右图。 ◆ 施必牢防松螺母是有方向性的,只有按正确方向旋入紧固才具有 防松效果,见右下图。为了辨别方向,常规的施必牢螺母外形只 有两种:凸缘和法兰面外形。一般情况下建议不要使用六角螺母。 ◆ 安装扭矩 ◇ 安装力矩是根据配用螺栓的性能等级和螺母的表面处理确定的。 不同的表面处理安装力矩不同。常用表面处理的安装力矩见 《施必牢螺母常用表面处理安装力矩表》。 ◇ 对特定的应用,我们将给出专用的安装扭矩。 ◆ 装配工具 ◇ 电动或液压定扭矩扳手 ◇ 力矩扳手 ◇ 气动或电动扳手预装,然后用力矩扳手紧固至规定的力矩 ◆ 螺栓螺母性能等级应匹配。性能高的螺母可替代性能低的螺母。 螺栓、螺母性能等级匹配 螺栓性能等级 5.8 8.8 10.9 12.9 螺母性能等级 5 8 10 12

◆ 配套螺栓:螺栓外螺纹精度等级:镀(涂)前6g (注:许多制造厂对螺纹的检查仅限于螺纹通止规,这是不完全的。因为,螺纹通止环规仅检查了螺纹作用中径,不能对螺纹大径进行检查。螺纹大径的检查需用外径千分尺或游标卡尺进行) ◆使用施必牢螺母后,可不需弹簧垫圈、锁片和其它防松零件(形式)。如果需用平垫圈时,请使用硬度级别为300HV的平垫圈。 ◆ 施必牢螺母的防松性能来源于其楔形结构的螺纹。只要螺纹合格,螺母就具有防松性能。由于施必牢螺纹结构特殊,因此,施必 牢螺纹的检测必须使用专用的施必牢螺纹塞规。施必牢螺纹塞规为三件一套:一支通规、一支斜面止规、一支中径止规。施必牢螺纹塞规旋入被测螺母的方向与螺栓旋入螺母的方向现同。其使用规则见下表。 螺纹量规名称外形特征使用规则 螺纹通规螺纹牙顶尖a、应与工件内螺纹旋合通过;* b、如果量规可以通过,但有一定的阻滞,亦为合格。 螺纹斜面止规螺纹牙顶尖允许与工件那螺纹旋合,但旋合量应不超过三扣螺纹。 螺纹中径止规螺纹牙顶较平a、与工件内螺纹旋合不能通过; b、在有一定阻滞的情况下,止规完全通过亦为合格。但感受到阻 滞应在第三牙之前。 * 表面有镀(涂)层的产品如果螺纹通规不通,去除镀(涂)层后螺纹通规通亦为合格。 ◆零件基体上攻制施必牢螺孔时,底孔应符合推荐的底孔直径。底孔直径和施必牢丝锥外形尺寸见《施必牢螺纹标准丝锥》。 上海底特精密紧固件有限公司第 2 页共 2 页 2010-12-24

螺纹环规--通止规使用方法

螺纹环规通常分为通端螺纹环规和止端螺纹环规,其含义是在检测螺纹工件时,通端螺纹环规应顺利的旋入螺纹工件,而止端螺纹环规应旋入螺纹工件不过两扣,也就是不到两个螺距,则判为该螺纹工件合格。螺纹校对规通常分为TS校对规和ZS校对规。其功用是对在用的螺纹环规进行校对,TS校对规校对通端螺纹环规不过两扣,判为合格;ZS校对规校对止端螺纹环规不过两扣,也判定为合格。因为,用螺纹校对规校对通端螺纹环规和止端螺纹环规实际上是控制了螺纹环规的作用中径,其半角、螺距和实际中径等是不考虑的。一旦当螺纹的作用中径超差,则螺纹环规就应判为不合格。即使其余技术指标合格也已经无意义了。由此可见在判别螺纹环规的实际工作中,只要控制好螺纹的作用中经,就可以判别其合格与否。当然,我们在工作中要注意螺纹校对规本身是否合格,方筒螺纹校对规的合格与否可以用三针和杠杆千分尺加以检定。 检验内螺纹的量规 1)通端工作塞规用以控制被检内螺纹的大径最小极限尺寸和作用中径的最小极限尺寸,其牙型完整,螺纹长度与被检螺纹长度一样,一般8~9扣,合格标志为顺利通过被检内螺纹。 2)止端工作塞规控制被检内螺纹的实际中径,为消除牙型误差,制成截断牙型,为减少螺距误1 1差影响,其扣数为2 1~3 扣,合格标志是不能通过,但可以部分旋入,多于4扣的内螺纹旋入量不得多于2扣;少于4扣的,两端旋入量不得多于2扣。 3)通端验收塞规的检验作用与螺纹通端工作塞规相同,一般是选取部分磨损的,但螺距和半角误差较小的通端塞规,验收人员用以验收螺纹制件,其中径尺寸因磨损而稍小,可减少被通端工作塞规检验为合格而被验收塞规验成不合格的矛盾。验收塞规无止端。 检验外螺纹的量规 1)通端工作环规综合控制被检外螺纹内径最小极限尺寸和作用中径的最大极限尺寸,完整牙型,螺纹长度与被检外螺纹旋合长度相当,8~9扣,合格标志是能通过被检螺纹。 2)止端螺纹环规只控制被检外螺纹的实际中径的最小极限尺寸。截短牙型,扣为2 1~3扣,合格标志是不能通过,但允许部分旋入。多于4 扣的外螺纹,旋入量不得多于3 扣;少于4扣的旋入量不得多于2扣。 3)通端验收环规的作用与通端工作环规相同,一般也是从部分磨损后的工作环规中选取。 螺纹环规通常分为通端螺纹环规和止端螺纹环规,其含义是在检测螺纹工件时,通端螺纹环规应顺利的旋入螺纹工件,而止端螺纹环规应旋入螺纹工件不过两扣,也就是不到两个螺距,则判为该螺纹工件合格。螺纹校对规通常分为TS校

HGS-40钢筋滚丝机

HGS-40型钢筋直螺纹滚丝机使用说明书 一.用途 HGS-40型钢筋直螺纹滚丝机。主要用于建筑工程带肋钢滚轧直螺纹丝头,是实现钢筋连接的关键设备。可加工直径16-40mm的HRB335和HRB400级带肋钢筋。 二.特点 HGS-40型钢筋直螺纹滚丝机,可一次装夹完成从剥肋到滚轧螺纹的加工过程。加工螺纹的牙形饱满,尺寸精度高,机械强度高。 既可加工正扣螺纹,也可加工反扣螺纹。 本机操作简单、结构紧凑、工作可靠,具有独特的刀具自动开合机构。 可加工直径范围为16-40mm的HRB335和HRB400级钢筋。 三.结构 HGS-40型钢筋直螺纹滚丝机,由机架、夹紧钳、导轨、滑板、摆线针轮减速机、剥肋滚轧头、进给机构、自动开合机构、行程限位机构、冷却系统、电器控制箱、控制系统等部分组成。

四.主要技术参数 1.加工钢筋直径范围:φ16-φ40mm 2.主电机功率:4.0 KW 3.配用电源:三相380V 50Hz 4.主轴转速:40-62r/min 5.最大加工长度:80mm 6.重量:560kg 五.使用方法 (一)加工前的准备 1.按要求接好电源线和接地线,接通电源。电源为三相380V 50Hz的交流电源,为保证人身安全请使用带漏电保护功能的自动开关。 2.冷却液箱中,加足溶性冷却液(严禁加油性冷却液)。 (二)空车试转 1.接通电源。检查冷却水泵工作是否正常。 2.操作按钮,检查电器控制系统工作是否正常。 (三)加工前的调整 1.根据所加工钢筋的直径,调换与加工直径相适应的滚丝轮。滚丝轮与加工钢筋直径的关系见表一: 2.调换滚丝轮的同时,调换与滚丝轮螺距相适宜的垫圈,以保证螺距的正确性,螺距与垫圈厚度的关系见表二:

市场细分market segmentation

市场细分market segmentation 市场细分的含义 市场细分(market segmentation)是指营销者通过市场调研,依据消费者的需要和欲望、购买行为和购买习惯等方面的差异,把某一产品的市场整体划分为若干消费者群的市场分类过程。每一个消费者群就是一个细分市场,每一个细分市场都是具有类似需求倾向的消费者构成的群体。 细分消费者市场的基础 1. 地理细分:国家、地区、城市、农村、气候、地形 2. 人口细分:年龄、性别、职业、收入、教育、家庭人 口、家庭类型、家庭生命周期、国籍、民族、宗教、 社会阶层 3. 心理细分:社会阶层、生活方式、个性 4. 行为细分:时机、追求利益、使用者地位、产品使用 率、忠诚程度、购买准备阶段、态度。 5. 受益细分:追求的具体利益、产品带来的益处,如质 量、价格、品位等。 市场细分的基本原理与依据 1. 市场是商品交换关系的总和,本身可以细分 2. 消费者异质需求的存在 3. 企业在不同方面具备自身优势 市场细分的作用 细分市场不是根据产品品种、产品系列来进行的,而是从消费者( 指最终消费者和工业生产者)的角度进行划分的,是根据市场细分的理论基础,即消费者的需求、动机、购买行为的多元性和差异性来划分的。通过市场细分对企业的生产、营销起着极其重要的作用。 1、有利于选择目标市场和制定市场营销策略。 市场细分后的子市场比较具体,比较容易了解消费者的需求,企业可以根据自己经营思想、方针及生产技术和营销力量,确定自己的服务对象,即目标市场。针对着较小的目标市场,便于制定特殊的营销策略。同时,在细分的市场上,信息容易了解和反馈,一旦消费者的需求发生变化,企业可迅速改变营销策略,制定相应的对策,以适应市场需求的变化,提高企业的应变能力和竞争力。

08 Market segmentation

Chapter 7 Market Segmentation and Target Marketing Strategies (市场细分与目标市场策略)

Market segmentation(市场细分)Target market choosing(目标市场选择) Market positioning(市场定位 ) Objectives

营销战略的核心——STP 营销 细分市场(Segmenting )选择目标市场(Targeting)市场定位(Positioning) ◆确定市场细分的依据◆勾划细分市场轮廓 市场细分 目标市场选定 市场定位 ◆确定细分市场吸引力的衡量标准◆选择目标细分市场 ◆为每个目标细分市场开发产品定位◆市场营销组合 目标市场战略步骤

1. Market segmentation 市场细分

The definition of Market Segmentation Market Segmentation is the splitting of a market into smaller groups(segments) so that marketers can better direct or focus their effrorts. It can be defined as the process of dividing a total market into subgroups(segments) such that each segment consists of buyers and users who share similar characteristics but are different from those in the other segments.

光滑通止规及塞规、环规使用说明

一、光滑通止规的使用说明 1 量具名称 光滑通止规、 2 操作方法 2.1 使用前先检查光滑通止规是否在检定有效期内,有无损坏、生锈现象; 2.2 将光滑通止规测量面和工件表面擦净,以免影响测量准确度和加快磨损; 2.3 光滑通止规通端应能顺利通过工件,光滑通止规的止端应不能通过工件,产品合格; 2.4 通规不过,内径小了,产品不合格;止规通过,内径大了,产品不合格; 2.5 光滑通止规使用后,应及时擦净、涂油,放在专用盒中,防止生锈。 3 量具使用维护、核查方法 3.1 光滑通止规检定周期一般以检定计划为依据,对于通止规超出有效期的,请及时与量具管理员联系送 检; 3.2 操作者在量具使用过程中,必须轻拿轻放,不可掉在地上,如若发生磕碰、跌落等异常现象,请及时 与量具管理员联系,管理员根据情况进行检定等处理。 止端 通端

二、检测NPT 螺纹环规、塞规使用方法及注意事项 1.使用方法 检测NPT 内外螺纹一般只用三基面螺纹环规、塞规。见下图 1 图1 测外螺纹时用手将螺纹环规旋进待测外螺纹,待测外螺纹体在螺纹环规上下两基面之间均为合格。 测内螺纹时将螺纹塞规旋进待测内螺纹,待测内螺纹体在螺纹塞规上下两基面之间均为合格。 下 基面 上基面 基准面 环规三基面 上基面 基准面 基准面 下基面 此时被测螺纹体高于下基面则被测螺纹体螺纹 偏小,已超出标准范围。 将螺纹环规旋进待测外螺纹,待测外螺纹体与基准面平行螺纹为标准。 此时被测螺纹体底于上基面则被测螺纹体螺纹 偏大,不在标准范围内。

2.注意事项 安全注意事项 非量规检查目的请勿使用。 螺纹部及量规部的边角因为存在功能性尖锐部分,因此容易造成操作人员受伤,请加以注意。 需要检查的产品或量规处于运动状态时去请勿检查量规。 使用前的注意事项 请用轻油或白灯油侵袭量规及产品或以干净的布擦拭。 确认量规是否存在的锈迹、伤痕、毛刺等。 使用时的注意事项 以抗锈润滑油充分涂抹。 请勿对了量规施加冲击。 保管时的注意事项 保管量规时,应先去除灰尘、切屑等,以防止生锈。 将量规存放在无湿气且温度变化不大的场所。 定期点检 无论使用情况如何,都应定期进行检查。 将螺纹塞规旋进待测外螺纹,待测外螺纹体与基准面平行螺纹为标准。 此时被测螺纹体高于下基面则被测螺纹体螺纹偏大,已超出标准范围。 此时被测螺纹体底于上基面则被测螺纹体螺纹偏小,不在标准范围内。

【免费下载】螺纹通止规校对方法

首先校对塞规建立被校对环规的尺寸。校对塞规也被叫做检验规。检验“check”字样会打在柄部和头部。他们应是修正型(truncated type),既有全形齿,又有修正齿部分。他们的三元素(中径,半角,全角)均需按W级精度制造。W 级允许校对环规更接近产品极限的最大值和最小值,使得零件有最大合格比。 校对塞规在使用前必须检查是否公差正确,表面无划痕,堵塞,或其他缺陷。如在校对规或环规表面发现有损伤,则应弃用,因为在可能的紧密啮合中,其中一只上的划痕可能刮伤或损坏另一只的表面 校对规在有效中径部分必需保持合适的直线度。他们在实际使用中,前端可能磨损较快。无论如何请使用以下推荐程序以帮助延长校对塞规的直线度寿命1. Thoroughly clean both the ring and the setting plug in a good cleaning solution and jet blow dry ( or clean ultrasonically). Then visually inspect to make sure all foreign material in the thread has been removed and no nicks or burrs are present. 彻底清洗环规与校对塞规,并吹干或超声波清洗。然后观察所有螺纹内的外来物确认已被清除,并无划痕和毛刺。 2.Lubricate the setting plug with a thin film of light viscosity oil before inserting into the ring gage. 用带清油的胶片润滑校对塞规 3.Turn the locking screw counter-clockwise until it is loosened. 反时针拧松锁紧螺钉 4.Turn the adjusting screw clockwise, which opens the ring to a larger pitch diameter than the setting plug. 顺时针调节螺钉,这使环规开口,并使中径比校对塞规的大。 5.Turn the ring gage onto the setting plug all the way to the back (full form section) so that approximately one thread extends beyond the last thread of the setting plug. (This promotes more uniform wear over the entire thread length of the plug.) 旋转环规进入塞规后部(全形齿部分),使塞规的大约一牙留在外面(这使整个塞规螺纹长度有教标准的磨损) 6.Turn the adjusting screw counter-clockwise until there is a slight drag between the ring and setting plug.反向旋转调节螺钉,直到塞环规间有轻轻的拉动 7.Turn the locking screw counter-clockwise until tight. This locks the adjusting screw so that the size of the ring gage remains fixed. There should

螺纹检验规范

螺纹检验规范 一、目的: 为了对产品螺纹的合格判定依据作出规定,规范产品螺纹的加工和检验控制,特制定本规范。 二、范围: 适用于本公司精密铸件制品内螺纹及圆钢制品外螺纹的加工和检验控制。 三、定义: 3.1全通:螺纹规能从工件螺纹的第一扣牙一直通到工件螺纹的最后一扣牙; 3.2顺通:螺纹规能全通,且用三个手指以正常力度转动一下,松开手指后螺纹规能自由旋转。 3.3紧通:螺纹规能全通,但用三个手指以正常力度转动一下,松开手指后螺纹规不能自由旋转,螺纹规只有在手指持续用力的情况下才能转动,并且手感较紧。 3.4较粗牙:米制螺纹螺距>1mm、英制/美制螺纹螺距代号数值<24的螺纹; 3.5较细牙:米制螺纹螺距<1mm、英制/美制螺纹螺距代号数值≧24的螺纹。 四、判定准则: 4.1螺纹合格与否的判定原则: 4.1.1对于外螺纹,必须保证螺纹通止规合格,同时螺纹大径应在公差范围内; 4.1.2对于内螺纹,必须保证螺纹通止规合格,同时螺纹小径应在公差范围内。 4.2 当产品外螺纹受电镀锌影响时,螺纹检验判定的通止规要求: 4.2.1 产品外螺纹受电镀锌影响,对于米制、美制螺纹及英制圆柱螺纹,镀后规具用于镀前检验的判定法则,详见附录“米制、美制及英制圆柱螺纹通止规控制要求一览表”。 4.2.2对于米制、美制螺纹及英制圆柱螺纹,分别使用镀后规控制镀后螺纹、镀前规控制镀前螺纹的判定规则,类同产品不需电镀或者镀层对内螺纹无影响时用镀后规控制的判别,详见附录“米制、美制及英制圆柱螺纹通止规控制

4.3产品不需电镀或者电镀对内螺纹无影响时,螺纹检验判定的通止规要求 4.3.1产品不需电镀,焊接对螺纹没有影响或不需焊接,但除油有影响时,用螺纹规检除油前后产品的经验法则,详见附录“米制、美制及英制圆柱螺纹通止规控制要求一览表”。 4.3.2产品不需电镀或者电镀对内螺纹无影响时,焊接除油对内、外螺纹有影响,用螺纹规检除油前后产品的经验法则,详见附录“米制、美制及英制圆柱螺纹通止规控制要求一览表”。 附录: 五、本规范的应用指导和声明: A、本规范的适用性以牙型加工的正确性为前提。当牙型角加工不正确(例如公制/美制60°误加工成英制55°),或者刀具未磨好/崩刀造成的牙型缺陷,镀前加工使用本规范判定时并不能保证成品一定合格; B、本规范的适用性还需确保没有其它意外因素的影响。例如,虽然镀前按本规范执行,但抛光用具或者电镀挂具造成螺纹压伤、变形或拉伤,以及搬运时的碰伤,都会导致镀后通规不通。 C、内螺纹受电镀影响或不受电镀影响的情形:如果产品内孔只是有内螺纹的一端是开口的,而相对螺纹的另一端却是封闭的,电镀最多只影响第一扣牙,当

相关文档
最新文档